JPS61253344A - Steel plate for high heat input welding and its manufacture - Google Patents

Steel plate for high heat input welding and its manufacture

Info

Publication number
JPS61253344A
JPS61253344A JP9228185A JP9228185A JPS61253344A JP S61253344 A JPS61253344 A JP S61253344A JP 9228185 A JP9228185 A JP 9228185A JP 9228185 A JP9228185 A JP 9228185A JP S61253344 A JPS61253344 A JP S61253344A
Authority
JP
Japan
Prior art keywords
less
heat input
steel plate
high heat
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9228185A
Other languages
Japanese (ja)
Inventor
Masao Hirai
平井 征夫
Akira Minagawa
皆川 章
Munetaka Oda
小田 宗隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9228185A priority Critical patent/JPS61253344A/en
Publication of JPS61253344A publication Critical patent/JPS61253344A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a steel plate for high heat input welding having superior tensile strength and forming a weld heat-affected zone which is not embrittled by added B by regulating the carbon equiv. of a steel plate contg. a rare earth element or Ti and the B content in the steel plate to a specified value each. CONSTITUTION:A steel slab having a composition contg. 0.03-0.15% C, 0.01-0.50% Si, 0.50-1.80% Mn, 0.005-0.08% Al, 0.0003-0.0050% B, <0.01% N and <=0.03% in total of at least one among <0.03% each of Ti, Ca and REM and having 0.28-0.42% carbon equiv. (Ceq) represented by formula 1 is heated to 900-1,050 deg.C and rolled at <=30% draft per one pass to manufacture a steel plate for high heat input welding having superior tensile strength and forming a weld heat-affected zone which is not embrittled. In the composition, B contains <=0.0005% soluble B and the quantitative relation among Ti, B and N satisfies formulae 2, 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、大入熱溶接用鋼板とその製造方法に関するも
のであシ、特に本発明は、引張強さ40に271III
2,50にり711m2あるいは60 K9/■2テ、
かっBによる熱影響部(以下HAZ部と称す)の脆化を
防止することのできる大入熱溶接用鋼板とその製造方法
に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a steel plate for high heat input welding and a method for manufacturing the same.
2,50 711m2 or 60 K9/■2te,
The present invention relates to a steel plate for high heat input welding that can prevent embrittlement of a heat-affected zone (hereinafter referred to as HAZ zone) due to B, and a method for manufacturing the same.

(従来の技術) 溶接の高能率化が要求されるようになシ、この1’求に
対応Lテ&Rト#Vo1.63Nh2 p312 VC
記載の希土類元素(以下REMと称す)−B系鋼材が、
また特開昭50−80911号公報忙記載のTi−B系
鋼材が開発されて、片面溶接したボンド部近傍の粗粒H
AZ部であっても優れた靭性な得ることができるように
なってきた。
(Prior art) As there is a growing demand for high efficiency welding, we have developed a new technology to meet this demand.
The rare earth element (hereinafter referred to as REM)-B steel material described above is
Furthermore, a Ti-B steel material described in JP-A No. 50-80911 was developed, and the coarse grain H near the bond part welded on one side
It has become possible to obtain excellent toughness even in the AZ region.

(発明が解決しようとする問題点) しかし、上記B添加鋼板に両側一層SAW溶接あるいは
これより入熱量の低い溶接を施した場合には、微細HA
Z部およびα−r二相加熱域において脆化する現象が認
められ、特にこの現象はエレクトロガス溶接のように水
冷銅当会を用いる場合に顕著に認められ、かつ低窒素化
するほど脆化が生じやすい傾向のあることを本発明者ら
は詳細な検討表らびに研究によって知見した。
(Problem to be solved by the invention) However, when the B-added steel sheet is subjected to SAW welding on both sides or welding with a lower heat input, fine HA
A phenomenon of embrittlement is observed in the Z section and the α-r two-phase heating region, and this phenomenon is particularly noticeable when water-cooled copper welding is used, such as in electrogas welding, and the lower the nitrogen content, the more the embrittlement becomes. The present inventors have discovered through detailed examination and research that there is a tendency for this to occur.

本発明者らは板厚25鵡の2種の)11’60鋼に入熱
量75 KJ / cvaのエレクトロガス溶接を施し
て継手の靭性を調べた。この結果は鋼の成分組成と共に
第1表に示すようである。さらに脆化温度域を調べるた
め高周波加熱方式の熱サイクルシュミレータ−を用いて
HAZ再現試験を行った。この結果を第1図に示す。同
図よシ鋼IKあっては800〜1000℃加熱域におい
てはボンド部相当の1350℃加熱域よシもむしろ脆化
していることが判る。
The present inventors performed electrogas welding on two types of 11'60 steel with a plate thickness of 25 mm and a heat input of 75 KJ/cva to examine the toughness of the joints. The results are shown in Table 1 along with the steel composition. Furthermore, in order to investigate the embrittlement temperature range, a HAZ reproduction test was conducted using a high-frequency heating type thermal cycle simulator. The results are shown in FIG. It can be seen from the same figure that steel IK becomes brittle in the heating range of 800 to 1000°C, even in the heating range of 1350°C, which corresponds to the bond part.

さらに光学およ−び電子顕微鏡観察によって上記脆化は
固溶BKよる島状マルテンサイトの生成によることを本
発明者らは知見するに至った。このことは、B無添加鋼
2にあっては、上記800 P−1000℃加熱部では
フェライト+パーライトの微細組織となシ高靭性が得ら
れるが、B添加鋼lにあっては島状マルテンサイトを生
成させる固溶Bにより焼入れ効果が作用して靭性が低下
するのではないかと考えられる。
Further, through optical and electron microscopy observations, the present inventors have found that the above-mentioned embrittlement is due to the formation of island-like martensite by solid solution BK. This means that B-free steel 2 has a microstructure of ferrite + pearlite in the 800P-1000°C heated zone, resulting in high toughness, but B-added steel I has island-like marten. It is thought that the solid solution B that generates sites has a quenching effect, resulting in a decrease in toughness.

ところで、B添加HT80鋼なかでもHの低い鋼にあっ
ては固溶BKより島状マルテンサイトが生成するという
現象は認められず、引張強さ70Kyf/闘2あるいは
Ceqが0.42%以下のB含有鋼において特有の脆化
が認められる。
By the way, in steels with low H content among B-added HT80 steels, the phenomenon of formation of island-like martensite from solid solution BK is not observed; Specific embrittlement is observed in B-containing steel.

第2図は本発明者らの実験によシ、溶接入熱量変化に相
当するように800℃から500℃までの冷却時間Δt
を10〜500 secの範囲内で変化させたときの8
00℃加熱部のWE−40を第1表記載の@IKついて
調べた結果を示す図である。同図より冷却時間Δtが短
かく冷却速度が速いほど脆化が生起しやすいことが判る
Figure 2 shows the cooling time Δt from 800°C to 500°C, which corresponds to the change in welding heat input, based on experiments conducted by the present inventors.
8 when changing within the range of 10 to 500 seconds
FIG. 2 is a diagram showing the results of an investigation of WE-40 in the 00° C. heating section using @IK listed in Table 1. From the figure, it can be seen that the shorter the cooling time Δt and the faster the cooling rate, the more likely embrittlement occurs.

上述の本発明者らの研究により、大入熱溶接継手ボンド
部の1350℃域に加熱されたREM−Ti含有の鋼2
の靭性はB添加によってすなわち鋼1の成分組成とする
ことによシ改善されることが判ったが、逆K 800〜
1000℃に加熱された鋼IKあっては脆化が生じるこ
とが判った。このような脆化は上述のように固溶BKよ
る焼入性向上によシ島状マルテンサイトの生成によるも
のであると考えられる。
According to the above-mentioned research by the present inventors, REM-Ti-containing steel 2 heated to a temperature of 1350°C in the bond area of a high heat input weld joint.
It was found that the toughness of steel can be improved by adding B, i.e., by changing the composition to steel 1.
It has been found that steel IK heated to 1000° C. becomes embrittled. Such embrittlement is thought to be due to the formation of island-shaped martensite due to the improvement in hardenability due to solid solution BK as described above.

法の有する問題点を除去、解決するための手段を提供す
ることを目的とするものであシ、特許請求の範囲記載の
鋼板ならびKその製造方法を提供することによって前記
目的を達成することができる。
The object of the present invention is to provide a means for eliminating and solving the problems of the law, and the above object can be achieved by providing the steel sheet and the method for manufacturing the same as described in the claims. can.

すなわち本発明は、 00.03〜0.15%、 Si 0.01 = 0.
50%、  In0.50〜1.80%、 kl O,
005〜0.08%、 B O,0003〜0.005
0%、 N O,01%以下を含み、さらにTi0.0
3%以下、 Oa 0.03%以下、 REM 0.0
3%以下のうちから選ばれるいずれか少なくとも1種を
合計量で0.03%以下含み、かつ下記に示す式(1)
によ)算出される炭素当量Ceqが0.28〜0.42
%である大入熱溶接用鋼において: Ti量および全B量は下記の式(2)および(3)を満
足し、かつ全Bのうち固溶Bは0.0005%以下であ
ることを特徴とする大入熱溶接用鋼板。
That is, in the present invention, 00.03 to 0.15%, Si 0.01 = 0.01%.
50%, In0.50-1.80%, kl O,
005~0.08%, BO,0003~0.005
0%, NO, 0.01% or less, and further Ti0.0
3% or less, Oa 0.03% or less, REM 0.0
Contains at least one selected from 3% or less in a total amount of 0.03% or less, and has the formula (1) shown below.
) Calculated carbon equivalent Ceq is 0.28 to 0.42
% of high heat input welding steel: The Ti content and the total B content satisfy the following formulas (2) and (3), and the solid solution B of the total B is 0.0005% or less. Steel plate for high heat input welding.

aeq :(Q+ In/6 + Cu+ Ni/15
+Cr +Mo+V15 ) % ・= (1)Ti/
 N≦3.5        ・・・・・・・・・・・
・−・・・・・・・・−・・・(2)−0.003%≦
(N−(ilB ” 4 r、 s ’fl ))60
.003%・−・−(3)とその製造方法に関するもの
である0 上述のように従来の、特に鉄と鋼Vo1.63 Na 
2p312および特開昭50−80911号公報記載の
発明の鋼材について溶接性を綿密に調べると共に、B添
加鋼の製鋼より圧延後までのBの形態変化を追跡調査し
た結果本発明に想到し本発明を完成したO 次に本発明において鋼板の成分組成を限定する理由を説
明する。
aeq: (Q+ In/6 + Cu+ Ni/15
+Cr +Mo+V15) % ・= (1) Ti/
N≦3.5・・・・・・・・・・・・
・−・・・・・・・・・・(2) −0.003%≦
(N-(ilB"4r,s'fl))60
.. 003%...-(3) and its manufacturing method 0 As mentioned above, conventional iron and steel Vo1.63 Na
2p312 and Japanese Patent Application Laid-open No. 50-80911, and also conducted a follow-up study of the change in the shape of B from the time of steel production to the time of rolling of B-added steel. As a result, we arrived at the present invention. Next, the reason why the composition of the steel sheet is limited in the present invention will be explained.

Cは、0.03%!!D少ないと鋼板強度の確保が困難
であるだけでなく、大入熱溶接時に継手軟化が大きくな
シ、一方0.15%よシ多いと本発明の目的とする大入
熱溶接時のポンド靭性が著しく劣化するため、Cは0.
03〜0.15%の範囲内にする必要があるO 81は、lと共に脱酸のため必然的に含有される元素で
あるが、0.01%よシ少ないと脱酸不足となシ、かつ
鋼板強度が低下し、一方0.50%よシ多いと大入熱溶
接継手HAZ部の靭性な劣化させるので、Siは0.0
1〜0.50%の範囲内にする必要があるO Inは、0.50%よシ少ないと大入熱溶接継手が軟化
し、また溶接金属の強度と靭性が低下し、一方1.80
%よシ多いと大入熱溶接継手flAZ部の靭性の劣化を
招くので、Mnは0.50〜1.80%の範囲内にする
必要がある。
C is 0.03%! ! If D is less than 0.15%, it will not only be difficult to ensure the strength of the steel plate, but also the joint will soften significantly during high heat input welding, while if D is more than 0.15%, the pound toughness during high heat input welding, which is the objective of the present invention, will be reduced. C deteriorates significantly, so C is 0.
O81, which needs to be in the range of 0.03 to 0.15%, is an element that is inevitably included together with l for deoxidation, but if it is less than 0.01%, deoxidation will be insufficient. In addition, the strength of the steel plate decreases, and on the other hand, if Si exceeds 0.50%, the toughness of the HAZ part of the high heat input welded joint deteriorates, so Si is 0.0%.
O In, which needs to be in the range of 1 to 0.50%, is less than 0.50%, the high heat input welded joint becomes soft, and the strength and toughness of the weld metal decreases;
%, it causes deterioration of the toughness of the high heat input welded joint flAZ, so Mn needs to be in the range of 0.50 to 1.80%.

htは、o、oos%よシ少ないとAjNによる母材の
細粒化効果がなく低靭性となシ、一方0.08%より多
いと大入熱溶接金属の靭性が劣化するので、ムlはo、
oos〜0.08%の範囲内にする必要があシ、0.0
1〜0.05%のとき最も良い結果が得られる。
If ht is less than o or oos%, AjN will not have the effect of refining the base metal and the toughness will be low, while if it is more than 0.08%, the toughness of the high heat input weld metal will deteriorate, so Hao,
Must be within the range of oos~0.08%, 0.0
Best results are obtained when the content is between 1 and 0.05%.

Bは、大入熱溶接継手HAZ部の靭性改善のために必須
な成分であり、Bは0.0003%!り少々いとHム2
部靭性の改善に効果がなく、一方0.0050≦よシ多
いと大入熱溶接継手粗粒部の粒界KB含有組織が形成さ
れてむしろ脆化するので、Bは0.0003〜0.00
50%の範囲内にする必要があり、なかでも0.000
4〜0.0020%の範囲内が最も好適であシ、Ti 
、 (a 、 REMの少なくとも1種を併用するとさ
らに大入熱溶接継手粗粒部の靭性が大幅に改善される0
すなわちBを0.0003〜o、oos。
B is an essential component for improving the toughness of the HAZ part of high heat input welded joints, and B is 0.0003%! Little girl and Hmu 2
On the other hand, if B is 0.0050≦more than 0.0050, a grain boundary KB-containing structure will be formed in the coarse-grained part of a high-heat-input welded joint, resulting in brittleness. 00
Must be within 50%, especially 0.000
The most preferable range is 4 to 0.0020%.Ti
, (a) When at least one type of REM is used in combination, the toughness of the coarse grain part of a high heat input welded joint is further improved0
That is, B is 0.0003 to o, oos.

%添加した鋼にあっては、大入熱溶接熱影響部において
未溶解のREM−、Oa−oxysulfideあるい
はTiNを起点として冷却過程でBNを形成し、遊離N
が低減することおよびBNがフェライトを生成させるこ
とによってHAZ部組織組織善が有効に達成される。
% added, BN is formed in the cooling process starting from unmelted REM-, Oa-oxysulfide or TiN in the heat-affected zone of high heat input welding, and free N
The improvement of the HAZ structure can be effectively achieved by reducing the amount of ferrite and by causing BN to generate ferrite.

その際Tiが0.03%よシ多いと、過剰のTiは粗大
なTiNを生成するだけでなく、1300℃以上に加熱
されたHAZ部においてはかなりの量が固溶され、固溶
Tiによる脆化が生ずるので、Tiは0.030%以下
にする必要があシ、特に0.020%以下のときHAZ
部の靭性が効果的に改善される。
At that time, if the Ti content is more than 0.03%, the excess Ti will not only generate coarse TiN, but also a considerable amount will be dissolved in solid solution in the HAZ heated to 1300°C or higher. Since embrittlement occurs, Ti must be kept at 0.030% or less, especially when it is 0.020% or less, HAZ
The toughness of the part is effectively improved.

REMはREM −oxysulfideを生成してB
Nの析出核として働き、大入熱溶接粗粒部の靭性改善に
有効な元素であるが、0.030%を超えると過剰のR
EM −0Xi(16が生成して鋼の清浄度を劣化させ
、かつ板厚方向特性が害されるO Bが添加された大入熱溶接用鋼にあっては、Tiおよび
/またはREMが0.030%以下の存在によってHA
Z部の靭性が向上する0従ってTiKあっては0.00
04〜0.030%、 REMにあっては0.0030
〜0.030%のとき良い結果が得られる0なおREM
の代りにCaを添加しても同様の効果が得られ、その量
も0.030%以下にすることが必要であるO Nは全N量が0.01%より多いと例外な(HAZ部靭
性が劣化するので、全N量は0.01%以下にする必要
がある。
REM generates REM-oxysulfide and B
It is an element that acts as a precipitation nucleus for N and is effective in improving the toughness of coarse grain areas during high heat input welding, but if it exceeds 0.030%, excessive R
In steel for high heat input welding to which EM-0Xi (16 is generated, which deteriorates the cleanliness of the steel and impairs the properties in the thickness direction), Ti and/or REM are added to the steel for high heat input welding. HA by the presence of 030% or less
Toughness of Z part improves 0 Therefore, TiK is 0.00
04-0.030%, 0.0030 for REM
Good results can be obtained when ~0.030% 0 REM
A similar effect can be obtained by adding Ca instead of Ca, and it is necessary to keep the amount below 0.030%. Since toughness deteriorates, the total amount of N needs to be 0.01% or less.

TiとNの比が3.5よシ大きいと過剰のTiは固溶T
iとなるため脆化を招くのでTi/Nは3.5以下にす
る必要がある。
When the ratio of Ti and N is greater than 3.5, excess Ti becomes solid solution T.
Ti/N needs to be 3.5 or less because it causes embrittlement.

Ceq (炭素当量)が0.28%よシ少ないと大入熱
溶接によ、9 HAZ部に軟化が生じ、一方0.42%
よシ多いと)IAZ粗粒部の靭性が劣化するばかシでな
く、800〜1000℃の加熱域においてB添加鋼に特
有な顕著な脆化が生ずるので、Ceq O,28〜06
42%の範囲内にする必要がある。さらに本発明におい
ては鋼板中の固溶B量をo、ooos%以下にすること
によって1前記脆化を防止することのできることを本発
明者は新規に発明した。
When Ceq (carbon equivalent) is less than 0.28%, softening occurs in the 9 HAZ part due to high heat input welding, while when Ceq (carbon equivalent) is less than 0.28%, softening occurs in the HAZ part.
Ceq O, 28-06 does not cause the toughness of IAZ coarse grains to deteriorate, but also causes significant embrittlement that is characteristic of B-added steel in the heating range of 800-1000°C.
It needs to be within the range of 42%. Furthermore, in the present invention, the inventors have newly discovered that the above-mentioned embrittlement can be prevented by reducing the amount of solid solution B in the steel sheet to 0,00% or less.

次に本発明を研究データについて説明するOCO,10
%、 Si 0.25%、 Mn 1.5%、 P 0
.015 % 。
Next, the present invention will be explained using research data.OCO, 10
%, Si 0.25%, Mn 1.5%, P 0
.. 015%.

S O,005%、A10.03%を基本成分組成とし
、Ti 、 B 、 N含有量をそれぞれ変化させた各
種小型真空鋼塊から得た鋼板を用い最高加熱温度800
℃で800℃から500℃の冷却時間を405elCの
熱サイクル再現試験を行い、−40℃におけるシャルピ
ー吸収エネルギー(vE−4n )を求めた。第3図は
これらの結果を固溶B量と800℃再現HAZ部靭性と
の関係で示す図であシ、固溶Biiを0.0005%以
下にすると800℃加熱域の脆化は生じないことが判る
Using steel plates obtained from various small vacuum steel ingots with the basic composition of SO, 0.005% and A10.03%, and varying the Ti, B, and N contents, the maximum heating temperature was 800℃.
A thermal cycle reproduction test was conducted at 405elC with a cooling time of 800°C to 500°C, and the Charpy absorbed energy (vE-4n) at -40°C was determined. Figure 3 shows these results in terms of the relationship between the amount of solid solution B and the 800°C reproduced HAZ toughness.If the solid solution Bii is 0.0005% or less, embrittlement does not occur in the 800°C heating range. I understand that.

第4図は鋼1の連鋳スラブを分塊、厚板圧延して鋼板に
々るまでの固溶B量を追跡調査した結果を示す柱状グラ
フであシ、XはBNの形態のB%。
Figure 4 is a columnar graph showing the results of a follow-up investigation of the amount of solid solution B in continuous cast slabs of Steel 1 until it reaches the steel plate after blooming and thick plate rolling.X is the percentage of B in the form of BN. .

YはFe2. (Be) 6の形態のB%、2は固溶B
%であり、圧延のためのスラブ加熱温度が高いと固溶B
量Yはスラブ状態のBjlYよりも減少していることが
判る0 次に第1表に示す成分組成を有するスラブについて、加
熱温度を800〜1400℃の範囲内で変化させて板厚
25tllK圧延した0第5図は上記スラブ加熱温度と
固溶B量との関係を示す図であり、鋼板中の固溶B量を
o、ooos%以下にするにはスラブの加熱温度を10
50℃以下にする必要があることが判る。しかし、80
0℃においては通常の圧延が困難であるばかシでなく歪
も大きいため、加熱温度は900〜1050℃の範囲内
とすることが好適である。
Y is Fe2. (Be) % B in the form of 6, 2 is solid solution B
%, and when the slab heating temperature for rolling is high, solid solution B
It can be seen that the amount Y is smaller than that of BjlY in the slab state. Next, the slabs having the composition shown in Table 1 were rolled to a thickness of 25 tllK while changing the heating temperature within the range of 800 to 1400°C. 0 Figure 5 is a diagram showing the relationship between the above-mentioned slab heating temperature and the amount of solid solution B. In order to reduce the amount of solid solution B in the steel plate to 0,00% or less, the heating temperature of the slab must be 10%.
It turns out that it is necessary to keep the temperature below 50°C. However, 80
At 0°C, normal rolling is difficult and the distortion is large, so it is preferable that the heating temperature be within the range of 900 to 1050°C.

次に、N量に比較して多量のTi、Bが添加されると1
050℃以下のスラブ加熱温度においても固溶B量が多
くなシ、第3図に示すととく脆化が生じるため、下記式
(4)を用いて1350℃および800℃再現HAZ部
の靭性と(n)値との関係をに6図忙まとめて示す。
Next, when large amounts of Ti and B are added compared to the amount of N, 1
Even at slab heating temperatures below 050°C, the amount of solid solution B is large and embrittlement occurs, as shown in Figure 3. Therefore, using the following equation (4), the toughness of the HAZ part reproduced at 1350°C and 800°C was calculated. The relationship with the (n) value is summarized in Figure 6.

(n)値= N −(−B + −’I’i )   
−−−(4)10.8  47.9 上記(n)値が−0,0030%〜0.0030%のと
きに粗粒子(AZ部(1350℃加熱部)オヨヒ細粒H
AZ部(800℃加熱部)の靭性が同時に改善されるこ
とが明らかKなった。す々わち(n)値が−0,003
%よ)小さいと過剰Bまたは過剰T1のためK 800
℃加熱部が脆化し、逆K O,003%よシ大きいとN
が過剰になり、1350℃加熱部が脆化する◇よって、
本発明によれば、前記成分組成を有し、かつ Ti/N≦3.5 −0.003%≦N−(−り―B +”−Ti )≦0
.003%10.8  47.9 となるようKTi、B、N量を制御し、かつ鋼片の加熱
温度を900〜1050℃の範囲内となすととKよシ、
鋼板の固溶B量は0.005%以下となシ、粗粒HAZ
部および細粒HAZ部の靭性が共に優れた大入熱溶接用
鋼が得られることを新規に知見した。
(n) value = N - (-B + -'I'i)
---(4) 10.8 47.9 When the above (n) value is -0,0030% to 0.0030%, coarse particles (AZ part (1350℃ heating part) Oyohi fine grain H
It is clear that the toughness of the AZ part (800°C heated part) is improved at the same time. That is, the (n) value is -0,003
%) If small, K 800 due to excess B or excess T1
℃ heating part becomes brittle and reverse KO.
becomes excessive and the 1350°C heated part becomes brittle ◇ Therefore,
According to the present invention, it has the above-mentioned component composition, and Ti/N≦3.5 -0.003%≦N-(-Ri-B+''-Ti)≦0
.. If the amounts of KTi, B, and N are controlled so that 0.003% 10.8 47.9 and the heating temperature of the steel billet is within the range of 900 to 1050°C, K and
The amount of solid solution B in the steel plate must be 0.005% or less, coarse grain HAZ
It has been newly discovered that a steel for high heat input welding can be obtained which has excellent toughness in both the fine-grained HAZ part and the fine-grained HAZ part.

なお、本発明で用いることのできるスラブハ連鋳法によ
って得られるスラブだけでなく、造塊法によシ得られる
スラブでもよい〇 次に本発明を実施例について説明する。
Note that the slabs that can be used in the present invention are not limited to slabs obtained by the continuous casting method, but may also be slabs obtained by the ingot forming method. Next, the present invention will be described with reference to embodiments.

実施例1゜ 第2表に示すjI3〜18の240℃厚の連鋳スラブ(
冷却速度5℃/ min以上)をそれぞれ1000TI
CK加熱後25鴎に圧延して得た鋼板から熱サイクル再
現試片を採取し、1350℃に加熱した試片と800℃
に加熱した試片についてそれぞれ800℃から500℃
までの冷却時間Δtが1iosecとなるよう表溶接熱
シミュレーションを行った。こうして得られた試片の一
40℃におけるシャルピー吸収エネルギーを第3表に示
すO n値が−0,003%以下の鋼6,12および16の成
分組成を有する鋼板にあっては、固溶B量は0.000
9%以上となシ、800℃加熱時に脆化が生じた。しか
しn値が−0,003% 、υ大きい本発明鋼3〜5,
8〜11,14,15.17および18にあってはBK
よる脆化が生じないことが確認された。比較鋼7および
13にあっては800℃での脆化は生じないが、n値が
0.003%より高くなシ、過剰Hのために1350℃
での靭性が低くなった。
Example 1 Continuously cast slabs with a thickness of 240°C of jI3 to 18 shown in Table 2 (
cooling rate of 5℃/min or more) at 1000TI each.
A thermal cycle reproduction specimen was collected from a steel plate obtained by rolling to 25 degrees after CK heating, and a specimen heated to 1350°C and a specimen heated to 800°C
800℃ to 500℃ for specimens heated to
A surface welding heat simulation was performed so that the cooling time Δt until the welding time was 1iosec. The Charpy absorbed energy at 40°C for one of the specimens thus obtained is shown in Table 3. For steel plates having the compositions of steels 6, 12 and 16 with an On value of -0,003% or less, solid solution The amount of B is 0.000
When it was 9% or more, embrittlement occurred when heated to 800°C. However, inventive steels 3 to 5, where the n value is -0,003%, υ is large.
BK for 8-11, 14, 15.17 and 18
It was confirmed that no embrittlement occurred due to Comparative steels 7 and 13 do not experience embrittlement at 800°C, but their n value is higher than 0.003%, and due to excess H, embrittlement occurs at 1350°C.
The toughness has decreased.

第3表 熱サイクル再現試験結果 第4表 熱サイクル再現試験結果 実施例2 第3表に示す!$14およびlOを用いて、スラブ加熱
温度を900℃、 1100℃、 1300 ’CK変
えて251111m厚に圧延し、800℃加熱の熱サイ
クル再現試験(800℃から500℃までの冷却時間Δ
tを40aeaとした)を行った0上記試験の結果を第
4表に示す〇 本発明の成分組成を有するスラブであっても、分塊ある
いは厚板圧延時のスラブ加熱温度が900℃と低いもの
では800℃加熱のものKは脆化は生成しないが、11
00℃あるいは1300℃と高いものKは脆化が生成す
ることが確認された。
Table 3 Thermal cycle reproduction test results Table 4 Thermal cycle reproduction test results Example 2 Shown in Table 3! Using $14 and IO, the slab was rolled to a thickness of 251111 m by changing the heating temperature of 900°C, 1100°C, and 1300°C, and a thermal cycle reproduction test of 800°C heating (cooling time Δ from 800°C to 500°C
The results of the above tests are shown in Table 4. Even with the slab having the composition of the present invention, the heating temperature of the slab during blooming or thick plate rolling was as low as 900°C. For example, type K heated to 800℃ does not cause embrittlement, but 11
It was confirmed that embrittlement occurs at temperatures as high as 00°C or 1300°C.

(発明の効果) 本発明の大入熱溶接用鋼にあっては、入熱量が小さい被
覆アーク溶接から通常のサブマージアーク溶接および片
面溶接に至るまで、■ム2部全域において良好な靭性が
得られる。
(Effects of the Invention) The high heat input welding steel of the present invention provides good toughness in the entire two parts of the process, from shielded arc welding with a small heat input to normal submerged arc welding and single-sided welding. It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1表に示す成分組成を有する鋼1および2に
ついて再現1iAZ部試験を800℃から500℃まで
の冷却時間、Δtを40 secで行ったときの靭性と
最高加熱温度℃との関係を示す図。 第2図は鋼lの800℃加熱再現HAZ部試験における
HAZ部靭性と800℃からsoo t:までの冷却時
間Δt seaとの関係を示す図。 第3図は鋼板の固溶B量と800℃加熱再現HAZ部靭
性との関係を示す図。 第4図は鋼lスラブと、1200℃において分塊圧延し
たものと、分塊圧延後さらに1150℃において厚板圧
延したものとにおけるB析出形態の構酸比率の変化を示
す図。 第5図はスラブ加熱温度と固溶B量との関係を示す図。 第6図は1350℃加熱および800℃加熱再現■ム2
部靭性と〔ト(14B+−リーT1)〕襲との関10.
8    47.9 係を示す図である。
Figure 1 shows the relationship between the toughness and the maximum heating temperature in °C when the reproduction 1iAZ part test was carried out for steels 1 and 2 having the compositions shown in Table 1 with a cooling time of Δt of 40 sec from 800°C to 500°C. Diagram showing relationships. FIG. 2 is a diagram showing the relationship between HAZ toughness and cooling time Δt sea from 800°C to soo t: in a 800°C heating reproduction HAZ test of steel I. FIG. 3 is a diagram showing the relationship between the amount of solid solution B in a steel plate and the toughness of the HAZ part after heating at 800°C. FIG. 4 is a diagram showing changes in the structuring acid ratio of the B precipitation form in steel slabs, one that was bloomed at 1,200°C, and one that was further plate-rolled at 1,150°C after blooming. FIG. 5 is a diagram showing the relationship between slab heating temperature and solid solution B amount. Figure 6 shows 1350℃ heating and 800℃ heating reproduction ■Mu2
Relationship between part toughness and [G(14B+-Lee T1)] attack 10.
8 47.9 It is a diagram showing the section.

Claims (1)

【特許請求の範囲】 1、C0.03〜0.15%、Si0.01〜0.50
%、Mn0.50〜1.80%、Al0.005〜0.
08%、B0.0003〜0.0050%、N0.01
%以下を含み、さらにTi0.03%以下、Ca0.0
3%以下、REM0.03%以下のうちから選ばれるい
ずれか少なくとも1種を合計量で0.03%以下含み、
かつ下記に示す式(1)により算出される炭素当量Ce
qが0.28〜0.42%である大入熱溶接用鋼におい
て: Ti量および全B量は下記の式(2)および(3)を満
足し、かつ全Bのうち固溶Bは0.0005%以下であ
ることを特徴とする大入熱溶接用鋼板。 Ceq=(C+Mn/6+Cu+Ni/15+Cr+M
o+V/5)%・・・(1)Ti/N≦3.5(2) −0.003%≦{N−[(14/10.8)B+(1
4/47.9)Ti]}≦0.003%・・・(3)2
、C0.03〜0.15%、Si0.01〜0.50%
、Mn0.50〜1.80%、Al0.005〜0.0
8%、B0.0003〜0.0050%、N0.01%
以下を含み、さらにTi0.03%以下、Ca0.03
%以下、REM0.03%以下のうちから選ばれるいず
れか少なくとも1種を合計量で0.03%以下含み、下
記に示す式(1)により算出される炭素当量Ceqは0
.28〜0.42%であり、Ti量および全B量は下記
の式(2)および(3)を満足する鋼片を加熱温度90
0〜1050℃、パス当りの圧下率30%以下で圧延し
、かくして得られた鋼板中の固溶Bを0.0005%以
下とすることを特徴とする大入熱溶接用鋼板の製造方法
。 Ceq=(C+Mn/6+Cu+Ni/15+Cr+M
o+V/5)%・・・(1)Ti/N≦3.5・・・(
2) −0.003%≦{N−[14/10.8)B+(14
/47.9)Ti)]≦0.003%・・・(3)
[Claims] 1. C0.03-0.15%, Si0.01-0.50
%, Mn 0.50-1.80%, Al 0.005-0.
08%, B0.0003-0.0050%, N0.01
% or less, and further includes Ti0.03% or less, Ca0.0
Contains at least one selected from 3% or less, REM 0.03% or less in a total amount of 0.03% or less,
And the carbon equivalent Ce calculated by the formula (1) shown below
In steel for high heat input welding where q is 0.28 to 0.42%: The Ti amount and the total B amount satisfy the following formulas (2) and (3), and the solid solution B of the total B is A steel plate for high heat input welding, characterized in that the heat input is 0.0005% or less. Ceq=(C+Mn/6+Cu+Ni/15+Cr+M
o+V/5)%...(1) Ti/N≦3.5(2) -0.003%≦{N-[(14/10.8)B+(1
4/47.9) Ti]}≦0.003%...(3)2
, C0.03-0.15%, Si0.01-0.50%
, Mn0.50-1.80%, Al0.005-0.0
8%, B0.0003-0.0050%, N0.01%
Contains the following, furthermore Ti0.03% or less, Ca0.03
% or less, REM 0.03% or less in a total amount of 0.03% or less, and the carbon equivalent Ceq calculated by the formula (1) shown below is 0.
.. 28 to 0.42%, and the Ti content and total B content satisfy the following formulas (2) and (3).
A method for manufacturing a steel plate for high heat input welding, characterized by rolling the steel plate at 0 to 1050°C at a rolling reduction rate of 30% or less per pass, and reducing the solid solution B in the thus obtained steel plate to 0.0005% or less. Ceq=(C+Mn/6+Cu+Ni/15+Cr+M
o+V/5)%...(1) Ti/N≦3.5...(
2) -0.003%≦{N-[14/10.8)B+(14
/47.9)Ti)]≦0.003%...(3)
JP9228185A 1985-05-01 1985-05-01 Steel plate for high heat input welding and its manufacture Pending JPS61253344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9228185A JPS61253344A (en) 1985-05-01 1985-05-01 Steel plate for high heat input welding and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9228185A JPS61253344A (en) 1985-05-01 1985-05-01 Steel plate for high heat input welding and its manufacture

Publications (1)

Publication Number Publication Date
JPS61253344A true JPS61253344A (en) 1986-11-11

Family

ID=14050018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9228185A Pending JPS61253344A (en) 1985-05-01 1985-05-01 Steel plate for high heat input welding and its manufacture

Country Status (1)

Country Link
JP (1) JPS61253344A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170459A (en) * 1986-01-22 1987-07-27 Sumitomo Metal Ind Ltd High tension steel plate for high heat input welding
JPH03211251A (en) * 1989-04-26 1991-09-17 Nippon Steel Corp High strength for welding structure having excellent fracture toughness in heat affected zone
JPH04143246A (en) * 1990-10-05 1992-05-18 Nippon Steel Corp Steel sheet for extra-high heat input welded structure excellent in low temperature toughness and its manufacture
KR101096871B1 (en) 2008-03-14 2011-12-22 가부시키가이샤 고베 세이코쇼 Steel sheet for skin plate having excellent toughness in sheet thickness direction in high heat input welding heat-affected zone, and method for producing the same
WO2014141632A1 (en) 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2016035110A1 (en) 2014-09-05 2016-03-10 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multi-layer welded joints and method for producing same
US10036079B2 (en) 2013-03-12 2018-07-31 Jfe Steel Corporation Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2018216665A1 (en) 2017-05-22 2018-11-29 Jfeスチール株式会社 Thick steel plate and method for manufacturing same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170459A (en) * 1986-01-22 1987-07-27 Sumitomo Metal Ind Ltd High tension steel plate for high heat input welding
JPH03211251A (en) * 1989-04-26 1991-09-17 Nippon Steel Corp High strength for welding structure having excellent fracture toughness in heat affected zone
JPH04143246A (en) * 1990-10-05 1992-05-18 Nippon Steel Corp Steel sheet for extra-high heat input welded structure excellent in low temperature toughness and its manufacture
KR101096871B1 (en) 2008-03-14 2011-12-22 가부시키가이샤 고베 세이코쇼 Steel sheet for skin plate having excellent toughness in sheet thickness direction in high heat input welding heat-affected zone, and method for producing the same
US10036079B2 (en) 2013-03-12 2018-07-31 Jfe Steel Corporation Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
KR20150119285A (en) 2013-03-12 2015-10-23 제이에프이 스틸 가부시키가이샤 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
US10023946B2 (en) 2013-03-12 2018-07-17 Jfe Steel Corporation Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2014141632A1 (en) 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2016035110A1 (en) 2014-09-05 2016-03-10 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multi-layer welded joints and method for producing same
KR20170038071A (en) 2014-09-05 2017-04-05 제이에프이 스틸 가부시키가이샤 Thick steel sheet having excellent ctod properties in multi-layer welded joints and method for producing same
US10450627B2 (en) 2014-09-05 2019-10-22 Jfe Steel Corporation Thick steel plate having good multipass weld joint CTOD characteristics and method for manufacturing the same
WO2018216665A1 (en) 2017-05-22 2018-11-29 Jfeスチール株式会社 Thick steel plate and method for manufacturing same
KR20190142358A (en) 2017-05-22 2019-12-26 제이에프이 스틸 가부시키가이샤 Thick sheet and its manufacturing method
CN110651059A (en) * 2017-05-22 2020-01-03 杰富意钢铁株式会社 Thick steel plate and method for producing same
US11299798B2 (en) 2017-05-22 2022-04-12 Jfe Steel Corporation Steel plate and method of producing same

Similar Documents

Publication Publication Date Title
EP2434027B1 (en) Steel material for high heat input welding
JP3408385B2 (en) Steel with excellent heat-affected zone toughness
JP5076658B2 (en) Steel material for large heat input welding
JP5842314B2 (en) High heat input welding steel
KR100622888B1 (en) Steel product for high heat input welding and method for production thereof
WO2013088715A1 (en) Steel material for high-heat-input welding
JP3546308B2 (en) Large heat input welding steel
JPS61253344A (en) Steel plate for high heat input welding and its manufacture
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP4220914B2 (en) Steel with excellent toughness of weld heat affected zone and its manufacturing method
JP2004269905A (en) H-section steel for multilayer welding in high interpass temperature having high toughness in fillet part, and manufacturing method therefor
WO2013128650A1 (en) Steel material for high-heat-input welding
JP2002371338A (en) Steel superior in toughness at laser weld
JP4418115B2 (en) High-strength steel with excellent toughness of laser welds
JP7272471B2 (en) steel plate
JPH01150453A (en) Production of large diameter steel pipe having excellent ductility at low temperature
JP5493557B2 (en) Steel material for large heat input welding
JP2011074446A (en) Steel for high heat input welding
JP3481419B2 (en) Thick steel plate with excellent toughness of weld heat affected zone
JPH0428474B2 (en)
JP3837083B2 (en) One-pass large heat input welding method with excellent weld heat-affected zone toughness
JP2002317242A (en) High tensile strength steel for welding structure used under low temperature having excellent weld heat affected zone toughness
JPH11256267A (en) Steel for structural purpose excellent in earthquake resistance and its production
JPH1025535A (en) High tensile strength steel for large heat input welding, and its production
JP2005320564A (en) STEEL MATERIAL WITH HIGH HAZ TOUGHNESS FOR LARGE HEAT INPUT WELDING OF 20 TO 100 kJ/mm HEAT INPUT