JPH03211251A - High strength for welding structure having excellent fracture toughness in heat affected zone - Google Patents

High strength for welding structure having excellent fracture toughness in heat affected zone

Info

Publication number
JPH03211251A
JPH03211251A JP11123790A JP11123790A JPH03211251A JP H03211251 A JPH03211251 A JP H03211251A JP 11123790 A JP11123790 A JP 11123790A JP 11123790 A JP11123790 A JP 11123790A JP H03211251 A JPH03211251 A JP H03211251A
Authority
JP
Japan
Prior art keywords
haz
pro
ferrite
affected zone
heat affected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11123790A
Other languages
Japanese (ja)
Inventor
Tadashi Ishikawa
忠 石川
Tokio Nishida
西田 時男
Akira Ito
昭 伊藤
Toshiaki Haji
土師 利昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPH03211251A publication Critical patent/JPH03211251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To manufacture a high strength steel for welding structures having excellent fracture toughness in the heat affected zone by preparing a steel in which the heat affected zone after welding is formed of a specified compsn. and having a structure constituted of crystalline grains surrounded by lumpy pro-eutectoid ferrite. CONSTITUTION:This steel is prepd. in such a manner that in which the heat affected zone after welding (HAZ) contains, by weight, 0.07 to 0.16% C, <=0.020% P, 0.15 to 0.30% Si, <=0.020% S, 1.20 to 1.50% Mn, 0.005 to 0.020% Ti and 0.005 to 0.10% Al, contains, at need, one or >=2 kinds among <=1.0% Cu, <=0.02% Nb, <=1.0% Ni, <=0.1% Ca, <=0.1% V and <=0.0015% B as well as satisfies Mn/C<=15 and C%+Si%/24+Mn%/6+Ni%/40+V%/14=0.32 to 0.44% and the balance Fe with inevitable components and the structure is constituted of crystalline grains surrounded by lumpy pro-eutictoid ferrite. In this way, the high strength steel for wilding structures in which the HAZ has excellent value in a deep notch test can be obtd.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、溶接熱影響部(以下HAZと科す)がディー
プノツチ試験値(破壊靭性値=Kc)に優れた高強度溶
接構造用鋼材に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a high-strength welded structural steel material whose weld heat affected zone (hereinafter referred to as HAZ) has an excellent deep notch test value (fracture toughness value = Kc). It is something.

〈従来の技術〉 造船及び橋梁等の分野で使用する溶接構造用鋼材は、初
期においてはYP24キロ鋼が使用され、その後YP3
2キロ鋼が使用されて来た。
<Conventional technology> YP24kg steel was initially used as welded structural steel materials used in fields such as shipbuilding and bridges, and later YP3
2 kg steel has been used.

その間メーカーとユーザー間における該鋼材の材質の保
証と確認は、例えば特開昭50−155418号公報、
特開昭51−39523号公報、特開昭51−4162
0号公報に記載があるように、シャルピー試験値を用い
て行われていた。
In the meantime, the guarantee and confirmation of the material quality of the steel between the manufacturer and the user is disclosed in, for example, Japanese Patent Application Laid-open No. 155418/1983.
JP-A-51-39523, JP-A-51-4162
As described in Publication No. 0, Charpy test values were used.

しかしンヤルピー試験値は、良く知られている様に種々
の組織で構成されている切欠部の平均的特性を示すので
、経験に基づく安全性論議には使用出来ても、未だ実績
の少ない高強度鋼を実用化する場合には破壊力学的検討
が必要となる。
However, as is well known, the Nyalpy test value indicates the average characteristics of the notch, which is composed of various tissues, so although it can be used for safety discussions based on experience, it is still used for high strength If steel is to be put into practical use, fracture mechanics studies are required.

即ち、溶接構造用鋼材のHAZの高靭性化が求められて
いる現在、構造物の健全性を正確に保証するには、1(
AZの切欠先端の最跪化組織の特性を示さないシャルピ
ー試験値は、その平均値による保証の故に単独で使用出
来なくなってきた。
In other words, with the current demand for higher toughness in the HAZ of welded structural steel materials, in order to accurately guarantee the soundness of structures, 1 (
The Charpy test value, which does not show the characteristics of the most bent tissue at the tip of the AZ notch, cannot be used alone because it is guaranteed by its average value.

その様なことから本発明者等は、)IAZの切欠先端の
最跪化組織の特性を示すディープノツチ試験等による破
壊力学的検討を行い、従来から長年用いられ信顧されて
いる材質保証手段上してのシャルピー試験値に上記ディ
ープノツチ試験から得た破壊靭性値Kcを加えて万全の
保証を行う検討を進めた。
For this reason, the present inventors conducted a fracture mechanical study using a deep notch test, etc., which shows the characteristics of the most bent structure at the notch tip of IAZ, and used material quality assurance methods that have been used and trusted for many years. We proceeded with the study of adding the fracture toughness value Kc obtained from the deep notch test to the above Charpy test value to ensure complete guarantee.

このディープノツチ試験は、良く知られている様に、我
が国で確立された試験方法であって、この種分野で20
年余にわたって厳密な保証が必要な時に活用されて来た
試験方法である。
This deep notch test, as is well known, is a test method established in Japan, and is used in this field over 20 years.
This is a test method that has been used for more than a year when strict guarantees are required.

本発明者等は上記の背景から、高強度化に伴うHAZ&
ll織の変化がシャルピー試験値及びディープノツチ試
験値に及ぼす影響を検討したところ、ディープノツチ試
験値の方が高強度化に伴い大幅に劣化することを見いだ
した。
Based on the above background, the present inventors have developed HAZ&
When examining the influence of changes in the weave on Charpy test values and deep notch test values, it was found that the deep notch test values deteriorate significantly as the strength increases.

例えば、YP40キロ鋼の継手において、既に合格値の
4.0kgf−■以上を得ている溶接構造用鋼材で製造
した構造物の)IAZを使用して、このディープノツチ
試験を行ったところ、それ等の中には現在用いられてい
るYP40キロ鋼の用途において、必要な破壊靭性値に
c500kgf/am” ’(0°C)以上に到達しな
い溶接構造用鋼材が存在し、前記したHAZ靭性の保証
方法の必要を確認したのである。
For example, when we conducted this deep notch test on a YP40kg steel joint using IAZ (a structure made from welded structural steel that has already obtained a passing value of 4.0kgf-■ or higher), Among them, there are welded structural steel materials that do not reach the required fracture toughness value of c500kgf/am'' (0°C) or higher in the applications of the currently used YP40 kg steel, and the above-mentioned HAZ toughness This confirmed the need for a guarantee method.

一方この様な中での鋼材のHAZ高靭性化については、
例えば特開昭63−103051号公報に記載が見られ
る様に、0.02μ箇以下の微細なTiNを分散させて
HAZのオーステナイト粒径を微細化してHAZU性を
向上させる提案がある。
On the other hand, regarding the improvement of HAZ toughness of steel materials under such circumstances,
For example, as described in Japanese Unexamined Patent Publication No. 63-103051, there is a proposal to disperse fine TiN of 0.02 μm or less to refine the austenite grain size of the HAZ and improve the HAZU property.

しかし1400℃以上の熱サイクルを受ける)IAZで
は、母材に微細に分散したTiNは溶接時に溶解してし
まい、該溶接後の該HAZに再度多量のTiNが分散析
出出来ないので組織は微細化せず、)IAZ靭性の向上
が期待出来ず、更にこの時の溶解でフリーになったNに
よる脆化を防止するため、Nを低減させる事が必要で、
通常はNを0.004Z以下としている。
However, in the IAZ (which is subjected to heat cycles of 1400°C or more), the finely dispersed TiN in the base metal is melted during welding, and a large amount of TiN cannot be dispersed and precipitated again in the HAZ after welding, so the structure becomes finer. ) No improvement in IAZ toughness can be expected, and it is necessary to reduce N in order to prevent embrittlement due to N freed during melting at this time.
Normally, N is set to 0.004Z or less.

これに代わるものとして、近年粒内に微細なフェライト
を分散させた粒内変態フェライト、即ちrFPによりH
AZ靭性を向上する提案がある。
As an alternative to this, in recent years, intragranular transformed ferrite with fine ferrite dispersed within the grain, that is, rFP, has been
There are proposals to improve AZ toughness.

しかし本発明者等がHAZの破壊の詳細を解析した結果
、咳IFPは直接HAZの靭性を向上させるのではなく
、該IFP占積率が増すとHAZ靭性を直接支配してい
るフェライト・サイド・プレート(以下FSPと榊す)
が小型化するものがあり、これにより靭性が向上してい
る事を見出した。
However, as a result of the detailed analysis of the HAZ fracture by the present inventors, it was found that the IFP does not directly improve the toughness of the HAZ, but that when the IFP space factor increases, the ferrite side, which directly controls the HAZ toughness, Plate (hereinafter referred to as FSP and Sakakisu)
It has been found that there are some cases where the size of the steel is reduced, and this improves toughness.

この事実を基に本発明者等は、単にIFPの占積率を増
すだけではHAZO最晩化組織であるFSPの形状を直
接完全に制御する事が出来ず、最跪化組織による破壊特
性値を示すディープノツチ試験値が低い場合があり、上
記した現在の要望を満たすに至らない事を知得したので
ある。
Based on this fact, the present inventors found that it is not possible to directly and completely control the shape of FSP, which is a HAZO latex structure, simply by increasing the IFP space factor, and that the fracture characteristics of It was discovered that the deep notch test value, which indicates the

又rFPの生成組織においても、板状の初析フェライト
に沿って板状のフェライト長さに比例した粗大なFSP
が生成している部分があり、その部分が脆性破壊の一つ
の起点となって十分なKc値が得られない事があること
を見出した。
In addition, in the rFP formation structure, coarse FSP is formed along the plate-shaped pro-eutectoid ferrite in proportion to the length of the plate-shaped ferrite.
It has been found that there is a part where Kc is generated, and this part becomes one of the starting points of brittle fracture, making it impossible to obtain a sufficient Kc value.

〈発明が解決しようとする課題〉 本発明は、IFPの占積率を増してHAZ靭性を間接的
に向上する方法ではなく、HAZ靭性を直接支配してい
るFSPの形状を直接制御する手段によってYP40キ
ロ鋼、更にはYP43キロ鋼の強度保証を的確に行い、
シャルピー試験値は4.0kgf 1を上回り、破壊靭
性値Kcは500kgf /am ’ ・’ (0°C
)以上を示し、従来から行われている方法でコストが上
昇するTiO処理、REM処理等を必要としない経済的
なYP40キロ鋼級及びYP43キロ鋼級の高強度溶接
構造用鋼材を提供する事を課題とするものである。
<Problems to be Solved by the Invention> The present invention does not indirectly improve HAZ toughness by increasing the space factor of IFP, but by directly controlling the shape of FSP, which directly controls HAZ toughness. We accurately guarantee the strength of YP40 kg steel and even YP43 kg steel,
The Charpy test value exceeds 4.0 kgf 1, and the fracture toughness value Kc exceeds 500 kgf /am '・' (0°C
) To provide economical high-strength welded structural steel materials of YP40kg steel grade and YP43kg steel grade that do not require TiO treatment, REM treatment, etc. that increase costs in conventional methods. The challenge is to

〈課題を解決するための手段〉 本発明は上記した課題を達成するため、(1)溶接後の
熱影響部即ちHAZが重量%で、C: 0.07〜0.
162    P : ≦0.020!St : 0.
15〜0.30Z    S : ≦0.008%Mn
 : 1.20〜1.50Z    Ti : 0.0
05〜0.020χAl : 0.005〜0.162 を含み、必要に応じて、 Cu : ≦IOZ      Nb’≦0.02ZN
i:≦1.0Z      Ca  :≦0.1χV 
: ≦0.1%B : ≦O,0O15Zの1種又は2
種以上を含み、且つMn/C≦15とCχ+SiZ/2
4+MnZ/6 +Niz/40+VZ/14 カ0.
32〜0.442を満たし、その他不可避的成分とFe
がらなり、組織が塊状初析フェライトに取り巻かれた結
晶粒から構成された事を特徴とする溶接熱影響部の破壊
靭性の優れた高強度溶接構造用鋼材を第1の手段とし、 (2)溶接後の熱影響部即ちHAZが重量%で、c :
 0.07〜0.16%P :≦0.008%Si :
 0.15〜0.30zS : ≦0.020!Mn 
: 1.20〜1.50Z   Ti : 0.005
〜0.020%Al : 0.005〜0.10χ B
:≦0.0O15ZN : 0.003〜0.008z を含み、必要に応じて、 Cu : ≦1.0%Nb : ≦0.02%Ni:≦
1.0zCa:≦0.1χ ■:≦0.1χ の1種又は2種以上を含み、且つTi/N=2.0〜3
.2とCZ + S iZ/24 + Mn%/6 +
NiZ/40+V%/14が0.32〜0.44χを満
たし、その他不可避的成分とFeがらなり、組織が塊状
初析フェライトに取り巻かれた結晶粒から構成された事
を特徴とする溶接熱影響部の破壊靭性の優れた高強度溶
接構造用鋼材を第2の手段とするものである。
<Means for Solving the Problems> In order to achieve the above-mentioned problems, the present invention has the following objectives: (1) The heat affected zone, or HAZ, after welding has a C: 0.07 to 0.07% by weight.
162 P: ≦0.020! St: 0.
15~0.30Z S: ≦0.008%Mn
: 1.20~1.50Z Ti: 0.0
05 to 0.020
i:≦1.0Z Ca:≦0.1χV
: ≦0.1%B: ≦O, 1 or 2 of 0O15Z
Contains more than one species, and Mn/C≦15 and Cχ+SiZ/2
4+MnZ/6 +Niz/40+VZ/14 Ka0.
32 to 0.442, other unavoidable components and Fe
The first means is to use a high-strength welded structural steel material with excellent fracture toughness in the weld heat-affected zone, which is characterized by a structure consisting of crystal grains surrounded by massive pro-eutectoid ferrite; (2) The heat affected zone or HAZ after welding is in weight percent, c:
0.07-0.16%P:≦0.008%Si:
0.15~0.30zS: ≦0.020! Mn
: 1.20~1.50Z Ti: 0.005
~0.020%Al: 0.005~0.10χB
:≦0.0O15ZN: 0.003 to 0.008z, as necessary, Cu:≦1.0%Nb:≦0.02%Ni:≦
1.0zCa: ≦0.1χ ■: ≦0.1χ Contains one or more types, and Ti/N = 2.0 to 3
.. 2 and CZ + SiZ/24 + Mn%/6 +
Welding heat effect characterized by NiZ/40+V%/14 satisfying 0.32 to 0.44χ, consisting of other unavoidable components and Fe, and having a structure composed of crystal grains surrounded by massive pro-eutectoid ferrite. The second method is to use high-strength welded structural steel materials with excellent fracture toughness.

以下に上記した第1及び第2の手段の各成分の限定理由
を説明する。
The reason for limiting each component of the above-described first and second means will be explained below.

Cは、本発明者等が高KcのHAZに見出した塊状初析
フェライトに取り巻かれた粒からなる所要の組織を確保
すると共に、用途上の必要強度を満たすため定められて
おり、 Stは、母材の強度維持と溶鋼の予備脱酸のために添加
され、上限は偏析部の島状マルテンサイトの生成防止の
ため限定されており、 Mnは、Cと同様にHAZに塊状初析フェライトに囲ま
れた粒を主体とする組織を得て、)IAZの高Kcを確
保すると共に、母材強度を得るために定められており、 Pは、ミクロ偏析によるHAZ靭性の劣化を防止するた
めに上限が定められており、 Sは、粗大なA系介在物を形成して母材の靭性と異方性
を悪化するのを防止するために上限が定められており、 AIは、脱酸、母材組織の細粒化、固溶Nの固定等のた
めと、鋼の清浄度の低下防止から定められており、 Tiは、析出物の核となる窒化物を析出し、塊状初析フ
ェライトの生成核として作用せしめ、併せてマトリック
スの靭性低下、HAZにおける高炭素マルテンサイトの
生成促進等を防止するため下限を定め、鋼の清浄度の低
下及びTicの析出にょる脆化を防止するため上限を設
定している。
C is determined to ensure the required structure consisting of grains surrounded by massive pro-eutectoid ferrite found by the present inventors in a high Kc HAZ, and to satisfy the required strength for the application, and St is: It is added to maintain the strength of the base metal and to preliminarily deoxidize the molten steel, and the upper limit is limited to prevent the formation of island-like martensite in the segregated area.Mn, like C, is added to the HAZ to form massive pro-eutectoid ferrite. P is determined to obtain a structure consisting mainly of surrounded grains, to ensure a high Kc of IAZ, and to obtain base metal strength, and P is determined to prevent deterioration of HAZ toughness due to micro-segregation. The upper limit is set for S to prevent the formation of coarse A-based inclusions and deterioration of the toughness and anisotropy of the base metal, and for AI, deoxidation, It is determined to refine the base material structure, fix solid solution N, etc., and to prevent deterioration of the cleanliness of steel. In order to act as a formation nucleus for the steel, and also to prevent a decrease in the toughness of the matrix and the promotion of the formation of high carbon martensite in the HAZ, a lower limit is set to prevent a decrease in the cleanliness of the steel and embrittlement due to the precipitation of Tic. An upper limit is set.

以上が本発明の溶接構造用鋼材が基本成分とする各元素
の添加量とその添加理由である。
The above is the amount of each element added as a basic component of the welded structural steel material of the present invention and the reason for its addition.

更に(1)母材強度の上昇、及び母材、HAZの各靭性
向上を目的としてCu、 Ni、 V、 Nbの1種又
は2種以上と(2)鼎Zの結晶粒粗大化防止と母材の異
方性の軽減を目的としてREM 、Ca、 Mgの1種
又は2種以上を用い、現実は(1)と(2)の何れが一
方又は(1)ト(2)の両方を添加している。
Furthermore, (1) one or more of Cu, Ni, V, and Nb for the purpose of increasing the strength of the base material and improving the toughness of the base metal and HAZ, and (2) preventing coarsening of the crystal grains of Z and the base material. One or more of REM, Ca, and Mg are used for the purpose of reducing the anisotropy of the material, and in reality, either (1) or (2) or both (1) and (2) are added. are doing.

しかしながら(1)群のCuは母材の強度を高める割に
HAZの硬さ上昇が少ないが、応力除去焼鈍にょリHA
Zの硬化性が増加するのでこの増大を防止するため1.
0χを上限としている。
However, although Cu in group (1) increases the strength of the base material, the increase in hardness of HAZ is small, but stress relief annealing and HA
Since the hardenability of Z increases, in order to prevent this increase, 1.
The upper limit is 0χ.

又Niは母材の強度と靭性及びHAZ靭性を同時に高め
るために添加するが、焼き入れ性の増加によりHAZに
おけるIFPの形成が抑制される事があるのでそれを防
止するため1.Olを添加量の上限としている。
Ni is added to simultaneously increase the strength and toughness of the base metal and the HAZ toughness, but the increase in hardenability may inhibit the formation of IFP in the HAZ, so in order to prevent this, 1. The upper limit of the amount of addition is set at Ol.

Nbは溶接性の指標の一つであるCeq、を上昇させる
事なく、焼入れ性の向上と析出効果により母材及び溶接
継手部の強度を高め、且つ母材の低温靭性を確保するた
め、YP40キロ以上の高強度溶接構造用鋼材では必須
の添加元素である。
Nb is used in YP40 to increase the strength of the base metal and welded joint by improving hardenability and precipitation effect without increasing Ceq, which is one of the indicators of weldability, and to ensure the low-temperature toughness of the base metal. It is an essential additive element for high-strength welded structural steel materials of kg or more.

しかしながら、Nbの添加はフェライト変態を遅延させ
る事により、HAZ靭性を直接支配するFSP生成に必
要なフェライト変態時の過冷却度を助長するため、0.
02zを上限としている。
However, the addition of Nb delays ferrite transformation and promotes the degree of supercooling during ferrite transformation, which is necessary for FSP generation that directly controls HAZ toughness.
The upper limit is 02z.

又前記した(2)群の元素は酸化物、硫化物もしくはt
llPi化物を形成し、HAZの結晶粒粗大化、母材の
異方性の軽減を目的に添加されるが、初析フェライトの
塊状化を促進する変JI!核になりうるMnS複合析出
物を確保するため、これ等の元素の1種又は2種以上を
混合添加する場合及び各々単独添加する場合の何れも各
々0.lZを上限としている。
In addition, the elements of group (2) mentioned above are oxides, sulfides, or t
It is added for the purpose of forming llPi compounds, coarsening the crystal grains of HAZ, and reducing the anisotropy of the base material, but JI! In order to secure MnS composite precipitates that can become nuclei, both when one or more of these elements are added as a mixture and when each is added individually, each is 0. The upper limit is lZ.

以上の各成分は本発明の第1の手段、第2の手段の何れ
においても必要に応じて同様に添加し同様の作用効果を
得る事が出来る。
The above-mentioned components can be added in the same manner as necessary in both the first means and the second means of the present invention to obtain the same effects.

本発明は、靭性特にKc値とシャルピー靭性を両立させ
るために、破壊靭性を直接支配するFSPを抑制する塊
状初析フェライトに囲まれた結晶粒から構成された事を
特徴とするHAZを得ようとするものである。
The present invention aims to obtain a HAZ characterized by being composed of crystal grains surrounded by massive pro-eutectoid ferrite that suppresses FSP, which directly controls fracture toughness, in order to achieve both toughness, particularly Kc value and Charpy toughness. That is.

その具体的手段として、第1の手段は、粒界フェライト
形成後の粒内フェライト変態を遅らせるNb、 Mnを
限定する事によりFSP生成に必要な過冷却度を小さく
し、粒界からのFSPの生成を抑制するものであり、第
2の手段は、粒界初析フェライト変態の直上の温度域に
おいて析出するTiN 、 8Nを初析フェライトの生
成サイトとして大量に確保し、初析フェライトを多量の
生成サイトから変態させる事により形状を塊状化させ、
FSP生成サイトとして必要な直線的形状を持つ板状フ
ェライトを抑制し、FSPの生成を抑制するものである
Specifically, the first method is to reduce the degree of supercooling required for FSP generation by limiting Nb and Mn, which retard the intragranular ferrite transformation after grain boundary ferrite formation, and to reduce the amount of FSP from the grain boundaries. The second method is to secure a large amount of TiN, 8N, which precipitates in the temperature range just above the grain boundary pro-eutectoid ferrite transformation, as a production site for pro-eutectoid ferrite, and to suppress the formation of pro-eutectoid ferrite. By metamorphosing from the generation site, the shape becomes lumpy,
This suppresses plate-like ferrite having a linear shape necessary as an FSP generation site, thereby suppressing the generation of FSP.

第1の手段の限定条件であるMn/Cは、強度を確保す
るために添加するMnとCにおけるフェライト変態挙動
への影響を考慮して初析フェライト析出後に該変態温度
からの適冷を防止してFSPの生成を抑制するため上限
を設定している。
Mn/C, which is a limiting condition for the first means, prevents appropriate cooling from the transformation temperature after pro-eutectoid ferrite precipitation, considering the influence of Mn and C added to ensure strength on ferrite transformation behavior. An upper limit is set to suppress the generation of FSP.

又、第2の手段特有の限定条件であるNとTi/Nは次
記する理由により定めている。
Further, N and Ti/N, which are limiting conditions specific to the second means, are determined for the following reasons.

Nは、FSPの形状を小さくし且つ量を少なくする塊状
初析フェライトを生成する核となるTiNおよびBNを
析出させるために添加し、TiHの大量確保およびTi
N上にフェライト変態直上温度で析出して局部的にフェ
ライト変態を促進させるBNを確保するため下限を定め
、過剰なフリーN、フリーTiを防ぐためTi/Nの上
下限を定めている。
N is added to precipitate TiN and BN, which are the nuclei for producing massive pro-eutectoid ferrite that reduces the shape and amount of FSP, and ensures a large amount of TiH and
A lower limit is set to ensure BN that precipitates on N at a temperature just above ferrite transformation and locally promotes ferrite transformation, and an upper and lower limit of Ti/N is set to prevent excessive free N and free Ti.

又Bについては、第1手段では選択成分とし、第2手段
では限定成分としているが、共に大入熱溶接時のボンド
部において初析フェライトが生成しはじめる温度で、−
度溶解したTiN 、或いはフリーNと結合してBNが
析出し、FSPの生成を抑制する初析フェライト塊状化
の変n核となり、HAZ靭性に有害な粒界FSPの抑制
及びHAZ固溶Nの固定等)IAZ靭性向上の効果はあ
るが、多量の添加はFe23(CB)6の析出による靭
性低下、及びフリーBによるI(AXの硬化性の増加を
招くので、これ等を防止するため0.0015χを上限
としている。
Regarding B, in the first means it is a selective component, and in the second means it is a limited component, but in both cases, -
BN is precipitated by combining with dissolved TiN or free N, and becomes a metamorphic nucleus of pro-eutectoid ferrite agglomeration that suppresses the generation of FSP, suppressing grain boundary FSP that is harmful to HAZ toughness and suppressing HAZ solid solution N. Although it has the effect of improving IAZ toughness (fixing, etc.), adding a large amount leads to a decrease in toughness due to the precipitation of Fe23(CB)6 and an increase in the hardenability of I(AX) due to free B. The upper limit is .0015χ.

又−船釣にCeq、は、焼き入れ性の増大によって1(
AZ M性を低下せしめるから、0.45X以下として
いるが、本発明では前記した所要の組織を生成して高K
cを得るため、基本的手段及び具体的手段においては0
.38r以下に限定し、付加的に選択成分を用いる応用
的手段については0.44Z以下に限定している。
Also, for boat fishing, Ceq is 1 (
Since it reduces the AZ M property, it is set to 0.45X or less, but in the present invention, the above-mentioned required structure is generated to achieve high K.
In order to obtain c, basic means and concrete means are 0.
.. It is limited to 38r or less, and for applied means that additionally uses a selective component, it is limited to 0.44Z or less.

このCeq、の算出は次式による。Calculation of this Ceq is based on the following equation.

Ceq、=(J+Si!/24+Mnz/6 +Ni!
/40+Cr!15 +Hoz/4+VZ/14 以上が本発明の第1及び第2の手段の各成分の添加量と
その限定理由である。
Ceq, = (J+Si!/24+Mnz/6 +Ni!
/40+Cr! 15 +Hoz/4+VZ/14 The above are the amounts of each component added in the first and second means of the present invention and the reasons for their limitations.

く作用〉 以下に本発明者等が前記した本発明の課題の達成を確信
した上記手段の作用について説明する。
Effects> The effects of the above-mentioned means, which the present inventors believe will achieve the above-mentioned objects of the present invention, will be explained below.

本発明者等は前記知見を基に、シャルピー試験値のみが
良いものと、シャルピー試験値と破壊靭性値が共に良い
ものを使用条件と成分条件により区分し、これにより準
備した表1に示す供試鋼AとBとCを用いてFAB溶接
(片面大入熱溶接の一方法)を行い、所要のHAZのシ
ャルピー試験(iivETeと破壊靭性値Kcが得られ
る溶接構造用鋼材の条件を検討・調査した。結果を第1
図に示す。
Based on the above knowledge, the present inventors classified products with good Charpy test value only and products with good Charpy test value and fracture toughness value based on usage conditions and component conditions, and based on this, the products shown in Table 1 were prepared. FAB welding (a method of single-sided high heat input welding) was performed using sample steels A, B, and C, and the conditions for welded structural steel materials that would yield the required HAZ Charpy test (iivETe and fracture toughness value Kc were examined. We investigated the results.
As shown in the figure.

図に明らかなように、溶接構造用鋼材の代表的な供試鋼
A(O印)、B(Δ)は、高いシャルピー試験値とディ
ープノツチ試験値が得られた。
As is clear from the figure, high Charpy test values and deep notch test values were obtained for sample steels A (marked with O) and B (Δ), which are typical welded structural steel materials.

これに対し、溶接構造用鋼材の代表的な他の供試鋼C(
X印)はシャルピー試験値が4.0kgf・園を上回る
にもかかわらず、ユーザーが用途上必要としている各使
用温度における破壊靭性値を示すディープノツチ試験値
は必ずしも満足出来ない事を確認した。
In contrast, other sample steel C (
It was confirmed that although the Charpy test value of the product (marked with an X) exceeds 4.0 kgf., the deep notch test value, which indicates the fracture toughness value at each operating temperature required by the user, is not necessarily satisfied.

そこで本発明者等は多数の試験材の組織写真を基にディ
ープノツチ試験における破壊発生点の組織を詳細に調査
したところ、供試11A(○印)、B(Δ印)を始めと
する同等の成分で高Kcを得た各溶接構造用鋼材のHA
Zは、第2図に1で示す塊状初析フェライトに取り巻か
れた結晶粒からなる組織で形成されているが、供試鋼C
(x印)を始め同等の成分で高Kcが得られなかった各
溶接構造用鋼材のHAZは、第2図に2で示す板状初析
フェライトが生成し、そこからFSPが著しく発達した
粗いラス状組織である事を見出し、このFSPが破壊発
生点を形成している事を見出したのである。
Therefore, the present inventors investigated in detail the structure of the fracture initiation point in the deep notch test based on the structure photographs of a large number of test materials, and found that samples 11A (○ mark), B (Δ mark), and other similar HA of each welded structural steel material that obtained high Kc with the composition of
Z is formed by a structure consisting of crystal grains surrounded by massive pro-eutectoid ferrite shown as 1 in Fig. 2, but sample steel C
In the HAZ of each welded structural steel material for which a high Kc could not be obtained with the same composition, including ( They discovered that it was a lath-like structure, and that this FSP formed the point where fracture occurred.

このFSPは初析フェライト析出後、粒内のフェライト
変態挙動において変態温度より適冷される度合いが大き
い時に生成する事が知られている。
It is known that this FSP is generated after the precipitation of pro-eutectoid ferrite, when the degree of cooling below the transformation temperature is large in the ferrite transformation behavior within the grains.

そこで本発明者等はこの定説を活用してフェライト変態
を遅延させる元素であるMnを下げ、強度確保のために
フェライト変態遅延効果の小さい元素であるCを利用し
て適冷状態を抑制し、粒界フェライト変態を促進して塊
状初析フェライトを生成し、FSP生成サイトである板
状初析フェライトを抑制させることにより、FSPの形
状を小さく且つ少量に制御して高Kcが得られる組織の
形成を試みた。
Therefore, the present inventors utilized this established theory to lower Mn, which is an element that delays ferrite transformation, and suppressed the appropriate cooling state by using C, which is an element that has a small effect of delaying ferrite transformation, to ensure strength. By promoting grain boundary ferrite transformation to generate massive pro-eutectoid ferrite and suppressing plate-like pro-eutectoid ferrite, which is the FSP generation site, we have created a structure that can control the shape of FSP to a small and small amount and obtain a high Kc. I tried to form it.

その結果核組織は所要成分の他、Ceq、が限定範囲に
あり且つMn/Cが15以下のものに安定して形成され
る事を見出した。
As a result, it was found that, in addition to the necessary components, the nuclear structure was stably formed with Ceq within a limited range and Mn/C of 15 or less.

以上の知見を基に、本発明者等は直接HAZの破壊特性
を支配するFSPのサイズを直接制御して初析フェライ
トを塊状化し、該塊状初析フェライトに取り巻かれた結
晶粒からなる組織をHAZに形成する第1の手段の高強
度溶接構造用鋼材を確立して本発明の課題の達成を可能
としたのである。
Based on the above knowledge, the present inventors directly controlled the size of FSP that controls the fracture characteristics of HAZ, made pro-eutectoid ferrite into lumps, and created a structure consisting of crystal grains surrounding the lumped pro-eutectoid ferrite. By establishing a high-strength welded structural steel material, which is the first means of forming the HAZ, it has become possible to achieve the objects of the present invention.

又、本発明者等は、供試鋼Bで塊状初析フェライトに取
り巻かれた結晶粒からなる組織の生成メカニズムを調査
したところ、−度熔解したTiとNがフェライト変態が
開始する800°C迄にオーステナイト粒界に再析出し
、さらにその析出物表面にBNが複合析出し、局部的に
焼入れ性を低下させ、フェライト変態を促進するため、
このTiN +BNが初析フェライトの変態核となって
塊状の初析フェライトをオーステナイト粒界に生成して
形成される事が判明した。
In addition, the present inventors investigated the formation mechanism of a structure consisting of crystal grains surrounded by massive pro-eutectoid ferrite in sample steel B, and found that the temperature at which molten Ti and N begin to transform into ferrite is 800°C. Until then, BN is reprecipitated at the austenite grain boundaries, and furthermore, BN is compositely precipitated on the surface of the precipitates, locally reducing hardenability and promoting ferrite transformation.
It was found that this TiN + BN acts as a transformation nucleus of pro-eutectoid ferrite, and massive pro-eutectoid ferrite is generated at the austenite grain boundaries.

しかもこの組織は、前記した所要の成分の他、Ceq、
が限定の範囲にありTi/Nが2.0〜3.2の範囲に
あってN量が0.003χ〜o、ooszの範囲にある
ものに安定して生成している事を見出した。
Moreover, this structure contains, in addition to the above-mentioned necessary components, Ceq,
It has been found that Ti/N is in a limited range, Ti/N is in a range of 2.0 to 3.2, and N is stably produced in a range of 0.003χ to o, oosz.

以上の知見を基に本発明者等は、−度溶解したTiとN
の再析出およびBHの複合析出を活用して初析フェライ
トを塊状化し、これで破壊特性を直接支配しているFS
Pのサイズを小さくして高Kc値を示すHAZの形成を
可能として塊状初析フェライトに取り巻かれた結晶粒か
らなる組織をHAZに形成する第2の手段からなる高強
度溶接構造用鋼材を確立したのである。
Based on the above knowledge, the present inventors have determined that Ti and N dissolved
FS which directly controls the fracture properties by making the pro-eutectoid ferrite into lumps by utilizing the redecipitation of BH and the composite precipitation of BH.
Establishment of a high-strength welded structural steel material consisting of a second means of forming a structure consisting of crystal grains surrounded by massive pro-eutectoid ferrite in the HAZ by reducing the size of P and making it possible to form a HAZ exhibiting a high Kc value. That's what I did.

本発明は上記知見を基になされたものである。The present invention is based on the above findings.

〈実施例〉 (1)  供試鋼成分      (表2に示す、)(
2)製造条件 ■鋳造凝固:連続鋳造方法 ■圧延冷却:公知の制御圧延、制御冷却を用いた厚板圧
延冷却方法 (表3に示す、) (4)機械的性質      (表3に示す。)(5)
  HAZシャルピー試験値 (表3に示す、)6) 
 HAZ Kc (0°C)     (表3に示す。
<Example> (1) Test steel composition (shown in Table 2)
2) Manufacturing conditions ■ Casting solidification: Continuous casting method ■ Rolling cooling: Plate rolling cooling method using known controlled rolling and controlled cooling (shown in Table 3) (4) Mechanical properties (shown in Table 3) (5)
HAZ Charpy test value (shown in Table 3)6)
HAZ Kc (0°C) (shown in Table 3.

)表3に明らかな通り、比較例のNo13.14はSt
が0.4zを超え、No15.16.17は共にMn/
Cが15を超え26.3.16.9.17.2であり、
No18.19はNbが0.02Zを超え70.030
z、0.028Zテア’)、No21〜26.28はM
n/Cが〉15であり、No27はNb>0.02Zで
あり、N。
) As is clear from Table 3, Comparative Example No. 13.14 is St.
exceeds 0.4z, and No. 15, 16, and 17 are both Mn/
C is greater than 15 and is 26.3.16.9.17.2,
No.18.19 has Nb exceeding 0.02Z and is 70.030
z, 0.028Z tear'), No. 21 to 26.28 are M
n/C is >15, and No. 27 has Nb>0.02Z, and N.

29.31はOn/Cが〉15で且ツN >0.003
Zであり、N。
29.31 has On/C>15 and TsuN>0.003
Z and N.

30はNb>0.02χであり、No13〜31は機械
的性質こそ本発明例と遜色はなかったが、シャルピー試
験値は比較的低く、破壊靭性値Kcは求められているレ
ベルの下限値500kgf/履■凰・5(0℃)に達っ
するものがなかった。
No. 30 had Nb>0.02χ, and Nos. 13 to 31 had mechanical properties comparable to those of the examples of the present invention, but their Charpy test values were relatively low, and the fracture toughness value Kc was at the lower limit of the required level of 500 kgf. /Nothing reached 5 (0℃).

これに対し、本発明例のNo1〜12は、所要の機械的
性質は勿論の事、シャルピー試験値は目標とする4、0
kgf・−を超えると共に、破壊靭性値Kcは500k
gf/m重1°5(0℃)以上の高い値が得られた。
On the other hand, Nos. 1 to 12 of the present invention examples not only have the required mechanical properties but also have the Charpy test value of 4 and 0.
kgf・- and the fracture toughness value Kc is 500k
A high value of gf/m weight of 1°5 (0°C) or more was obtained.

〈発明の効果〉 本発明は破壊靭性値の向上に直接悪影響を及ぼすFSP
が、限定されたMn/CとCeq、を特徴とす第1手段
、及び限定されたNとTi/NとBとCeq、を特徴と
する第2手段により生成を制御される事実を基に、その
生成防止効果を助長すると共に、高強度溶接構造用鋼材
に必要な機械的性質を確保する成分とその量を限定した
ので、従来の溶接構造用鋼材のHAZに見られなかった
塊状初析フェライトに取り巻かれた結晶粒からなる組織
の形成を可能とし、従来の不経済なTiO処理又はRE
M処理を使用する事なく、HAZのシャルピー試験値も
ディープノツチ試験値も共に溶接構造用鋼材使用者が求
めている所要値を満足する溶接構造用鋼材を確立したの
で、この種鋼材を用いる産業分野にもたらす安全上及び
経済上の効果は大きい。
<Effects of the Invention> The present invention provides FSP that has a direct negative effect on improving fracture toughness.
is controlled by the first means characterized by limited Mn/C and Ceq, and the second means characterized by limited N, Ti/N, B, and Ceq. , we have limited the components and amounts that promote the prevention effect of their formation and ensure the mechanical properties necessary for high-strength welded structural steel materials, thereby reducing the blocky pro-eutectoid formation that has not been seen in the HAZ of conventional welded structural steel materials. It enables the formation of a structure consisting of crystal grains surrounded by ferrite, which eliminates the conventional uneconomical TiO treatment or RE.
We have established a welded structural steel material that satisfies both the HAZ Charpy test value and Deep Notch test value required by users of welded structural steel materials without using M treatment. The safety and economic effects it brings to the field are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明鋼と比較鋼のシャルピー試験値とディ
ープノツチ試験値の関係を示す。 第2図は塊状初析フェライトα、IFP 、及び板状フ
ェライトα、FSP 、 Bu等の組織状の位置関係と
形状の概略を示したもので、(1)は本発明鋼材のもの
、(2)は従来の鋼材のものを示す。
FIG. 1 shows the relationship between Charpy test values and deep notch test values for the steel of the present invention and comparative steel. Figure 2 schematically shows the positional relationships and shapes of the structures of blocky pro-eutectoid ferrite α, IFP, and plate-like ferrite α, FSP, Bu, etc. (1) is that of the steel material of the present invention, (2) ) indicates conventional steel materials.

Claims (2)

【特許請求の範囲】[Claims] (1)溶接後の熱影響部即ちHAZが重量%で、C:0
.07〜0.16%P:≦0.020%Si:0.15
〜0.30%S:≦0.020%Mn:1.20〜1.
50%Ti:0.005〜0.020%Al:0.00
5〜0.10% を含み、必要に応じて、 Cu:≦1.0%Nb:≦0.02% Ni:≦1.0%Ca:≦0.1% V:≦0.1%B:≦0.0015% の1種又は2種以上を含み、且つMn/C≦15とC%
+Si%/24+Mn%/6+Ni%/40+V%/1
4=0.32〜0.44%を満たし、その他不可避的成
分とFeからなり、組織が塊状初析フェライトに取り巻
かれた結晶粒から構成された事を特徴とする溶接熱影響
部の破壊靭性の優れた高強度溶接構造用鋼材。
(1) The heat affected zone or HAZ after welding is in weight%, C: 0
.. 07-0.16%P:≦0.020%Si:0.15
~0.30%S:≦0.020%Mn:1.20~1.
50%Ti: 0.005-0.020%Al: 0.00
Cu: ≦1.0% Nb: ≦0.02% Ni: ≦1.0% Ca: ≦0.1% V: ≦0.1% B :≦0.0015%, and Mn/C≦15 and C%
+Si%/24+Mn%/6+Ni%/40+V%/1
4 = 0.32 to 0.44%, is composed of other unavoidable components and Fe, and has a structure composed of crystal grains surrounded by massive pro-eutectoid ferrite. Superior high-strength welded structural steel.
(2)溶接後の熱影響部即ちHAZが重量%で、C:0
.07〜0.16%P:≦0.020%Si:0.15
〜0.30%S:≦0.020%Mn:1.20〜1.
50%Ti:0.005〜0.020%Al:0.00
5〜0.10%B:≦0.0015%N:0.003〜
0.008% を含み、必要に応じて、 Cu:≦1.0%Nb:≦0.02% Ni:≦1.0%Ca:≦0.1% V:≦0.1% の1種又は2種以上を含み、且つTi/N=2.0〜3
.2とC%+Si%/24+Mn%/6+Ni%/40
+V%/14が0.32〜0.44%を満たし、その他
不可避的成分とFeからなり、組織が塊状初析フェライ
トに取り巻かれた結晶粒から構成された事を特徴とする
溶接熱影響部の破壊靭性の優れた高強度溶接構造用鋼材
(2) The heat affected zone or HAZ after welding is in weight%, C: 0
.. 07-0.16%P:≦0.020%Si:0.15
~0.30%S:≦0.020%Mn:1.20~1.
50%Ti: 0.005-0.020%Al: 0.00
5~0.10%B:≦0.0015%N:0.003~
0.008%, and if necessary, one of the following: Cu:≦1.0%Nb:≦0.02%Ni:≦1.0%Ca:≦0.1%V:≦0.1% or two or more types, and Ti/N=2.0-3
.. 2 and C%+Si%/24+Mn%/6+Ni%/40
+V%/14 satisfies 0.32 to 0.44%, is composed of other unavoidable components and Fe, and has a structure composed of crystal grains surrounded by massive pro-eutectoid ferrite. A high-strength welded structural steel material with excellent fracture toughness.
JP11123790A 1989-04-26 1990-04-25 High strength for welding structure having excellent fracture toughness in heat affected zone Pending JPH03211251A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1-108902 1989-04-26
JP10890289 1989-04-26
JP1-240385 1989-09-16
JP1-240383 1989-09-16

Publications (1)

Publication Number Publication Date
JPH03211251A true JPH03211251A (en) 1991-09-17

Family

ID=14496526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11123790A Pending JPH03211251A (en) 1989-04-26 1990-04-25 High strength for welding structure having excellent fracture toughness in heat affected zone

Country Status (1)

Country Link
JP (1) JPH03211251A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014443A1 (en) * 1994-11-04 1996-05-17 Nippon Steel Corporation High-strength ferritic heat-resistant steel and process for producing the same
KR100470048B1 (en) * 2000-10-27 2005-02-04 주식회사 포스코 Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same
CN106702274A (en) * 2016-12-01 2017-05-24 武汉钢铁股份有限公司 14.5mm-thickness dedicated automobile spoke steel uniform in property and manufacturing method and application of spoke steel
JP2020037734A (en) * 2018-08-30 2020-03-12 株式会社神戸製鋼所 High strength and low yield ratio thick steel plate having excellent toughness in base material and weld heat-affected zone, while having smaller acoustic anisotropy, and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253344A (en) * 1985-05-01 1986-11-11 Kawasaki Steel Corp Steel plate for high heat input welding and its manufacture
JPS6256518A (en) * 1985-09-04 1987-03-12 Sumitomo Metal Ind Ltd Production of high strength steel sheet for high heat input welding
JPS62170459A (en) * 1986-01-22 1987-07-27 Sumitomo Metal Ind Ltd High tension steel plate for high heat input welding
JPS62180013A (en) * 1986-02-04 1987-08-07 Nippon Kokan Kk <Nkk> Manufacture of nontemper high tension steel plate having low welding crack susceptibility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253344A (en) * 1985-05-01 1986-11-11 Kawasaki Steel Corp Steel plate for high heat input welding and its manufacture
JPS6256518A (en) * 1985-09-04 1987-03-12 Sumitomo Metal Ind Ltd Production of high strength steel sheet for high heat input welding
JPS62170459A (en) * 1986-01-22 1987-07-27 Sumitomo Metal Ind Ltd High tension steel plate for high heat input welding
JPS62180013A (en) * 1986-02-04 1987-08-07 Nippon Kokan Kk <Nkk> Manufacture of nontemper high tension steel plate having low welding crack susceptibility

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014443A1 (en) * 1994-11-04 1996-05-17 Nippon Steel Corporation High-strength ferritic heat-resistant steel and process for producing the same
US5766376A (en) * 1994-11-04 1998-06-16 Nippon Steel Corporation High-strength ferritic heat-resistant steel and method of producing the same
CN1061700C (en) * 1994-11-04 2001-02-07 新日本制铁株式会社 High-strength ferritic heat-resistant steel and process for producing the same
KR100470048B1 (en) * 2000-10-27 2005-02-04 주식회사 포스코 Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same
CN106702274A (en) * 2016-12-01 2017-05-24 武汉钢铁股份有限公司 14.5mm-thickness dedicated automobile spoke steel uniform in property and manufacturing method and application of spoke steel
JP2020037734A (en) * 2018-08-30 2020-03-12 株式会社神戸製鋼所 High strength and low yield ratio thick steel plate having excellent toughness in base material and weld heat-affected zone, while having smaller acoustic anisotropy, and method for producing the same

Similar Documents

Publication Publication Date Title
TWI478785B (en) High heat input welding steel
KR101846759B1 (en) Steel plate and method for manufacturing same
JP5509685B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
KR100622888B1 (en) Steel product for high heat input welding and method for production thereof
JPH02194115A (en) Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone
WO2013088715A1 (en) Steel material for high-heat-input welding
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
JP4981262B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JPH0577740B2 (en)
WO2016009595A1 (en) Method of manufacturing steel plate for high-heat input welding
JP5233364B2 (en) Steel material for large heat input welding
JPH01159356A (en) High tension steel having superior tougeness at weld heat-affected zone
JP5233365B2 (en) Steel material for large heat input welding
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JPH03211251A (en) High strength for welding structure having excellent fracture toughness in heat affected zone
JP2002371338A (en) Steel superior in toughness at laser weld
JPH03177535A (en) Manufacture of low temperature high toughness steel for welding
WO2013128650A1 (en) Steel material for high-heat-input welding
JPS621842A (en) Tough, high tension steel having superior toughness in weld zone
JP7272471B2 (en) steel plate
JP5493557B2 (en) Steel material for large heat input welding
JPS6256518A (en) Production of high strength steel sheet for high heat input welding
JP4332064B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP4356156B2 (en) Steel plate for welded structure with excellent toughness of heat affected zone