JP5233365B2 - Steel material for large heat input welding - Google Patents

Steel material for large heat input welding Download PDF

Info

Publication number
JP5233365B2
JP5233365B2 JP2008089671A JP2008089671A JP5233365B2 JP 5233365 B2 JP5233365 B2 JP 5233365B2 JP 2008089671 A JP2008089671 A JP 2008089671A JP 2008089671 A JP2008089671 A JP 2008089671A JP 5233365 B2 JP5233365 B2 JP 5233365B2
Authority
JP
Japan
Prior art keywords
mass
less
toughness
heat input
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008089671A
Other languages
Japanese (ja)
Other versions
JP2009242853A (en
Inventor
智之 横田
克行 一宮
公宏 西村
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008089671A priority Critical patent/JP5233365B2/en
Publication of JP2009242853A publication Critical patent/JP2009242853A/en
Application granted granted Critical
Publication of JP5233365B2 publication Critical patent/JP5233365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、造船や建築、土木等の分野における各種鋼構造物に用いられる鋼材に関し、特に溶接入熱量が300kJ/cmを超える大入熱溶接を受ける用途に適した鋼材に関するものである。   The present invention relates to a steel material used for various steel structures in the fields of shipbuilding, construction, civil engineering, and the like, and more particularly, to a steel material suitable for a purpose of receiving high heat input welding with a heat input of welding exceeding 300 kJ / cm.

造船や建築、土木等の分野で使用される鋼材は、一般に、溶接接合により所望の形状の鋼構造物に仕上げられる。従って、これらの構造物においては、安全性の観点から、使用される鋼材(母材)の靭性に優れていることは勿論のこと、溶接部の靭性にも優れていることが求められている。   Steel materials used in fields such as shipbuilding, construction, and civil engineering are generally finished into steel structures having a desired shape by welding. Therefore, in these structures, from the viewpoint of safety, it is required that the steel material (base material) to be used is excellent in toughness as well as welded portion toughness. .

一方、これら鋼構造物は、近年、ますます大型化するのに伴い、使用される鋼材の高強度化・厚肉化が進むと共に、溶接施工にはサブマージアーク溶接、エレクトロガス溶接およびエレクトロスラグ溶接などの高能率な大入熱溶接が適用されるようになってきている。従って、大入熱溶接により施工したときの溶接部靭性に優れた鋼材が必要となってきている。   On the other hand, as these steel structures become larger and larger in recent years, the strength and thickness of steel materials used have increased, and submerged arc welding, electrogas welding and electroslag welding have been used for welding. High-efficiency large heat input welding such as is now being applied. Therefore, a steel material having excellent weld toughness when constructed by high heat input welding has become necessary.

しかし、溶接入熱量が大きくなると、一般に、溶接熱影響部の組織は、粗大化し、靭性が低下することが知られている。このような大入熱溶接による靭性低下に対しては、これまで、多くの対策が提案されてきた。例えば、TiNを微細分散させて、オーステナイト粒の粗大化を抑制したり、フェライト変態核として利用したりする技術が既に実用化されている。また、特許文献1には、Ti酸化物を分散させることによって、また、特許文献2には、BNを析出させることによって、フェライト核生成能を高めて溶接部の靭性を高める技術が開示されている。さらに、特許文献3および4には、CaやREMを添加して硫化物の形態を制御することにより高靭性を得る技術が開示されている。   However, it is generally known that when the welding heat input becomes large, the structure of the weld heat affected zone becomes coarse and the toughness decreases. Many countermeasures have been proposed to date against such a decrease in toughness due to high heat input welding. For example, a technique for finely dispersing TiN to suppress austenite grain coarsening or to use it as a ferrite transformation nucleus has already been put into practical use. Patent Document 1 discloses a technique for increasing the toughness of a welded portion by increasing the ferrite nucleation ability by dispersing Ti oxide, and Patent Document 2 by precipitating BN. Yes. Furthermore, Patent Documents 3 and 4 disclose techniques for obtaining high toughness by adding Ca or REM to control the form of sulfide.

しかしながら、TiNを利用する従来技術は、TiNが溶解する温度域に加熱される溶接熱影響部においては、TiNが有する上記作用がなくなり、さらには、地の組織が固溶Tiおよび固溶Nにより脆化して靭性が著しく低下するという問題があった。また、特許文献1や2に記載のTi酸化物やBN析出物を利用する技術は、酸化物等を均一に微細分散させることが困難であるという問題があった。この問題に対しては、酸化物を複合化する等の方法で、分散能を改善する検討が種々行われているが、入熱量が300kJ/cmを超えるような大入熱溶接では、オーステナイト粒の成長を抑制して、溶接熱影響部の靭性を確保することは困難であるという問題があった。また、特許文献3に記載のCaを添加する技術や特許文献4に記載のREMを添加する技術では、300kJ/cm程度までの入熱量であれば高靭性の確保が可能であるが、300kJ/cmを超えるような大入熱溶接では、これらの技術でも溶接熱影響部の靭性を確保することは難しい。   However, in the prior art using TiN, the above-mentioned action of TiN is lost in the weld heat affected zone heated to a temperature range where TiN dissolves, and further, the structure of the ground is caused by solid solution Ti and solid solution N. There was a problem that the toughness was significantly lowered due to embrittlement. Moreover, the technique using the Ti oxide or BN precipitate described in Patent Documents 1 and 2 has a problem that it is difficult to finely disperse oxides and the like uniformly. In order to solve this problem, various studies have been made to improve the dispersibility by a method such as compounding oxides, but in high heat input welding where the heat input exceeds 300 kJ / cm, austenite grains are used. There is a problem that it is difficult to secure the toughness of the weld heat affected zone by suppressing the growth of steel. Moreover, in the technique of adding Ca described in Patent Document 3 or the technique of adding REM described in Patent Document 4, high toughness can be ensured if the heat input amount is about 300 kJ / cm. In high heat input welding exceeding cm, it is difficult to ensure the toughness of the heat affected zone even with these techniques.

これに対し、発明者らは、400kJ/cmを超えるような大入熱溶接でも、良好な溶接熱影響部靭性が得られる鋼材を特許文献5に開示している。この技術の特徴は、400kJ/cmを超える大入熱溶接を行った熱影響部の靭性を向上させるために、硫化物の形態制御に用いられるCaを適正量含有させるところにある。具体的には、まず、鋼を溶製し、凝固させる段階でCaSを析出させる。CaSは、酸化物に比べて低温で析出するため、鋼中に微細に分散させることができるからである。この際、Ca,Sの含有量および鋼中の溶存酸素量を適正範囲に制御し、CaSの晶出後に固溶S量を適正量確保することによって、微細分散したCaSの表面上にMnSを析出させることが特に重要である。MnSは、それ自身がフェライト核生成能を有しているほか、その周囲にMnの希薄帯を形成して、フェライト変態を促進する作用も有している。また、上記MnS上には、さらにTiN、BN、AlN、VN等のフェライト生成核が析出するため、より一層フェライト変態が促進される。以上の方策によって、大入熱溶接時の高温下でも溶解しないフェライト変態生成核を微細に分散させて、溶接熱影響部の組織を微細なフェライトパーライト組織とし、高靭性化を図ることが可能となった。
特開昭57−51243号公報 特開昭62−170459号公報 特開昭60−204863号公報 特公平04−14180号公報 特許3546308号公報
On the other hand, the inventors have disclosed a steel material capable of obtaining good weld heat affected zone toughness even in high heat input welding exceeding 400 kJ / cm. The feature of this technique is that an appropriate amount of Ca used for the morphology control of sulfide is contained in order to improve the toughness of the heat-affected zone subjected to high heat input welding exceeding 400 kJ / cm. Specifically, first, CaS is precipitated at the stage of melting and solidifying steel. This is because CaS precipitates at a lower temperature than oxides and can be finely dispersed in steel. At this time, the content of Ca and S and the amount of dissolved oxygen in the steel are controlled within an appropriate range, and after securing the proper amount of solid solution S after crystallization of CaS, MnS is formed on the surface of finely dispersed CaS. Precipitation is particularly important. MnS itself has the ability to form ferrite nuclei, and also has the effect of promoting ferrite transformation by forming a Mn dilute band around it. Further, since ferrite-forming nuclei such as TiN, BN, AlN, and VN are further deposited on the MnS, the ferrite transformation is further promoted. By the above measures, it is possible to finely disperse the ferrite transformation nuclei that do not melt even at high temperatures during high heat input welding, and to make the microstructure of the weld heat affected zone a fine ferrite pearlite structure, thereby achieving high toughness. became.
JP 57-51243 A JP-A-62-170459 JP 60-204863 A Japanese Examined Patent Publication No. 04-14180 Japanese Patent No. 3546308

しかしながら、発明者らの研究によれば、Cや合金元素を比較的多量に添加している成分系の鋼、すなわち、比較的高強度の鋼においては、上記特許文献5に記載の技術を適用しても、溶接入熱量が300kJ/cmを超える大入熱溶接を施したときのボンド近傍の熱影響部には、島状マルテンサイトと呼ばれる硬質の脆化組織が数%生成し、これが靭性の向上を阻んでいることがわかってきた。ここで、上記ボンド近傍の熱影響部とは、熱影響部の中でも溶接時に最も高い温度に曝され、オーステナイト粒が粗大化する領域であり、例えば、図1に示す点線近傍の熱影響部のことをいう。   However, according to the research by the inventors, the technology described in Patent Document 5 is applied to a component steel to which a relatively large amount of C or an alloy element is added, that is, a relatively high strength steel. Even in the heat-affected zone in the vicinity of the bond when high heat input welding with a heat input greater than 300 kJ / cm is applied, a few percent of hard embrittlement structure called island martensite is generated. It has become clear that the improvement of Here, the heat-affected zone in the vicinity of the bond is a region where the austenite grains are coarsened by being exposed to the highest temperature during welding among the heat-affected zones. For example, the heat-affected zone in the vicinity of the dotted line shown in FIG. That means.

そこで、本発明の目的は、合金元素を多量に含む高合金系の鋼において、300kJ/cmを超える大入熱溶接を施したときでも、ボンド近傍の熱影響部における島状マルテンサイトの生成を抑制し得る、溶接後の靭性に優れる大入熱溶接用鋼材を提供することにある。   Therefore, the object of the present invention is to generate island martensite in the heat-affected zone near the bond even when high heat input welding exceeding 300 kJ / cm is performed on high alloy steel containing a large amount of alloying elements. An object of the present invention is to provide a steel material for high heat input welding that can be suppressed and has excellent toughness after welding.

発明者らは、大入熱溶接を施したときの溶接ボンド近傍の熱影響部に形成される島状マルテンサイトの生成を抑制する有効な方策について鋭意検討した。その結果、溶接ボンド近傍の熱影響部の旧オーステナイト粒内組織をアシキュラーフェライト主体とすることが極めて有効であることを知見した。というのは、アシキュラーフェライトは、いわば粒内から核生成したベイナイトであり、粒内にアシキュラーフェライトが生成した場合には、旧オーステナイト粒界からベイナイトが生成するときと比較して、核生成サイトが多くなり、未変態オーステナイトへのC濃化が軽減されるため、島状マルテンサイトが形成しにくくなるからと考えられる。そして、アシキュラーフェライトの面積分率は概ね半分程度以上となると、EBSD(電子線後方散乱回折)で測定した15°以上の傾角を有する粒界組織において、旧オーステナイト粒界から析出した粒界フェライトを除いて、線分法で得られる平均切片長さが10μm以下となるため、この平均切片長さをアシキュラーフェライトの面積分率の指標として用いることができる、即ち、島状マルテンサイトの面積分率を所定の値以下にするためには、上記平均切片長さを制御すればよいことを見出した。   The inventors diligently studied an effective measure for suppressing the formation of island martensite formed in the heat-affected zone in the vicinity of the weld bond when high heat input welding is performed. As a result, it has been found that it is extremely effective to mainly use the austenite grain structure in the heat-affected zone near the weld bond as the main body of acicular ferrite. This is because acicular ferrite is bainite nucleated from within the grains, and when acicular ferrite is formed in the grains, it nucleates compared to when bainite is formed from the prior austenite grain boundaries. This is probably because the number of sites increases and the C enrichment to untransformed austenite is reduced, making it difficult to form island martensite. When the area fraction of the acicular ferrite is about half or more, the grain boundary ferrite precipitated from the prior austenite grain boundary in the grain boundary structure having an inclination angle of 15 ° or more measured by EBSD (electron beam backscatter diffraction). Since the average segment length obtained by the line segment method is 10 μm or less, this average segment length can be used as an index of the area fraction of acicular ferrite, that is, the area of island martensite It has been found that the average intercept length may be controlled in order to make the fraction not more than a predetermined value.

また、粒内アシキュラーフェライトの生成を促進するには、Mn含有量を1.8〜2.6mass%と高めることが有効である。これは、CaSの表面上にMnSが析出する際に形成されるMnの希薄帯が、フェライト変態やベイナイト変態を促進するが、Mn添加量が高いと、母相と希薄帯間のMn含有量の差が大きくなり、フェライト変態あるいはベイナイト変態の駆動力が高くなるためであると考えられる。なお、粒内をアシキュラーフェライト組織とするために、旧オーステナイト粒界に沿って初析フェライトを析出させ、生成速度の大きい旧オーステナイト粒界からのベイナイト生成をできるだけ抑えることも有効である。   In order to promote the formation of intragranular acicular ferrite, it is effective to increase the Mn content to 1.8 to 2.6 mass%. This is because the Mn dilute band formed when MnS precipitates on the surface of CaS promotes the ferrite transformation and bainite transformation, but if the Mn addition amount is high, the Mn content between the parent phase and the dilute band This is considered to be because the difference between the above increases and the driving force of ferrite transformation or bainite transformation increases. In order to obtain an acicular ferrite structure in the grains, it is also effective to precipitate pro-eutectoid ferrite along the prior austenite grain boundaries and suppress bainite formation from the prior austenite grain boundaries having a high production rate as much as possible.

本発明は、上記知見を基に完成したものであり、C:0.03〜0.08mass%、Si:0.01〜0.15mass%、Mn:1.8〜2.6mass%、P:0.03mass%以下、S:0.0005〜0.0040mass%、Al:0.005〜0.1mass%、Cu:1.0mass%以下、Ni:1.0mass%以下、Nb:0.003〜0.05mass%、Ti:0.003〜0.03mass%、N:0.0025〜0.0070mass%、Ca:0.0005〜0.0030mass%、B:0.0003〜0.0025mass%を含有し、下記(1)式;
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15 ・・・(1)
ただし、上記元素記号は、各元素の含有量(mass%)
に示す炭素当量Ceqが0.33〜0.45の範囲にあり、かつ、Ca,OおよびSが下記(2)式;
0≦(Ca−(0.18+130×Ca)×O)/1.25/S≦1 ・・・(2)
ただし、上記元素記号は、各元素の含有量(mass%)
を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、溶接入熱量が300kJ/cmを超える大入熱溶接を施したときのボンド近傍の熱影響部の組織が、旧オーステナイト粒界から析出した粒界フェライトを除いた旧オーステナイト粒内組織の大きさが10μm以下であり、かつ島状マルテンサイトが面積分率で2%以下であることを特徴とする大入熱溶接用鋼材である。ここで、旧オーステナイト粒内組織の大きさとは、EBSDで測定した15°以上の傾角を有する粒界組織における線分法で測定した平均切片長さのことである。
This invention is completed based on the said knowledge, C: 0.03-0.08 mass%, Si: 0.01-0.15 mass%, Mn: 1.8-2.6 mass%, P: 0.03 mass% or less, S: 0.0005 to 0.0040 mass%, Al: 0.005 to 0.1 mass%, Cu: 1.0 mass% or less, Ni: 1.0 mass% or less, Nb: 0.003 Contains 0.05 mass%, Ti: 0.003-0.03 mass%, N: 0.0025-0.0070 mass%, Ca: 0.0005-0.0030 mass%, B: 0.0003-0.0025 mass% And the following formula (1);
Ceq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15 (1)
However, the above element symbol is the content of each element (mass%)
The carbon equivalent Ceq is in the range of 0.33 to 0.45 , and Ca, O and S are represented by the following formula (2):
0 ≦ (Ca− (0.18 + 130 × Ca) × O) /1.25/S≦1 (2)
However, the above element symbol is the content of each element (mass%)
The composition of the heat-affected zone in the vicinity of the bond when high heat input welding with a heat input exceeding 300 kJ / cm has a component composition consisting of Fe and unavoidable impurities in the balance , Large heat input welding characterized in that the size of the former austenite grain structure excluding the grain boundary ferrite precipitated from the austenite grain boundary is 10 μm or less, and the island-like martensite is 2% or less in area fraction. Steel material. Here, the size of the prior austenite intragranular structure is an average intercept length measured by a line segment method in a grain boundary structure having an inclination angle of 15 ° or more measured by EBSD.

本発明は、上記成分組成に加えてさらに、Cr:0.4mass%以下およびMo:0.4mass%以下のうちから選ばれる1種または2種を含有することを特徴とする。
The present invention, in addition to the above chemical composition, C r: 0.4 mass% or less and Mo: characterized in that it contains one or two elements selected from among the following 0.4 mass%.

本発明によれば、300kJ/cmを超える大入熱溶接を行っても、溶接後の靭性に優れる鋼材を得ることができる。したがって、本発明は、サブマージアーク溶接、エレクトロガス溶接、エレクトロスラグ溶接などの大入熱溶接によって施工される大型の鋼構造物の品質向上や安全性向上に寄与するところ大である。   According to the present invention, a steel material having excellent toughness after welding can be obtained even when high heat input welding exceeding 300 kJ / cm is performed. Therefore, the present invention greatly contributes to improving the quality and safety of large steel structures constructed by high heat input welding such as submerged arc welding, electrogas welding, and electroslag welding.

まず、本発明の大入熱溶接用鋼材の成分組成について説明する。
C:0.03〜0.08mass%
Cは、構造用鋼としての必要な強度を得るために必要な元素であり、下限を0.03mass%とする。一方、島状マルテンサイトの生成を抑えるため、上限は0.08mass%とする。
First, the component composition of the steel for high heat input welding of the present invention will be described.
C: 0.03-0.08 mass%
C is an element necessary for obtaining the necessary strength as structural steel, and the lower limit is 0.03 mass%. On the other hand, in order to suppress generation of island martensite, the upper limit is set to 0.08 mass%.

Si:0.01〜0.15mass%
Siは、脱酸剤として添加される元素であり、0.01mass%以上添加する必要がある。一方、0.15mass%を超えると、母材の靭性を劣化させるほか、大入熱溶接におけるボンド近傍の熱影響部に島状マルテンサイトを生成して靭性を劣化させる。よって、Siは0.01〜0.15mass%の範囲とする。
Si: 0.01-0.15 mass%
Si is an element added as a deoxidizer, and it is necessary to add 0.01 mass% or more. On the other hand, if it exceeds 0.15 mass%, the toughness of the base metal is deteriorated, and in addition, island-like martensite is generated in the heat-affected zone near the bond in the high heat input welding to deteriorate the toughness. Therefore, Si is set to a range of 0.01 to 0.15 mass%.

Mn:1.8〜2.6mass%
Mnは、母材の強度を確保するとともに、アシキュラーフェライトの生成を促進するため、1.8mass%以上添加する必要がある。一方、2.6mass%を超える添加は、溶接部の靭性を劣化させる。よって、Mnは1.8〜2.6mass%の範囲とする。好ましくは、1.8〜2.2mass%の範囲である。
Mn: 1.8 to 2.6 mass%
Mn needs to be added in an amount of 1.8 mass% or more in order to secure the strength of the base material and promote the formation of acicular ferrite. On the other hand, addition exceeding 2.6 mass% deteriorates the toughness of the welded portion. Therefore, Mn is set in the range of 1.8 to 2.6 mass%. Preferably, it is in the range of 1.8 to 2.2 mass%.

P:0.03mass%以下
Pは、不可避的に混入する不純物であり、0.03mass%を超える含有は、溶接部の靭性を劣化させる。よって、Pは0.03mass%以下とする。
P: 0.03 mass% or less P is an impurity inevitably mixed, and inclusion exceeding 0.03 mass% degrades the toughness of the welded portion. Therefore, P is set to 0.03 mass% or less.

S:0.0005〜0.0040mass%
Sは、本発明においては、CaSおよびMnSを生成するための重要な元素であり、0.0005mass%以上含有する必要がある。一方、0.0040mass%を超えると母材の靭性が低下する。よって、Sは0.0005〜0.0040mass%の範囲とする。
S: 0.0005-0.0040 mass%
In the present invention, S is an important element for producing CaS and MnS, and needs to be contained in an amount of 0.0005 mass% or more. On the other hand, if it exceeds 0.0040 mass%, the toughness of the base material decreases. Therefore, S is set to a range of 0.0005 to 0.0040 mass%.

Al:0.005〜0.1mass%
Alは、鋼の脱酸に必要な成分であり、0.005mass%以上添加する必要がある。一方、0.1mass%を超えて添加すると、母材の靭性が低下すると共に、溶接金属の靭性を低下させる。よって、Alは0.005〜0.1mass%の範囲とする。
Al: 0.005 to 0.1 mass%
Al is a component necessary for deoxidation of steel, and it is necessary to add 0.005 mass% or more. On the other hand, if added over 0.1 mass%, the toughness of the base metal is lowered and the toughness of the weld metal is lowered. Therefore, Al is made into the range of 0.005-0.1 mass%.

Nb:0.003〜0.05mass%
Nbは、母材の強度・靭性および継手の強度を確保するのに有効な元素であり、上記効果をためには、0.003mass%以上添加する必要がある。一方、0.05mass%を超えて添加すると、溶接熱影響部の靭性が低下する。よって、Nbは、0.003〜0.05mass%とする。
Nb: 0.003-0.05 mass%
Nb is an element effective for ensuring the strength and toughness of the base material and the strength of the joint. In order to achieve the above effect, Nb needs to be added in an amount of 0.003 mass% or more. On the other hand, if added over 0.05 mass%, the toughness of the weld heat affected zone decreases. Therefore, Nb is set to 0.003 to 0.05 mass%.

Ti:0.003〜0.03mass%
Tiは、凝固時にTiNとなって析出し、溶接熱影響部でのオーステナイトの粗大化を抑制したり、フェライト生成核となってフェライト変態を促進したりして高靭性化に寄与する元素である。上記効果を得るには、0.003mass%以上の添加が必要である。一方、0.03mass%を超えると、TiN粒子が粗大化し、期待する効果が得られなくなる。よって、Tiは0.003〜0.03mass%の範囲とする。
Ti: 0.003-0.03 mass%
Ti is an element that precipitates as TiN during solidification and suppresses the austenite coarsening in the weld heat affected zone, or promotes ferrite transformation as a ferrite nucleation and contributes to high toughness. . In order to acquire the said effect, addition of 0.003 mass% or more is required. On the other hand, if it exceeds 0.03 mass%, the TiN particles become coarse and the expected effect cannot be obtained. Therefore, Ti is set to a range of 0.003 to 0.03 mass%.

N:0.0025〜0.0070mass%
Nは、TiNを形成するのに必要な元素であり、0.0025mass%未満では十分なTiN量が得られない。一方、0.0070mass%を超えると、溶接熱サイクルによってTiNが溶解する領域で固溶N量が増加し、靭性の低下をもたらす。よって、Nは0.0025〜0.0070mass%の範囲とする。
N: 0.0025 to 0.0070 mass%
N is an element necessary for forming TiN, and if it is less than 0.0025 mass%, a sufficient amount of TiN cannot be obtained. On the other hand, if it exceeds 0.0070 mass%, the amount of solid solution N increases in the region where TiN is dissolved by the welding heat cycle, resulting in a decrease in toughness. Therefore, N is set to a range of 0.0025 to 0.0070 mass%.

B:0.0003〜0.0025mass%
Bは、溶接熱影響部でBNを生成し、固溶Nを低減するとともに、フェライト変態核として作用する元素である。このような効果を得るには0.0003mass%以上の添加が必要である。一方、0.0025mass%を超えて添加すると、焼入性が増して、靭性が低下するようになる。よって、Bは0.0003〜0.0025mass%の範囲とする。
B: 0.0003 to 0.0025 mass%
B is an element that generates BN at the weld heat affected zone, reduces the solid solution N, and acts as a ferrite transformation nucleus. In order to obtain such an effect, it is necessary to add 0.0003 mass% or more. On the other hand, when added over 0.0025 mass%, hardenability will increase and toughness will fall. Therefore, B is in the range of 0.0003 to 0.0025 mass%.

Cu:1.0mass%以下
Cuは、母材の靭性を確保しつつ強度を向上させる効果を有する。上記効果を得るには、0.1mass%以上添加するのが好ましい。一方、1.0mass%を超える添加は、熱間脆性を生じて鋼材の表面性状を劣化させる。よって、Cuは1.0mass%以下の範囲で添加する。
Cu: 1.0 mass% or less Cu has an effect of improving strength while ensuring toughness of the base material. In order to acquire the said effect, it is preferable to add 0.1 mass% or more. On the other hand, addition exceeding 1.0 mass% causes hot brittleness and deteriorates the surface properties of the steel material. Therefore, Cu is added in a range of 1.0 mass% or less.

Ni:1.0mass%以下
Niは、Cuと同様に、母材の靭性を保ちつつ強度を上昇させる効果を有する。上記効果を得るには、0.1mass%以上添加するのが好ましい。しかし、1.0mass%を超えて添加しても、効果が飽和するだけである。よって、Niは1.0mass%以下の範囲とする。
Ni: 1.0 mass% or less Ni, like Cu, has the effect of increasing strength while maintaining the toughness of the base material. In order to acquire the said effect, it is preferable to add 0.1 mass% or more. However, adding more than 1.0 mass% only saturates the effect. Therefore, Ni is set to a range of 1.0 mass% or less.

Ca:0.0005〜0.0030mass%
Caは、Sを固定することによって、靭性を改善する元素であり、0.0005mass%以上の添加によって上記効果を得ることができる。一方、0.0030mass%を超えて添加しても効果が飽和するだけである。よって、本発明では、Caは0.0005〜0.0030mass%の範囲とする。
Ca: 0.0005 to 0.0030 mass%
Ca is an element that improves toughness by fixing S, and the above effect can be obtained by addition of 0.0005 mass% or more. On the other hand, even if added over 0.0030 mass%, the effect is only saturated. Therefore, in the present invention, Ca is in the range of 0.0005 to 0.0030 mass%.

0≦(Ca−(0.18+130×Ca)×O)/1.25/S≦1
Ca,SおよびOは、下記;
0.2≦(Ca−(0.18+130×Ca)×O)/1.25/S≦1
の関係式を満たして含有する必要がある。ここで、Ca,S,Oは、各元素の含有量(mass%)である。
(Ca−(0.18+130×Ca)×O)/1.25/Sの値が0未満では、CaSが晶出しないため、SはMnS単独の形態で析出する。このMnSは、鋼板製造の圧延時に伸長されて母材の靭性低下を引き起こすとともに、溶接熱影響部ではMnSが溶融してしまうため、本発明の主眼であるフェライト生成核の微細分散を達成できない。
一方、(Ca−(0.18+130×Ca)×O)/1.25/Sの値が1を超えると、SのほとんどがCaによって固定されるため、フェライト生成核として働くMnSがCaS上に析出しないため、フェライト生成核としての機能を果たすことができない。
したがって、上記式を満たす場合にのみ、CaS上にMnSが析出して複合硫化物の形態となり、フェライト変態が促進される。
0 ≦ (Ca− (0.18 + 130 × Ca) × O) /1.25/S≦1
Ca, S and O are as follows:
0.2 ≦ (Ca− (0.18 + 130 × Ca) × O) /1.25/S≦1
It is necessary to contain and satisfy the relational expression. Here, Ca, S, and O are content (mass%) of each element.
When the value of (Ca− (0.18 + 130 × Ca) × O) /1.25/S is less than 0, CaS does not crystallize, so S precipitates in the form of MnS alone. This MnS is elongated at the time of rolling the steel sheet to cause toughness reduction of the base material, and MnS melts in the weld heat affected zone, so that it is not possible to achieve the fine dispersion of ferrite forming nuclei that is the main point of the present invention.
On the other hand, when the value of (Ca− (0.18 + 130 × Ca) × O) /1.25/S exceeds 1, most of S is fixed by Ca, so that MnS acting as a ferrite nuclei is formed on CaS. Since it does not precipitate, it cannot function as a ferrite formation nucleus.
Therefore, only when the above formula is satisfied, MnS is deposited on CaS to form a composite sulfide, and the ferrite transformation is promoted.

なお、Oは、不可避的不純物として鋼中に含有され、鋼の清浄度を低下させる。このため、本発明ではできるだけ低減することが望ましい。特に、O含有量が0.0030mass%を超えると、CaO系介在物が粗大化して母材靭性を低下させてしまうため、0.0030mass%以下とするのが好ましい。
また、本発明では、CaをCaSとして晶出させるために、Caと結合力の強いOの含有量をCa添加前に低減しておくことが必要であり、Ca添加前の残存O量は、0.0030mass%以下であることが好ましい。残存O量の低減方法としては、例えば、脱ガスを強化する、脱酸剤を投入する等の方法を用いることができる。
In addition, O is contained in steel as an unavoidable impurity and reduces the cleanliness of steel. For this reason, it is desirable to reduce as much as possible in the present invention. In particular, when the O content exceeds 0.0030 mass%, CaO inclusions are coarsened and the base material toughness is reduced, so that the content is preferably 0.0030 mass% or less.
Further, in the present invention, in order to crystallize Ca as CaS, it is necessary to reduce the content of O having a strong binding force with Ca before adding Ca, and the residual O amount before adding Ca is It is preferable that it is 0.0030 mass% or less. As a method for reducing the amount of residual O, for example, a method of strengthening degassing or introducing a deoxidizer can be used.

本発明の鋼材は、上記成分に加えてさらに、フェライト生成核としての機能を有するVを下記の範囲で含有することができる。
V:0.2mass%以下
Vは、母材の強度・靭性の向上に有効な元素であり、また、VNとして析出し、フェライト生成核としても働く有効な元素である。しかし、0.2mass%を超える添加は、却って靭性の低下を招く。よって、添加する場合は、0.2mass%以下とする。
In addition to the above components, the steel material of the present invention can further contain V having a function as a ferrite forming nucleus in the following range.
V: 0.2 mass% or less V is an element effective for improving the strength and toughness of the base material, and is an effective element that precipitates as VN and also functions as a ferrite formation nucleus. However, addition exceeding 0.2 mass% causes a decrease in toughness. Therefore, when adding, it shall be 0.2 mass% or less.

また、本発明の鋼材は、上記成分に加えてさらに、強度向上を目的として、CrおよびMoを下記の範囲で添加することができる。
Cr:0.4mass%以下
Crは、母材の高強度化に有効な元素である。しかし、多量に添加すると、靭性に悪影響を与えるため、上限を0.4mass%とする。よって、Crを添加する場合は、0.4mass%以下とするのが好ましい。
Mo:0.4mass%以下
Moは、母材の高強度化に有効な元素である。しかし、多量に添加すると、靭性に悪影響を与えるため、上限を0.4mass%とする。よって、Moを添加する場合は、0.4mass%以下とするのが好ましい。
Moreover, in addition to the said component, the steel material of this invention can add Cr and Mo in the following range for the purpose of intensity | strength improvement further.
Cr: 0.4 mass% or less Cr is an element effective for increasing the strength of the base material. However, if added in a large amount, the toughness is adversely affected, so the upper limit is made 0.4 mass%. Therefore, when adding Cr, it is preferable to set it as 0.4 mass% or less.
Mo: 0.4 mass% or less Mo is an element effective for increasing the strength of the base material. However, if added in a large amount, the toughness is adversely affected, so the upper limit is made 0.4 mass%. Therefore, when adding Mo, it is preferable to set it as 0.4 mass% or less.

本発明の鋼材において、上記成分以外の残部は、Feおよび不可避的不純物である。しかし、本発明の効果を害さない範囲であれば、他の元素の含有を拒むものではない。   In the steel material of the present invention, the balance other than the above components is Fe and inevitable impurities. However, as long as the effect of the present invention is not impaired, the inclusion of other elements is not rejected.

次に、本発明において、炭素当量Ceqおよびボンド近傍の熱影響部組織を規制する理由について説明する。
上述したように、本発明は、C,Mn,Ca,SおよびOの含有量を限定された範囲に調整することによって、300kJ/cmを超える大入熱溶接においても溶接部靭性に優れた鋼材を提供することができる。しかし、本発明の鋼材は、上記成分組成を満たすことに加えてさらに、炭素当量Ceqを0.33〜0.45mass%の範囲とすることが必要である。炭素当量Ceqが0.33mass%未満では、鋼材として必要な母材強度が得られない場合がある。一方、Ceqが0.45mass%を超えると、ボンド近傍の熱影響部における島状マルテンサイトの生成が顕著となって、溶接部の靭性が低下することがあるからである。
Next, in the present invention, the reason why the carbon equivalent Ceq and the heat affected zone structure near the bond are regulated will be described.
As described above, the present invention adjusts the contents of C, Mn, Ca, S, and O to a limited range, and thus has excellent weld toughness even in high heat input welding exceeding 300 kJ / cm. Can be provided. However, in addition to satisfying the above component composition, the steel material of the present invention needs to have a carbon equivalent Ceq in the range of 0.33 to 0.45 mass%. If the carbon equivalent Ceq is less than 0.33 mass%, the base material strength required as a steel material may not be obtained. On the other hand, if Ceq exceeds 0.45 mass%, the formation of island martensite in the heat-affected zone near the bond becomes significant, and the toughness of the weld may be reduced.

また、本発明の鋼材は、ボンド近傍の熱影響部における島状マルテンサイトの分率が、面積分率にして2%以下であることが必要である。島状マルテンサイトの面積分率は、Ceqを0.45mass%以下とすることにより、概ね3%未満に抑えることができる。しかし、発明者らの調査によれば、たとえ3%とはいえ、2%を超える島状マルテンサイトは、靭性に対して悪影響を及ぼす。したがって、溶接部の靭性の低下を確実に防止するには、ボンド近傍の熱影響部における島状マルテンサイトの面積分率を2%以下、望ましくは1%未満に抑えることが好ましい。   In the steel material of the present invention, the fraction of island martensite in the heat-affected zone near the bond is required to be 2% or less in terms of area fraction. The area fraction of island martensite can be generally suppressed to less than 3% by setting Ceq to 0.45 mass% or less. However, according to the inventors' research, island-shaped martensite exceeding 2%, even if 3%, adversely affects toughness. Therefore, in order to reliably prevent a decrease in the toughness of the welded portion, it is preferable to suppress the area fraction of island martensite in the heat-affected zone near the bond to 2% or less, desirably less than 1%.

島状マルテンサイトの面積分率を2%以下に抑えるには、ボンド近傍の熱影響部におけるアシキュラーフェライトの面積分率をできるだけ大きくすることが好ましい。というのは、ボンド近傍の熱影響部における島状マルテンサイトの生成は、主としてCeqに依存するが、ベイナイト変態機構によっても左右される。先述したように、ボンド近傍の熱影響部の旧オーステナイト粒内には、ベイナイト変態によってアシキュラーフェライトが生成するが、このアシキュラーフェライトが多くなるほど、未変態オーステナイトへのC濃化が低減するので、島状マルテンサイトの生成量は小さくなる。そして、ボンド近傍の熱影響部の組織から旧オーステナイト粒界より析出した粒界フェライトを除いた組織をEBSDで測定したとき、傾角が15°以上の粒界組織における線分法で測定した平均切片長さが10μm以下であれば、アシキュラーフェライトの面積分率は概ね半分以上となることがわかった。   In order to suppress the area fraction of island martensite to 2% or less, it is preferable to increase the area fraction of acicular ferrite in the heat-affected zone near the bond as much as possible. This is because the formation of island martensite in the heat-affected zone near the bond mainly depends on Ceq, but also depends on the bainite transformation mechanism. As described above, acicular ferrite is generated by bainite transformation in the old austenite grains in the heat-affected zone in the vicinity of the bond. However, as the amount of acicular ferrite increases, the concentration of C into untransformed austenite decreases. The amount of island martensite produced is small. And when the structure excluding the grain boundary ferrite precipitated from the prior austenite grain boundary from the structure of the heat-affected zone near the bond was measured by EBSD, the average intercept measured by the line segment method in the grain boundary structure having an inclination angle of 15 ° or more It was found that when the length was 10 μm or less, the area fraction of the acicular ferrite was approximately half or more.

そこで、本発明においては、島状マルテンサイトの生成量を面積分率で2%以下とするため、Ceqを0.33〜0.45mass%の範囲に制限することに加えてさらに、ボンド近傍の熱影響部におけるアシキュラーフェライトの面積分率を概ね半分以上とし、ボンド近傍の熱影響部の旧オーステナイト粒内組織における線分法で測定した平均切片長さを10μm以下に制御することとした。   Therefore, in the present invention, in order to make the generation amount of island martensite 2% or less in terms of area fraction, in addition to limiting Ceq to the range of 0.33 to 0.45 mass%, further, in the vicinity of the bond The area fraction of acicular ferrite in the heat-affected zone was approximately halved or more, and the average section length measured by the line segment method in the former austenite grain structure of the heat-affected zone in the vicinity of the bond was controlled to 10 μm or less.

次に、本発明の鋼材の好ましい製造方法について説明する。
本発明の鋼材は、転炉や電気炉等で溶銑を精錬し、さらに必要に応じて真空脱ガス等の2次精錬を施して、本発明に適合する所定の成分組成を有する鋼を溶製し、その後、連続鋳造工程または造塊−分塊工程を経て鋼片(スラブ)とするのが好ましい。次いで、その鋼片を、再加熱し、熱間圧延して放冷するか、あるいは上記熱間圧延後、必要に応じて加速冷却したり、直接焼入れ−焼戻し、再加熱焼入れ−焼戻し、再加熱焼準−焼戻しなどの工程を経て製品とするのが好ましい。
Next, the preferable manufacturing method of the steel material of this invention is demonstrated.
The steel material of the present invention is made by refining the hot metal in a converter, electric furnace, or the like, and further performing secondary refining such as vacuum degassing as necessary to smelt steel having a predetermined composition suitable for the present invention. And then, it is preferable to make a steel piece (slab) through a continuous casting process or an ingot-bundling process. The steel slab is then reheated and hot-rolled and allowed to cool, or after the hot-rolling, accelerated cooling as necessary, direct quenching-tempering, reheating quenching-tempering, reheating It is preferable to obtain a product through a process such as normalizing and tempering.

150kgの高周波溶解炉を用いて、表1に示した成分組成を有する鋼を溶製し、鋼塊としたのち熱間圧延して厚さ70mmのシートバーとした。次いで、このシートバーを、1150℃に2時間加熱後、仕上圧延終了温度を板厚中心部で850℃とする熱間圧延を施し、板厚30mmの鋼板とし、板厚中心部の冷却速度が7℃/secとなるよう加速冷却した。この冷却速度は、板厚60mmの鋼板の1/4t部分の冷却速度を、30mmの鋼板でシミュレートしたものである。その後、上記鋼板に500℃×10分間の焼戻し処理を施した後、母材特性を評価するため、上記鋼板から、平行部14φ×85mm、標点間距離70mmの丸棒引張試験片と、2mmVノッチシャルピー衝撃試験片を採取し、引張試験とシャルピー衝撃試験に供し、降伏応力YS、引張強さTSおよび靭性特性(vTrs)を測定した。   Using a 150 kg high-frequency melting furnace, steel having the composition shown in Table 1 was melted to form a steel ingot, and then hot rolled to obtain a sheet bar having a thickness of 70 mm. Next, this sheet bar is heated to 1150 ° C. for 2 hours, then subjected to hot rolling at a finish rolling end temperature of 850 ° C. at the center of the plate thickness to obtain a steel plate with a plate thickness of 30 mm, and the cooling rate at the center of the plate thickness is Accelerated cooling was performed to achieve 7 ° C./sec. This cooling rate is a simulation of the cooling rate of a 1 / 4t portion of a steel plate having a thickness of 60 mm with a steel plate having a thickness of 30 mm. Then, after tempering the steel plate at 500 ° C. for 10 minutes, in order to evaluate the base material properties, from the steel plate, a round bar tensile test piece having a parallel portion 14φ × 85 mm and a distance between gauge points of 70 mm, and 2 mmV Notch Charpy impact test specimens were collected and subjected to tensile tests and Charpy impact tests, and yield stress YS, tensile strength TS, and toughness characteristics (vTrs) were measured.

Figure 0005233365
Figure 0005233365

さらに、上記鋼板の溶接熱サイクル後の靭性特性を評価するため、これらの鋼板から幅80mm×長さ80mm×厚み15mmの試験片を採取し、この試験片に、1450℃に加熱後800〜500℃を270secで冷却する熱処理を施した。この熱処理は、入熱量400kJ/cmのエレクトロガス溶接を行った際にボンド近傍の熱影響部が受ける熱サイクルに相当する。その後、この試験片から、2mmVノッチシャルピー衝撃試験片を採取し、シャルピー衝撃試験に供して、靭性特性(vTrs)を評価した。   Furthermore, in order to evaluate the toughness characteristics after the welding heat cycle of the steel sheet, a test piece having a width of 80 mm, a length of 80 mm, and a thickness of 15 mm was collected from these steel sheets, and the test piece was heated to 1450 ° C. and 800-500 after heating. A heat treatment was performed to cool the temperature at 270 seconds. This heat treatment corresponds to a thermal cycle that the heat-affected zone near the bond undergoes when electrogas welding with a heat input of 400 kJ / cm is performed. Thereafter, a 2 mm V notch Charpy impact test piece was sampled from this test piece and subjected to a Charpy impact test to evaluate toughness characteristics (vTrs).

また、上記熱処理後の鋼板について、アシキュラーフェライト(AF)と島状マルテンサイト(MA)の面積分率を測定した。アシキュラーフェライトの面積分率は、光学顕微鏡組織写真をトレースし、画像解析して求めた。また、島状マルテンサイトの面積分率は、2段エッチング法により島状マルテンサイトを現出させたのちSEMで撮影した2000倍の組織写真をトレースし、画像解析して求めた。
また、上記熱処理後の鋼板について、旧オーステナイト粒内組織の平均切片長さと島状マルテンサイト(MA)の面積分率を測定した。ここで、旧オーステナイト粒内組織の平均切片長さは、ボンド近傍の熱影響部をEBSDで300μm×300μmの範囲を2視野測定し、15°以上の傾角を有するバウンダリーマップを描画させて得られた粒界組織から、旧オーステナイト粒界から析出した粒界フェライトを除いて旧オーステナイト粒内組織を特定し、線分法を用いて求めた。また、島状マルテンサイトの面積分率は、2段エッチング法により島状マルテンサイトを現出させたのちSEM(走査型電子顕微鏡)で撮影した2000倍の組織写真をトレースし、画像解析して求めた。
Moreover, about the steel plate after the said heat processing, the area fraction of acicular ferrite (AF) and island-like martensite (MA) was measured. The area fraction of acicular ferrite was obtained by tracing an optical microscopic structure photograph and analyzing the image. Further, the area fraction of island martensite was obtained by tracing island structure martensite photographed with SEM after revealing island martensite by a two-step etching method and analyzing the image.
Moreover, about the steel plate after the said heat processing, the average section length of the prior austenite intragranular structure | tissue and the area fraction of island-like martensite (MA) were measured. Here, the average intercept length of the prior austenite grain structure is obtained by measuring the heat-affected zone in the vicinity of the bond in two fields of 300 μm × 300 μm in EBSD and drawing a boundary map having an inclination angle of 15 ° or more. From the obtained grain boundary structure, grain boundary ferrite precipitated from the prior austenite grain boundary was excluded, and the previous austenite grain structure was specified, and was obtained using a line segment method. In addition, the area fraction of island martensite was obtained by tracing and analyzing the image of 2000 times of tissue photograph taken with SEM (scanning electron microscope) after the island martensite was revealed by the two-step etching method. Asked.

上記のようにして測定した母材特性と溶接部靭性特性等の結果を表2に示した。表2から、本発明に適合する成分組成を有する発明例の鋼板は、いずれもボンド近傍の熱影響部における組織が、平均切片長さが10μm以下で、かつ島状マルテンサイトが2%以下となっており、その結果、vTrsが−55℃以下という良好な溶接部靭性が得られていることがわかる。これに対して、成分組成が本発明の範囲を外れる比較例の鋼板は、ボンド近傍の熱影響部の組織における平均切片長さ、島状マルテンサイトの面積分率のいずれか1以上が本発明の範囲から外れることによって、ボンド近傍の熱影響部の靭性が大きく劣るものしか得られていない。   Table 2 shows the results of the base metal characteristics and weld toughness characteristics measured as described above. From Table 2, the steel sheets of the inventive examples having component compositions suitable for the present invention have a structure in the heat-affected zone near the bond, the average section length is 10 μm or less, and the island-like martensite is 2% or less. As a result, it can be seen that good weld toughness of vTrs of −55 ° C. or lower is obtained. On the other hand, in the steel sheet of the comparative example whose component composition is outside the range of the present invention, one or more of the average segment length in the structure of the heat-affected zone near the bond and the area fraction of island martensite are present in the present invention. By deviating from the above range, only the inferior toughness of the heat-affected zone near the bond is obtained.

Figure 0005233365
Figure 0005233365

本発明におけるボンド近傍の熱影響部を説明する模式図である。It is a schematic diagram explaining the heat affected zone of the bond vicinity in this invention.

Claims (2)

C:0.03〜0.08mass%、Si:0.01〜0.15mass%、Mn:1.8〜2.6mass%、P:0.03mass%以下、S:0.0005〜0.0040mass%、Al:0.005〜0.1mass%、Cu:1.0mass%以下、Ni:1.0mass%以下、Nb:0.003〜0.05mass%、Ti:0.003〜0.03mass%、N:0.0025〜0.0070mass%、Ca:0.0005〜0.0030mass%、B:0.0003〜0.0025mass%を含有し、下記(1)式に示す炭素当量Ceqが0.33〜0.45の範囲にあり、かつ、Ca,OおよびSが下記(2)式を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、溶接入熱量が300kJ/cmを超える大入熱溶接を施したときのボンド近傍の熱影響部の組織が、旧オーステナイト粒界から析出した粒界フェライトを除いた旧オーステナイト粒内組織の大きさが10μm以下であり、かつ島状マルテンサイトが面積分率で2%以下であることを特徴とする大入熱溶接用鋼材。ここで、旧オーステナイト粒内組織の大きさとは、EBSDで測定した15°以上の傾角を有する粒界組織における線分法で測定した平均切片長さのことである。

Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15 ・・・(1)
0≦(Ca−(0.18+130×Ca)×O)/1.25/S≦1 ・・・(2)
ただし、上記元素記号は、各元素の含有量(mass%)
C: 0.03-0.08 mass%, Si: 0.01-0.15 mass%, Mn: 1.8-2.6 mass%, P: 0.03 mass% or less, S: 0.0005-0.0040 mass %, Al: 0.005 to 0.1 mass%, Cu: 1.0 mass% or less, Ni: 1.0 mass% or less, Nb: 0.003 to 0.05 mass%, Ti: 0.003 to 0.03 mass% N: 0.0025-0.0070 mass%, Ca: 0.0005-0.0030 mass%, B: 0.0003-0.0025 mass%, and the carbon equivalent Ceq shown in the following formula (1) is 0.00 . in the range of from 33 to 0.45, and, Ca, O and S contains satisfies the following expression (2), has a component composition and the balance being Fe and unavoidable impurities, the weld heat input 30 The structure of the heat-affected zone in the vicinity of the bond when high heat input welding exceeding kJ / cm is applied, and the size of the prior austenite intragranular structure excluding the grain boundary ferrite precipitated from the prior austenite grain boundary is 10 μm or less. And the steel material for high heat input welding characterized by island-like martensite being 2% or less by area fraction. Here, the size of the prior austenite intragranular structure is an average intercept length measured by a line segment method in a grain boundary structure having an inclination angle of 15 ° or more measured by EBSD.
Ceq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15 (1)
0 ≦ (Ca− (0.18 + 130 × Ca) × O) /1.25/S≦1 (2)
However, the above element symbol is the content of each element (mass%)
上記成分組成に加えてさらに、Cr:0.4mass%以下およびMo:0.4mass%以下のうちから選ばれる1種または2種を含有することを特徴とする請求項に記載の大入熱溶接用鋼材。 In addition to the above chemical composition, C r: 0.4mass% or less and Mo: rafters according to claim 1, characterized in that it contains 0.4 mass% 1 kind or two kinds selected from among the following Steel for heat welding.
JP2008089671A 2008-03-31 2008-03-31 Steel material for large heat input welding Active JP5233365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008089671A JP5233365B2 (en) 2008-03-31 2008-03-31 Steel material for large heat input welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089671A JP5233365B2 (en) 2008-03-31 2008-03-31 Steel material for large heat input welding

Publications (2)

Publication Number Publication Date
JP2009242853A JP2009242853A (en) 2009-10-22
JP5233365B2 true JP5233365B2 (en) 2013-07-10

Family

ID=41305085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089671A Active JP5233365B2 (en) 2008-03-31 2008-03-31 Steel material for large heat input welding

Country Status (1)

Country Link
JP (1) JP5233365B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5966907B2 (en) * 2011-12-19 2016-08-10 Jfeスチール株式会社 Steel material for large heat input welding
JP6276914B2 (en) * 2011-12-19 2018-02-07 Jfeスチール株式会社 Steel material for large heat input welding
TWI551387B (en) * 2012-03-01 2016-10-01 Jfe Steel Corp Large heat into the welding steel
KR101971772B1 (en) * 2014-07-15 2019-04-23 제이에프이 스틸 가부시키가이샤 Method of manufacturing steel plate for high-heat input welding

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235114A (en) * 2001-02-05 2002-08-23 Kawasaki Steel Corp Method for producing thick high tensile strength steel excellent in toughness of high heat input weld zone
TW200940723A (en) * 2004-07-21 2009-10-01 Nippon Steel Corp A weldable structural steel excellent in low temperature toughness at heat affected zone
JP2006241510A (en) * 2005-03-02 2006-09-14 Nippon Steel Corp Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JP4946092B2 (en) * 2006-02-28 2012-06-06 Jfeスチール株式会社 High-strength steel and manufacturing method thereof
JP4673784B2 (en) * 2006-04-11 2011-04-20 新日本製鐵株式会社 High strength steel sheet having excellent weld heat affected zone toughness and method for producing the same
JP5079419B2 (en) * 2007-08-09 2012-11-21 新日本製鐵株式会社 Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure

Also Published As

Publication number Publication date
JP2009242853A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
KR101386042B1 (en) Steel material for high heat input welding
JP5076658B2 (en) Steel material for large heat input welding
JP5842314B2 (en) High heat input welding steel
KR100622888B1 (en) Steel product for high heat input welding and method for production thereof
JP5796636B2 (en) Steel material for large heat input welding
JP4035990B2 (en) Super high heat input welding HAZ toughness and low yield ratio steel plate for building structure and method for producing the same
JP5136156B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
JP6418418B2 (en) Steel material for large heat input welding
JP5233365B2 (en) Steel material for large heat input welding
JP5233364B2 (en) Steel material for large heat input welding
WO2016009595A1 (en) Method of manufacturing steel plate for high-heat input welding
JP2005068478A (en) Method for manufacturing thick steel plate with low yield ratio and high tension superior in toughness at heat-affected zone in super heavy-heat-input welding
JP5849892B2 (en) Steel material for large heat input welding
JP2006257497A (en) Method for producing low yield ratio steel material for low temperature, excellent in toughness in welded part
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP5493658B2 (en) A method for producing non-tempered thick high-strength steel with high heat input heat-affected zone toughness.
JP6226163B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
JP6299676B2 (en) High-tensile steel plate and manufacturing method thereof
JP4066879B2 (en) Manufacturing method of thick-walled high-tensile steel plate with excellent weld heat affected zone CTOD characteristics
JP5126375B2 (en) Steel material for large heat input welding
WO2013128650A1 (en) Steel material for high-heat-input welding
JP5857693B2 (en) Steel plate for large heat input and manufacturing method thereof
CN116171335B (en) Steel Plate
JP5493557B2 (en) Steel material for large heat input welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5233365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250