JP2006257497A - Method for producing low yield ratio steel material for low temperature, excellent in toughness in welded part - Google Patents

Method for producing low yield ratio steel material for low temperature, excellent in toughness in welded part Download PDF

Info

Publication number
JP2006257497A
JP2006257497A JP2005076662A JP2005076662A JP2006257497A JP 2006257497 A JP2006257497 A JP 2006257497A JP 2005076662 A JP2005076662 A JP 2005076662A JP 2005076662 A JP2005076662 A JP 2005076662A JP 2006257497 A JP2006257497 A JP 2006257497A
Authority
JP
Japan
Prior art keywords
mass
less
cooling
toughness
rem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005076662A
Other languages
Japanese (ja)
Other versions
JP4981262B2 (en
Inventor
Katsuyuki Ichinomiya
克行 一宮
Shinichi Suzuki
伸一 鈴木
Toshiyuki Hoshino
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005076662A priority Critical patent/JP4981262B2/en
Publication of JP2006257497A publication Critical patent/JP2006257497A/en
Application granted granted Critical
Publication of JP4981262B2 publication Critical patent/JP4981262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a low yield ratio steel material for low temperature, excellent in the toughness in a welded part. <P>SOLUTION: After molten steel is pre-deoxidized with Al, the deoxidation with Si and Mn is performed and REM is added, and soluble oxygen content is adjusted to 0.0010-0.0050% and this molten steel contains 0.05-0.12% C, ≤0.50% Si, 0.8-1.8% Mn, ≤0.02% P, 0.0005-0.0060% S, 0.0030-0.0200% REM and if necessary, after adding B, Nb, V, Cu, Ni, Cr, Mo or W, the steel blank is made to contain ≤0.004% each of Al and Ti. Further, after heating this steel blank to 1050-1200°C, hot-rolling of ≥30% accumulative rolling reduction ratio at ≥950°C of the temperature zone and ≥30% accumulative rolling reduction ratio at <900°C of the temperature zone, is applied and thereafter, the front-step cooling at 750-600°C cooling stop temperature, is performed at <10°C/s cooling speed and the rear-step cooling to <600°C from the front-step cooling stop temperature, is performed at ≥10°C/s cooling speed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低温用低降伏比鋼材の製造方法に係り、特に液化アンモニアと液化プロパンガスとを混載する多目的タンク用として好適なものに関する。   The present invention relates to a method for producing a low-yield ratio steel material for low temperature, and more particularly to a material suitable for a multipurpose tank in which liquefied ammonia and liquefied propane gas are mixedly loaded.

液化アンモニア用タンクに使用する鋼材には、応力腐食割れ(SCC)を防止するために400MPa以下の低いYSと、鋼材総重量を軽減するための530MPa以上のTSを具備することが要求される。液化アンモニアに液化プロパンガスを混載するタンクの場合、使用する鋼材には更に優れた低温靭性を備えることが要求される。   A steel material used for a tank for liquefied ammonia is required to have a low YS of 400 MPa or less to prevent stress corrosion cracking (SCC) and a TS of 530 MPa or more to reduce the total weight of the steel material. In the case of a tank in which liquefied propane gas is mixed with liquefied ammonia, the steel material used is required to have further excellent low temperature toughness.

特許文献1には、低C−Ni−Nb−Ti系低Pcm鋼を熱間圧延後、750〜870℃に再加熱し焼入れし、Ac1変態点以下の温度で焼戻す、再加熱焼入れ焼戻し処理による、溶接性および低温靭性の優れた低降伏比高張力鋼の製造方法が開示されている。   In Patent Document 1, a low C—Ni—Nb—Ti based low Pcm steel is hot-rolled, reheated to 750 to 870 ° C. and quenched, and tempered at a temperature equal to or lower than the Ac1 transformation point. Discloses a method for producing a low yield ratio high strength steel excellent in weldability and low temperature toughness.

特許文献2には、低C−Ni−Nb−Ti系低Pcm鋼を、オ−ステナイト未再結晶温度域で累積圧下量を30%以上、圧延終了温度800℃以上で圧延後、直接焼入れし、更に750〜870度に再加熱焼入れし、Ac1変態点以下の温度で焼き戻す、直接焼入れ−再加熱焼入れ焼戻し処理による、溶接性および低温靭性の優れた低降伏比高張力鋼の製造方法が開示されている。   In Patent Document 2, a low C—Ni—Nb—Ti-based low Pcm steel is directly quenched after rolling at a cumulative reduction of 30% or more in the austenite non-recrystallization temperature range and a rolling end temperature of 800 ° C. or more. Further, a method for producing a low yield ratio high strength steel excellent in weldability and low temperature toughness by reheating and quenching at 750 to 870 degrees and tempering at a temperature below the Ac1 transformation point, direct quenching and reheating quenching and tempering. It is disclosed.

特許文献3には、低C−Ni−Nb−Ti系低Pcm鋼を、オ−ステナイト未再結晶温度域での累積圧下量を30%以上、圧延終了温度720℃以上で圧延後、680℃以上の温度から水冷を開始し、150〜350℃で水冷を停止する、制御圧延と制御冷却を組合わせた、溶接性および低温靭性の優れた低降伏比高張力鋼の製造方法が開示されている。   In Patent Document 3, a low C—Ni—Nb—Ti-based low Pcm steel is rolled at 680 ° C. after rolling at a rolling reduction temperature of 720 ° C. or more at a cumulative reduction amount of 30% or more in the austenite non-recrystallization temperature range. Disclosed is a method for producing a low-yield ratio high-strength steel excellent in weldability and low-temperature toughness by combining water-cooling at 150 to 350 ° C. Yes.

特許文献3に記載された技術は、冷却開始温度を680℃以上とすることにより粗大な初析フェライトの変態析出を防止して、荷重−伸び曲線がラウンドなカ−ブを描き、降伏点がでないようにして低降伏比を達成することを特徴とする。   The technique described in Patent Document 3 prevents transformation precipitation of coarse pro-eutectoid ferrite by setting the cooling start temperature to 680 ° C. or higher, draws a curve with a round load-elongation curve, and yield point is It is characterized by achieving a low yield ratio.

また、低降伏比化する手段として、熱間圧延後、空冷時にまずフェライトを析出させ、フェライト−オ−ステナイト二相域から急冷し、初析の軟質フェライト相と変態して得られる硬質第二相からなる組織としたり、二相域に加熱後焼入れし、更に焼戻しする二相域焼入れ焼戻し処理により高張力化と低降伏比化を同時に達成する手段が用いられている。   In addition, as a means of reducing the yield ratio, after hot rolling, ferrite is first precipitated at the time of air cooling, quenched from the ferrite-austenite two-phase region, and transformed into the pro-eutectoid soft ferrite phase. There are used means for simultaneously achieving high tension and low yield ratio by a two-phase region quenching and tempering process in which a structure composed of phases is formed, or two-phase regions are quenched after heating and further tempered.

一方、タンク建造時には施工コスト低減のため、大入熱溶接法が適用されるので、溶接熱影響部の靭性対策として種々の技術が提案されている。例えば、鋼中にTiNを微細分散させて、オ−ステナイトの粗大化を抑制したり、あるいはフェライトの変態核として利用するなどの技術が実用化されている。   On the other hand, since a large heat input welding method is applied to reduce the construction cost at the time of tank construction, various techniques have been proposed as measures against toughness of the weld heat affected zone. For example, TiN is finely dispersed in steel to suppress the coarsening of austenite, or a technique such as utilization as a transformation nucleus of ferrite has been put into practical use.

特許文献4や特許文献5には、希土類元素(REM)をTiと共に複合添加して鋼中に微細分散させ、オ−ステナイト粒の成長を防止し、溶接熱影響部の靭性を向上させる技術が開示されている。   In Patent Documents 4 and 5, rare earth elements (REM) are added together with Ti and finely dispersed in steel to prevent the growth of austenite grains and improve the toughness of the weld heat affected zone. It is disclosed.

Tiの酸化物を分散させたり、あるいはBNと酸化物を組合わせたり、更にはCaやREMを添加して硫化物の形態を制御したりして、優れた溶接熱影響部靭性を確保する技術も提案されている。
特開平10−130721号公報 特開平10−168516号公報 特開平11−293380号公報 特公平03−053367号公報 特開昭60−184663号公報
Technology to ensure excellent weld heat affected zone toughness by dispersing Ti oxide, combining BN and oxide, or adding Ca or REM to control the form of sulfide. Has also been proposed.
JP-A-10-130721 Japanese Patent Laid-Open No. 10-168516 JP-A-11-293380 Japanese Patent Publication No. 03-053367 JP 60-184663 A

しかしながら、特許文献1、特許文献2などに記載された再加熱焼入れ焼戻し処理、直接焼入れ−再加熱焼入れ−焼戻し処理、二相域加熱焼入れ焼戻し処理などの調質処理は比較的安定して母材特性を確保できる反面、工程が複雑で、製造時間が長く製造コストが高く、特許文献3に記載された非調質処理は安定製造が難しい。   However, tempering treatments such as reheating quenching and tempering, direct quenching-reheating quenching-tempering, and two-phase region heating quenching and tempering described in Patent Document 1, Patent Document 2 and the like are relatively stable. While the characteristics can be secured, the process is complicated, the production time is long and the production cost is high, and the non-refining treatment described in Patent Document 3 is difficult to produce stably.

また、溶接部靭性をTiNを利用して向上させる場合、TiNが溶解する温度域に加熱されるボンド部では固溶Tiおよび固溶Nによる生地組織の脆化によって、著しい靭性の低下が生じたり、Tiの酸化物を利用する場合は、酸化物の微細分散を十分均質に行うことができず、靭性向上が得られない場合があった。
本発明は、非調質で、母材の低温靭性および溶接部靭性に優れた低温用低降伏比鋼材の製造方法を提供することを目的とする。
In addition, when improving the toughness of the welded portion using TiN, the toughness is significantly lowered due to the embrittlement of the dough structure due to the solid solution Ti and the solid solution N in the bond portion heated to a temperature range where TiN dissolves. When Ti oxide is used, fine dispersion of the oxide cannot be performed sufficiently uniformly, and improvement of toughness may not be obtained.
An object of this invention is to provide the manufacturing method of the low yield ratio steel material for low temperatures which was non-tempered and was excellent in the low temperature toughness of a base material, and the weld part toughness.

本発明者等は、上記した課題を解決するために、溶接熱影響部靭性に影響する各種要因や、非調質処理による、低降伏比鋼の製造条件について鋭意見当し、以下の知見を得た。 In order to solve the above-mentioned problems, the present inventors have earnestly expressed various factors affecting the heat-affected zone toughness of the weld and the production conditions of the low yield ratio steel by non-tempering treatment, and obtained the following knowledge. It was.

1 溶接部の高靭化には、高温に加熱される領域におけるオーステナイト粒の粗大化抑制と、その冷却時におけるフェライト変態を促進するための変態核を微細に分散させることが有効である。   1 To increase the toughness of a welded portion, it is effective to finely disperse transformation nuclei for suppressing the coarsening of austenite grains in a region heated to a high temperature and for promoting ferrite transformation during cooling.

2 溶鋼中での酸化物(オキシサイド)、硫化物(サルファイド)などの粒子組成の調整に加えて、さらに凝固過程で形成されるデンドライトの形態制御により、分散粒子を、安定して、均一かつ微細に分散させた場合、HAZ靭性が顕著に向上する。   2 In addition to adjusting the composition of particles such as oxides (oxycides) and sulfides (sulfides) in molten steel, the dispersed particles can be stably and uniformly controlled by controlling the form of dendrites formed during the solidification process. When finely dispersed, the HAZ toughness is significantly improved.

3 Si,Mnで脱酸し、凝固前の溶鋼の溶存酸素量を0.0030〜0.0120質量%に調整した後、REMを添加した場合、デンドライトの形態制御が可能である。   After deoxidizing with 3 Si, Mn and adjusting the dissolved oxygen content of the molten steel before solidification to 0.0030 to 0.0120 mass%, when REM is added, dendrite morphology control is possible.

4 溶鋼中の溶存酸素量を所定の範囲に調整した後、REMを添加することにより、固液界面にREMオキシサルファイドが晶出し、デンドライトの一方向成長が抑制され等軸晶化し、デンドライト二次アーム間に、SiあるいはMnの酸化物、硫化物、酸硫化物の一種または二種以上が複合した、微細な分散粒子が多量に且つ均一に形成される。   4 After adjusting the amount of dissolved oxygen in the molten steel to a predetermined range, by adding REM, REM oxysulfide is crystallized at the solid-liquid interface, unidirectional growth of dendrites is suppressed, and equiaxed crystallization. A large amount of fine dispersed particles in which one or more of Si or Mn oxide, sulfide, and oxysulfide are combined are formed between the arms in a large amount and uniformly.

5 この微細な分散粒子が多量に且つ均一に形成され、溶接熱影響部においてオーステナイト粒の粗大化防止に有効である。   5 This fine dispersed particle is formed in a large amount and uniformly, and is effective in preventing coarsening of austenite grains in the weld heat affected zone.

6 圧延後の冷却を前段と後段の2段冷却とし、それぞれの冷却速度を調整すれば、適正な粒径のフェライト地に第2相が分散してなる混合組織を安定して得れら、上述した硫化物のフェライト変態核としての作用により、初析フェライトの生成密度が上昇し、フェライト粒が微細に生成し、低温での母材靭性が向上する。   6 If the cooling after rolling is two-stage cooling of the former stage and the latter stage and the respective cooling rates are adjusted, a mixed structure in which the second phase is dispersed in a ferrite ground having an appropriate grain size can be stably obtained. Due to the action of the sulfide as a ferrite transformation nucleus, the generation density of pro-eutectoid ferrite is increased, ferrite grains are finely generated, and the base material toughness at low temperature is improved.

本発明は以上の知見を基に、更に検討を加えてなされたものであり、すなわち、本発明は、
(1)溶鋼に、Siおよび/またはMnを添加して脱酸し、溶存酸素量を0.0030〜0.0120質量%とした後、REMを添加し、
溶存酸素量が0.0010から0.0050質量%であって、
C:0.05〜0.12質量%
Si:0.50質量%以下
Mn:0.8〜1.8質量%
P:0.02質量%以下
S:0.0005〜0.0060質量%以下
REM:0.0030〜0.0200質量%を含有し、AlおよびTiをそれぞれ0.004質量%以下に制限した組成の溶鋼とし、
次いで、該溶鋼を鋳造して鋼素材とし、1050〜1200℃に加熱後、950℃以上の温度域における累積圧下率が30%以上、且つ900℃未満の温度域における累積圧下率が30%以上となる熱間圧延を施し、熱間圧延終了後、10℃/s未満の冷却速度で、冷却停止温度:750〜600℃とする前段冷却を施し、その後、前段冷却停止温度から600℃未満の冷却停止温度まで、10℃/s以上の冷却速度で後段冷却を施すことを特徴とする溶接部靭性に優れた低温用低降伏比鋼材の製造方法。
The present invention has been made on the basis of the above findings and further studies, that is, the present invention
(1) Si and / or Mn is added to the molten steel for deoxidation, and the amount of dissolved oxygen is adjusted to 0.0030 to 0.0120 mass%, then REM is added,
The amount of dissolved oxygen is 0.0010 to 0.0050 mass%,
C: 0.05-0.12 mass%
Si: 0.50 mass% or less Mn: 0.8-1.8 mass%
P: 0.02% by mass or less S: 0.0005-0.0060% by mass or less REM: 0.0030-0.0200% by mass, and Al and Ti are limited to 0.004% by mass or less, respectively. Of molten steel,
Next, the molten steel is cast into a steel material, heated to 1050 to 1200 ° C., and the cumulative reduction in the temperature range of 950 ° C. or higher is 30% or higher, and the cumulative reduction in the temperature range of less than 900 ° C. is 30% or higher. After the hot rolling is completed, after the hot rolling is completed, the cooling at a cooling rate of less than 10 ° C./s is applied to the cooling stop temperature: 750 to 600 ° C. After that, the cooling is performed at a cooling temperature of less than 600 ° C. A method for producing a low yield ratio steel material for low temperature excellent in weld toughness, characterized by performing post-stage cooling to a cooling stop temperature at a cooling rate of 10 ° C / s or more.

(2)Siおよび/またはMnを添加して行う脱酸の前に、Alを添加する予備脱酸を行い、前記脱酸前の溶存酸素量を0.0080〜0.0170質量%に調整することを特徴とする(1)に記載の溶接部靭性に優れた低温用低降伏比鋼材の製造方法。   (2) Prior to deoxidation performed by adding Si and / or Mn, preliminary deoxidation by adding Al is performed, and the amount of dissolved oxygen before deoxidation is adjusted to 0.0080 to 0.0170 mass%. The manufacturing method of the low yield ratio steel material for low temperature excellent in the weld part toughness as described in (1) characterized by the above-mentioned.

(3)溶鋼の組成として、更に、
B:0.0003〜0.0025質量%
Nb:0.05質量%以下
V:0.2質量%以下
Cu:1.0質量%以下
Ni:1.5質量%以下
Cr:0.7質量%以下
Mo:0.7質量%以下
W:1.5質量%以下から選ばれる一種又は二種以上を含有することを特徴とする(1)または(2)に記載の溶接部靭性に優れた低温用低降伏比鋼材の製造方法。
(3) As a composition of molten steel,
B: 0.0003-0.0025 mass%
Nb: 0.05% by mass or less V: 0.2% by mass or less Cu: 1.0% by mass or less Ni: 1.5% by mass or less Cr: 0.7% by mass or less Mo: 0.7% by mass or less W: One or two or more types selected from 1.5% by mass or less are contained, (1) or (2), the method for producing a low temperature low yield ratio steel material excellent in weld zone toughness.

本発明によれば、母材のYS(降伏強さ)が440MPa以下、TS(引張強さ)が530MPa以上で且つ母材靭性にも優れ、更に大入熱溶接影響部靭性にも優れた低降伏比低温用鋼材を安定、且つ低い製造コストで製造でき、液化アンモニアと液化プロパンガスとを混載する多目的タンクなどの溶接構造物の大型化に大きく寄与し、産業上極めて有用である。   According to the present invention, the YS (yield strength) of the base material is 440 MPa or less, the TS (tensile strength) is 530 MPa or more, the base material toughness is excellent, and the high heat input weld affected zone toughness is also low. The steel for yield ratio low temperature can be manufactured stably and at a low manufacturing cost, greatly contributes to the enlargement of a welded structure such as a multipurpose tank in which liquefied ammonia and liquefied propane gas are mixed, and is extremely useful industrially.

本発明では、溶鋼の成分組成と、鋼の加熱・圧延−冷却条件を規定する。   In the present invention, the composition of the molten steel and the heating / rolling / cooling conditions of the steel are defined.

[溶鋼の成分組成]
本発明では、溶鋼を転炉、電気炉、真空溶解炉など公知の装置を用い、常法で溶製し、脱酸処理や脱ガスプロセスにより、溶存酸素量を0.0030〜0.0120質量%に調整した後、REMを添加して溶存酸素量を0.0010〜0.0050質量%とする。
[Component composition of molten steel]
In the present invention, molten steel is melted by a conventional method using a known apparatus such as a converter, electric furnace, vacuum melting furnace, and the amount of dissolved oxygen is 0.0030 to 0.0120 mass by deoxidation treatment or degassing process. After adjusting to%, REM is added so that the dissolved oxygen amount is 0.0010 to 0.0050 mass%.

本発明では、脱酸処理をSiおよび/またはMn添加により行うが、その前にAlを添加する予備脱酸を行い、溶存酸素量を0.0080〜0.0170%に調整することが好ましい。   In the present invention, deoxidation treatment is performed by adding Si and / or Mn, but it is preferable to perform preliminary deoxidation by adding Al before that to adjust the dissolved oxygen amount to 0.0080 to 0.0170%.

Alを添加して予備脱酸を行う場合は、溶鋼中に残留するAlが0.004質量%を超えると、REM系酸化物の形成が困難となるため、0.004質量%以下とする。   When pre-deoxidization is performed by adding Al, if the amount of Al remaining in the molten steel exceeds 0.004% by mass, it becomes difficult to form a REM-based oxide.

本発明では、REM添加前の溶存酸素量を0.0030〜0.0120質量%とする。これより平均粒径10μm以下、好ましくは1μm以上のREM硫化物、REM酸化物、REM酸硫化物の一種または二種以上が凝固過程で固液界面に晶出し、デンドライトの一方向成長を抑制し、等軸晶化を達成し、二次デンドライトア−ム間隔を小さくし、その後の二次脱酸により生成するMn系介在物(分散粒子)を微細化する。   In the present invention, the amount of dissolved oxygen before REM addition is set to 0.0030 to 0.0120 mass%. As a result, one or more types of REM sulfide, REM oxide, and REM oxysulfide having an average particle size of 10 μm or less, preferably 1 μm or more crystallize at the solid-liquid interface during the solidification process, thereby suppressing unidirectional growth of dendrites. The equiaxed crystallization is achieved, the secondary dendrite arm interval is reduced, and the Mn inclusions (dispersed particles) produced by the subsequent secondary deoxidation are refined.

尚、デンドライトの一方向成長を抑制するため、これら粒子は粒数密度20個/mm2以上で分散させることが好ましく、粒数密度20個/mm2未満では、凝固組織の等軸晶化が困難となる。 In order to suppress the unidirectional growth of dendrites, these particles are preferably dispersed at a particle number density of 20 particles / mm 2 or more. When the particle number density is less than 20 particles / mm 2 , equiaxed crystallization of the solidified structure occurs. It becomes difficult.

REM添加前の溶存酸素量が0.0030質量%未満では所望のREM酸硫化物の形成が困難となり、上述した効果が得られない。   If the amount of dissolved oxygen before REM addition is less than 0.0030% by mass, it becomes difficult to form a desired REM oxysulfide, and the above-described effects cannot be obtained.

一方、REM添加前の溶存酸素量が0.0120質量%を超えると、REMが酸化物となるのみで、所望のREM硫化物あるいはREM酸硫化物の形成が困難となり、デンドライトの一方向成長を抑制する能力が低下し、二次デンドライトア−ム間隔を微細化することが困難となる。   On the other hand, if the amount of dissolved oxygen before the addition of REM exceeds 0.0120% by mass, only the REM becomes an oxide, and it becomes difficult to form the desired REM sulfide or REM oxysulfide, and unidirectional growth of dendrites The ability to suppress decreases, and it becomes difficult to make the secondary dendrite arm interval fine.

REM添加後の溶存酸素量は0.0010〜0.0050質量%とする。REM添加に際して、硫化物、酸化物、酸硫化物が形成され、添加後の溶存酸素量が所望の0.0010〜0.0050質量%となるように、Sを添加することが好ましい。   The amount of dissolved oxygen after REM addition is 0.0010 to 0.0050 mass%. Upon addition of REM, it is preferable to add S so that sulfides, oxides, and oxysulfides are formed and the amount of dissolved oxygen after the addition becomes a desired 0.0010 to 0.0050 mass%.

凝固過程で、REM硫化物粒子、REM酸化物粒子、REM酸硫化物粒子のいずれかが容易に固液界面に晶出し、デンドライトの一方向成長を抑制する。   In the solidification process, any of the REM sulfide particles, the REM oxide particles, and the REM oxysulfide particles is easily crystallized at the solid-liquid interface, thereby suppressing the unidirectional growth of dendrites.

また、二次脱酸生成物として、平均粒径1μm以下の、Mn酸化物、Mn硫化物、Mn酸硫化物の一種または二種以上が複合した粒子が得られ、超大入熱溶接HAZにおいてオ−ステナイト粒の成長を抑制し、HAZ靭性を向上させる。   In addition, as a secondary deoxidation product, particles having an average particle size of 1 μm or less and a composite of one or more of Mn oxide, Mn sulfide, and Mn oxysulfide are obtained. -Suppresses the growth of stenite grains and improves HAZ toughness.

Mn系複合粒子は、粒子密度で1×10個/mm以上分散させると、超大入熱溶接HAZの高温滞留域でオ−ステナイト粒のピン止め効果が顕著となり好ましい。 When the Mn-based composite particles are dispersed at a particle density of 1 × 10 5 particles / mm 2 or more, the pinning effect of austenite grains becomes remarkable in the high temperature retention region of the super large heat input welding HAZ, which is preferable.

分散粒子の平均粒径および単位面積当たりの粒数密度は、鋼板から採取した試験片の圧延方向と直角なC断面を研磨し、電解腐食により分散粒子を現出させたのち、走査型電子顕微鏡により観察する。観察は倍率:5000倍で10視野撮像し、画像解析装置により求める。   The average particle size of dispersed particles and the number density per unit area were determined by polishing the C cross section perpendicular to the rolling direction of a test piece taken from a steel plate and exposing the dispersed particles by electrolytic corrosion. Observe by. Observation is performed by taking 10 fields of view at a magnification of 5000 times and obtaining it with an image analyzer.

REM添加後の溶存酸素量が0.0010質量%未満では、デンドライトア−ム間隔が大きくなり、二次脱酸生成物としてオ−ステナイト粒の粗大化を防止するMn系複合複合粒子の微細分散が得られず、オ−ステナイト粒の粗大化を十分抑制できない。   When the amount of dissolved oxygen after REM addition is less than 0.0010% by mass, the dendrite arm interval becomes large, and fine dispersion of Mn-based composite composite particles that prevent austenite grains from coarsening as secondary deoxidation products Cannot be obtained, and the austenite grains cannot be sufficiently coarsened.

一方、REM添加後の溶存酸素量が0.0050質量%を超えると、Mn酸化物が粗大化するとともに、オ−ステナイト粒の粗大化防止に有効な微細なMn系複合粒子が得られにくくなる。   On the other hand, when the amount of dissolved oxygen after REM addition exceeds 0.0050% by mass, the Mn oxide becomes coarse, and it becomes difficult to obtain fine Mn-based composite particles effective for preventing the coarsening of austenite grains. .

本発明では、REMを添加し、溶存酸素量を0.0010〜0.0050質量%に調整し、溶鋼の組成を以下の組成に調整する。   In this invention, REM is added, the amount of dissolved oxygen is adjusted to 0.0010-0.0050 mass%, and the composition of molten steel is adjusted to the following compositions.

C:0.05〜0.12質量%
Cは鋼の強度を増加させる元素であり、厚肉高張力鋼板として必要な強度を得るため、0.05質量%以上添加する。一方、0.12質量%を超えて添加すると溶接部の靭性、耐溶接割れ感受性を低下させるので、0.05〜0.12質量%とする。
C: 0.05-0.12 mass%
C is an element that increases the strength of steel, and is added in an amount of 0.05% by mass or more in order to obtain the strength necessary for a thick high-strength steel plate. On the other hand, if added over 0.12% by mass, the toughness of the welded portion and the resistance to weld cracking are reduced, so 0.05 to 0.12% by mass.

Si:0.50質量%以下
Siは脱酸材として作用するが0.5質量%を超えて含有すると、母材靭性が劣化するとともに、溶接熱影響部において島状マルテンサイトが生成し、靭性が顕著に低下するため,0.50質量%以下とし、好ましくは0.05〜0.50質量%とする。
Si: 0.50% by mass or less Si acts as a deoxidizer, but if it exceeds 0.5% by mass, the base material toughness deteriorates, and island martensite is generated in the weld heat affected zone. Is not more than 0.50% by mass, preferably 0.05 to 0.50% by mass.

Mn:0.8〜1.8質量%
Mnは脱酸剤として作用するとともに、二次脱酸生成物として微細な酸化物、硫化物、酸硫化物の一種または二種以上が複合した粒子を形成し、HAZのオ−ステナイト粒の粗大化を抑制し、HAZ靭性を向上させる。
Mn: 0.8 to 1.8% by mass
Mn acts as a deoxidizer and forms fine particles of oxides, sulfides, or oxysulfides as a secondary deoxidation product, resulting in coarse HAZ austenite grains. Suppression is made and HAZ toughness is improved.

また、固溶強化で鋼の強度を増加させるため、0.8質量%以上の添加する。一方、1.8質量%を超えて添加すると、溶接部の靭性を著しく低下させるため、0.8〜1.8質量%とする。   Further, in order to increase the strength of the steel by solid solution strengthening, 0.8% by mass or more is added. On the other hand, if added over 1.8% by mass, the toughness of the welded portion is remarkably lowered, so the content is made 0.8 to 1.8% by mass.

P:0.02質量%以下
Pは不可避的不純物として鋼中に存在し、靭性を劣化させるため、精錬コストが許容できる範囲で低減させる。0.02質量%を超えると母材、およびHAZの靭性が低下するため、0.02質量%以下とする。
P: 0.02% by mass or less P is present in the steel as an inevitable impurity, and deteriorates toughness. Therefore, the refining cost is reduced within an allowable range. If it exceeds 0.02% by mass, the toughness of the base material and HAZ is lowered, so the content is made 0.02% by mass or less.

S:0.0005〜0.0060質量%
SはREMを添加する場合、REMと結合し、REMの硫化物(サルファイド)、またはREMの酸硫化物(オキシサルファイド)として、凝固段階で固液界相面に晶出し、デンドライトの一方向成長を抑制してデンドライトを等軸晶化し、デンドライト二次ア−ム間隔を微細化する作用を有する。
S: 0.0005-0.0060 mass%
When REM is added, S combines with REM and crystallizes in the solid-liquid interface as REM sulfide (sulfide) or REM oxysulfide (oxysulfide), and grows in one direction in dendrites. Is suppressed, the dendrite is equiaxed and the dendrite secondary arm interval is refined.

また、二次脱酸生成物としてMnと結合し、Mnの硫化物、酸S硫化物として微細に晶出し、HAZのオ−ステナイト粒粗大化を防止する。   Further, it binds to Mn as a secondary deoxidation product and finely crystallizes as Mn sulfide and acid S sulfide, thereby preventing coarsening of austenite grains of HAZ.

Sが0.0005質量%未満では、REMが酸化物として溶鋼段階で晶出し、上述した効果が得られず、一方、0.0060質量%を超えると、粗大なMnSを形成し、靭性が顕著に低下するため、0.0005〜0.0060質量%とする。   When S is less than 0.0005% by mass, REM crystallizes out as an oxide at the molten steel stage, and the above-mentioned effects cannot be obtained. On the other hand, when it exceeds 0.0060% by mass, coarse MnS is formed and toughness is remarkable. Therefore, the content is made 0.0005 to 0.0060 mass%.

REM:0.0030〜0.0200質量%
REMは、溶鋼の凝固過程で、Sおよび/またはOと結合し、硫化物(サルファイド)、酸化物(オキシサイド)、酸硫化物(オキシサルファイド)の一種または二種以上として固液相界面に晶出し、デンドライトの一方向成長を抑制してデンドライトを等軸晶化し、デンドライト二次ア−ム間隔を微細化する作用を有する。
REM: 0.0030 to 0.0200 mass%
REM combines with S and / or O during the solidification process of molten steel, and forms one or more of sulfide (sulfide), oxide (oxycide), and oxysulfide (oxysulfide) at the solid-liquid phase interface. It has the effect of crystallizing and suppressing the unidirectional growth of the dendrite, making the dendrite equiaxed, and reducing the dendrite secondary arm interval.

このような効果を得るため、0.0030質量%以上含有させるが、一方、0.0200質量%を超えて含有すると粗大なREM系化合物が増加し、母材靭性が劣化するため、0.0030〜0.0200質量%とする。   In order to obtain such an effect, 0.0030% by mass or more is contained. On the other hand, if the content exceeds 0.0200% by mass, coarse REM compounds increase and the base material toughness deteriorates. -0.0200 mass%.

Al:0.004質量%以下
Alは、強脱酸元素であり、溶鋼中の酸素と結合し、アルミナ(Al)を形成し、溶存酸素を低減するため、REMの酸硫化物(オキシサルファイド)の生成、あるいは二次脱酸生成物としてMnの酸化物(オキシサイド)、酸硫化物(オキシサルファイド)の生成を阻害し、デンドライトの形態制御や、二次脱酸生成物の微細分散に悪影響を及ぼす。
Al: 0.004% by mass or less Al is a strong deoxidizing element, which combines with oxygen in molten steel to form alumina (Al 2 O 3 ) and reduce dissolved oxygen. Oxysulfide), or Mn oxide (oxycide) and oxysulfide (oxysulfide) as secondary deoxidation products are inhibited, dendrite morphology control and secondary deoxidation product fineness Adversely affects dispersion.

そのため、本発明では、Al脱酸でなく、Si,Mn脱酸とし、Al含有量を0.004質量%以下に制限する。尚、この範囲に制限する限りは予備脱酸としてAlを用いることは構わない。   Therefore, in this invention, it is set as Si and Mn deoxidation instead of Al deoxidation, and Al content is restrict | limited to 0.004 mass% or less. In addition, as long as it restrict | limits to this range, it does not matter to use Al as preliminary deoxidation.

Ti:0.004質量%以下
Tiは、Alと同様に、Si,Mnにくらべて強い脱酸力を有するため、二次脱酸生成物の微細分散に悪影響を及ぼさないように極力低減することが好ましく、0.004質量%以下とする。
Ti: 0.004 mass% or less
Ti, like Al, has a stronger deoxidizing power than Si and Mn. Therefore, Ti is preferably reduced as much as possible without adversely affecting the fine dispersion of the secondary deoxidation product. The following.

以上が、本発明の基本成分組成であるが、母材、溶接継手強度増加のため、Nb、V、Cu、Ni、Cr、Moの一種または二種以上を含有させることが好ましい。   The above is the basic component composition of the present invention, but it is preferable to contain one or more of Nb, V, Cu, Ni, Cr, and Mo in order to increase the strength of the base material and the welded joint.

Nb:0.05質量%以下
Nbは母材の強度、靭性を向上させ、継手部強度を増加させる。このような効果は0.01質量%以上の含有で顕著となるが、0.05質量%を超えて含有すると、HAZ靭性が低下するため、含有させる場合は、0.05質量%以下とする。尚、好ましくは0.01〜0.05質量%とする。
Nb: 0.05% by mass or less Nb improves the strength and toughness of the base material and increases the joint strength. Such an effect becomes remarkable when the content is 0.01% by mass or more. However, if the content exceeds 0.05% by mass, the HAZ toughness is lowered. . In addition, Preferably it is 0.01-0.05 mass%.

V:0.2質量%以下
Vは母材の強度を向上させる。このような効果は0.02質量%以上の含有で顕著となるが、0.2質量%を超えて含有すると、HAZ靭性が低下するため、含有させる場合は、0.2質量%以下とする。尚、好ましくは0.02〜0.2質量%とする。
V: 0.2 mass% or less V improves the strength of the base material. Such an effect becomes remarkable when the content is 0.02% by mass or more. However, if the content exceeds 0.2% by mass, the HAZ toughness is lowered. . In addition, Preferably it is 0.02-0.2 mass%.

Cu:1.0質量%以下
CuはNiと同様に強度を増加させる。このような効果は0.2質量%以上の含有で顕著となるが、1.0質量%を超えて含有すると、HAZ靭性が低下するため、含有させる場合は、1.0質量%以下とする。尚、好ましくは0.2〜1.0質量%とする。
Cu: 1.0 mass% or less Cu increases the strength similarly to Ni. Such an effect becomes remarkable when the content is 0.2% by mass or more. However, if the content exceeds 1.0% by mass, the HAZ toughness is lowered. . In addition, Preferably it is 0.2-1.0 mass%.

Ni:1.5質量%以下
Niは母材の靭性を保ちつつ、強度を増加させる。このような効果は0.2質量%以上の含有で顕著となるが、高価な元素であるため、含有させる場合は、1.5質量%以下とする。尚、好ましくは0.2〜1.5質量%とする。
Ni: 1.5% by mass or less Ni increases the strength while maintaining the toughness of the base material. Such an effect becomes remarkable when the content is 0.2% by mass or more, but is an expensive element. In addition, Preferably it is 0.2-1.5 mass%.

Cr:0.7質量%以下、Mo:0.7質量%以下、W:1.5質量%以下
Cr、Mo、Wは、いずれも母材の高強度化に有効である。このような効果はCr:0.2質量%以上、Mo:0.1質量%以上、W:0.2質量%以上の含有で顕著となるが、Cr:0.7質量%、Mo:0.7質量%、W:1.5質量%を超えると靭性を低下させるので、添加する場合は、Cr:0.7質量%以下、Mo:0.7質量%以下、W:1.5質量%以下とする。尚、好ましくは、Cr:0.2〜0.7質量%、Mo:0.1〜0.7質量%、W:0.2〜1.5質量%とする。
Cr: 0.7% by mass or less, Mo: 0.7% by mass or less, W: 1.5% by mass or less Cr, Mo, and W are all effective for increasing the strength of the base material. Such an effect becomes remarkable when Cr: 0.2% by mass or more, Mo: 0.1% by mass or more, and W: 0.2% by mass or more, but Cr: 0.7% by mass, Mo: 0 When it exceeds 0.7% by mass and W: 1.5% by mass, the toughness is reduced. Therefore, when added, Cr: 0.7% by mass or less, Mo: 0.7% by mass or less, W: 1.5% by mass % Or less. In addition, Preferably, it is set as Cr: 0.2-0.7 mass%, Mo: 0.1-0.7 mass%, W: 0.2-1.5 mass%.

B:0.0003〜0.0025質量%
Bは焼入れ性を向上させ、鋼の強度を増加させる。このような効果は0.0003質量%未満では十分でなく、一方、0.0025質量%を超えると焼入れ性が著しく増加し、母材の靭性が低下するようになるため、添加する場合は、0.0003〜0.0025質量%とする。
B: 0.0003-0.0025 mass%
B improves hardenability and increases the strength of the steel. If such an effect is less than 0.0003 mass%, on the other hand, if it exceeds 0.0025 mass%, the hardenability is remarkably increased and the toughness of the base material is lowered. 0.0003-0.0025 mass%.

上述した成分以外の残部溶鋼はFeおよび不可避的不純物であり、N:0.0040質量%以下を不可避的不純物として許容する。   The remaining molten steel other than the components described above is Fe and unavoidable impurities, and N: 0.0040% by mass or less is allowed as an unavoidable impurity.

上述した組成に調整した溶鋼を、鋳造して鋼素材(スラブ)とする。鋳造方法は特に限定しないが、分散粒子の大きさおよび形態を所望の範囲に制御するため、凝固段階において、鋳込み速度や冷却速度が制御できる連続鋳造法とすることが好ましい。   The molten steel adjusted to the above-described composition is cast into a steel material (slab). The casting method is not particularly limited, but in order to control the size and form of the dispersed particles within a desired range, it is preferable to use a continuous casting method in which the casting speed and the cooling rate can be controlled in the solidification stage.

尚、分散粒子の大きさは主に、溶存酸素量とMn、S量により決まるが、鋳込み速度も影響するため、鋳造方法は造塊法よりも連鋳法とすることが好ましい。   The size of the dispersed particles is mainly determined by the amount of dissolved oxygen and the amount of Mn and S. However, since the casting speed is also affected, the casting method is preferably a continuous casting method rather than the ingot forming method.

[加熱・圧延−冷却条件]
鋼素材(スラブ)を以下の条件により圧延し、所望の板厚の低温用低降伏比鋼材とする。
[Heating / rolling-cooling conditions]
A steel material (slab) is rolled under the following conditions to obtain a low-yield steel material for low temperature use having a desired thickness.

1 スラブ加熱温度
鋼素材は、鋳造欠陥を圧着させるため、1050℃以上に加熱する。一方、1200℃を超えると、オ−ステナイト粒径が粗大化し、母材の靭性が劣化するため、1050〜1200℃に加熱する。
1 Slab heating temperature The steel material is heated to 1050 ° C. or higher in order to crimp a casting defect. On the other hand, when it exceeds 1200 ° C., the austenite grain size becomes coarse and the toughness of the base material deteriorates, so that it is heated to 1050 to 1200 ° C.

2 圧延条件
950℃以上での累積圧下率30%以上、900℃未満での累積圧下率30%以上とする。950℃以上では圧延によってオ−ステナイト粒が再結晶するため、組織微細化が可能で、累積圧下率が30%未満の場合、加熱時の異常粗大粒が残存し、母材靭性に悪影響を及ぼすため、30%以上とする。
2 Rolling conditions The cumulative rolling reduction at 950 ° C or higher is 30% or higher, and the cumulative rolling reduction at 900 ° C or lower is 30% or higher. Since the austenite grains are recrystallized by rolling at 950 ° C. or higher, the structure can be refined. If the cumulative rolling reduction is less than 30%, abnormally large grains remain during heating, which adversely affects the base material toughness. Therefore, it is 30% or more.

900℃未満では、圧延によってオ−ステナイトが再結晶するかもしくは再結晶せずともオ−ステナイト粒内部に変形帯等の欠陥が導入されることにより、フェライト変態の生成サイトが増加し、組織を微細化し、母材靭性が向上する。
このような効果を得るため、900℃未満での累積圧下率は30%以上とする。
If the temperature is less than 900 ° C., the austenite is recrystallized by rolling or a defect such as a deformation band is introduced into the austenite grains without recrystallization, thereby increasing the number of ferrite transformation generation sites and reducing the structure. Refinement and base material toughness are improved.
In order to obtain such an effect, the cumulative rolling reduction at less than 900 ° C. is set to 30% or more.

熱間圧延の圧延終了温度は、特に規定しないが、720℃未満では初析フェライトが加工をうけ降伏強さおよび降伏比が上昇するため、720℃以上とすることが好ましい。   The rolling end temperature of the hot rolling is not particularly specified, but if it is less than 720 ° C., the proeutectoid ferrite is processed and the yield strength and yield ratio are increased, so that it is preferably 720 ° C. or higher.

3 冷却条件
冷却は前段冷却と後段冷却の二段冷却とする。適正な粒径のフェライト地に第二相が分散した混合組織を安定して得るため、後段冷却の冷却速度は、前段冷却よりも大きくする。
3 Cooling condition Cooling is a two-stage cooling of the former stage cooling and the latter stage cooling. In order to stably obtain a mixed structure in which the second phase is dispersed in a ferrite ground having an appropriate particle size, the cooling rate of the subsequent cooling is set to be larger than that of the preceding cooling.

前段冷却は、熱間圧延終了後、直ちに10℃/s未満で開始し、冷却終了温度を750℃未満600℃以上とする。冷却速度が10℃/s以上では軟質のフェライト分率が低下し、所望の特性が得られない。冷却終了温度が750℃以上、あるいは600℃未満ではフェライト分率が増加し母材強度が低下する。   The pre-stage cooling starts immediately after the hot rolling at less than 10 ° C./s, and the cooling end temperature is set to less than 750 ° C. and 600 ° C. or more. When the cooling rate is 10 ° C./s or more, the soft ferrite fraction decreases and desired characteristics cannot be obtained. When the cooling end temperature is 750 ° C. or higher or lower than 600 ° C., the ferrite fraction increases and the base metal strength decreases.

後段冷却は、前段冷却停止後、600℃未満まで冷却速度10℃/s以上で冷却する。冷却速度が10℃未満では、硬質のベイナイト分率が低下し、強度が低下する。冷却停止温度が600℃以上では、降伏比の低下や、強度が飽和するため、600℃未満とする。後段冷却停止後は空冷とすることが好ましい。   In the latter-stage cooling, after the first-stage cooling is stopped, the cooling is performed at a cooling rate of 10 ° C./s or more to less than 600 ° C. When the cooling rate is less than 10 ° C., the hard bainite fraction decreases and the strength decreases. When the cooling stop temperature is 600 ° C. or higher, the yield ratio is reduced and the strength is saturated. It is preferable to use air cooling after the latter stage cooling is stopped.

このようにして得られた鋼板は、不可避的不純物として0.0070質量%以下のOを含有する。Oが0.0070質量%を超えると、鋼中の酸化物が増加し、清浄度が劣化する。REMの酸化物、酸硫化物、Mnの酸化物、酸硫化物を所要量以上分散させるため、0.0015質量%以上とすることが好ましい。   The steel plate thus obtained contains 0.0070% by mass or less of O as an unavoidable impurity. When O exceeds 0.0070 mass%, the oxide in steel will increase and cleanliness will deteriorate. In order to disperse the REM oxide, oxysulfide, Mn oxide, and oxysulfide in a required amount or more, the content is preferably 0.0015% by mass or more.

表1に示す組成の溶鋼を、転炉で溶製し、RH脱ガス処理を施した後、連続鋳造法で鋼素材(215〜310mm厚)とした。溶製中に、脱酸処理を行い、REM添加直前の溶存酸素量を調整し、一部の溶鋼(鋼No.7)については、Al添加による予備脱酸を行った。   Molten steel having the composition shown in Table 1 was melted in a converter and subjected to RH degassing treatment, and then made into a steel material (215 to 310 mm thick) by a continuous casting method. During the melting, deoxidation treatment was performed to adjust the amount of dissolved oxygen immediately before REM addition, and for some molten steel (steel No. 7), preliminary deoxidation was performed by addition of Al.

REM添加後の溶存酸素量は、REM、Sの添加量により調整した。表1において鋼No.1〜7が本発明範囲内、鋼No.8〜24は本発明範囲外である。   The amount of dissolved oxygen after REM addition was adjusted by the amount of REM and S added. In Table 1, steel no. 1 to 7 are within the scope of the present invention. 8-24 are outside the scope of the present invention.

得られた鋼素材を、表2に示す、加熱、圧延、冷却条件を用いて厚鋼板とし、母材組織、引張特性、靭性を調査した。   The obtained steel material was made into a thick steel plate using the heating, rolling, and cooling conditions shown in Table 2, and the base metal structure, tensile properties, and toughness were investigated.

1 母材組織
分散粒子の種類、平均粒径、および粒数密度を上述した方法により調査した。これらの値は、各視野毎の平均値を求めた後、全視野について平均値を求め、鋼板としての値とした。分散粒子の種類は、走査型電子顕微鏡のEDX装置により決定した。
1 Base Material Structure The type of dispersed particles, average particle size, and particle number density were investigated by the method described above. After obtaining the average value for each visual field, these values were obtained for the entire visual field and used as a steel plate value. The type of dispersed particles was determined by an EDX apparatus of a scanning electron microscope.

2 母材引張特性
板厚の1/4部のC方向から、JIS4号引張試験片を採取し、JISZ2204の規定に準拠して引張試験を行い、降伏点(YP)、引張強さ(TS)を求めた。
2 Base material tensile properties JIS No. 4 tensile test specimens were collected from the C direction of 1/4 part of the plate thickness, and subjected to a tensile test in accordance with the provisions of JISZ2204. Yield point (YP), tensile strength (TS) Asked.

3 母材靭性
板厚の1/4部のC方向から、JIS4号衝撃試験片を採取し、JISZ2242の規定に準拠してシャルピ−衝撃試験を行い、破面遷移温度(vTrs)を求めた。
3 Base material toughness A JIS No. 4 impact test piece was sampled from the C direction of 1/4 part of the plate thickness, and subjected to a Charpy impact test in accordance with the provisions of JIS Z2242, to determine the fracture surface transition temperature (vTrs).

4 溶接HAZ靭性
溶接ボンド部の再現熱サイクル試験を行い、JIS4号試験片を作製し、JISZ2242の規定に準拠してシャルピー衝撃試験を実施し、−40℃における吸収エネルギー:vE−40(J)を求め、溶接HAZ靭性を評価した。
4 Welded HAZ toughness Reproduced heat cycle test of welded bond, JIS No. 4 test piece was prepared, Charpy impact test was conducted in accordance with JISZ2242, and absorbed energy at -40 ° C: vE-40 (J) The weld HAZ toughness was evaluated.

以上の試験結果を、表2および表3に併記する。降伏強さ(YP):440N/mm以下、引張強さ(TS):530N/mm,シャルピー衝撃特性:vTrs:−86℃以下、溶接ボンド部の再現熱サイクル試験:試験温度−40℃で106J以上を本発明とした。 The above test results are also shown in Tables 2 and 3. Yield strength (YP): 440 N / mm 2 or less, Tensile strength (TS): 530 N / mm 2 , Charpy impact property: vTrs: −86 ° C. or less, Reproducible thermal cycle test of weld bond: Test temperature −40 ° C. 106J or more was regarded as the present invention.

本発明に係る鋼材(鋼板No.1〜7)は、いずれも降伏強さ(YP)が440N/mm以下、引張強さ(TS)が530N/mm以上で、降伏比(YR)は80%以下と低く、シャルピ−衝撃特性もvTrs:−86℃以下と優れた低温靭性を有している。 All the steel materials (steel plates No. 1 to 7) according to the present invention have a yield strength (YP) of 440 N / mm 2 or less, a tensile strength (TS) of 530 N / mm 2 or more, and a yield ratio (YR) of It has a low low temperature toughness as low as 80% or less and Charpy impact property is also vTrs: -86 ° C or less.

更に、溶接再現熱サイクル試験による溶接ボンド部のシャルピー吸収エネルギーで、試験温度:−40℃で106J以上であり、溶接部の靭性にも優れている。   Furthermore, it is the Charpy absorbed energy of the weld bond part by the welding reproduction heat cycle test, and it is 106 J or more at a test temperature: −40 ° C., and is excellent in the toughness of the weld part.

一方、本発明の範囲を外れる比較例の鋼材(鋼No.8〜31)は、母材の降伏強さ(YP),引張強さ(TS)、シャルピー衝撃特性および溶接再現熱サイクル試験による溶接ボンド部のシャルピー吸収エネルギーの少なくとも一つが、本発明範囲外となった。   On the other hand, the steel materials of comparative examples (steel Nos. 8 to 31) out of the scope of the present invention are welded by the base material yield strength (YP), tensile strength (TS), Charpy impact characteristics, and weld reproduction thermal cycle test. At least one of the Charpy absorbed energy in the bond part was out of the scope of the present invention.

Figure 2006257497
Figure 2006257497

Figure 2006257497
Figure 2006257497

Figure 2006257497
Figure 2006257497

Claims (3)

溶鋼に、Siおよび/またはMnを添加して脱酸し、溶存酸素量を0.0030〜0.0120質量%とした後、REMを添加し、
溶存酸素量が0.0010から0.0050質量%であって、
C:0.05〜0.12質量%
Si:0.50質量%以下
Mn:0.8〜1.8質量%
P:0.02質量%以下
S:0.0005〜0.0060質量%以下
REM:0.0030〜0.0200質量%を含有し、AlおよびTiをそれぞれ0.004質量%以下に制限した組成の溶鋼とし、
次いで、該溶鋼を鋳造して鋼素材とし、1050〜1200℃に加熱後、950℃以上の温度域における累積圧下率が30%以上、且つ900℃未満の温度域における累積圧下率が30%以上となる熱間圧延を施し、熱間圧延終了後、10℃/s未満の冷却速度で、冷却停止温度:750〜600℃とする前段冷却を施し、その後、前段冷却停止温度から600℃未満の冷却停止温度まで、10℃/s以上の冷却速度で後段冷却を施すことを特徴とする溶接部靭性に優れた低温用低降伏比鋼材の製造方法。
After deoxidizing the molten steel by adding Si and / or Mn, the amount of dissolved oxygen is 0.0030 to 0.0120 mass%, and then adding REM,
The amount of dissolved oxygen is 0.0010 to 0.0050 mass%,
C: 0.05-0.12 mass%
Si: 0.50 mass% or less Mn: 0.8-1.8 mass%
P: 0.02% by mass or less S: 0.0005-0.0060% by mass or less REM: 0.0030-0.0200% by mass, and Al and Ti are limited to 0.004% by mass or less, respectively. Of molten steel,
Next, the molten steel is cast into a steel material, heated to 1050 to 1200 ° C., and the cumulative reduction in the temperature range of 950 ° C. or higher is 30% or higher, and the cumulative reduction in the temperature range of less than 900 ° C. is 30% or higher. After the hot rolling is completed, after the hot rolling is completed, the cooling at a cooling rate of less than 10 ° C./s is applied to the cooling stop temperature: 750 to 600 ° C. After that, the cooling is performed at a cooling temperature of less than 600 ° C. A method for producing a low yield ratio steel material for low temperature excellent in weld toughness, characterized by performing post-stage cooling to a cooling stop temperature at a cooling rate of 10 ° C / s or more.
Siおよび/またはMnを添加して行う脱酸の前に、Alを添加する予備脱酸を行い、前記脱酸前の溶存酸素量を0.0080〜0.0170質量%に調整することを特徴とする請求項1に記載の溶接部靭性に優れた低温用低降伏比鋼材の製造方法。 Before deoxidation performed by adding Si and / or Mn, preliminary deoxidation by adding Al is performed, and the amount of dissolved oxygen before deoxidation is adjusted to 0.0080 to 0.0170 mass%. The manufacturing method of the low yield ratio steel materials for low temperature excellent in the weld part toughness of Claim 1. 溶鋼の組成として、更に、
B:0.0003〜0.0025質量%
Nb:0.05質量%以下
V:0.2質量%以下
Cu:1.0質量%以下
Ni:1.5質量%以下
Cr:0.7質量%以下
Mo:0.7質量%以下
W:1.5質量%以下から選ばれる一種又は二種以上を含有することを特徴とする請求項1または2に記載の溶接部靭性に優れた低温用低降伏比鋼材の製造方法。
As the composition of the molten steel,
B: 0.0003-0.0025 mass%
Nb: 0.05% by mass or less V: 0.2% by mass or less Cu: 1.0% by mass or less Ni: 1.5% by mass or less Cr: 0.7% by mass or less Mo: 0.7% by mass or less W: The manufacturing method of the low yield ratio steel material for low temperature excellent in the weld part toughness of Claim 1 or 2 characterized by containing 1 type, or 2 or more types chosen from 1.5 mass% or less.
JP2005076662A 2005-03-17 2005-03-17 Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness Active JP4981262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076662A JP4981262B2 (en) 2005-03-17 2005-03-17 Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005076662A JP4981262B2 (en) 2005-03-17 2005-03-17 Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness

Publications (2)

Publication Number Publication Date
JP2006257497A true JP2006257497A (en) 2006-09-28
JP4981262B2 JP4981262B2 (en) 2012-07-18

Family

ID=37097077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076662A Active JP4981262B2 (en) 2005-03-17 2005-03-17 Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness

Country Status (1)

Country Link
JP (1) JP4981262B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163456A (en) * 2006-12-04 2008-07-17 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
JP2009149917A (en) * 2006-11-30 2009-07-09 Nippon Steel Corp Weld steel pipe for high-strength line pipe excellent in low-temperature toughness, and manufacturing method therefor
JP2009228040A (en) * 2008-03-21 2009-10-08 Jfe Steel Corp Low yield ratio high strength steel plate and method for producing the same
JP2010084188A (en) * 2008-09-30 2010-04-15 Jfe Steel Corp Thick steel material superior in fatigue-crack generation resistance, and method for manufacturing the same
JP2011038181A (en) * 2009-07-15 2011-02-24 Kobe Steel Ltd Method for producing rem-containing steel
CN103789614A (en) * 2014-01-16 2014-05-14 安徽省杨氏恒泰钢管扣件加工有限公司 Steel pipe material for automobile brake system and preparation method of steel pipe material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147477A (en) * 2001-11-07 2003-05-21 Kawasaki Steel Corp OVER 700 MPa CLASS NON-HEATTREATED LOW YIELD RATIO THICK STEEL PLATE, AND PRODUCTION METHOD THEREFOR
JP2004010951A (en) * 2002-06-06 2004-01-15 Jfe Steel Kk Method of manufacturing thick steel plate for building structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147477A (en) * 2001-11-07 2003-05-21 Kawasaki Steel Corp OVER 700 MPa CLASS NON-HEATTREATED LOW YIELD RATIO THICK STEEL PLATE, AND PRODUCTION METHOD THEREFOR
JP2004010951A (en) * 2002-06-06 2004-01-15 Jfe Steel Kk Method of manufacturing thick steel plate for building structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149917A (en) * 2006-11-30 2009-07-09 Nippon Steel Corp Weld steel pipe for high-strength line pipe excellent in low-temperature toughness, and manufacturing method therefor
JP2008163456A (en) * 2006-12-04 2008-07-17 Nippon Steel Corp Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
JP2009228040A (en) * 2008-03-21 2009-10-08 Jfe Steel Corp Low yield ratio high strength steel plate and method for producing the same
JP2010084188A (en) * 2008-09-30 2010-04-15 Jfe Steel Corp Thick steel material superior in fatigue-crack generation resistance, and method for manufacturing the same
JP2011038181A (en) * 2009-07-15 2011-02-24 Kobe Steel Ltd Method for producing rem-containing steel
CN103789614A (en) * 2014-01-16 2014-05-14 安徽省杨氏恒泰钢管扣件加工有限公司 Steel pipe material for automobile brake system and preparation method of steel pipe material

Also Published As

Publication number Publication date
JP4981262B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP5076658B2 (en) Steel material for large heat input welding
WO2015088040A1 (en) Steel sheet and method for manufacturing same
JP4035990B2 (en) Super high heat input welding HAZ toughness and low yield ratio steel plate for building structure and method for producing the same
WO2004022807A1 (en) Steel product for high heat input welding and method for production thereof
JP4981262B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP2005068519A (en) Method for producing high strength thick steel plate for building structure, having excellent toughness to super-large heat input welding-affected zone
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP3546308B2 (en) Large heat input welding steel
JP4507669B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP3733898B2 (en) Manufacturing method of thick high-tensile steel with excellent heat input weld toughness
JP5233364B2 (en) Steel material for large heat input welding
JP5233365B2 (en) Steel material for large heat input welding
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP4066879B2 (en) Manufacturing method of thick-walled high-tensile steel plate with excellent weld heat affected zone CTOD characteristics
JP4144123B2 (en) Non-tempered high-tensile steel with excellent base material and weld heat-affected zone toughness
JP3644398B2 (en) Manufacturing method of non-tempered thick high-tensile steel sheet with excellent weld heat-affected zone toughness
JP4539100B2 (en) Super high heat input welded heat affected zone
JP4039223B2 (en) Thick steel plate with excellent super tough heat input weld heat affected zone toughness and method for producing the same
JP2002371338A (en) Steel superior in toughness at laser weld
JP3733922B2 (en) Manufacturing method of thick high-strength steel sheet with excellent heat-affected zone toughness of super high heat input welding
JP4762450B2 (en) Method for producing high strength welded structural steel with excellent base metal toughness and weld zone HAZ toughness
JP3941596B2 (en) Manufacturing method of steel plate for building structure
JP2005029841A (en) High strength steel for welded structure having excellent low temperature toughness in high heat input weld part haz, and its production method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110105

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4981262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250