JP2011038181A - Method for producing rem-containing steel - Google Patents

Method for producing rem-containing steel Download PDF

Info

Publication number
JP2011038181A
JP2011038181A JP2010142937A JP2010142937A JP2011038181A JP 2011038181 A JP2011038181 A JP 2011038181A JP 2010142937 A JP2010142937 A JP 2010142937A JP 2010142937 A JP2010142937 A JP 2010142937A JP 2011038181 A JP2011038181 A JP 2011038181A
Authority
JP
Japan
Prior art keywords
rem
less
amount
steel
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010142937A
Other languages
Japanese (ja)
Other versions
JP5503428B2 (en
Inventor
Tetsushi Deura
哲史 出浦
Takashi Sugitani
崇 杉谷
Hiromi Ota
裕己 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010142937A priority Critical patent/JP5503428B2/en
Publication of JP2011038181A publication Critical patent/JP2011038181A/en
Application granted granted Critical
Publication of JP5503428B2 publication Critical patent/JP5503428B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a REM-containing steel castable without causing a nozzle blockade. <P>SOLUTION: In the method for producing the REM-containing steel composed, by mass%, of 0.01-0.15% C, ≤1.2% (no containing 0%) Si, ≤3.8% (not including 0%) Mn, ≤0.03% (no containing 0%) P, ≤0.03% (no containing 0%) S, ≤0.01% (no containing 0%) N, ≤0.2% (no containing 0%) Ti and 0.0003-0.05% REM and the balance with inevitable impurities; a dissolved oxygen quantity Q<SB>Of</SB>in the molten steel before adding the REM, is adjusted in the range of 0.0001-0.015 and thereafter, when the REM additional quantity Q<SB>REM</SB>, is aqdded so as to satisfy the following formula (1): 2logQ<SB>REM</SB>+3logQ<SB>Of</SB>≤-11, and melted. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、希土類元素(REM)を含有するREM含有鋼の製造方法に関するものである。   The present invention relates to a method for producing a REM-containing steel containing a rare earth element (REM).

REMは、橋梁、高層建造物、船舶などの溶接構造体における溶接熱影響部(HAZ部)の靱性向上や、溶接時のスパッタ低減などに有用な元素である。そのため、REM含有鋼は、溶接構造用鋼や溶接材料などに好適に用いられる。例えば、特許文献1〜3には、溶接構造体に用いられる機械構造用鋼にREMを添加し、REM含有酸化物を生成させることによってHAZ部の組織を微細化させ、HAZ靱性を高めた技術が提案されている。また、特許文献4、5には、溶接用ワイヤなどの溶接材料にREMを添加し、スパッタ発生を低減する方法が提案されている。   REM is an element useful for improving the toughness of the weld heat affected zone (HAZ portion) in welded structures such as bridges, high-rise buildings, and ships, and for reducing spatter during welding. Therefore, the REM-containing steel is suitably used for welded structural steel and welding materials. For example, in Patent Documents 1 to 3, a technology in which HAZ toughness is increased by adding REM to mechanical structural steel used for a welded structure and generating a REM-containing oxide to refine the structure of the HAZ part. Has been proposed. Patent Documents 4 and 5 propose a method of reducing spatter generation by adding REM to a welding material such as a welding wire.

ところで特許文献6、7には、母材およびHAZ部の組織制御に有効な量のTi系酸化物をREM含有鋼中に存在させると、溶鋼を鋳込む際にノルズ閉塞が生じやすくなり、生産性が劣化するという問題が指摘されている。   By the way, in Patent Documents 6 and 7, if a Ti-based oxide in an amount effective for the structure control of the base material and the HAZ part is present in the REM-containing steel, Nords clogging is likely to occur when casting molten steel, It has been pointed out that the quality deteriorates.

特開2002−363687号公報JP 2002-363687 A 特開2003−221643号公報JP 2003-221463 A 特開2003−286540号公報JP 2003-286540 A 特開2003−225792号公報JP 2003-225792 A 特開2005−46878号公報Japanese Patent Laid-Open No. 2005-46878 特開2001−20031号公報Japanese Patent Laid-Open No. 2001-20031 特開2001−20033号公報Japanese Patent Laid-Open No. 2001-20033

上記特許文献1〜5には、機械構造用鋼や溶接材料などに有用なREM含有鋼の製造に際して、鋳造時にノズル閉塞が発生し、生産性が低下するという問題については全く着目されていなかった。一方、上記特許文献6、7には、Ti系酸化物とノズル閉塞の関係について記載されているが、REM含有酸化物とノルズ閉塞の関係については着目されていなかった。   In the above Patent Documents 1 to 5, when producing REM-containing steel useful for machine structural steels and welding materials, no attention has been paid to the problem that nozzle clogging occurs at the time of casting and productivity is lowered. . On the other hand, Patent Documents 6 and 7 describe the relationship between the Ti-based oxide and the nozzle clogging, but did not pay attention to the relationship between the REM-containing oxide and the Nord clogging.

本発明は上記の様な事情に着目してなされたものであって、その目的は、ノズル閉塞を発生させることなく鋳造可能なREM含有鋼の製造方法を提供することにある。   The present invention has been made paying attention to the above circumstances, and an object of the present invention is to provide a method for producing REM-containing steel that can be cast without causing nozzle clogging.

上記課題を解決することのできる本発明に係るREM含有鋼の製造方法とは、C:0.01〜0.15%(質量%の意味。以下成分について同じ。)、Si:1.2%以下(0%を含まない)、Mn:3.8%以下(0%を含まない)、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)、N:0.01%以下(0%を含まない)、Ti:0.2%以下(0%を含まない)およびREM:0.0003〜0.05%を含有し、残部が鉄および不可避不純物からなるREM含有鋼を製造する方法であり、REM添加前の溶鋼中の溶存酸素量QOfを0.0001〜0.015%の範囲に調整し、その後にREMを添加するにあたっては、前記溶存酸素量QOfとREM添加量QREMが下記(1)式を満足する量のREMを添加して溶製する点に要旨を有する。
2logQREM+3logQOf≦−11 ・・・(1)
The manufacturing method of the REM-containing steel according to the present invention that can solve the above-mentioned problems is: C: 0.01 to 0.15% (meaning mass%; the same applies to the following components), Si: 1.2% Or less (excluding 0%), Mn: 3.8% or less (not including 0%), P: 0.03% or less (not including 0%), S: 0.03% or less (0% N: 0.01% or less (not including 0%), Ti: 0.2% or less (not including 0%), and REM: 0.0003 to 0.05%, the balance being This is a method for producing a REM-containing steel made of iron and inevitable impurities, in which the amount of dissolved oxygen Q Of in the molten steel before REM addition is adjusted to a range of 0.0001 to 0.015%, and then REM is added. Is the amount of REM in which the dissolved oxygen amount Q Of and the REM addition amount Q REM satisfy the following formula (1): It has a gist in that it is added and melted.
2logQ REM + 3logQ Of ≦ -11 (1)

前記REM含有鋼は、更に他の元素として、
[1]Zr:0.1%以下(0%を含まない)、Al:0.1%以下(0%を含まない)、Ca:0.01%以下(0%を含まない)よりなる群から選ばれる少なくとも1種、
[2]Cu:2%以下(0%を含まない)および/またはNi:12%以下(0%を含まない)、
[3]Cr:3%以下(0%を含まない)および/またはMo:1%以下(0%を含まない)、
[4]Nb:0.25%以下(0%を含まない)および/またはV:0.1%以下(0%を含まない)、
[5]B:0.005%以下(0%を含まない)、
等の元素を含有することも有効である。
The REM-containing steel is still another element,
[1] A group consisting of Zr: 0.1% or less (not including 0%), Al: 0.1% or less (not including 0%), Ca: 0.01% or less (not including 0%) At least one selected from
[2] Cu: 2% or less (not including 0%) and / or Ni: 12% or less (not including 0%),
[3] Cr: 3% or less (not including 0%) and / or Mo: 1% or less (not including 0%),
[4] Nb: 0.25% or less (not including 0%) and / or V: 0.1% or less (not including 0%),
[5] B: 0.005% or less (excluding 0%),
It is also effective to contain such elements.

本発明によれば、REM添加溶鋼の溶製にあたり、REM添加前の溶鋼中の溶存酸素量QOfを所定の範囲に調整し、当該溶存酸素量QOfに応じた適切なREM添加量QREMを添加して溶製しているため、ノズル閉塞の原因となるREM含有酸化物を低減でき、鋳造時のノズル閉塞による操業トラブル(溶鋼の出鋼量減少や、生産性の劣化など)を回避できる。 According to the present invention, when melting REM-added molten steel, the dissolved oxygen amount Q Of in the molten steel before REM addition is adjusted to a predetermined range, and an appropriate REM added amount Q REM according to the dissolved oxygen amount Q Of is adjusted. REM-containing oxides that cause nozzle clogging can be reduced because of the addition of smelting, and operational troubles due to nozzle clogging during casting (decrease in the amount of molten steel produced, deterioration in productivity, etc.) are avoided. it can.

図1は、出鋼を開始してからの経過時間(秒)に対する出鋼量(kg)の変化を示すグラフである。FIG. 1 is a graph showing a change in the amount of steel output (kg) with respect to the elapsed time (seconds) after the start of steel output. 図2は、REM添加前溶鋼の溶存酸素量QOfとREM添加量QREMの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the dissolved oxygen amount Q Of and the REM addition amount Q REM of the molten steel before REM addition. 図3は、(1)式の左辺の値(Z値)と出鋼量(kg)の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the value (Z value) on the left side of equation (1) and the amount of steel output (kg).

本発明者らは、REM含有鋼の鋳造時におけるノズル閉塞の主な原因は、REM含有酸化物にあるとの観点に立ち、検討を重ねてきた。前述したように、REM含有酸化物は、機械構造用鋼などのHAZ靱性向上に有用であるが、融点が高く、溶鋼中では液体ではなく固体として存在しているため、ノズル内壁に付着し易く、ノズル内径を徐々に狭めて最終的にはノズルを閉塞し、溶鋼の出鋼量減少や生産性低下などの弊害をもたらす。そこでREM添加前の溶鋼に含まれる溶存酸素量QOfを適切に制御し、溶存酸素量QOfに応じてREM添加量QREMを適切に制御して溶製すれば、鋳造時のノズル閉塞を防止できることを見出し、本発明を完成した。 The inventors of the present invention have repeatedly studied from the viewpoint that the main cause of nozzle clogging during casting of REM-containing steel is the REM-containing oxide. As described above, the REM-containing oxide is useful for improving HAZ toughness such as steel for machine structural use, but has a high melting point, and since it exists as a solid rather than a liquid in the molten steel, it easily adheres to the inner wall of the nozzle. The inner diameter of the nozzle is gradually narrowed and finally the nozzle is closed, resulting in problems such as a decrease in the amount of molten steel and a decrease in productivity. Therefore, if the dissolved oxygen amount Q Of contained in the molten steel before REM addition is appropriately controlled and the REM addition amount Q REM is appropriately controlled according to the dissolved oxygen amount Q Of and melted, the nozzle clogging at the time of casting will be blocked. As a result, the present invention has been completed.

本発明において、ノズル閉塞とは、鋳造時に用いられる取鍋ノズルや浸漬ノズル、造塊時に用いられる注入管の閉塞(詰まり)を意味する。以下では、取鍋ノズルの閉塞を例に挙げて説明するが、これに限定する趣旨ではない。   In the present invention, the nozzle clogging means clogging (clogging) of a ladle nozzle or immersion nozzle used at the time of casting or an injection pipe used at the time of ingot making. Below, although the clogging of a ladle nozzle is mentioned as an example and demonstrated, it is not the meaning limited to this.

以下、本発明の製造方法について具体的に説明する。   Hereinafter, the production method of the present invention will be specifically described.

本発明に係るREM含有鋼の製造方法は、溶製工程に特徴があり、具体的には、
[A]REMを添加する前の溶鋼に含まれる溶存酸素量QOfを0.0001〜0.015%の範囲に調整した後にREMを添加すること;
[B]REMの添加に当たっては前記溶存酸素量QOfとREM添加量QREMが下記(1)式を満足するように制御して溶製するところに特徴がある。
2logQREM+3logQOf≦−11 ・・・(1)
The method for producing REM-containing steel according to the present invention is characterized by a melting process, specifically,
[A] Adding REM after adjusting the amount of dissolved oxygen Q Of contained in the molten steel before adding REM to the range of 0.0001 to 0.015%;
[B] The addition of REM is characterized in that the dissolved oxygen amount Q Of and the REM addition amount Q REM are controlled so as to satisfy the following expression (1).
2logQ REM + 3logQ Of ≦ -11 (1)

[A]溶存酸素量QOf:0.0001〜0.015%について
REM添加前溶鋼の溶存酸素量QOfは0.0001〜0.015%の範囲とする。上記溶存酸素量QOfの範囲は、主に、REM添加によるHAZ靱性向上作用を有効に発揮させるために設定されたものである。溶存酸素量QOfが0.0001%未満では、溶存酸素量QOfが不足し、HAZ靱性向上に有用な、微細なREM含有酸化物が充分得られない。また、溶存酸素量QOfが不足すると、酸素と結合しないREMがSと結合してREM硫化物を形成したり、或いは任意元素として添加されるCaやZrがCa硫化物やZr炭化物を形成したりするなどし、鋼材自体の靱性を劣化させる原因となる。従って上記溶存酸素量QOfは、0.0001%以上、好ましくは0.001%以上、より好ましくは0.0015%以上とする。一方、溶存酸素量QOfが0.015%を超えると、溶存酸素量が多過ぎるため、REMを添加したときにREMと酸素との反応が激しくなって溶製作業上好ましくないばかりか、溶鋼中に粗大なREM含有酸化物を生成してノズル閉塞を発生させる原因となる。従って上記溶存酸素量QOfは0.015%以下、好ましくは0.01%以下、より好ましくは0.008%以下に抑える。
[A] Dissolved oxygen amount Q Of : 0.0001 to 0.015% The dissolved oxygen amount Q Of of the molten steel before REM addition is in the range of 0.0001 to 0.015%. The range of the dissolved oxygen amount Q Of is set mainly for effectively exhibiting the HAZ toughness improving effect by the addition of REM. If the dissolved oxygen amount Q Of is less than 0.0001%, the dissolved oxygen amount Q Of is insufficient, and a fine REM-containing oxide useful for improving HAZ toughness cannot be obtained sufficiently. In addition, when the dissolved oxygen amount Q Of is insufficient, REM that does not bond with oxygen combines with S to form REM sulfide, or Ca or Zr added as an optional element forms Ca sulfide or Zr carbide. Cause deterioration of the toughness of the steel material itself. Therefore, the dissolved oxygen amount Q Of is set to 0.0001% or more, preferably 0.001% or more, more preferably 0.0015% or more. On the other hand, when the amount of dissolved oxygen Q Of exceeds 0.015%, the amount of dissolved oxygen is too large, so when REM is added, the reaction between REM and oxygen becomes intense, which is not preferable for melting work. A coarse REM-containing oxide is generated in the nozzle, causing nozzle clogging. Therefore, the amount of dissolved oxygen Q Of is suppressed to 0.015% or less, preferably 0.01% or less, more preferably 0.008% or less.

なお、本発明において溶存酸素とは、酸化物を形成しておらず、溶鋼中に存在するフリーな状態の酸素を意味する。REM添加前溶鋼の溶存酸素量QOfは、固体電解質を用いた一般的な起電力測定法によって測定すればよい。 In the present invention, dissolved oxygen means free oxygen that does not form an oxide and exists in the molten steel. The dissolved oxygen amount Q Of of the molten steel before REM addition may be measured by a general electromotive force measurement method using a solid electrolyte.

[B]上記(1)式について
本発明では、REM添加前溶鋼の溶存酸素量QOfの範囲を上記[A]のように適切に制御したうえで、REM添加に当たっては、更に上記(1)式を満足するように溶存酸素量QOfに留意しながら制御することが必要である。この(1)式は、「REM添加溶鋼鋳造時のノズル閉塞を防止するには、粗大なREM含有酸化物の生成を少なくすれば良い」との観点に基づき、設定した式である。詳細には、上記観点のもと、溶鋼中でのREM酸化物生成反応式(下記(2)式を参照)を構成する「REM」(上記(1)式におけるREM添加量QREM)と「O(酸素)」(上記(1)式における溶存酸素量QOf)を指標とし、溶存酸素量QOfと当該溶存酸素量QOfに対するREM添加量QREMが、取鍋ノズルを介して取鍋から鋳型に出鋼したときの溶鋼量(出鋼量)に及ぼす影響を調べた基礎実験に基づいて設定されたものである。後記する図3に示すように、上記(1)式の左辺の値をZ値とすると、Z値が−11を境にして出鋼量が大きく変化し、Z値が−11以下となるように溶存酸素量QOfとREM添加量QREMを調整すれば、ノズル閉塞を引き起こすことなく取鍋ノズルから溶鋼を出鋼できることが判明し、上記(1)式を定めた次第である。上記(1)式の左辺のそれぞれの係数(「logQREM」の係数2、および「logQOf」の係数3)は、下記(2)式で示される、溶鋼中でのREM酸化物生成反応式の係数(「REM」の係数2、および「O」の係数3)に対応している。
2REM+3O=REM23 ・・・(2)
[B] Formula (1) In the present invention, the range of the dissolved oxygen amount Q Of of the molten steel before REM addition is appropriately controlled as in the above [A]. It is necessary to control the dissolved oxygen amount Q Of while paying attention to satisfy the equation. This formula (1) is a formula set based on the viewpoint that “the generation of coarse REM-containing oxides should be reduced in order to prevent nozzle clogging during REM-added molten steel casting”. Specifically, based on the above viewpoint, “REM” (REM addition amount Q REM in the above formula (1)) constituting the REM oxide generation reaction formula (see the following formula (2)) in molten steel and “ “O (oxygen)” (dissolved oxygen amount Q Of in the above equation (1)) is used as an index, and the dissolved oxygen amount Q Of and the REM addition amount Q REM with respect to the dissolved oxygen amount Q Of are obtained through a ladle nozzle. It was set based on a basic experiment in which the effect on the amount of molten steel (the amount of steel output) when steel was discharged from a mold was examined. As shown in FIG. 3 to be described later, when the value on the left side of the above equation (1) is the Z value, the amount of steel output changes greatly with the Z value at -11 as a boundary so that the Z value becomes -11 or less. If the dissolved oxygen amount Q Of and the REM addition amount Q REM are adjusted, it has been found that the molten steel can be discharged from the ladle nozzle without causing nozzle clogging, and the above equation (1) is determined. The respective coefficients (the coefficient 2 of “logQ REM ” and the coefficient 3 of “logQ Of ”) on the left side of the above equation (1) are represented by the following equation (2): REM oxide generation reaction formula in molten steel (Coefficient 2 of “REM” and coefficient 3 of “O”).
2REM + 3O = REM 2 O 3 (2)

即ち、上記(1)式において、Z値は、ノズル閉塞防止のための基準値となるべきものである。本発明において、溶存酸素量QOfとREM添加量QREMが上記(1)式を満足するということは、HAZ靱性向上に寄与する微細なREM含有酸化物の生成に最小限必要な溶存酸素量QOfは確保したうえで、REM添加量QREMについては、ノズル閉塞に悪影響を及ぼす粗大なREM含有酸化物は生成しない程度に、溶存酸素量QOfごとに、できるだけ少なく添加することを意味する。本発明によれば、微細なREM含有酸化物は充分に生成するが粗大なREM含有酸化物の生成が抑えられるため、鋳造時のノズル閉塞を防止できると思料される。 That is, in the above equation (1), the Z value should be a reference value for preventing nozzle blockage. In the present invention, the amount of dissolved oxygen Q Of and the amount of added REM Q REM satisfy the above equation (1) means that the minimum amount of dissolved oxygen necessary for the production of fine REM-containing oxides that contribute to the improvement of HAZ toughness It means that the REM addition amount Q REM is added as little as possible for each dissolved oxygen amount Q Of so that a coarse REM-containing oxide that adversely affects nozzle clogging is not generated with Q Of secured. . According to the present invention, fine REM-containing oxide is sufficiently generated, but generation of coarse REM-containing oxide is suppressed, so that it is considered that nozzle clogging during casting can be prevented.

上記Z値が−11を超えると、溶存酸素量QOfとREM添加量QREMのバランスが悪くなり、溶存酸素量QOfに対してREM添加量QREMが多くなって粗大なREM含有酸化物が生成してノズル閉塞が発生し易くなる。従って上記Z値は、−11以下とする。Z値は少ない程良く、好ましくは−12以下、より好ましくは−13以下、更に好ましくは−14以下とする。Z値の下限は特に限定されないが、鋼中のREM量などを考慮すると、おおむね、−15程度であることが好ましい。 When the Z value exceeds -11, the balance between the dissolved oxygen amount Q Of and the REM added amount Q REM becomes poor, and the REM added amount Q REM increases with respect to the dissolved oxygen amount Q Of , resulting in a coarse REM-containing oxide. And nozzle clogging is likely to occur. Therefore, the Z value is set to -11 or less. The smaller the Z value, the better, preferably -12 or less, more preferably -13 or less, and still more preferably -14 or less. The lower limit of the Z value is not particularly limited, but in consideration of the amount of REM in steel and the like, it is preferably about -15.

なお、REM添加量QREMは、上記(1)式に基づき、溶存酸素量QOfに応じて適宜決定されるが、REM添加量QREMの範囲は、概して、最終製品であるREM含有鋼に含まれるREM量に比べて多く設定される。これは、鋳造前の溶鋼に添加されたREMは、鋳造過程などで揮発したり、スラグ中に分散するなどして鋼材中に歩留まり難いため、REM添加溶鋼に含まれるREM添加量QREMに比べてREM含有鋼に含まれるREM量の方が少なくなるからである。本発明の方法は、以下に詳述するように、0.0003〜0.05%のREMを含有するREM含有鋼を製造するのに好適に用いられるが、本発明では、このようなREM量を確保できるように、溶製時のREM添加量QREMを適切に制御すれば良い。 The REM addition amount Q REM is appropriately determined according to the dissolved oxygen amount Q Of based on the above formula (1), but the range of the REM addition amount Q REM is generally in the REM-containing steel as the final product. It is set larger than the amount of REM included. This is because the REM added to the molten steel before casting is difficult to get in the steel material because it volatilizes in the casting process or is dispersed in the slag, so compared to the REM addition amount Q REM contained in the REM added molten steel. This is because the amount of REM contained in the REM-containing steel is reduced. The method of the present invention is suitably used to produce a REM-containing steel containing 0.0003 to 0.05% REM, as described in detail below. REM addition amount Q REM at the time of melting may be appropriately controlled so as to ensure the above.

本発明を特徴づける溶製工程の骨子は上記の通りであるが、より具体的な方法を、溶製手順に従って説明する。   The outline of the melting process characterizing the present invention is as described above, but a more specific method will be described according to the melting procedure.

まず、本発明では、転炉や電気炉などで一次精錬されたREM添加前溶鋼の溶存酸素量QOfを、必要に応じて、上記0.0001〜0.015%の範囲に調整する。一次精錬された溶鋼中の溶存酸素量QOfは、通常0.01%を超えているため、当該溶鋼中の溶存酸素量QOfが0.01%超〜0.015%の範囲であれば、特別な調整を行なうことなくそのまま用いることができるが、0.015%を超えている場合は、溶存酸素量QOfの調整が別途必要となる。 First, in the present invention, the dissolved oxygen amount Q Of of the molten steel before REM primary refined in a converter, electric furnace, or the like is adjusted to the range of 0.0001 to 0.015% as necessary. Since the dissolved oxygen amount Q Of in the primary refined molten steel usually exceeds 0.01%, the dissolved oxygen amount Q Of in the molten steel is in the range of more than 0.01% to 0.015%. Although it can be used as it is without special adjustment, if it exceeds 0.015%, it is necessary to separately adjust the dissolved oxygen amount Q Of .

この場合における溶存酸素量QOfの調整方法としては、例えばRH式脱ガス精錬装置を用いて真空脱酸する方法や、Si,Mn,Ti,Alなどの脱酸性元素を添加する方法などが挙げられ、これらの方法を適宜組み合わせて上記溶存酸素量QOfを調整すれば良い。また、RH式脱ガス精錬装置の代わりに、取鍋加熱式精錬装置や簡易式溶鋼処理設備などを用いて上記溶存酸素量QOfを調整しても良い。この場合、真空脱酸による溶存酸素量QOfの調整はできないため、溶存酸素量QOfの調整にはSi等の脱酸性元素を添加する方法を採用すれば良い。Si等の脱酸性元素を添加する方法を採用するときは、例えば、転炉から取鍋へ出鋼する際に脱酸性元素を添加しても構わない。 Examples of the method for adjusting the dissolved oxygen amount Q Of in this case include a method of vacuum deoxidation using an RH type degassing refining device, a method of adding a deacidifying element such as Si, Mn, Ti, Al, and the like. The dissolved oxygen amount Q Of may be adjusted by appropriately combining these methods. Further, instead of the RH type degassing device, by using a ladle heating refining apparatus and a simple type molten steel processing facility may adjust the above dissolved oxygen content Q Of. In this case, since the amount of dissolved oxygen Q Of cannot be adjusted by vacuum deoxidation, a method of adding a deacidifying element such as Si may be adopted to adjust the amount of dissolved oxygen Q Of . When employing a method of adding a deoxidizing element such as Si, for example, the deoxidizing element may be added when steel is removed from the converter to the ladle.

次に、本発明では、上記のようにREM添加前溶鋼の溶存酸素量QOfを上記範囲に調整してから、REMを添加して鋳造する。本発明では、REM添加前溶鋼の溶存酸素量QOfとREM添加量QREMの関係が、上記(1)式の関係を満足することが重要であって、REM以外の成分元素(Ti、Zr、Caなど)の添加順序は特に限定されない。REMは極めて活性な元素であり、他の成分元素に比べて酸素と非常に結合し易いため、ノズル閉塞の原因となる粗大なREM含有酸化物の生成に大きく関与するREM添加量QREMについては上記(1)式のように特別に留意する必要があるが、REM以外の成分元素と酸素との反応性は、REMに比べれば劣るため、当該成分元素の影響は、REMに比べて少ないからである。即ち、上記(1)式を制御しさえすれば、REM以外の成分元素の添加順序にかかわらず、鋳造時のノズル閉塞を防止できる。 Next, in the present invention, the dissolved oxygen content Q Of the REM added before the molten steel as described above, adjust the above-mentioned range, cast by the addition of REM. In the present invention, it is important that the relationship between the dissolved oxygen amount Q Of of the molten steel before REM addition and the REM addition amount Q REM satisfies the relationship of the above formula (1), and the constituent elements other than REM (Ti, Zr) , Ca, etc.) are not particularly limited in the order of addition. Since REM is an extremely active element and is very easy to bind to oxygen compared to other component elements, the REM addition amount Q REM that is largely involved in the generation of coarse REM-containing oxides that cause nozzle clogging. Special attention should be paid as in the above formula (1), but the reactivity between component elements other than REM and oxygen is inferior to that of REM, and therefore the influence of the component elements is less than that of REM. It is. That is, as long as the above equation (1) is controlled, nozzle blockage during casting can be prevented regardless of the order of addition of component elements other than REM.

但し、本発明のREM含有鋼を製造するに当たっては、溶鋼中にREMを添加する前に、Tiを添加することが好ましい。Ti酸化物はREM含有酸化物に比べて溶鋼との界面エネルギーが小さいため、溶存酸素量QOfを調整した溶鋼に対し、REMを添加してからTiを添加すると、粗大なTi酸化物が生成し易いのに対し、REM添加前にTiを添加することでTi酸化物を微細化でき、結果的に、HAZ靱性に寄与する微細な酸化物を生成させることができる。その後、REM(必要によりZrやCa)を添加することで、粒内フェライト変態の核となり、HAZ靱性の向上に寄与するREM含有酸化物が得られる。 However, in producing the REM-containing steel of the present invention, it is preferable to add Ti before adding REM to the molten steel. Since Ti oxide has lower interfacial energy with molten steel than REM-containing oxide, adding Ti to REM after adding REM to molten steel with adjusted dissolved oxygen content Q Of produces coarse Ti oxide. On the other hand, Ti oxide can be refined by adding Ti before REM addition, and as a result, a fine oxide that contributes to HAZ toughness can be generated. Thereafter, REM (Zr or Ca if necessary) is added to obtain a REM-containing oxide that becomes a nucleus of intragranular ferrite transformation and contributes to improvement of HAZ toughness.

なお、上記のようにTiを添加してからREMを添加する場合においても、REM添加前溶鋼の溶存酸素量QOfに応じてREM添加量QREMが上記(1)式を満足する量のREMを添加すれば、粗大なREM含有酸化物の生成が抑制されるため、ノズル閉塞を有効に防止できる。即ち、上記の場合であっても、ノズル閉塞防止のためにTi添加量を考慮する必要はない。REMより先にTiを添加すると溶鋼中の溶存酸素はTiと結合して酸化物を形成するため、REMと結合する溶存酸素量は減少するが、Tiは、REMと比べると酸素と結合し難く、且つTi酸化物は溶鋼との界面エネルギーが小さいため、REMに比べて粗大な酸化物を形成し難く、ノズル閉塞の原因とはなり難いからである。 Even when REM is added after adding Ti as described above, the REM addition amount Q REM satisfies the above equation (1) according to the dissolved oxygen amount Q Of of the molten steel before REM addition. Is added, the formation of coarse oxides containing REM is suppressed, so that nozzle clogging can be effectively prevented. That is, even in the above case, it is not necessary to consider the amount of Ti added to prevent nozzle clogging. If Ti is added prior to REM, dissolved oxygen in the molten steel combines with Ti to form an oxide, so the amount of dissolved oxygen combined with REM decreases, but Ti is less likely to bond with oxygen than REM. And since Ti oxide has low interface energy with molten steel, it is hard to form a coarse oxide compared with REM, and it is hard to become the cause of nozzle blockage.

溶鋼へ添加するREMやCa、Zr、Tiの形態は特に限定されず、例えば、REMとして、純Laや純Ce、純Yなど、或いは純Ca、純Zr、純Ti、更にはFe−Si−La合金、Fe−Si−Ce合金、Fe−Si−Ca合金、Fe−Si−La−Ce合金、Fe−Ca合金、Ni−Ca合金、Fe−Zr合金、Fe−Ti合金などを添加すればよい。また、REMは、ミッシュメタルの形態で添加してもよい。ミッシュメタルとは、セリウム族希土類元素の混合物であり、具体的には、Ceを40〜50%程度,Laを20〜40%程度含有している。但し、ミッシュメタルには不純物としてCaを含むことが多いので、ミッシュメタルがCaを含む場合は、このCa量を考慮して鋼材に含有させるCa量を調整することが好ましい。   The form of REM, Ca, Zr, and Ti added to the molten steel is not particularly limited. For example, as REM, pure La, pure Ce, pure Y, or pure Ca, pure Zr, pure Ti, and further Fe-Si- Add La alloy, Fe-Si-Ce alloy, Fe-Si-Ca alloy, Fe-Si-La-Ce alloy, Fe-Ca alloy, Ni-Ca alloy, Fe-Zr alloy, Fe-Ti alloy, etc. Good. REM may be added in the form of misch metal. Misch metal is a mixture of cerium group rare earth elements, and specifically contains about 40 to 50% of Ce and about 20 to 40% of La. However, since misch metal often contains Ca as an impurity, when the misch metal contains Ca, it is preferable to adjust the Ca amount to be contained in the steel material in consideration of this Ca amount.

このようにして溶製されたREM添加溶鋼は、常法に従って連続鋳造してスラブとした後、常法に従って熱間圧延(必要に応じて冷間圧延)してREM含有鋼を製造すれば良い。上記溶製方法によって得られる本発明のREM含有鋼は、REMを含んでいれば特に限定されないが、REM添加によるHAZ靱性向上作用やスパッタ発生低減作用を有効に発揮させたい場合には、REM含有鋼の組成は、以下のように制御されていることが好ましい。以下では、溶接構造体や溶接材料などに適用する場合を想定したときに好適に用いられるREM含有鋼の組成を記載している。このようなREM含有鋼用の溶鋼は、当該鋼の組成が得られるように調整されたものを用いればよい。
C :0.01〜0.15%
Si:1.2%以下(0%を含まない)
Mn:3.8%以下(0%を含まない)
P :0.03%以下(0%を含まない)
S :0.03%以下(0%を含まない)
N :0.01%以下(0%を含まない)
Ti:0.2%以下(0%を含まない)
REM:0.0003〜0.05%
以下、各成分について詳しく説明する。
The REM-added molten steel thus produced may be continuously cast according to a conventional method to form a slab, and then hot-rolled (cold rolled as necessary) according to a conventional method to produce a REM-containing steel. . The REM-containing steel of the present invention obtained by the above melting method is not particularly limited as long as it contains REM. However, when it is desired to effectively exhibit the HAZ toughness improving effect and the spatter generation reducing effect by adding REM, The composition of the steel is preferably controlled as follows. Below, the composition of the REM containing steel used suitably when the case where it applies to a welding structure, a welding material, etc. is assumed is described. What is necessary is just to use what was adjusted so that the composition of the said steel might be obtained for such molten steel for REM containing steel.
C: 0.01 to 0.15%
Si: 1.2% or less (excluding 0%)
Mn: 3.8% or less (excluding 0%)
P: 0.03% or less (excluding 0%)
S: 0.03% or less (excluding 0%)
N: 0.01% or less (excluding 0%)
Ti: 0.2% or less (excluding 0%)
REM: 0.0003 to 0.05%
Hereinafter, each component will be described in detail.

Cは、鋼材(母材)の強度や溶接部の焼入れ性を確保するために欠くことのできない元素であり、0.01%以上含有させる必要がある。C量は、好ましくは0.02%以上、より好ましくは0.03%以上である。しかしC量が0.15%を超えると、溶接時のHAZに島状マルテンサイト(MA)が多く生成してHAZの靱性劣化を招くばかりでなく、溶接性にも悪影響を及ぼす。従ってC量は0.15%以下、好ましくは0.1%以下、より好ましくは0.08%以下とする。   C is an element indispensable for ensuring the strength of the steel material (base material) and the hardenability of the welded portion, and needs to be contained in an amount of 0.01% or more. The amount of C is preferably 0.02% or more, more preferably 0.03% or more. However, if the amount of C exceeds 0.15%, a large amount of island martensite (MA) is generated in the HAZ at the time of welding, leading to a deterioration in the toughness of the HAZ, and also adversely affecting the weldability. Therefore, the C content is 0.15% or less, preferably 0.1% or less, more preferably 0.08% or less.

Siは、脱酸作用を有すると共に、固溶強化により鋼材(母材)の強度向上に寄与する元素である。また、Siは溶接部の延性を確保するために作用する元素である。こうした作用を有効に発揮させるには、Siは、0.01%以上含有させることが好ましい。Siは、より好ましくは0.02%以上、更に好ましくは0.05%以上、特に好ましくは0.1%以上含有させるのがよい。   Si is an element that has a deoxidizing action and contributes to improving the strength of the steel (base material) by solid solution strengthening. Si is an element that acts to ensure the ductility of the weld. In order to exhibit such an action effectively, Si is preferably contained in an amount of 0.01% or more. Si is more preferably 0.02% or more, further preferably 0.05% or more, and particularly preferably 0.1% or more.

しかしSi量が1.2%を超えると、溶接材料として上記REM含有鋼を用いたときに、初層溶接部に高温割れが発生する。従ってSi量は、1.2%以下、好ましくは1%以下、より好ましくは0.8%以下とする。また、橋梁、高層建造物、船舶などに使用される鋼材として上記REM含有鋼を用いる場合には、鋼材の溶接性やHAZ靱性を高めるために、Si量は0.3%以下とすることが推奨され、好ましくは0.2%以下、より好ましくは0.1%以下、特に好ましくは0.05%以下とする。Si量を抑えるほどHAZ靱性は向上するが、鋼材の強度が低下することがある。   However, when the amount of Si exceeds 1.2%, when the REM-containing steel is used as a welding material, hot cracking occurs in the first layer weld. Therefore, the Si content is 1.2% or less, preferably 1% or less, more preferably 0.8% or less. Moreover, when using the said REM containing steel as steel materials used for a bridge, a high-rise building, a ship, etc., in order to improve the weldability and HAZ toughness of steel materials, Si amount may be 0.3% or less. Recommended, preferably 0.2% or less, more preferably 0.1% or less, particularly preferably 0.05% or less. Although the HAZ toughness is improved as the amount of Si is suppressed, the strength of the steel material may be reduced.

Mnは、鋼材(母材)の強度向上に寄与する元素である。こうした効果を有効に発揮させるには、0.4%以上、好ましくは0.8%以上、より好ましくは1%以上含有するのがよい。しかしMn量が3.8%を超えると、鋼材(母材)の溶接性を劣化させる他、溶接部の靱性を低下させる。従ってMn量は、3.8%以下、好ましくは3%以下に抑える必要がある。特に、橋梁、高層建造物、船舶などに使用される鋼材として上記REM含有鋼材を用いる場合には、Mn量は2.5%以下、好ましくは2%以下、より好ましくは1.8%以下に抑えるのがよい。   Mn is an element that contributes to improving the strength of the steel material (base material). In order to exhibit such an effect effectively, it is good to contain 0.4% or more, preferably 0.8% or more, more preferably 1% or more. However, if the amount of Mn exceeds 3.8%, the weldability of the steel (base material) is deteriorated and the toughness of the welded portion is reduced. Therefore, the amount of Mn needs to be suppressed to 3.8% or less, preferably 3% or less. In particular, when the above REM-containing steel material is used as a steel material used for bridges, high-rise buildings, ships, etc., the Mn content is 2.5% or less, preferably 2% or less, more preferably 1.8% or less. It is good to suppress.

Pは、偏析し易い元素であり、特に鋼材中の結晶粒界に偏析して靱性を劣化させる元素である。従ってP量は0.03%以下に抑制する必要がある。P量は、好ましくは0.02%以下、より好ましくは0.015%以下である。なお、Pは、通常、不可避的に0.001%程度含有している。   P is an element that is easily segregated, and in particular, is an element that segregates at a grain boundary in a steel material and deteriorates toughness. Therefore, the P amount needs to be suppressed to 0.03% or less. The amount of P is preferably 0.02% or less, more preferably 0.015% or less. In general, P is unavoidably contained in an amount of about 0.001%.

Sは、Mnと結合して硫化物(MnS)を生成し、母材の靱性や板厚方向の延性を劣化させる有害な元素である。また、SがLaやCeなどのREMと結合してREM硫化物(例えば、LaSやCeS)を生成すると、REM含有酸化物の生成が抑えられるためノズル閉塞の発生は抑制される。しかしHAZ靱性向上に寄与する微細なREM含有酸化物の生成も阻害されるため、有用なREM含有鋼を得ることができない。従ってS量は0.03%以下に抑える必要がある。S量は、好ましくは0.02%以下、より好ましくは0.015%以下、更に好ましくは0.01%以下、特に好ましくは0.006%以下である。なお、Sは、通常、不可避的に0.0005%程度含有している。   S is a harmful element that combines with Mn to produce sulfide (MnS) and degrades the toughness of the base material and the ductility in the thickness direction. In addition, when S is combined with REM such as La or Ce to generate REM sulfide (for example, LaS or CeS), generation of REM-containing oxide is suppressed, so that occurrence of nozzle clogging is suppressed. However, since the production of fine REM-containing oxides that contribute to the improvement of HAZ toughness is also inhibited, a useful REM-containing steel cannot be obtained. Therefore, the S amount needs to be suppressed to 0.03% or less. The amount of S is preferably 0.02% or less, more preferably 0.015% or less, still more preferably 0.01% or less, and particularly preferably 0.006% or less. Note that S is usually unavoidably contained in an amount of about 0.0005%.

Nは、窒化物(例えば、ZrNやTiNなど)を析出する元素であり、該窒化物は、溶接時のHAZに生成するオーステナイト粒の粗大化をピン止め効果によって防止し、しかも粒内フェライト変態を促進し、HAZ靱性の向上に寄与する。こうした効果を有効に発揮させるには、Nは0.003%以上含有させることが好ましい。N量は、より好ましくは0.004%以上、更に好ましくは0.005%以上である。Nは多いほど窒化物を形成してオーステナイト粒の微細化を促進してHAZの靱性向上に有効に作用する。しかしN量が0.01%を超えると、固溶N量が増大して母材自体の靱性が劣化する。従ってN量は0.01%以下に抑える必要がある。N量は、好ましくは0.009%以下、より好ましくは0.008%以下である。   N is an element that precipitates nitrides (for example, ZrN and TiN), and the nitrides prevent the austenite grains formed in the HAZ during welding from being pinned and prevent intragranular ferrite transformation. And contribute to the improvement of HAZ toughness. In order to effectively exhibit such an effect, N is preferably contained in an amount of 0.003% or more. The amount of N is more preferably 0.004% or more, and still more preferably 0.005% or more. The more N, the more nitrides are formed to promote the refinement of austenite grains and effectively act to improve the toughness of HAZ. However, if the N content exceeds 0.01%, the solid solution N content increases and the toughness of the base metal itself deteriorates. Therefore, the N amount needs to be suppressed to 0.01% or less. The N amount is preferably 0.009% or less, more preferably 0.008% or less.

Tiは、鋼材中に窒化物や酸化物を生成して鋼材組織の微細化に寄与する元素であり、HAZ靱性の向上や溶接部の高温割れ抑制に有効に作用する。こうした効果を発揮させるには、Tiは、好ましくは0.005%以上、より好ましくは0.007%以上、更に好ましくは0.01%以上とするのがよい。しかし過剰に添加すると粗大な窒化物や酸化物が多量に生成してノズル閉塞を発生させる他、鋼材の靱性を劣化させる。従ってTiは0.2%以下とする。Tiは、好ましくは0.18%以下、より好ましくは0.15%以下、更に好ましくは0.1%以下、特に好ましくは0.08%以下とする。   Ti is an element that contributes to refinement of the steel material structure by generating nitrides and oxides in the steel material, and effectively acts to improve the HAZ toughness and to suppress hot cracking in the weld. In order to exert such an effect, Ti is preferably 0.005% or more, more preferably 0.007% or more, and still more preferably 0.01% or more. However, if added excessively, a large amount of coarse nitrides and oxides are generated to cause nozzle clogging, and the toughness of the steel material is deteriorated. Therefore, Ti is 0.2% or less. Ti is preferably 0.18% or less, more preferably 0.15% or less, still more preferably 0.1% or less, and particularly preferably 0.08% or less.

REMの作用は上述したとおりであり、例えば溶接構造用鋼において、鋼中にREM含有酸化物やREM含有硫化物を生成して粒内フェライト変態核の生成を促進し、鋼材組織の微細化によるHAZ靱性向上に寄与する元素である。また、溶接用ワイヤなどの溶接材料にREMを含有させると、溶接時にスパッタが発生するのを防止することができる。こうした作用を発揮させるには、REMは、0.0003%以上含有させる必要があり、好ましくは0.001%以上、より好ましくは0.002%以上である。しかしREMを過剰に添加すると、固溶REMが生成し、これが偏析することで鋼自体(母材)の靱性が劣化する。従ってREM量は0.05%以下に抑えるべきである。REM量は、好ましくは0.03%以下、より好ましくは0.01%以下、更に好ましくは0.007%以下である。   The action of REM is as described above. For example, in welded structural steel, REM-containing oxides and REM-containing sulfides are generated in the steel to promote the formation of intragranular ferrite transformation nuclei. It is an element that contributes to improving HAZ toughness. Moreover, when REM is contained in a welding material such as a welding wire, it is possible to prevent spatter from being generated during welding. In order to exert such an action, REM needs to be contained by 0.0003% or more, preferably 0.001% or more, and more preferably 0.002% or more. However, when REM is added excessively, solid solution REM is generated and segregates, thereby degrading the toughness of the steel itself (base material). Therefore, the amount of REM should be suppressed to 0.05% or less. The amount of REM is preferably 0.03% or less, more preferably 0.01% or less, and still more preferably 0.007% or less.

なお、本発明において、REMとは、ランタノイド元素(LaからLuまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味である。これらの元素のなかでも、La、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有するのがよい。   In the present invention, REM means a lanthanoid element (15 elements from La to Lu), Sc (scandium) and Y (yttrium). Among these elements, it is preferable to contain at least one element selected from the group consisting of La, Ce and Y, more preferably La and / or Ce.

上記REM含有鋼の残部成分は、鉄および不可避不純物(例えば、MgやAs,Seなど)である。   The remaining components of the REM-containing steel are iron and inevitable impurities (for example, Mg, As, Se, etc.).

上記REM含有鋼は、更に他の元素として、
[1]Zr:0.1%以下(0%を含まない)、Al:0.1%以下(0%を含まない)、Ca:0.01%以下(0%を含まない)よりなる群から選ばれる少なくとも1種、
[2]Cu:2%以下(0%を含まない)および/またはNi:12%以下(0%を含まない)、
[3]Cr:3%以下(0%を含まない)および/またはMo:1%以下(0%を含まない)、
[4]Nb:0.25%以下(0%を含まない)および/またはV:0.1%以下(0%を含まない)、
[5]B:0.005%以下(0%を含まない)、
等の元素を含有することも有効である。こうした範囲を定めた理由は以下の通りである。
The REM-containing steel is still another element,
[1] A group consisting of Zr: 0.1% or less (not including 0%), Al: 0.1% or less (not including 0%), Ca: 0.01% or less (not including 0%) At least one selected from
[2] Cu: 2% or less (not including 0%) and / or Ni: 12% or less (not including 0%),
[3] Cr: 3% or less (not including 0%) and / or Mo: 1% or less (not including 0%),
[4] Nb: 0.25% or less (not including 0%) and / or V: 0.1% or less (not including 0%),
[5] B: 0.005% or less (excluding 0%),
It is also effective to contain such elements. The reasons for setting these ranges are as follows.

《[1]Zr、Al、Ca》
Zr、Al、Caは、いずれも鋼材のHAZ靱性向上に関与する元素であり、単独で、或いは任意に選択される2種以上を含有してもよい。
<< [1] Zr, Al, Ca >>
Zr, Al, and Ca are all elements involved in improving the HAZ toughness of the steel material, and may contain two or more selected alone or arbitrarily.

特に、Zrは、上記Tiと同様の作用を有する元素である。即ち、鋼材中に窒化物や酸化物を生成して鋼材組織の微細化に寄与する元素であり、HAZ靱性の向上や溶接部の高温割れ抑制に有効に作用する。こうした効果を発揮させるには、Zrは、好ましくは0.001%以上、より好ましくは0.003%以上、更に好ましくは0.005%以上とするのがよい。しかし過剰に添加すると粗大な窒化物や酸化物が多量に生成してノズル閉塞を発生させる他、鋼材の靱性を劣化させる。従ってZrは、好ましくは0.1%以下とする。Zrは、より好ましくは0.08%以下、更に好ましくは0.06%以下とする。   In particular, Zr is an element having the same action as Ti. That is, it is an element that contributes to the refinement of the steel material structure by generating nitrides and oxides in the steel material, and effectively acts to improve the HAZ toughness and to suppress the hot cracking of the welded portion. In order to exert such an effect, Zr is preferably 0.001% or more, more preferably 0.003% or more, and further preferably 0.005% or more. However, if added excessively, a large amount of coarse nitrides and oxides are generated to cause nozzle clogging, and the toughness of the steel material is deteriorated. Therefore, Zr is preferably 0.1% or less. Zr is more preferably 0.08% or less, still more preferably 0.06% or less.

Zrと上記Tiを併用する場合は、合計で、好ましくは0.005%以上、より好ましくは0.007%以上、更に好ましくは0.01%以上とするのがよく、好ましくは0.3%以下、より好ましくは0.2%以下、更に好ましくは0.1%以下、特に好ましくは0.07%以下、最も好ましくは0.06%以下とするのがよい。   When Zr and Ti are used in combination, the total is preferably 0.005% or more, more preferably 0.007% or more, still more preferably 0.01% or more, preferably 0.3%. Below, more preferably 0.2% or less, still more preferably 0.1% or less, particularly preferably 0.07% or less, and most preferably 0.06% or less.

Alは、脱酸力の強い元素であり、適正量の添加であれば、清浄度の向上や他元素の歩留まり安定化に寄与する元素である。しかし過剰に添加すると鋼材のHAZ靱性向上に有効に作用するREM含有酸化物を還元してHAZ靱性を向上させることができず、また溶接材料の場合は、溶接時にスパッタが発生するのを防止できないため、溶接作業性を悪化させる原因となる。従ってAl量は0.1%以下に抑えることが好ましい。Al量は、より好ましくは0.05%以下、更に好ましくは0.03%以下、特に好ましくは0.01%以下である。なお、Alは、通常、不可避的に0.0005%程度含有している。   Al is an element having a strong deoxidizing power, and if it is added in an appropriate amount, it is an element that contributes to improving the cleanliness and stabilizing the yield of other elements. However, if excessively added, the REM-containing oxide that effectively works to improve the HAZ toughness of the steel material cannot be reduced to improve the HAZ toughness, and in the case of a welding material, spatter cannot be prevented during welding. For this reason, the welding workability is deteriorated. Therefore, the Al content is preferably suppressed to 0.1% or less. The amount of Al is more preferably 0.05% or less, still more preferably 0.03% or less, and particularly preferably 0.01% or less. Al is usually unavoidably contained in an amount of about 0.0005%.

Caは、鋼材中の酸化物や硫化物などの形態や組成を制御して靱性向上に寄与する元素である。こうした効果を有効に発揮させるには、好ましくは0.0003%以上、より好ましくは0.0005%以上含有させるのがよい。しかしCaを過剰に添加すると、粗大な硫化物が生成して鋼材(母材)の靱性が劣化する。従ってCa量は、好ましくは0.01%以下、より好ましくは0.007%以下、更に好ましくは0.005%以下とするのがよい。   Ca is an element that contributes to improving toughness by controlling the form and composition of oxides and sulfides in steel. In order to effectively exhibit such an effect, the content is preferably 0.0003% or more, more preferably 0.0005% or more. However, when Ca is added excessively, coarse sulfides are generated and the toughness of the steel (base material) is deteriorated. Therefore, the Ca content is preferably 0.01% or less, more preferably 0.007% or less, and still more preferably 0.005% or less.

《[2]Cuおよび/またはNi》
CuとNiは、いずれも鋼材の強度を高めるのに寄与する元素であり、夫々単独で、或いは複合して添加できる。しかしCu量が2%を超えると、母材の強度を著しく高め過ぎて母材の靱性を却って劣化させるため、HAZ靱性も低下する。従ってCu量は、好ましくは2%以下、より好ましくは1.8%以下、更に好ましくは1.5%以下とするのがよい。なお、Cu添加による作用を有効に発揮させるには、好ましくは0.05%以上、より好ましくは0.1%以上、更に好ましくは0.2%以上含有させるのがよい。
<< [2] Cu and / or Ni >>
Cu and Ni are both elements that contribute to increasing the strength of the steel material, and can be added alone or in combination. However, if the amount of Cu exceeds 2%, the strength of the base material is remarkably increased and the toughness of the base material is deteriorated, so that the HAZ toughness is also lowered. Therefore, the amount of Cu is preferably 2% or less, more preferably 1.8% or less, and still more preferably 1.5% or less. In order to effectively exhibit the action of Cu addition, it is preferably 0.05% or more, more preferably 0.1% or more, and still more preferably 0.2% or more.

Ni量が12%を超えると、上記Cuと同様に、母材の強度を著しく高め過ぎて母材の靱性を劣化させるため、HAZ靱性も低下する。従ってNi量は、好ましくは12%以下、より好ましくは11.5%以下、更に好ましくは11%以下、特に好ましくは5%以下、最も好ましくは3.5%以下とするのがよい。なお、Ni添加による作用を有効に発揮させるには、好ましくは0.05%以上、より好ましくは0.1%以上、更に好ましくは0.2%以上含有させるのがよい。   When the Ni content exceeds 12%, the strength of the base material is remarkably increased and the toughness of the base material is deteriorated as in the case of Cu, so that the HAZ toughness is also lowered. Therefore, the Ni content is preferably 12% or less, more preferably 11.5% or less, still more preferably 11% or less, particularly preferably 5% or less, and most preferably 3.5% or less. In order to effectively exhibit the effect of Ni addition, it is preferably 0.05% or more, more preferably 0.1% or more, and still more preferably 0.2% or more.

《[3]Crおよび/またはMo》
CrとMoは、いずれも鋼材の強度を高めるのに寄与する元素であり、夫々単独で、或いは複合して添加できる。しかしCrが3%を超えると、母材の強度を著しく高め過ぎて母材の靱性を劣化させるため、HAZ靱性を低下する。従ってCr量は、好ましくは3%以下、より好ましくは2%以下、更に好ましくは1%以下とするのがよい。なお、Cr添加による作用を有効に発揮させるには、好ましくは0.05%以上、より好ましくは0.1%以上、更に好ましくは0.15%以上含有させるのがよい。
<< [3] Cr and / or Mo >>
Cr and Mo are both elements that contribute to increasing the strength of the steel material, and can be added alone or in combination. However, if Cr exceeds 3%, the strength of the base material is remarkably increased and the toughness of the base material is deteriorated, so that the HAZ toughness is lowered. Therefore, the Cr content is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less. In order to effectively exhibit the effect of Cr addition, it is preferably 0.05% or more, more preferably 0.1% or more, and still more preferably 0.15% or more.

MoもCrと同様に、1%を超えると、母材の強度を著しく高め過ぎて母材の靱性を劣化させるため、HAZ靱性を低下する。従ってMo量は、好ましくは1%以下、より好ましくは0.9%以下、更に好ましくは0.8%以下とするのがよい。なお、Mo添加による作用を有効に発揮させるには、好ましくは0.05%以上、より好ましくは0.1%以上、更に好ましくは0.15%以上含有させるのがよい。   Similarly to Cr, when Mo exceeds 1%, the strength of the base material is significantly increased and the toughness of the base material is deteriorated, so that the HAZ toughness is lowered. Therefore, the Mo amount is preferably 1% or less, more preferably 0.9% or less, and still more preferably 0.8% or less. In order to effectively exhibit the effect of adding Mo, it is preferably 0.05% or more, more preferably 0.1% or more, and still more preferably 0.15% or more.

《[4]Nbおよび/またはV》
NbとVは、いずれも炭窒化物として析出し、該炭窒化物のピン止め効果により、溶接時にHAZのオーステナイト粒が粗大化するのを防止し、HAZ靱性を向上させる作用を有する元素である。NbとVは、夫々単独で、或いは複合して添加することができる。しかしNb量が0.25%を超えると、析出する炭窒化物が粗大化し、HAZ靱性を却って劣化させる。従ってNb量は、好ましくは0.25%以下、より好ましくは0.2%以下、更に好ましくは0.15%以下とするのがよい。なお、Nb添加による作用を有効に発揮させるには、好ましくは0.002%以上、より好ましくは0.01%以上、更に好ましくは0.02%以上含有させるのがよい。
<< [4] Nb and / or V >>
Nb and V are elements that have the action of precipitating as carbonitride and preventing the austenite grains of HAZ from coarsening during welding due to the pinning effect of the carbonitride and improving the HAZ toughness. . Nb and V can be added alone or in combination. However, if the Nb content exceeds 0.25%, the precipitated carbonitrides become coarse and deteriorate the HAZ toughness. Accordingly, the Nb content is preferably 0.25% or less, more preferably 0.2% or less, and still more preferably 0.15% or less. In order to effectively exhibit the effect of Nb addition, the content is preferably 0.002% or more, more preferably 0.01% or more, and still more preferably 0.02% or more.

VもNbと同様に、0.1%を超えると、析出する炭窒化物が粗大化し、HAZ靱性を却って劣化させる。従ってV量は、好ましくは0.1%以下、より好ましくは0.09%以下、更に好ましくは0.08%以下とするのがよい。なお、V添加による作用を有効に発揮させるには、好ましくは0.002%以上、より好ましくは0.005%以上、更に好ましくは0.01%以上含有させるのがよい。   If V exceeds 0.1% as in Nb, the precipitated carbonitrides become coarse and deteriorate the HAZ toughness. Therefore, the V amount is preferably 0.1% or less, more preferably 0.09% or less, and still more preferably 0.08% or less. In order to effectively exhibit the effect of V addition, the content is preferably 0.002% or more, more preferably 0.005% or more, and still more preferably 0.01% or more.

《[5]B(ホウ素)》
Bは、粒界フェライトの生成を抑制して靱性を向上させる元素である。しかしB量が0.005%を超えると、オーステナイト粒界にBNとして析出し、靱性の低下を招く。従ってB量は、好ましくは0.005%以下、より好ましくは0.004%以下とするのがよい。なお、B添加による作用を有効に発揮させるには、好ましくは0.001%以上、より好ましくは0.0015%以上含有させるのがよい。
<< [5] B (boron) >>
B is an element that suppresses the formation of grain boundary ferrite and improves toughness. However, if the amount of B exceeds 0.005%, it precipitates as BN at the austenite grain boundary, leading to a decrease in toughness. Therefore, the B content is preferably 0.005% or less, more preferably 0.004% or less. In order to effectively exhibit the effect of addition of B, the content is preferably 0.001% or more, more preferably 0.0015% or more.

上記成分組成を満足するREM含有鋼は、溶接時に熱影響を受けてもHAZ靱性が良好な鋼材となる。この鋼材は、板厚を約3.0mm以上の厚鋼板としても良好なHAZ靱性を示す。また、溶接材料(溶接用ワイヤ、例えば、ソリッドワイヤ)として上記REM含有鋼材を用いると、スパッタ発生を防止できる。   A REM-containing steel that satisfies the above component composition is a steel material having good HAZ toughness even if it is affected by heat during welding. This steel material exhibits good HAZ toughness even as a thick steel plate having a plate thickness of about 3.0 mm or more. Moreover, when the above-mentioned REM-containing steel material is used as a welding material (welding wire, for example, a solid wire), generation of spatter can be prevented.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、下記実験は実験室で行った。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention. The following experiment was conducted in a laboratory.

高周波誘導溶解炉(容量500kg)を用い、下記表2に示す成分組成(質量%)の供試鋼(残部は鉄および不可避不純物)を溶製し、150kgのインゴットに鋳造して冷却した。詳細には、まず、高周波誘導溶解炉で原料鋼を溶解し、1600℃に保持した状態で、REM添加前溶鋼の溶存酸素量QOfを、C、Si、Mn、AlおよびTiから選ばれる少なくとも1種の元素を用いて脱酸して調整した。この溶存酸素量QOfを、固体電解質を用いた一般的な起電力測定法によって測定した。測定結果を下記表1に示す。 Using a high-frequency induction melting furnace (capacity: 500 kg), test steels having the component composition (mass%) shown in Table 2 below (the balance is iron and inevitable impurities) were melted, cast into a 150 kg ingot, and cooled. Specifically, first, the raw steel is melted in a high-frequency induction melting furnace, and the dissolved oxygen amount Q Of of the molten steel before REM addition is at least selected from C, Si, Mn, Al and Ti in a state where the raw steel is maintained at 1600 ° C. It adjusted by deoxidizing using 1 type of elements. This dissolved oxygen amount Q Of was measured by a general electromotive force measurement method using a solid electrolyte. The measurement results are shown in Table 1 below.

次いで、REM添加前、および/または、REM添加後に、REM以外の成分が下記表2に示す範囲となるように調整しつつ、下記表1に示す量のREM(QREM)を上記の溶鋼に添加した。下記表1には、上記溶存酸素量QOfとREM添加量QREMの値を下記(1)’式に代入して算出したZ値(上記(1)式の左辺の値)を併せて示す。
Z=2logQREM+3logQOf ・・・・(1)’
Next, before the REM addition and / or after the REM addition, the amount of REM (Q REM ) shown in Table 1 below is adjusted to the above molten steel while adjusting the components other than the REM within the range shown in Table 2 below. Added. Table 1 below also shows Z values (values on the left side of the above equation (1)) calculated by substituting the values of the dissolved oxygen amount Q Of and the REM addition amount Q REM into the following equation (1) ′. .
Z = 2logQ REM + 3logQ Of ... (1) '

なお、REMはLaを約25%とCeを約50%含有するミッシュメタルの形態で、TiはFe−Ti合金の形態で、ZrはFe−Zr合金の形態で、CaはNi−Ca合金の形態で、夫々添加した。   REM is in the form of misch metal containing about 25% La and about 50% Ce, Ti is in the form of Fe-Ti alloy, Zr is in the form of Fe-Zr alloy, and Ca is in the form of Ni-Ca alloy. Each was added in form.

REM添加後の溶鋼を、高周波誘導溶解炉から取鍋に速やかに出鋼し、この取鍋を重量測定装置(ロードセル)を備えた鋳型の上方に吊り下げた。その後、取鍋底部に設けられたφ12mmの取鍋ノズルを開放し、取鍋下方の鋳型に溶鋼を出鋼した。取鍋から鋳型に出鋼するときの溶鋼温度は約1600℃となるように、高周波誘導溶解炉で溶鋼の温度を調整した。取鍋ノズルを介して取鍋から鋳型へ溶鋼を出鋼している間、鋳型に取り付けたロードセルによって、鋳型内に流出した溶鋼重量(出鋼量)を連続的に測定した。   The molten steel after the addition of REM was quickly put out from a high frequency induction melting furnace into a ladle, and the ladle was suspended above a mold equipped with a weight measuring device (load cell). Then, the φ12 mm ladle nozzle provided at the bottom of the ladle was opened, and molten steel was put out in a mold below the ladle. The temperature of the molten steel was adjusted with a high-frequency induction melting furnace so that the molten steel temperature when the steel was drawn from the ladle into the mold was about 1600 ° C. While the molten steel was discharged from the ladle to the mold via the ladle nozzle, the weight of the molten steel flowing out into the mold (the amount of steel output) was continuously measured by a load cell attached to the mold.

本実施例では、この出鋼量に基づいてノズル閉塞の有無を評価した。詳細には、出鋼を開始してから120秒経過した時点における出鋼量を基準値とし、この出鋼量が145kg以上である場合を、ノズル閉塞が無く、合格とする。下記表1に、出鋼を開始してから120秒経過した時点における出鋼量(kg)を示す。   In this example, the presence or absence of nozzle clogging was evaluated based on the amount of steel output. Specifically, the amount of steel output at the time when 120 seconds have passed since the start of steel output is taken as a reference value, and when this amount of steel output is 145 kg or more, there is no nozzle clogging and the result is passed. Table 1 below shows the steel output (kg) when 120 seconds have elapsed since the start of steel output.

また、図1に、出鋼を開始してからの経過時間(秒)に対する出鋼量(kg)の経時的変化をグラフに示す。なお、図1には、下記表1に示した例のうち、代表例としてNo.1と5(以上、本発明例)、No.10と14(以上、比較例)の結果を示す。図1中、実線はNo.1の結果、細かい点線はNo.5の結果、一点鎖線はNo.10の結果、粗い点線はNo.14の結果を夫々示している。   FIG. 1 is a graph showing the change over time in the amount of steel output (kg) with respect to the elapsed time (seconds) from the start of steel output. In addition, in FIG. 1, No. is shown as a representative example among the examples shown in Table 1 below. Nos. 1 and 5 (invention examples above), No. 1 The result of 10 and 14 (above, a comparative example) is shown. In FIG. As a result of No. 1, the fine dotted line is No. As a result of FIG. As a result of No. 10, the rough dotted line is No. 14 results are shown respectively.

下記表1と図1から次のように考察できる。No.1〜9、17は、本発明で規定する条件を満足するようにREM添加鋼を製造した例である。これらの例は、出鋼を開始してから120秒経過した時点で145kg以上のREM添加溶鋼を出鋼できており、更に出鋼を続けてもノズル閉塞は発生せず、取鍋内のREM添加溶鋼を全て鋳型に出鋼できた。   The following table 1 and FIG. 1 can be considered as follows. No. 1 to 9 and 17 are examples in which the REM-added steel was manufactured so as to satisfy the conditions specified in the present invention. In these examples, 145 kg or more of REM-added molten steel has been produced when 120 seconds have elapsed from the start of steeling, and nozzle clogging does not occur even when steeling is continued, and the REM in the ladle All of the added molten steel was produced in the mold.

これに対し、No.10〜16は、本発明で規定する条件のいずれかを満足せずにREM添加鋼を製造した例である。これらのうち、No.10〜15は、上記Z値が−11を超えた例であり、REM添加前溶鋼の溶存酸素量QOfとREM添加量QREMのバランスが悪く、溶鋼中に多量のREM含有酸化物が生成し、このREM含有酸化物がノズル内壁に付着してノズル閉塞が発生した。その結果、出鋼開始後120秒経過時点での出鋼重量は145kg未満と少なく、更に出鋼を続けるとノズルが完全に閉塞して取鍋内にはREM添加溶鋼が残った。一方、No.16は、上記Z値は本発明で規定する要件を満足しているものの、REM添加前溶鋼の溶存酸素量QOfが0.015%を超えた例であり、REM含有酸化物の他、REM以外の元素の酸化物も多く生成し、これらの酸化物がノズル内壁に付着してノズル閉塞を発生させていた。その結果、出鋼開始後120秒経過時点での出鋼重量は145kg未満と少なく、更に出鋼を続けるとノズルが完全に閉塞して取鍋内にはREM添加溶鋼が残った。 In contrast, no. 10 to 16 are examples in which the REM-added steel was manufactured without satisfying any of the conditions defined in the present invention. Of these, No. 10 to 15 are examples in which the Z value exceeds -11, and the balance between the dissolved oxygen amount Q Of and the REM addition amount Q REM of the molten steel before REM addition is poor, and a large amount of REM-containing oxide is generated in the molten steel. Then, this REM-containing oxide adhered to the inner wall of the nozzle, resulting in nozzle clogging. As a result, the steel output weight at the time of 120 seconds after the start of steel output was as low as less than 145 kg. When the steel output was further continued, the nozzle was completely closed and the REM-added molten steel remained in the ladle. On the other hand, no. 16 is an example in which the amount of dissolved oxygen Q Of the molten steel before REM addition exceeded 0.015%, although the Z value satisfies the requirements specified in the present invention. In addition to the REM-containing oxide, REM Many oxides of other elements were also produced, and these oxides adhered to the inner wall of the nozzle and caused nozzle clogging. As a result, the steel output weight at the time of 120 seconds after the start of steel output was as low as less than 145 kg. When the steel output was further continued, the nozzle was completely closed and the REM-added molten steel remained in the ladle.

上記の結果は、表1の代表例をプロットした図1を参照すると一層明瞭に読み取れる。図1から明らかなように、本発明法によって製造したNo.1と5(実線と細かい点線)では、出鋼を開始してから120秒経過した時点で145kg以上の溶鋼を出鋼できており、時間の経過と共に出鋼量は益々増大している。これに対し、本発明法に基づかないNo.10と14(一点鎖線と粗い点線)では、出鋼を開始してから120秒経過した時点での溶鋼の出鋼量は145kg未満と少なく、時間が更に経過しても出鋼量は殆ど変わらなかった。詳細には、No.10では100秒経過時点から、No.14では150秒経過時点から、出鋼量はほぼ横ばいとなり、取鍋からの出鋼がほぼ停止していることが分かる。   The above results can be read more clearly with reference to FIG. As is apparent from FIG. In 1 and 5 (solid line and fine dotted line), 145 kg or more of molten steel has been produced when 120 seconds have elapsed since the start of steel production, and the amount of steel output has increased with time. On the other hand, no. In Nos. 10 and 14 (dashed line and coarse dotted line), the amount of molten steel produced is less than 145 kg when 120 seconds have elapsed since the start of steel production, and the amount of steel produced remains almost unchanged even after more time has passed. There wasn't. Specifically, no. No. 10 from the point when 100 seconds passed, In FIG. 14, it can be seen that the amount of steel output is almost flat after 150 seconds, and the steel output from the ladle is almost stopped.

更に、本発明に規定する上記(1)式が、鋳造時のノズル閉塞の有用な指標となることを、図2および図3を用いて明らかにする。これらの図では、下記表1のうち、溶存酸素量QOfが本発明で規定する要件から外れているNo.16を除いたNo.1〜15、17の結果をプロットしている。 Furthermore, it will be clarified with reference to FIGS. 2 and 3 that the above formula (1) defined in the present invention is a useful index of nozzle clogging during casting. In these figures, in Table 1 below, the dissolved oxygen amount Q Of deviates from the requirement defined in the present invention. No. 16 was removed. The results of 1 to 15 and 17 are plotted.

まず、図2は、REM添加前溶鋼の溶存酸素量QOfとREM添加量QREMの関係を示す。詳細には、図2中、本発明の要件を満足するNo.1〜9、17の結果(ノズル閉塞なし)を○で示し、本発明の要件のいずれかを満足しないNo.10〜15の結果(ノズル閉塞あり)を×で示す。 First, FIG. 2 shows the relationship between the dissolved oxygen amount Q Of and the REM addition amount Q REM of the molten steel before REM addition. Specifically, in FIG. The results of Nos. 1 to 9 and 17 (no nozzle clogging) are indicated by ◯, and No. 1 does not satisfy any of the requirements of the present invention. The results of 10 to 15 (with nozzle clogging) are indicated by x.

図2に示した直線は、上記(1)’式を示しており、ノズル閉塞の有無は、上記(1)’式を境に明瞭に棲み分けされ、溶存酸素量QOfとREM添加量QREMとは、非常に高い相関関係を有していることが読み取れる。即ち、REM添加前溶鋼の溶存酸素量QOfを0.0001〜0.015%の範囲に調整した後、REMを添加する際に、溶存酸素量QOfに応じて上記Z値が−11以下(直線より下の領域)となるようにREMを添加すれば、取鍋から鋳型に出鋼するときのノズル閉塞を防止できることが分かる。 The straight line shown in FIG. 2 shows the above formula (1) ′, and whether or not the nozzle is blocked is clearly divided by the above formula (1) ′, and the dissolved oxygen amount Q Of and the REM addition amount Q It can be seen that REM has a very high correlation. That is, after adjusting the dissolved oxygen amount Q Of of the molten steel before REM addition to a range of 0.0001 to 0.015%, when adding REM, the Z value is -11 or less according to the dissolved oxygen amount Q Of. It can be seen that if REM is added so as to be (region below the straight line), nozzle clogging can be prevented when steel is extracted from the ladle to the mold.

また、図3は、上記Z値と出鋼量の関係をグラフ化したものである。図3から明らかなように、上記Z値が−11を境にして出鋼量は大きく変化しており、Z値は、ノズル閉塞防止の有用な指標となることが分かる。   FIG. 3 is a graph showing the relationship between the Z value and the amount of steel output. As is clear from FIG. 3, the amount of steel output changes greatly with the Z value at -11 as a boundary, and it can be seen that the Z value is a useful index for preventing nozzle clogging.

Figure 2011038181
Figure 2011038181

Figure 2011038181
Figure 2011038181

Claims (6)

C :0.01〜0.15%(質量%の意味。以下成分について同じ。)、
Si:1.2%以下(0%を含まない)、
Mn:3.8%以下(0%を含まない)、
P :0.03%以下(0%を含まない)、
S :0.03%以下(0%を含まない)、
N :0.01%以下(0%を含まない)、
Ti:0.2%以下(0%を含まない)および
REM:0.0003〜0.05%を含有し、
残部が鉄および不可避不純物からなるREM含有鋼を製造する方法であって、
REM添加前の溶鋼中の溶存酸素量QOfを0.0001〜0.015%の範囲に調整し、その後にREMを添加するにあたっては、前記溶存酸素量QOfとREM添加量QREMが下記(1)式を満足する量のREMを添加して溶製することを特徴とするREM含有鋼の製造方法。
2logQREM+3logQOf≦−11 ・・・(1)
C: 0.01 to 0.15% (meaning mass%, the same applies to the following components),
Si: 1.2% or less (excluding 0%),
Mn: 3.8% or less (excluding 0%),
P: 0.03% or less (excluding 0%),
S: 0.03% or less (excluding 0%),
N: 0.01% or less (excluding 0%),
Ti: 0.2% or less (excluding 0%) and REM: 0.0003-0.05%,
A method for producing REM-containing steel, the balance of which is iron and inevitable impurities,
When the dissolved oxygen amount Q Of in the molten steel before REM addition is adjusted to a range of 0.0001 to 0.015% and then REM is added, the dissolved oxygen amount Q Of and the REM addition amount Q REM are as follows. (1) A method for producing a REM-containing steel, wherein an amount of REM satisfying the formula is added and melted.
2logQ REM + 3logQ Of ≦ -11 (1)
前記REM含有鋼が、更に他の元素として、
Zr:0.1%以下(0%を含まない)、
Al:0.1%以下(0%を含まない)、
Ca:0.01%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含有する請求項1に記載の製造方法。
The REM-containing steel is still another element,
Zr: 0.1% or less (excluding 0%),
Al: 0.1% or less (excluding 0%),
The manufacturing method according to claim 1, comprising at least one selected from the group consisting of Ca: 0.01% or less (not including 0%).
前記REM含有鋼が、更に他の元素として、
Cu:2%以下(0%を含まない)および/または
Ni:12%以下(0%を含まない)を含有する請求項1または2に記載の製造方法。
The REM-containing steel is still another element,
The manufacturing method according to claim 1 or 2, comprising Cu: 2% or less (not including 0%) and / or Ni: 12% or less (not including 0%).
前記REM含有鋼が、更に他の元素として、
Cr:3%以下(0%を含まない)および/または
Mo:1%以下(0%を含まない)を含有する請求項1〜3のいずれかに記載の製造方法。
The REM-containing steel is still another element,
The manufacturing method in any one of Claims 1-3 containing Cr: 3% or less (excluding 0%) and / or Mo: 1% or less (not including 0%).
前記REM含有鋼が、更に他の元素として、
Nb:0.25%以下(0%を含まない)および/または
V :0.1%以下(0%を含まない)を含有する請求項1〜4のいずれかに記載の製造方法。
The REM-containing steel is still another element,
The manufacturing method according to any one of claims 1 to 4, comprising Nb: not more than 0.25% (not including 0%) and / or V: not more than 0.1% (not including 0%).
前記REM含有鋼が、更に他の元素として、
B:0.005%以下(0%を含まない)を含有する請求項1〜5のいずれかに記載の製造方法。
The REM-containing steel is still another element,
B: The manufacturing method in any one of Claims 1-5 containing 0.005% or less (0% is not included).
JP2010142937A 2009-07-15 2010-06-23 Method for producing REM-containing steel Expired - Fee Related JP5503428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142937A JP5503428B2 (en) 2009-07-15 2010-06-23 Method for producing REM-containing steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009167256 2009-07-15
JP2009167256 2009-07-15
JP2010142937A JP5503428B2 (en) 2009-07-15 2010-06-23 Method for producing REM-containing steel

Publications (2)

Publication Number Publication Date
JP2011038181A true JP2011038181A (en) 2011-02-24
JP5503428B2 JP5503428B2 (en) 2014-05-28

Family

ID=43766225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142937A Expired - Fee Related JP5503428B2 (en) 2009-07-15 2010-06-23 Method for producing REM-containing steel

Country Status (1)

Country Link
JP (1) JP5503428B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136760A (en) * 2018-09-21 2019-01-04 常熟理工学院 It is a kind of can heat resistanceheat resistant processing deposited metal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221643A (en) * 2002-01-31 2003-08-08 Jfe Steel Kk Steel product showing excellent toughness of heat- affected zone in ultra-high heat input welding
JP2003286540A (en) * 2002-01-22 2003-10-10 Jfe Steel Kk Thick steel plate showing excellent toughness at heat affected zone in extra-large heat input welding and its manufacturing process
JP2004176100A (en) * 2002-11-26 2004-06-24 Jfe Steel Kk High strength thick steel plate with excellent toughness of heat-affected zone in ultra-high heat input welding, and its manufacturing method
JP2004332034A (en) * 2003-05-06 2004-11-25 Jfe Steel Kk Method for producing thick high tension steel plate excellent in heat affected zone ctod characteristic
JP2006257497A (en) * 2005-03-17 2006-09-28 Jfe Steel Kk Method for producing low yield ratio steel material for low temperature, excellent in toughness in welded part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286540A (en) * 2002-01-22 2003-10-10 Jfe Steel Kk Thick steel plate showing excellent toughness at heat affected zone in extra-large heat input welding and its manufacturing process
JP2003221643A (en) * 2002-01-31 2003-08-08 Jfe Steel Kk Steel product showing excellent toughness of heat- affected zone in ultra-high heat input welding
JP2004176100A (en) * 2002-11-26 2004-06-24 Jfe Steel Kk High strength thick steel plate with excellent toughness of heat-affected zone in ultra-high heat input welding, and its manufacturing method
JP2004332034A (en) * 2003-05-06 2004-11-25 Jfe Steel Kk Method for producing thick high tension steel plate excellent in heat affected zone ctod characteristic
JP2006257497A (en) * 2005-03-17 2006-09-28 Jfe Steel Kk Method for producing low yield ratio steel material for low temperature, excellent in toughness in welded part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136760A (en) * 2018-09-21 2019-01-04 常熟理工学院 It is a kind of can heat resistanceheat resistant processing deposited metal

Also Published As

Publication number Publication date
JP5503428B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP4612735B2 (en) Manufacturing method of thick high-strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness, and thick high strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness
CN103540844B (en) Low temperature resistant H profile steel and production method thereof
JP4681690B2 (en) Manufacturing method of thick high strength steel plate with excellent heat input heat affected zone toughness, and thick high strength steel plate with high heat input heat affected zone toughness
JP5651090B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP2007070660A (en) High strength thin steel sheet having excellent formability, and method for producing the same
CN111926259B (en) Low alloy steel for high heat input welding and preparation method thereof
JP5949682B2 (en) Manufacturing method of steel plate for high heat input welding with excellent brittle crack propagation stop properties
JP2008285741A (en) High-strength hot rolled steel sheet and method for producing the same
CN108677084B (en) Production method of low-inclusion clean steel
JP6306353B2 (en) Method for producing slab for ferritic stainless steel cold rolled steel sheet and method for producing ferritic stainless steel cold rolled steel sheet
WO2023103514A1 (en) Pipeline steel having excellent acid resistance property, and manufacturing method therefor
JP2019534382A (en) Cold-rolled steel sheet for flux-cored wire and manufacturing method thereof
JP5818343B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP5708349B2 (en) Steel with excellent weld heat affected zone toughness
JP6048627B2 (en) Manufacturing method of steel plates for high heat input welding
JP2012046815A (en) METHOD FOR PRODUCING Zr-CONTAINING STEEL
JP5503428B2 (en) Method for producing REM-containing steel
JP2012172211A (en) METHOD OF MANUFACTURING LOW Ni AUSTENITIC STAINLESS STEEL SHEET
JP7126077B2 (en) Method for producing high-manganese steel billet, method for producing high-manganese steel billet and high-manganese steel plate
JP2008248293A (en) High strength steel for welded structure having excellent surface crack resistance and method for producing the same
JP7207199B2 (en) Steel material and its manufacturing method
JPWO2016068094A1 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
JP4357080B2 (en) Solidified grain refined steel and solidified grain refined austenitic stainless steel and their welded joints
JP5857693B2 (en) Steel plate for large heat input and manufacturing method thereof
JP5087965B2 (en) Extremely low carbon ferritic stainless steel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140314

R150 Certificate of patent or registration of utility model

Ref document number: 5503428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees