JP3733898B2 - Manufacturing method of thick high-tensile steel with excellent heat input weld toughness - Google Patents

Manufacturing method of thick high-tensile steel with excellent heat input weld toughness Download PDF

Info

Publication number
JP3733898B2
JP3733898B2 JP2001367737A JP2001367737A JP3733898B2 JP 3733898 B2 JP3733898 B2 JP 3733898B2 JP 2001367737 A JP2001367737 A JP 2001367737A JP 2001367737 A JP2001367737 A JP 2001367737A JP 3733898 B2 JP3733898 B2 JP 3733898B2
Authority
JP
Japan
Prior art keywords
less
toughness
steel material
steel
heat input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001367737A
Other languages
Japanese (ja)
Other versions
JP2003166017A (en
Inventor
克行 一宮
健次 大井
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001367737A priority Critical patent/JP3733898B2/en
Publication of JP2003166017A publication Critical patent/JP2003166017A/en
Application granted granted Critical
Publication of JP3733898B2 publication Critical patent/JP3733898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、造船、建築、土木等の各分野で溶接構造物用として好適な高張力鋼材に係わり、とくに、大入熱溶接部靭性に優れた、板厚50mm以上の厚肉高張力鋼材に関する。なお、本発明でいう「大入熱溶接」とは、溶接入熱量が300kJ/cmを超える溶接を意味するものとする。また、本発明でいう「厚肉高張力鋼材」は厚鋼板、形鋼を含むものとする。
【0002】
【従来の技術】
一般に、造船、建築、土木等の各分野における鋼構造物は、鋼材を溶接により接合し、所望の形状に組み立てられることが多い。こうした溶接鋼構造物に使用される鋼材には、安全性確保の観点から、母材靱性はもちろん、溶接部靱性にも優れることが要求されている。
【0003】
近年、溶接鋼構造物の大型化に伴い、構造物の施工効率の向上と施工コストの低減の観点から、溶接効率の向上が求められ、溶接入熱の増大が指向されてきた。その際、最も問題となるのは、溶接部のボンド部靱性である。ボンド部は、溶接時に溶融点直下の高温に晒され、結晶粒がもっとも粗大化しやすく、しかも、溶接入熱が増大するにしたがい冷却速度が遅くなり、脆弱な上部ベイナイト組織が形成されやすくなる。さらにボンド部では、ウィドマンステッテン組織や島状マルテンサイトといった脆化組織が生成しやすく、靱性が低下しやすい。
【0004】
このような溶接ボンド部の靭性低下に対し、たとえば、特開平2-250917 号公報、特開平2-254118 号公報、特公平3-53367号公報には、TiN を鋼中に微細分散させ、MnS 又は REMオキシサルファイドと複合してオーステナイト粒の粗大化を抑制し、溶接ボンド部の靭性を改善する技術が提案されている。
また、特開昭60-184663 号公報には、入熱量100kJ/cmの溶接ボンド部の靱性改善をめざし、希土類元素(REM )とTiとを複合添加し、鋼中に微細粒子を分散させてオーステナイトの粒成長を抑制し、溶接ボンド部の靱性向上を図る技術が提案されている。
【0005】
また、特開昭60-245768 号公報、特開昭61-79745号公報等には、Tiの酸化物を微細分散させ、フェライト変態の核生成サイトとして利用し、溶接ボンド部の靭性を改善する技術が提案されている。
また、特開昭61-253344 号公報には、溶接時の冷却過程でTiN などの上に析出するBNをフェライト変態の核として利用し、溶接熱影響部の靭性を改善する技術が提案されている。
【0006】
また、特開2001-107177 号公報には、固溶Nを徹底的に低減するため、Tiと十分なAl量(0.05〜0.10%)を含有させ、さらに微細酸化物としてCa酸化物を活用して、超大入熱溶接における溶接熱影響部靭性を向上させる高張力鋼板が提案されている。
また、特開昭60−204863号公報、特公平4− 14180号公報では、CaやREM を添加し硫化物の形態制御を介して、溶接部を高靱性化する技術が提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、上記したTi酸化物を用いる従来技術では、酸化物を均一かつ微細に分散させることがかなりの困難を伴い、溶接部を安定して高靭性とすることが困難となる。
また、上記したTiN を主体に利用する従来技術で製造された鋼材に、300kJ/cmを超える大入熱溶接法を適用した場合、溶接ボンド部近傍が高温度に長時間晒されるため、TiN が溶解し結晶粒微細化の作用がなくなり、大入熱溶接部を高靭性とすることができなくなるという問題があった。また、上記した従来技術では、固溶Tiおよび固溶Nの増加に起因して、脆化組織が生成し、著しく溶接部靱性が低下する場合があるという問題があった。
【0008】
また、特開2001-107177 号公報に記載された技術では、Al、Caを多く添加するため酸化物がクラスター化し、これが破壊の起点になることで靱性を低下させる場合があるという問題があった。
また、CaやREM を添加する従来技術では、溶接入熱300kJ/cmを超える大入熱溶接部で、高靱性を確保することは困難であるという問題があった。
【0009】
一方、近年、鋼構造物の一層の大型化に伴い、使用される鋼材はより厚肉でかつ高強度を有するものが要望されるようになっている。鋼材の厚肉化、高強度化には、通常、合金元素の多量添加が安易な方法であるが、合金元素の多量添加は溶接部の靱性低下を招く。したがって、最近では、厚肉材のように製造時の冷却速度が比較的遅い場合においても、合金元素の多量添加を行うことなく、母材を高強度化させた厚肉高張力鋼材が要望されている。
【0010】
本発明は、上記した従来技術の問題を解決し、母材降伏強さが355N/mm2以上と高く、かつ母材靭性が、−40℃におけるシャルピー吸収エネルギー V-40 で200 J以上と優れ、さらに溶接入熱300kJ/cmを超える大入熱溶接においても優れた溶接部靱性を有する、大入熱溶接部靱性に優れた板厚:50mm以上の厚肉高張力鋼材を安定かつ効率的に製造できる、厚肉高張力鋼材の製造方法を提案することを目的とする。なお、本発明でいう「大入熱溶接部靱性に優れる」とは、溶接入熱300kJ/cmを超える大入熱溶接での溶接熱影響部が、−40℃におけるシャルピー吸収エネルギー V-40 で41J以上を有する場合をいうものとする。
【0011】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するために、大入熱溶接部の靱性におよぼす各種要因について、研究、検討を重ねた。その結果、まず、大入熱溶接部とくに溶接ボンド部の靱性は、脆化組織の生成の有無に大きく影響される。そして、脆化組織の生成は、高温に加熱された領域におけるオーステナイトの粗大化抑制と、冷却時にフェライト変態を促進する変態核の微細分散により、防止できることを見出した。従来は、これらが不十分であったために、溶接部を安定して高靭性とすることができなかった。
【0012】
本発明者らは、フェライト変態核の微細分散のために、硫化物の形態制御の役割を担うCaに注目し、凝固時にCaS を晶出させることを想到した。CaS は酸化物に比べて低温で晶出するため、鋼中で微細かつ均一な分散が可能となる。CaS の晶出のためには、まずCa添加時の溶鋼中の溶在酸素量を0.0030mass%以下に調整する。そして、Ca添加時の溶鋼中の溶存酸素量を0.0030mass%以下に調整したうえで、Ca,Sの添加量を次(1)式
0<{Ca−(0.18 +130 ×Ca) ×O}/(1.25/S)<1 ………(1)
ここで、Ca、O、S:各合金元素の含有量(mass%)
を満足するように調整することにより、CaS の晶出後に固溶S量が確保でき、CaS の表面上にMnS が析出する複合硫化物を形成できることを見出した。MnS はフェライト核生成能があることが知られており、さらにはその周囲にMnの希薄帯が形成されフェライト変態がさらに促進される。また、MnS 上にTiN ,BN,AlN 等のフェライト生成核が析出することによっても、より一層フェライト変態が促進することも新たに発見した。
【0013】
また、本発明者らは、従来から高張力鋼母材の高強度化、高靭化のために添加されてきたNbを無添加とすることにより、TiN の溶解温度が上昇し、溶接時に高温に加熱される領域でのオーステナイト粗大化が顕著に抑制されることを見出した。またさらに、Nbを無添加とすることで、溶接熱影響部粗粒域での上部ベイナイトの生成も抑制されることを見出した。
【0014】
また、さらに、本発明者らは、Nb無添加鋼の溶接部靭性に及ぼす前組織の影響を検討した。その結果、母材のフェライト平均粒径が5μm以下となるように、熱間圧延時に、Ar3〜Ar3+100 ℃の温度域において35%以上の累積圧下率を付与し、母材のフェライト平均粒径が5μm以下にすることにより、溶接における昇温時に、オーステナイト生成サイトが増加し、オーステナイト粒が微細化し、溶接部の靱性向上に効果があることを見出した。
【0015】
本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。
すなわち、本発明は、下記の構成を要旨とするものである。
(1)mass%で、C:0.05〜0.15%、Si:0.05〜0.50%、Mn:1.0 〜2.0 %、P:0.015 %以下、S:0.0005〜0.0050%、Al:0.005 〜0.06%、Ti:0.01〜0.03%、Ni:1.5 %以下、N:0.003 〜0.007 %、Ca:0.0005〜0.0030%、O:0.0030%以下を含み、かつ次(1)式および(2)式
0<{Ca−(0.18 +130 ×Ca) ×O}/(1.25/S)<1 ………(1)
2.5 < Ti /N <5.0 ………(2)
(ここで、Ca、O、S、Ti、N:各合金元素の含有量(mass%))
を満足し、残部 Fe および不可避的不純物からなる組成を有する鋼素材を、1050〜1200℃に加熱後、 Ar3変態点〜( Ar3変態点+100 ℃)の温度域における累積圧下率を35%以上とする熱間圧延を施した後、板厚1/4 位置において2℃/s以上の冷却速度で 450℃以下の温度域まで冷却することを特徴とする大入熱溶接部靱性に優れた厚肉高張力鋼材の製造方法。
(2)(1)において、前記鋼素材が、溶鋼中の溶存酸素量を0.0030mass%以下に調整したのちCaを添加し、前記(1)式を満足するように、Ca,S含有量を調整してなる鋼素材であることを特徴とする大入熱溶接部靱性に優れた厚肉高張力鋼材の製造方法。
(3)(1)または(2)において、前記鋼素材が、 mass %で、C: 0.05 0.15 %、 Si 0.05 0.50 %、 Mn 1.0 2.0 %、P: 0.015 %以下、S: 0.0005 0.0050 %、 Al 0.016 0.06 %、 Ti 0.01 0.03 %、 Ni 1.5 %以下、N: 0.003 0.007 %、 Ca 0.0005 0.0030 %、O: 0.0030 %以下を含み、かつ次(1)式および(2)式
0<{ Ca (0.18 130 × Ca) ×O}/( 1.25 /S)<1 ………(1)
2.5 Ti /N < 5.0 ………(2)
(ここで、 Ca 、O、S、 Ti 、N:各合金元素の含有量( mass %))
を満足し、さらに、V:0.2 %以下、Cu:1.0 %以下、Cr:0.7 %以下、Mo:0.7 %以下、B:0.002 %以下のうちから選ばれた1種または2種以上を含有し、残部 Fe および不可避的不純物からなる組成を有することを特徴とする大入熱溶接部靱性に優れた厚肉高張力鋼材の製造方法。
(4)(1)ないし(3)のいずれかにおいて、前記冷却後、さらに、450 〜650 ℃の温度範囲での焼戻しを施すことを特徴とする大入熱溶接部靱性に優れた厚肉高張力鋼材の製造方法。
【0016】
【発明の実施の形態】
まず、本発明で使用する鋼素材の組成限定理由について説明する。以下、組成におけるmass%は単に%で記す。
C:0.05〜0.15%
Cは、鋼の強度を増加させる元素であり、構造用高張力鋼として必要な強度(母材降伏強さ:355N/mm2以上)を得るためには、少なくとも0.05%は必要である。しかし、過剰に含有すると、溶接部の靱性を劣化させる。このため、本発明では、Cは0.05〜0.15%の範囲に限定した。なお、好ましくは、0.06〜0.12%である。
【0017】
Si:0.05〜0.50%
Siは、脱酸剤として作用し、製鋼上0.05%以上の含有が必要であるが、0.50%を超えて含有すると、母材靱性が劣化する。このため、Siは0.05〜0.50%の範囲に限定した。なお、好ましくは、0.10〜0.35%である。
Mn:1.0 〜2.0 %
Mnは、鋼の強度を増加させる元素であり、本発明では所定の母材強度を確保するため、1.0 %以上の含有を必要とする。一方、2.0 %を超える過剰の含有は、溶接部の靱性を著しく劣化させる。このため、本発明では、Mnは1.0 〜2.0 %の範囲に限定した。
【0018】
P:0.015 %以下
Pは、不純物として鋼中に不可避的に含有される元素であり、粒界に偏析して鋼の靭性を劣化させるため、できるだけ低減することが好ましい。とくに、0.015 %を超えて含有すると、溶接部靱性の劣化が著しくなる。このため、本発明では、Pは0.015 %以下に限定した。
【0019】
S:0.0005〜0.0050%
Sは、Caを含有する本発明では、Caと結合しCaS 粒子として凝固段階で微細に晶出し、さらに溶接時にCaS 粒子上にMnS として析出し、フェライト変態核として作用し溶接部靭性を向上させる効果を有する。このような効果はS:0.0005%以上の含有で認められる。一方、0.0050%を超えて含有すると、母材および溶接部の靱性を劣化させる。このため、Sは0.0005〜0.0050%に限定した。
【0020】
Al:0.005 〜0.06%
Alは、脱酸剤として作用し、鋼の脱酸上0.005 %以上の含有を必要とするが、0.06%を超えて含有すると、母材の靱性が低下し、同時に溶接時に溶接金属部に混入して、溶接金属部の靱性を劣化させる。このため、Alは0.005 〜0.06%の範囲に限定した。なお、好ましくは、0.016 %以上0.05%未満である。
【0021】
Ti:0.01〜0.03%
Tiは、Nとの親和力が強くTiN として析出して、溶接熱影響部でのオーステナイト粒の粗大化を抑制し、あるいはフェライト変態核として溶接熱影響部の高靱性化に寄与する。このような効果は、0.01%以上の含有で認められるが、0.03%を超えて含有すると、TiN 粒子が粗大化し、上記した効果が期待できなくなる。このため、Tiは0.01〜0.03%の範囲に限定した。
【0022】
Ni:1.5 %以下
Niは、母材の高靱性を保ちつつ強度を増加させる元素であり、本発明では 0.2%以上の含有が望ましいが、1.5 %を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、本発明では、Niは1.5 %以下に限定した。なお、好ましくは 0.2〜 1.2%である。
【0023】
N:0.003 〜0.007 %
Nは、Tiと結合しTiN として析出して、溶接熱影響部でのオーステナイト粒の粗大化を抑制し、あるいはフェライト変態核として溶接熱影響部の高靱性化に寄与する。このような効果を有するTiN の必要量を確保するために、0.003 %以上のNを含有する必要がある。一方、0.007 %を超えて含有すると、溶接熱によってTiN が溶解する温度まで加熱される領域では、固溶N量が増加し、靱性が著しく低下する。このため、Nは0.003 〜0.007 %の範囲に限定した。
【0024】
Ca:0.0005〜0.0030%
Caは、硫化物の形態を制御して鋼の靱性向上に寄与する元素である。このような効果を発揮させるには少なくとも0.0005%含有することが必要であるが、0.0030%を超えて含有しても効果が飽和する。このため、本発明では、Caは0.0005〜0.0030%の範囲に限定した。なお、本発明では、後述するように、Ca添加直前の溶存酸素量を0.0030%以下に調整したのち、Caを添加して、Ca酸化物の生成を抑制してCaS を晶出させる。CaS は、溶鋼中で酸化物に比べて低温で晶出するため、鋼中で微細かつ均一な分散が可能となる。このようなCaS 微細粒子はMnS と複合して溶接時にフェライト変態核として作用し、溶接部靭性の向上に寄与する。
【0025】
O:0.0030%以下
Oは、不可避的不純物として含有され、鋼中では酸化物として存在し、清浄度を低下させる。このため、本発明ではできるだけ低減することが好ましい。O含有量が0.0030%を超えるとCaO系介在物が粗大化して、靭性に悪影響を及ぼす。また、本発明では、CaをCaS として晶出させるために、Caとの結合力が強いOはCa添加前に、脱ガスを強化するか、脱酸剤を投入するかして、溶鋼中のOを0.0030%以下に低減しておくことが好ましい。
【0026】
また、本発明では、Ca添加時の溶鋼中の溶在酸素量を0.0030mass%以下に調整したうえで、Ca,Sを次(1)式を満足するように添加、調整する。
0<{Ca−(0.18 +130 ×Ca) ×O}/(1.25/S)<1 ………(1)
ここで、Ca、O、S:各合金元素の含有量(mass%)
{Ca−(0.18 +130 ×Ca) ×O}が、0以下では、CaS が晶出しないため、SはMnS 単独の形態で析出する。このMnS は鋼板製造時の圧延で伸長されて均一かつ微細に分散しないため、母材の靱性低下を引き起こすとともに、溶接熱影響部靭性の向上が達成されない。{Ca−(0.18 +130 ×Ca) ×O}が、1以上では、Sが完全にCaによって固定され、フェライト生成核として働くMnS がCaS 上に析出しない。このため、溶接熱影響部靭性の向上が達成されない。CaおよびS含有量が、前記(1)式を満足してはじめて、CaS 上にMnS が析出した複合硫化物の形態となる。この複合硫化物の存在により、フェライト変態の核として機能し、溶接熱影響部の組織が微細化され、溶接熱影響部靭性が向上する。
【0027】
また、本発明では、Tiは、N含有量との関係で、次(2)式
2.5 < Ti /N <5.0 ………(2)
(ここで、Ti、N:各合金元素の含有量(mass%))
を満足するように添加し、Ti含有量を調整する。 Ti /Nが、2.5 以下では、母材靭性および溶接部靭性の向上に必要なTiN 量を確保できない。一方、 Ti /Nが、5.0 以上では、TiC 粒子の生成および TiNの粗大化のため、母材靭性および溶接部靭性が低下する。従来のTiとNbを複合して含有する鋼では、TiN にNbが固溶するため、Ti/Nが2付近で靱性が最も優れていたが、本発明では、Nb無添加であるため、Ti/Nが化学量論比(3.4 )に近い領域で靱性が最も良好になる。
【0028】
本発明では、上記した基本組成に加えてさらに、V:0.2 %以下、Cu:1.0 %以下、Cr:0.7 %以下、Mo:0.7 %以下、B:0.002 %以下のうちから選ばれた1種または2種以上を含有できる。
V:0.2 %以下、Cu:1.0 %以下、Cr:0.7 %以下、Mo:0.7 %以下、B:0.002 %以下から選ばれる少なくとも1種または2種以上
V、Cu、Cr、Mo、Bは、いずれも鋼の強度を増加させる元素であり、必要に応じ選択して含有できる。
【0029】
Vは、母材の強度および靱性を向上させるとともに、VNとして析出し、フェライト変態の核として作用する。このような効果は、0.01%以上の含有で顕著となるが、0.2 %を超える含有は、かえって靱性の低下を招く。このため、Vは0.2 %以下に限定することが好ましい。
Cuは、Niと同様、強度を増加するとともに、靭性を向上させる作用を有する。このような効果は 0.2%以上の含有で顕著となるが、1.0 %を超える含有は熱間脆性を生じ、鋼板の表面性状が劣化する。このため、Cuは1.0 %以下に限定することが好ましい。
【0030】
Cr,Mo,Bは、いずれも鋼材(母材)の高強度化に有効に作用する元素である。このような効果は、Cr:0.1 %以上、Mo:0.1 %以上、B:0.0005%以上の含有で顕著となる。一方、過剰に含有すると、いずれも靱性に悪影響を与えるため、Cr:0.7 %以下、Mo:0.7 %以下、B:0.002 %以下、にそれぞれ限定することが好ましい。
【0031】
なお、上記した成分以外の残部は、Feおよび不可避的不純物である。
つぎに、上記した組成を有する鋼素材に、下記に述べる製造工程を施し厚肉高張力鋼材とする。
上記した組成の溶鋼を、転炉、電気炉、真空溶解炉等通常公知の方法で溶製し、連続鋳造法、造塊法などの通常公知の鋳造方法でスラブ等の鋼素材とする。
【0032】
ついで、これら鋼素材を、1050〜1200℃に加熱する。加熱温度が1050℃未満では、次工程の熱間圧延で、鋼素材(スラブ)中の鋳造欠陥を圧着することができない。一方、1200℃を超える加熱温度では、TiN が粗大化し、溶接部の靱性向上が期待できなくなる。このため、鋼素材の加熱温度は1050〜1200℃の範囲に限定した。
【0033】
上記した範囲の温度に加熱された鋼素材は、ついで、Ar3変態点〜(Ar3変態点+100 ℃)の温度域における累積圧下率を35%以上とする熱間圧延を施される。Ar3変態点〜(Ar3変態点+100 ℃)の温度域における累積圧下率が35%未満では、図1に示すように、変態後、平均粒径5μm以下のフェライト組織が得られない。本発明では、Nb無添加のため、オーステナイトの未再結晶領域がほとんど存在しない。変態後のフェライト粒径に大きく影響する再結晶オーステナイト粒径が加工温度に依存するため、より低温で加工するほどオーステナイト粒径が微細化する。Ar3変態点〜(Ar3変態点+100 ℃)の温度域における累積圧下率が35%以上とすることにより、再結晶オーステナイト粒が微細化し、変態後、平均粒径5μm以下のフェライト組織が得られる。平均粒径5μm以下のフェライト組織とすること、すなわち、Ar3変態点〜(Ar3変態点+100 ℃)の温度域における累積圧下率を35%以上とする熱間圧延を施すこと、により図1に示すように、1400℃加熱、800 〜500 ℃の冷却時間が270 sの大入熱溶接熱影響部 HAZ(ボンド部近傍)のシャルピー吸収エネルギー、vE-40 が70J以上となり、溶接部靭性が顕著に向上する。なお、Ar3は次式
Ar3(℃)=910-273C-74Mn-57Ni-16Cr-9Mo-5Cu
(ただし、C,Mn,Ni,Cr,Mo,Cu:各合金元素の含有量(mass%))により求めるものとする。
【0034】
熱間圧延後は、板厚 1/4位置において2℃/s以上の冷却速度で450 ℃以下の温度域まで冷却する。冷却速度が2℃/s未満では、フェライト粒が粗大化し、強度・靱性が低下する。
また、冷却した後、鋼材に、450 〜650 ℃の範囲で焼戻しを施すことが好ましい。焼戻しを施すことは、鋼材(母材)の残留応力低減に有効であるため、鋼材の残留応力を除去する必要が生じた場合に行うことが好ましい。
【0035】
焼戻し温度が650 ℃超えると、各種炭窒化物が生成し、析出強化による強度上昇により、靱性の劣化が認められる。一方、焼戻し温度が450 ℃未満では残留応力の除去効果がない。
【0036】
【実施例】
つぎに、本発明の効果を実施例に基づいてさらに詳細に説明する。
表1に示す組成に調整した鋼スラブ(鋼素材)に、表2に示す条件で熱間圧延を施し、厚鋼板(厚肉鋼材:板厚50〜100mm )とした。なお、本発明例では、Ca添加に際して、Ca添加直前の溶鋼中の溶存酸素量を、脱酸剤の投入を行うことにより調整した。
【0037】
得られた各厚鋼板について、母材の引張試験及びシャルピー衝撃試験を実施した。
引張試験は、各厚鋼板の板厚1/4 位置から、JIS 4 号引張試験片を採取し、降伏点YP、引張強さTSを求めた。
シャルピー衝撃試験は、各厚鋼板の板厚1/4 位置から、JIS 4 号衝撃試験片を採取し、−40℃での吸収エネルギー( V-40 )を求めた。
【0038】
また、得られた各厚鋼板から、溶接継手作製用試験片を採取した。試験片に、V開先を加工し、エレクトロガスアーク溶接(溶接入熱量:350 kJ/cm (板厚:50mm)、または450 kJ/cm (板厚:65mm))により、溶接継手を作製した。これら溶接継手から切り欠き位置をボンド部とするJIS 4 号衝撃試験片を採取し、試験温度:−40℃でシャルピー衝撃試験を実施し、吸収エネルギー( V-40 )を求めた。
【0039】
得られた結果を表3に示す。
【0040】
【表1】

Figure 0003733898
【0041】
【表2】
Figure 0003733898
【0042】
【表3】
Figure 0003733898
【0043】
【表4】
Figure 0003733898
【0044】
本発明例は、いずれも、YP:355N/mm2以上の母材強度と、 V-40 :200J以上の母材靭性を有する、母材の強度・靱性に優れた厚肉高張力鋼板である。さらに溶接入熱量:350 〜450 kJ/cm の大入熱溶接(エレクトロガスアーク溶接)継手ボンド部の V-40 が79J 以上と、優れた大入熱溶接熱影響部靱性を有する厚肉高張力鋼板となっている。これに対し、本発明の範囲を外れる比較例は、母材の強度、母材の靱性、大入熱溶接熱影響部の靱性のうちの、少なくとも一つが低下した厚肉鋼板となっている。
【0045】
【発明の効果】
以上のように、本発明によれば、300kJ/cmを超える大入熱溶接においても、優れた溶接熱影響部靱性を有する、降伏強さ355N/mm2以上、板厚50mmを超える厚肉高張力鋼材が、非調質で安価に製造でき、産業上格段の効果を奏する。また、本発明は、構造物の大型化や施工能率の向上に大きく寄与するという効果もある。
【図面の簡単な説明】
【図1】フェライト粒径およびHAZ 靱性( V-40 ℃)と、Ar3変態点〜(Ar3変態点+100 ℃)での累積圧下率との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel material suitable for use in welded structures in the fields of shipbuilding, construction, civil engineering, etc., and in particular, relates to a thick-walled high-strength steel material having a plate thickness of 50 mm or more that is excellent in high heat input weld toughness. . The “high heat input welding” in the present invention means welding in which the welding heat input exceeds 300 kJ / cm. Further, the “thick-walled high-tensile steel material” in the present invention includes thick steel plates and section steels.
[0002]
[Prior art]
In general, steel structures in various fields such as shipbuilding, architecture, and civil engineering are often assembled by joining steel materials by welding. Steel materials used for such welded steel structures are required to have excellent weld toughness as well as base metal toughness from the viewpoint of ensuring safety.
[0003]
In recent years, with the increase in size of welded steel structures, improvement in welding efficiency has been demanded from the viewpoint of improving the construction efficiency of the structure and reducing the construction cost, and an increase in welding heat input has been directed. At that time, the most serious problem is the bond portion toughness of the weld. The bond portion is exposed to a high temperature just below the melting point during welding, the crystal grains are most likely to be coarsened, and the cooling rate is slowed as the welding heat input increases, and a fragile upper bainite structure is likely to be formed. Furthermore, in the bond portion, a brittle structure such as a Widmann-Stätten structure or an island martensite is likely to be generated, and the toughness is likely to be lowered.
[0004]
For example, JP-A-2-250917, JP-A-2-254118, and Japanese Patent Publication No. 3-53367 disclose that the TiN is finely dispersed in steel in order to reduce the toughness of the welded bond. Alternatively, a technique has been proposed that combines with REM oxysulfide to suppress the coarsening of austenite grains and improve the toughness of the weld bond.
JP-A-60-184663 discloses that a rare earth element (REM) and Ti are added together to disperse fine particles in steel with the aim of improving the toughness of a weld bond with a heat input of 100 kJ / cm. A technique for suppressing the austenite grain growth and improving the toughness of the weld bond has been proposed.
[0005]
JP-A-60-245768, JP-A-61-79745, etc., finely disperse Ti oxide and use it as a nucleation site for ferrite transformation to improve the toughness of the weld bond. Technology has been proposed.
Japanese Patent Application Laid-Open No. 61-253344 proposes a technique for improving the toughness of the heat affected zone by using BN precipitated on TiN during the cooling process during welding as the core of ferrite transformation. Yes.
[0006]
JP-A-2001-107177 discloses that Ti and a sufficient amount of Al (0.05 to 0.10%) are contained in order to thoroughly reduce solid solution N, and Ca oxide is used as a fine oxide. Thus, high-tensile steel sheets have been proposed that improve the weld heat-affected zone toughness in ultra-high heat input welding.
Japanese Patent Application Laid-Open Nos. 60-204863 and 4-14180 propose a technique for adding a Ca or REM and increasing the toughness of a welded portion through the form control of sulfides.
[0007]
[Problems to be solved by the invention]
However, in the conventional technique using the above-described Ti oxide, it is quite difficult to disperse the oxide uniformly and finely, and it becomes difficult to make the welded portion stable and high toughness.
In addition, when a high heat input welding method exceeding 300 kJ / cm is applied to the steel materials manufactured by the conventional technology mainly using TiN as described above, the vicinity of the weld bond is exposed to a high temperature for a long time. There is a problem in that it melts and the effect of refining crystal grains is lost, and the high heat input weld cannot be made tough. In addition, the above-described conventional technique has a problem that an embrittled structure is generated due to an increase in solute Ti and solute N, and the toughness of the welded portion may be significantly reduced.
[0008]
In addition, the technique described in Japanese Patent Application Laid-Open No. 2001-107177 has a problem in that the oxides are clustered because a large amount of Al and Ca are added, and this may become a starting point of fracture, which may reduce toughness. .
In addition, in the prior art in which Ca or REM is added, there is a problem that it is difficult to ensure high toughness at a high heat input weld that exceeds 300 kJ / cm.
[0009]
On the other hand, in recent years, with the further increase in size of steel structures, steel materials to be used are required to be thicker and have higher strength. In order to increase the thickness and strength of steel materials, it is usually an easy method to add a large amount of alloy elements. However, adding a large amount of alloy elements causes a reduction in the toughness of the weld. Therefore, recently, there has been a demand for thick-walled high-strength steel materials with high strength of the base material without adding a large amount of alloying elements even when the cooling rate during production is relatively slow, such as thick-walled materials. ing.
[0010]
The present invention solves the above-mentioned problems of the prior art, the base material yield strength is as high as 355 N / mm 2 or more, and the base material toughness is 200 J or more at Charpy absorbed energy V E -40 at −40 ° C. Excellent and high weld input toughness exceeding 300 kJ / cm, with excellent weld toughness. Excellent heat input weld toughness. Thickness: 50 mm or more thick high-tensile steel is stable and efficient. It aims at proposing the manufacturing method of thick-walled high-tensile steel material which can be manufactured easily. In the present invention, “excellent toughness at high heat input weld zone” means that the heat affected zone in high heat input welding with a heat input exceeding 300 kJ / cm is Charpy absorbed energy V E −40 at −40 ° C. It shall mean the case of having 41J or more.
[0011]
[Means for Solving the Problems]
In order to achieve the above-described problems, the present inventors have studied and examined various factors affecting the toughness of a high heat input weld. As a result, first, the toughness of the high heat input weld, particularly the weld bond, is greatly influenced by the presence or absence of the formation of an embrittled structure. And it discovered that the formation of the embrittlement structure can be prevented by suppressing the coarsening of austenite in the region heated to a high temperature and finely dispersing the transformation nuclei that promote the ferrite transformation during cooling. Conventionally, since these were insufficient, the welded portion could not be stably made high in toughness.
[0012]
The present inventors have focused on Ca, which plays a role in controlling the morphology of sulfides, for fine dispersion of ferrite transformation nuclei, and have conceived that CaS is crystallized during solidification. Since CaS crystallizes at a lower temperature than oxides, fine and uniform dispersion is possible in the steel. In order to crystallize CaS, first, the dissolved oxygen content in the molten steel when Ca is added is adjusted to 0.0030 mass% or less. And after adjusting the dissolved oxygen amount in molten steel at the time of Ca addition to 0.0030 mass% or less, addition amount of Ca and S is the following (1) Formula 0 <{Ca− (0.18 + 130 × Ca) × O} / (1.25 / S) <1 (1)
Here, Ca, O, S: Content of each alloy element (mass%)
By adjusting so as to satisfy the above, it was found that the amount of dissolved S can be secured after the crystallization of CaS, and a composite sulfide in which MnS precipitates on the surface of CaS can be formed. MnS is known to have the ability to produce ferrite nuclei, and furthermore, a thin Mn band is formed around it to further promote ferrite transformation. It was also discovered that the ferrite transformation is further promoted by the precipitation of ferrite nuclei such as TiN, BN, and AlN on MnS.
[0013]
In addition, the present inventors have increased the melting temperature of TiN by adding Nb, which has been added for the purpose of increasing the strength and toughness of high-strength steel base materials, and increasing the temperature during welding. It has been found that austenite coarsening in the region heated to a significant degree is remarkably suppressed. Furthermore, it has been found that by adding no Nb, the formation of upper bainite in the weld heat affected zone coarse grain region is also suppressed.
[0014]
Furthermore, the present inventors examined the influence of the previous structure on the weld toughness of Nb-free steel. As a result, at the time of hot rolling, a cumulative rolling reduction of 35% or more is given in the temperature range of Ar 3 to Ar 3 + 100 ° C. so that the average ferrite grain size of the base metal is 5 μm or less, and the average ferrite ferrite It has been found that when the particle size is 5 μm or less, the austenite generation site increases at the time of temperature rise in welding, the austenite grains are refined, and the toughness of the weld is improved.
[0015]
The present invention has been completed based on the above findings and further studies.
That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.05 to 0.15%, Si: 0.05 to 0.50%, Mn: 1.0 to 2.0%, P: 0.015% or less, S: 0.0005 to 0.0050%, Al: 0.005 to 0.06%, Ti: 0.01 to 0.03%, Ni: 1.5% or less, N: 0.003 to 0.007%, Ca: 0.0005 to 0.0030%, O: 0.0030% or less, and the following formulas (1) and (2): 0 <{Ca− ( 0.18 + 130 × Ca) × O} / (1.25 / S) <1 (1)
2.5 <Ti / N <5.0 ......... (2)
(Here, Ca, O, S, Ti, N: content of each alloy element (mass%))
The steel material having the composition consisting of the remaining Fe and inevitable impurities is heated to 1050 to 1200 ° C, and the cumulative rolling reduction in the temperature range from Ar 3 transformation point to (Ar 3 transformation point + 100 ° C) is 35%. After hot rolling as described above, it has excellent toughness of high heat input welds characterized by cooling to a temperature range of 450 ° C or lower at a cooling rate of 2 ° C / s or higher at a thickness of 1/4. A method for producing thick, high-tensile steel.
(2) In (1), after adjusting the dissolved oxygen content in molten steel to 0.0030 mass% or less in the steel material, Ca is added, and the Ca and S contents are adjusted so as to satisfy the formula (1). A method for producing a thick-walled high-tensile steel material excellent in toughness of a large heat input welded portion, characterized by being a steel material prepared by adjustment.
(3) In (1) or (2), the steel material is mass %, C: 0.05 to 0.15 %, Si : 0.05 to 0.50 %, Mn : 1.0 to 2.0 %, P: 0.015 % or less, S: 0.0005 to 0.0050 %, Al : 0.016 to 0.06 %, Ti : 0.01 to 0.03 %, Ni : 1.5 % or less, N: 0.003 to 0.007 %, Ca : 0.0005 to 0.0030 %, O: 0.0030 % or less, and the following ( 1) and 2)
0 <{Ca - (0.18 + 130 × Ca) × O} / (1.25 / S) <1 ......... (1)
2.5 < Ti / N < 5.0 (2)
(Where Ca , O, S, Ti , N: content of each alloy element ( mass %))
In addition , V : 0.2% or less, Cu: 1.0% or less, Cr: 0.7% or less, Mo: 0.7% or less, B: 0.002% or less A method for producing a thick-walled, high-tensile steel material excellent in toughness of a high heat input weld, characterized by having a composition comprising the remaining Fe and inevitable impurities .
(4) In any one of (1) to (3), after the cooling, the tempering is further performed in a temperature range of 450 to 650 ° C. A method for producing tensile steel.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
First, the reasons for limiting the composition of the steel material used in the present invention will be described. Hereinafter, mass% in the composition is simply expressed as%.
C: 0.05-0.15%
C is an element that increases the strength of steel, and at least 0.05% is necessary to obtain the strength necessary for structural high-tensile steel (base material yield strength: 355 N / mm 2 or more). However, when it contains excessively, the toughness of a welded part will deteriorate. For this reason, in this invention, C was limited to 0.05 to 0.15% of range. In addition, Preferably, it is 0.06 to 0.12%.
[0017]
Si: 0.05-0.50%
Si acts as a deoxidizer and needs to be contained in an amount of 0.05% or more in terms of steelmaking, but if it exceeds 0.50%, the base material toughness deteriorates. For this reason, Si was limited to the range of 0.05 to 0.50%. In addition, Preferably, it is 0.10 to 0.35%.
Mn: 1.0-2.0%
Mn is an element that increases the strength of steel. In the present invention, Mn needs to be contained in an amount of 1.0% or more in order to ensure a predetermined base metal strength. On the other hand, an excessive content exceeding 2.0% significantly deteriorates the toughness of the weld. For this reason, in the present invention, Mn is limited to a range of 1.0 to 2.0%.
[0018]
P: 0.015% or less P is an element inevitably contained in steel as an impurity, and is preferably reduced as much as possible because it segregates at grain boundaries and deteriorates the toughness of steel. In particular, when the content exceeds 0.015%, the toughness of the welded portion deteriorates remarkably. Therefore, in the present invention, P is limited to 0.015% or less.
[0019]
S: 0.0005-0.0050%
In the present invention containing Ca, in the present invention containing Ca, it binds to Ca and finely crystallizes in the solidification stage as CaS particles, and further precipitates as MnS on the CaS particles during welding and acts as a ferrite transformation nucleus to improve weld toughness. Has an effect. Such an effect is recognized when the content of S is 0.0005% or more. On the other hand, when it contains exceeding 0.0050%, the toughness of a base material and a welding part will be degraded. For this reason, S was limited to 0.0005 to 0.0050%.
[0020]
Al: 0.005 to 0.06%
Al acts as a deoxidizer and needs to contain 0.005% or more in terms of deoxidation of steel, but if it exceeds 0.06%, the toughness of the base metal decreases, and at the same time mixed into the weld metal during welding Thus, the toughness of the weld metal part is deteriorated. For this reason, Al was limited to the range of 0.005 to 0.06%. In addition, Preferably, it is 0.016 % or more and less than 0.05%.
[0021]
Ti: 0.01-0.03%
Ti has a strong affinity with N and precipitates as TiN, thereby suppressing the coarsening of austenite grains in the weld heat affected zone, or contributes to increasing the toughness of the weld heat affected zone as a ferrite transformation nucleus. Such an effect is recognized when the content is 0.01% or more. However, if the content exceeds 0.03%, TiN particles become coarse, and the above-described effects cannot be expected. For this reason, Ti was limited to the range of 0.01 to 0.03%.
[0022]
Ni: 1.5% or less
Ni is an element that increases the strength while maintaining the high toughness of the base metal. In the present invention, Ni is preferably contained in an amount of 0.2% or more, but if it exceeds 1.5%, the effect is saturated and the effect is commensurate with the content. Will not be expected and will be economically disadvantageous. Therefore, in the present invention, Ni is limited to 1.5% or less. In addition, Preferably it is 0.2 to 1.2%.
[0023]
N: 0.003 to 0.007%
N combines with Ti and precipitates as TiN to suppress the coarsening of austenite grains in the weld heat affected zone, or contributes to increasing the toughness of the weld heat affected zone as a ferrite transformation nucleus. In order to secure the necessary amount of TiN having such an effect, it is necessary to contain 0.003% or more of N. On the other hand, when the content exceeds 0.007%, in the region heated to a temperature at which TiN is dissolved by welding heat, the amount of solute N increases and the toughness is remarkably lowered. For this reason, N was limited to the range of 0.003 to 0.007%.
[0024]
Ca: 0.0005 to 0.0030%
Ca is an element that contributes to improving the toughness of steel by controlling the form of sulfide. In order to exert such an effect, it is necessary to contain at least 0.0005%, but even if it exceeds 0.0030%, the effect is saturated. For this reason, in this invention, Ca was limited to 0.0005 to 0.0030% of range. In the present invention, as will be described later, after adjusting the dissolved oxygen content immediately before the addition of Ca to 0.0030% or less, Ca is added to suppress the formation of Ca oxide and to crystallize CaS. Since CaS crystallizes in molten steel at a lower temperature than oxides, it enables fine and uniform dispersion in the steel. Such CaS fine particles combine with MnS and act as ferrite transformation nuclei during welding, contributing to the improvement of weld toughness.
[0025]
O: 0.0030% or less O is contained as an unavoidable impurity and exists as an oxide in steel, which lowers cleanliness. For this reason, it is preferable to reduce as much as possible in the present invention. If the O content exceeds 0.0030%, CaO inclusions are coarsened, which adversely affects toughness. Further, in the present invention, in order to crystallize Ca as CaS, O having a strong binding force with Ca is strengthened in degassing or added with a deoxidizing agent before adding Ca. It is preferable to reduce O to 0.0030% or less.
[0026]
Moreover, in this invention, after adjusting the dissolved oxygen amount in the molten steel at the time of Ca addition to 0.0030 mass% or less, Ca and S are added and adjusted so that the following (1) Formula may be satisfied.
0 <{Ca− (0.18 + 130 × Ca) × O} / (1.25 / S) <1 (1)
Here, Ca, O, S: Content of each alloy element (mass%)
When {Ca− (0.18 + 130 × Ca) × O} is 0 or less, CaS does not crystallize, so S precipitates in the form of MnS alone. Since this MnS is elongated by rolling at the time of manufacturing the steel sheet and does not disperse uniformly and finely, it causes a decrease in the toughness of the base metal and an improvement in the toughness of the weld heat affected zone is not achieved. When {Ca− (0.18 + 130 × Ca) × O} is 1 or more, S is completely fixed by Ca, and MnS acting as a ferrite formation nucleus does not precipitate on CaS. For this reason, the improvement of the weld heat affected zone toughness is not achieved. Only when the contents of Ca and S satisfy the above formula (1), a composite sulfide is formed in which MnS is deposited on CaS. The presence of this composite sulfide functions as a nucleus of the ferrite transformation, the structure of the weld heat affected zone is refined, and the weld heat affected zone toughness is improved.
[0027]
In the present invention, Ti is expressed by the following formula (2) in relation to the N content.
2.5 <Ti / N <5.0 ......... (2)
(Where Ti, N: content of each alloy element (mass%))
Is added so as to satisfy the requirements, and the Ti content is adjusted. When Ti / N is 2.5 or less, the amount of TiN necessary for improving the base metal toughness and weld zone toughness cannot be secured. On the other hand, when Ti / N is 5.0 or more, the base metal toughness and weld toughness deteriorate due to the generation of TiC particles and the coarsening of TiN. In conventional steel containing Ti and Nb in combination, Nb is dissolved in TiN, so the toughness was the best in the vicinity of Ti / N of 2. However, in the present invention, Nb is not added. The toughness is the best in the region where / N is close to the stoichiometric ratio (3.4).
[0028]
In the present invention, in addition to the above basic composition, V: 0.2% or less, Cu: 1.0% or less, Cr: 0.7% or less, Mo: 0.7% or less, B: 0.002% or less Or it can contain 2 or more types.
V: 0.2% or less, Cu: 1.0% or less, Cr: 0.7% or less, Mo: 0.7% or less, B: 0.002% or less. At least one or more selected from V, Cu, Cr, Mo, B are All are elements that increase the strength of steel and can be selected and contained as necessary.
[0029]
V improves the strength and toughness of the base material and precipitates as VN and acts as a nucleus of ferrite transformation. Such an effect becomes remarkable when the content is 0.01% or more. However, when the content exceeds 0.2%, the toughness is reduced. For this reason, it is preferable to limit V to 0.2% or less.
Cu, like Ni, has the effect of increasing strength and improving toughness. Such an effect becomes remarkable when the content is 0.2% or more. However, when the content exceeds 1.0%, hot brittleness occurs, and the surface properties of the steel sheet deteriorate. For this reason, it is preferable to limit Cu to 1.0% or less.
[0030]
Cr, Mo, and B are all elements that effectively act to increase the strength of steel (base material). Such an effect becomes remarkable when Cr: 0.1% or more, Mo: 0.1% or more, and B: 0.0005% or more. On the other hand, since excessive contents will adversely affect toughness, it is preferable to limit to Cr: 0.7% or less, Mo: 0.7% or less, and B: 0.002% or less.
[0031]
The balance other than the components described above is Fe and inevitable impurities.
Next, the steel material having the above composition is subjected to the manufacturing process described below to obtain a thick high tensile steel material.
The molten steel having the above composition is melted by a generally known method such as a converter, electric furnace, vacuum melting furnace or the like, and is made into a steel material such as a slab by a generally known casting method such as a continuous casting method or an ingot forming method.
[0032]
Next, these steel materials are heated to 1050-1200 ° C. When the heating temperature is less than 1050 ° C., casting defects in the steel material (slab) cannot be pressure-bonded by hot rolling in the next step. On the other hand, when the heating temperature exceeds 1200 ° C., TiN becomes coarse and improvement in the toughness of the weld cannot be expected. For this reason, the heating temperature of the steel material was limited to the range of 1050 to 1200 ° C.
[0033]
The steel material heated to a temperature in the above range is then subjected to hot rolling in which the cumulative rolling reduction in the temperature range from the Ar 3 transformation point to (Ar 3 transformation point + 100 ° C.) is 35% or more. If the cumulative rolling reduction in the temperature range from Ar 3 transformation point to (Ar 3 transformation point + 100 ° C.) is less than 35%, a ferrite structure having an average particle size of 5 μm or less cannot be obtained after transformation as shown in FIG. In the present invention, since no Nb is added, there is almost no unrecrystallized region of austenite. Since the recrystallized austenite grain size that greatly affects the ferrite grain size after transformation depends on the processing temperature, the austenite grain size becomes finer as the processing is performed at a lower temperature. By setting the cumulative rolling reduction in the temperature range from Ar 3 transformation point to (Ar 3 transformation point + 100 ° C.) to 35% or more, recrystallized austenite grains are refined, and after transformation, a ferrite structure with an average grain size of 5 μm or less is obtained. It is done. By forming a ferrite structure with an average particle size of 5 μm or less, that is, by performing hot rolling with a cumulative rolling reduction in the temperature range of Ar 3 transformation point to (Ar 3 transformation point + 100 ° C.) being 35% or more, FIG. As shown in Fig. 4, Charpy absorbed energy of the high heat input welding heat affected zone HAZ (near the bond), vE -40 is 70 J or more, with 1400 ° C heating and 800-500 ° C cooling time of 270 s. Remarkably improved. Ar 3 is represented by the following formula: Ar 3 (° C.) = 910-273C-74Mn-57Ni-16Cr-9Mo-5Cu
(However, C, Mn, Ni, Cr, Mo, Cu: content of each alloy element (mass%)).
[0034]
After hot rolling, the steel sheet is cooled to a temperature range of 450 ° C. or lower at a cooling rate of 2 ° C./s or higher at a thickness of 1/4. When the cooling rate is less than 2 ° C./s, the ferrite grains become coarse and the strength and toughness are lowered.
Moreover, after cooling, it is preferable to temper the steel material in the range of 450 to 650 ° C. Since tempering is effective for reducing the residual stress of the steel material (base material), it is preferable to perform it when it is necessary to remove the residual stress of the steel material.
[0035]
When the tempering temperature exceeds 650 ° C., various carbonitrides are produced, and deterioration of toughness is observed due to an increase in strength due to precipitation strengthening. On the other hand, if the tempering temperature is less than 450 ° C., there is no effect of removing residual stress.
[0036]
【Example】
Next, the effects of the present invention will be described in more detail based on examples.
A steel slab (steel material) adjusted to the composition shown in Table 1 was hot-rolled under the conditions shown in Table 2 to obtain a thick steel plate (thick steel plate: plate thickness 50-100 mm). In the examples of the present invention, when Ca was added, the amount of dissolved oxygen in the molten steel immediately before Ca addition was adjusted by adding a deoxidizer.
[0037]
About each obtained thick steel plate, the tensile test and Charpy impact test of the base material were implemented.
In the tensile test, JIS No. 4 tensile test specimens were sampled from the thickness 1/4 position of each thick steel plate, and yield point YP and tensile strength TS were obtained.
In the Charpy impact test, JIS No. 4 impact test specimens were sampled from the position of 1/4 of the thickness of each thick steel plate, and the absorbed energy ( V E -40 ) at -40 ° C was determined.
[0038]
Moreover, the test piece for welded joint preparation was extract | collected from each obtained thick steel plate. V-grooves were processed into test pieces, and welded joints were prepared by electrogas arc welding (welding heat input: 350 kJ / cm (plate thickness: 50 mm) or 450 kJ / cm (plate thickness: 65 mm)). The notch position from these welded joints were taken JIS 4 No. impact test piece to bond portions, test temperature: performing Charpy impact test at -40 ° C., was determined absorbed energy (V E -40).
[0039]
The obtained results are shown in Table 3.
[0040]
[Table 1]
Figure 0003733898
[0041]
[Table 2]
Figure 0003733898
[0042]
[Table 3]
Figure 0003733898
[0043]
[Table 4]
Figure 0003733898
[0044]
Examples The present invention, both, YP: and 355N / mm 2 or more base metal strength, V E -40: having the above base material toughness 200 J, excellent thick high tensile steel strength and toughness of the base material is there. Furthermore Welding heat input: 350 to 450 kJ / high heat input welding cm (electro-gas arc welding) V E -40 joint bond part 79J or more and, thick high-strength having excellent high heat input welded heat affected zone toughness It is a steel plate. On the other hand, the comparative example which remove | deviates from the scope of the present invention is a thick steel plate in which at least one of the strength of the base material, the toughness of the base material, and the toughness of the high heat input welding heat affected zone is lowered.
[0045]
【The invention's effect】
As described above, according to the present invention, even in a high heat input welding exceeding 300 kJ / cm, it has excellent weld heat affected zone toughness, yield strength of 355 N / mm 2 or more, and a thickness of more than 50 mm. Tensile steel can be manufactured at low cost by non-tempering, and has a remarkable industrial effect. Moreover, this invention also has the effect of making a large contribution to the enlargement of a structure and the improvement of construction efficiency.
[Brief description of the drawings]
[1] a ferrite grain size and HAZ toughness (V E -40 ℃), is a graph showing the relationship between the cumulative rolling reduction at Ar 3 transformation point ~ (Ar 3 transformation point +100 ° C.).

Claims (4)

mass %で、
C:0.05〜0.15%、 Si:0.05〜0.50%、
Mn:1.0 〜2.0 %、 P:0.015 %以下、
S:0.0005〜0.0050%、 Al:0.005 〜0.06%、
Ti:0.01〜0.03%、 Ni:1.5 %以下、
N:0.003 〜0.007 %、 Ca:0.0005〜0.0030%、
O:0.0030%以下を含み、かつ
下記(1)式および下記(2)式を満足し、残部 Fe および不可避的不純物からなる組成を有する鋼素材を、1050〜1200℃に加熱後、 Ar3変態点〜( Ar3変態点+100 ℃)の温度域における累積圧下率を35%以上とする熱間圧延を施した後、板厚1/4 位置において2℃/s以上の冷却速度で 450℃以下の温度域まで冷却することを特徴とする大入熱溶接部靱性に優れた厚肉高張力鋼材の製造方法。

0<{Ca−(0.18 +130 ×Ca) ×O}/(1.25/S)<1 ………(1)
2.5 < Ti /N <5.0 ………(2)
ここで、Ca、O、S、Ti、N:各合金元素の含有量(mass%)
mass%,
C: 0.05 to 0.15%, Si: 0.05 to 0.50%,
Mn: 1.0 to 2.0%, P: 0.015% or less,
S: 0.0005 to 0.0050%, Al: 0.005 to 0.06%,
Ti: 0.01-0.03%, Ni: 1.5% or less,
N: 0.003 to 0.007%, Ca: 0.0005 to 0.0030%,
O: A steel material containing 0.0030% or less and satisfying the following formula (1) and the following formula (2) and having the balance Fe and inevitable impurities is heated to 1050 to 1200 ° C., and then the Ar 3 transformation After hot rolling with a cumulative rolling reduction of 35% or more in the temperature range from point to (Ar 3 transformation point + 100 ° C), at a thickness of 1/4 position, a cooling rate of 2 ° C / s or more and 450 ° C or less A method for producing a thick high-strength steel material excellent in toughness of a large heat input weld, characterized by cooling to a temperature range of.
0 <{Ca− (0.18 + 130 × Ca) × O} / (1.25 / S) <1 (1)
2.5 <Ti / N <5.0 ......... (2)
Here, Ca, O, S, Ti, N: content of each alloy element (mass%)
前記鋼素材が、溶鋼中の溶存酸素量を0.0030mass%以下に調整したのち、Caを添加し、前記(1)式を満足するように、Ca、S含有量を調整してなる鋼素材であることを特徴とする請求項1に記載の大入熱溶接部靱性に優れた厚肉高張力鋼材の製造方法。  The steel material is a steel material obtained by adjusting the dissolved oxygen content in molten steel to 0.0030 mass% or less and then adding Ca and adjusting the Ca and S contents so as to satisfy the above formula (1). The method for producing a thick-walled high-tensile steel material excellent in toughness of a large heat input weld according to claim 1. 前記鋼素材が、 mass %で、
C: 0.05 0.15 %、 Si 0.05 0.50 %、
Mn 1.0 2.0 %、 P: 0.015 %以下、
S: 0.0005 0.0050 %、 Al 0.016 0.06 %、
Ti 0.01 0.03 %、 Ni 1.5 %以下、
N: 0.003 0.007 %、 Ca 0.0005 0.0030 %、
O: 0.0030 %以下を含み、かつ
前記(1)式および前記(2)式を満足し、さらに、V:0.2 %以下、Cu:1.0 %以下、Cr:0.7 %以下、Mo:0.7 %以下、B:0.002 %以下のうちから選ばれた1種または2種以上を含有し、残部 Fe および不可避的不純物からなる組成を有することを特徴とする請求項1または2に記載の大入熱溶接部靱性に優れた厚肉高張力鋼材の製造方法。
The steel material is mass %,
C: 0.05 to 0.15 %, Si : 0.05 to 0.50 %,
Mn : 1.0 to 2.0 %, P: 0.015 % or less,
S: 0.0005 to 0.0050 %, Al : 0.016 to 0.06 %,
Ti: 0.01 ~ 0.03%, Ni : 1.5% or less,
N: 0.003 to 0.007 %, Ca : 0.0005 to 0.0030 %,
O: Contains 0.0030 % or less, and
It satisfies the above formula (1) and the above formula (2), and is further selected from V : 0.2% or less, Cu: 1.0% or less, Cr: 0.7% or less, Mo: 0.7% or less, B: 0.002% or less The thick-walled high-tensile steel material with excellent toughness of large heat-input welds according to claim 1 or 2, wherein the thick-walled steel material has a composition comprising the balance Fe and unavoidable impurities. Manufacturing method.
前記冷却後、さらに、450 〜650 ℃の温度範囲での焼戻しを施すことを特徴とする請求項1ないし3のいずれかに記載の大入熱溶接部靱性に優れた厚肉高張力鋼材の製造方法。  4. The production of a thick high-strength steel material having excellent high heat input weld toughness according to claim 1, further comprising tempering in a temperature range of 450 to 650 ° C. after the cooling. 5. Method.
JP2001367737A 2001-11-30 2001-11-30 Manufacturing method of thick high-tensile steel with excellent heat input weld toughness Expired - Fee Related JP3733898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001367737A JP3733898B2 (en) 2001-11-30 2001-11-30 Manufacturing method of thick high-tensile steel with excellent heat input weld toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001367737A JP3733898B2 (en) 2001-11-30 2001-11-30 Manufacturing method of thick high-tensile steel with excellent heat input weld toughness

Publications (2)

Publication Number Publication Date
JP2003166017A JP2003166017A (en) 2003-06-13
JP3733898B2 true JP3733898B2 (en) 2006-01-11

Family

ID=19177441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001367737A Expired - Fee Related JP3733898B2 (en) 2001-11-30 2001-11-30 Manufacturing method of thick high-tensile steel with excellent heat input weld toughness

Country Status (1)

Country Link
JP (1) JP3733898B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020140442A1 (en) * 2019-01-03 2020-07-09 南京钢铁股份有限公司 S355g10 super-thick steel plate for ocean engineering and manufacturing method
KR20220092977A (en) 2020-03-30 2022-07-04 제이에프이 스틸 가부시키가이샤 Steel plate and its manufacturing method
KR20230159568A (en) 2021-07-02 2023-11-21 제이에프이 스틸 가부시키가이샤 High-strength steel plate and manufacturing method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753275B1 (en) 2003-06-05 2007-08-29 미쓰비시덴키 가부시키가이샤 Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
JP4539100B2 (en) * 2004-02-03 2010-09-08 Jfeスチール株式会社 Super high heat input welded heat affected zone
JP4969282B2 (en) * 2007-03-26 2012-07-04 株式会社神戸製鋼所 High-strength, low-yield ratio steel with excellent weld heat affected zone toughness
JP5276871B2 (en) * 2008-03-27 2013-08-28 株式会社神戸製鋼所 Low yield specific thickness steel plate with excellent toughness of weld heat affected zone
JP5407477B2 (en) * 2009-03-26 2014-02-05 Jfeスチール株式会社 Low yield ratio steel plate for building structures with excellent high heat input weld toughness and method for producing the same
JP5708431B2 (en) * 2011-10-19 2015-04-30 新日鐵住金株式会社 Steel sheet excellent in toughness of weld heat-affected zone and method for producing the same
CN109219670B (en) 2016-08-09 2020-09-04 杰富意钢铁株式会社 High-strength thick steel plate and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020140442A1 (en) * 2019-01-03 2020-07-09 南京钢铁股份有限公司 S355g10 super-thick steel plate for ocean engineering and manufacturing method
KR20220092977A (en) 2020-03-30 2022-07-04 제이에프이 스틸 가부시키가이샤 Steel plate and its manufacturing method
KR20230159568A (en) 2021-07-02 2023-11-21 제이에프이 스틸 가부시키가이샤 High-strength steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003166017A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
JP4946092B2 (en) High-strength steel and manufacturing method thereof
EP1533392A1 (en) Steel product for high heat input welding and method for production thereof
JP2002235114A (en) Method for producing thick high tensile strength steel excellent in toughness of high heat input weld zone
JP4035990B2 (en) Super high heat input welding HAZ toughness and low yield ratio steel plate for building structure and method for producing the same
JP3733898B2 (en) Manufacturing method of thick high-tensile steel with excellent heat input weld toughness
JP4981262B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP3546308B2 (en) Large heat input welding steel
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
WO2016009595A1 (en) Method of manufacturing steel plate for high-heat input welding
JP2000319750A (en) High tensile strength steel for large heat input welding excellent in toughness of heat-affected zone
JP3064865B2 (en) Manufacturing method of high strength and high toughness steel with excellent HIC resistance
JP3644398B2 (en) Manufacturing method of non-tempered thick high-tensile steel sheet with excellent weld heat-affected zone toughness
JP4539100B2 (en) Super high heat input welded heat affected zone
JP4066879B2 (en) Manufacturing method of thick-walled high-tensile steel plate with excellent weld heat affected zone CTOD characteristics
JP2009242852A (en) Steel member for high-heat input welding
JP2003221643A (en) Steel product showing excellent toughness of heat- affected zone in ultra-high heat input welding
JP4066850B2 (en) Method for producing high-tensile steel with excellent CTOD characteristics of welds
JP4039223B2 (en) Thick steel plate with excellent super tough heat input weld heat affected zone toughness and method for producing the same
WO2016068094A1 (en) High-tensile steel sheet having excellent low-temperature toughness in weld heat-affected zone, and method for manufacturing same
JP2011074445A (en) Method for manufacturing non-heat-treated high-tensile-strength thick steel superior in toughness at heat-affected zone in high-heat-input weld
JP2002371338A (en) Steel superior in toughness at laser weld
JP7272471B2 (en) steel plate
JP3733922B2 (en) Manufacturing method of thick high-strength steel sheet with excellent heat-affected zone toughness of super high heat input welding
JP3941596B2 (en) Manufacturing method of steel plate for building structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051010

R150 Certificate of patent or registration of utility model

Ref document number: 3733898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees