JP4066850B2 - Method for producing high-tensile steel with excellent CTOD characteristics of welds - Google Patents

Method for producing high-tensile steel with excellent CTOD characteristics of welds Download PDF

Info

Publication number
JP4066850B2
JP4066850B2 JP2003055108A JP2003055108A JP4066850B2 JP 4066850 B2 JP4066850 B2 JP 4066850B2 JP 2003055108 A JP2003055108 A JP 2003055108A JP 2003055108 A JP2003055108 A JP 2003055108A JP 4066850 B2 JP4066850 B2 JP 4066850B2
Authority
JP
Japan
Prior art keywords
mass
less
cooling
toughness
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003055108A
Other languages
Japanese (ja)
Other versions
JP2004263248A (en
Inventor
克行 一宮
健次 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003055108A priority Critical patent/JP4066850B2/en
Publication of JP2004263248A publication Critical patent/JP2004263248A/en
Application granted granted Critical
Publication of JP4066850B2 publication Critical patent/JP4066850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、溶接部のCTOD特性に優れる高張力鋼の製造方法に関し、特に降伏強さが355N/mm2(MPa)以上の、海洋構造物やラインパイプ、圧力容器などに用いられ、多層溶接が施される高張力鋼の製造方法に関するものである。
【0002】
【従来の技術】
海洋構造物等に用いられる鋼は、溶接接合により所望の形状の構造物に仕上げられる。そのためこれらの鋼には、構造物の安全性の観点から、母材自体の靭性はもちろん、溶接継手の溶接部(溶接金属や熱影響部)の靭性にも優れることが要求される。
【0003】
鋼の靭性特性の評価基準としては、従来、シャルピー試験による吸収エネルギーが主に用いられてきた。しかし近年では、より信頼性を増すために、き裂開口変位試験(crack tip opening displacement test、以降「CTOD試験」と略記する)が要求されることが多い。この試験は、疲労予き裂を評価部に発生させた試験片を3点曲げ試験して破壊直前のき裂底の口開き量(塑性変形量)を測定し、脆性破壊の発生抵抗を評価するものである。
【0004】
ところで、上記鋼について、板厚が厚い鋼の溶接は、多層溶接により施工されるが、このような溶接では、熱影響部は複雑な熱履歴を受けるため、局所脆化域が発生し易く、特にボンド部(溶接金属と母材との境界)や2相域再熱部(1サイクル目で粗粒となり、2サイクル目でαとγの2相域に加熱される領域)の靭性の劣化が問題となる。ボンド部は、溶融点直下の高温に曝されるため、オーステナイト粒が最も粗大化し、引き続く冷却により、脆弱な上部ベイナイト組織に変態し易いからである。また、ボンド部には、ウッドマンステッテン組織や島状マルテンサイトといった脆化組織も生成するため、靭性はさらに劣化する。
【0005】
その対策としては、例えば、鋼中にTiNを微細分散し、オーステナイトの粗大化を抑制したり、フェライト変態の核として利用したりする技術が実用化されている。さらに,特許文献1や特許文献2には、希土類元素(REM)をTiと複合添加して鋼中に微細粒子を分散させることにより、オーステナイトの粒成長を防止し、溶接部の靭性を向上する技術が開示されている。その他に、Tiの酸化物を分散させる技術やBNのフェライト核生成能を酸化物分散と組み合わせる技術、さらには、CaやREMを添加することにより硫化物の形態を制御し高靭性を得る技術も提案されている。
【0006】
一方、上記2相域再熱部、即ち最初の溶接時に溶融点直下の高温に曝された領域が、続く重ね溶接時の再加熱によりフェライトとオーステナイトの2相域となる領域が最も脆化する。これは、2パス目以降の再加熱により、オーステナイト領域に炭素が濃化し、これが冷却中に、島状マルテンサイトを含む脆弱なべイナイト組織を生成し、靭性を劣化させるからである。この対策として、特許文献3には、低C、低Si化することにより島状マルテンサイトの生成を抑制し、さらにCuを添加することにより母材強度を確保する技術が開示されている。
【0007】
【特許文献1】
特公平03−053367号公報
【特許文献2】
特開平60−184663号公報
【特許文献3】
特開平05−186823号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上述した熱影響部の靭性が劣るという問題は、上記従来技術によりある程度の改善がなされたものの、まだ幾つかの解決すべき問題点が残されている。例えば、TiNを利用する技術では、TiNが溶解する温度域に加熱されるボンド部においてはその作用がなくなり、さらに、固溶Tiおよび固溶Nによる基地組織の脆化によって著しい靭性の低下が起こることがある。また、Tiの酸化物を利用した技術では、酸化物の微細分散が十分均質にできないという問題がある。さらに近年の構造物や船舶等の大型化にともない、使用される鋼材は、より高強度化、厚肉化が進められている。高強度化、厚肉化のためには、特許文献3の技術とは逆に合金元素の添加が有効である。しかしその反面、合金元素の添加は、熱影響部の靭性の低下を招くという問題点を有している。
【0009】
本発明の目的は、上記従来技術が抱える問題点を解決し、合金元素の添加量を増やすことなく、熱影響部の靭性特性に優れるとともに母材の強度・靭性特性にも優れる高張力鋼の有利な製造方法を提案することにある。
【0010】
【課題を解決するための手段】
発明者らは、高張力鋼の熱影響部の靭性を改善するとともに母材の強度・靭性をも向上することができる方法について鋭意検討した。その結果、熱影響部の靭性劣化は、脆化組織の生成に起因していることがわかった。そこで、熱影響部を高靭性化するためには、高温に加熱された領域におけるオーステナイト粒の粗大化の抑制と、その冷却時におけるフェライト変態を促進するための変態核を微細分散させることが有効であり、この点、従来技術はこうした対策が不十分になっていることがわかった。
【0011】
そこで、発明者らは、上記脆化組織の生成を抑制する方法についてさらに検討した結果、硫化物の形態制御のために添加しているCaの添加量を適正範囲に制御することが有効であることを見出した。また、熱影響部のCTOD特性を向上するためには、Niの添加が有効であることも見出した。
【0012】
さらに、母材の強度・靭性特性に及ぼす圧延条件の影響について検討したところ、圧延後の冷却を、冷却速度が大きい前段冷却と小さい後段冷却からなる2段冷却とし、それぞれの冷却速度を制御すれば、鋼板組織がアシキュラ−フェライト主体の組織となり、母材の強度・靱性に優れた高張力鋼を製造できることを見出した。
【0013】
このような知見に基づいて完成した本発明は、C:0.05〜0.15mass%、Si:0.05〜0.50mass%、Mn:1.0〜2.0mass%、P:0.015mass%以下、S:0.0050mass%以下、Al:0.005〜0.06mass%、Ni:0.3〜2.0mass%、Ti:0.005〜0.02mass%、N:0.0030〜0.0065mass%、Ca:0.0005〜0.0030mass%を含み、かつ、Ca,O,Sの各含有量は下記式を満たして含有し、残部はFeおよび不可避的不純物からなる鋼素材を1050〜1200℃に加熱後、950℃以上の温度域における累積圧下率が30%以上かつ950℃未満の温度域における累積圧下率が30〜70%となる熱間圧延を施し、熱間圧延終了温度から600〜450℃間の冷却停止温度までの前段冷却を5〜20℃/secの冷却速度で、続く該前段冷却停止温度から450℃未満〜200℃間の冷却停止温度までの後段冷却を1〜5℃/sec未満の冷却速度で冷却することを特徴とする溶接部のCTOD特性に優れる高張力鋼の製造方法を提案する。

0<(Ca−(0.18+130×Ca)×O)/(1.25×S)<1
ただし、Ca,OおよびSは各成分の含有量(mass%)を表す。
【0014】
また、本発明の製造方法においては、上記成分組成に加えてさらに、B:0.0003〜0.0025mass%、V:0.2mass%以下、Cu:1.0mass%以下、Nb:0.05mass%以下、Cr:0.7mass%以下、Mo:0.7mass%以下から選ばれる少なくとも1種または2種以上を含有することが好ましい。
【0015】
さらに、本発明においては、上記冷却後の鋼に、さらに450〜600℃で焼戻し処理を施すことことが好ましい。
【0016】
【発明の実施の形態】
本発明の基本的な技術思想について説明する。
本発明の第1の特徴は、熱影響部の靭性を向上するために、硫化物の形態制御を目的として添加されるCaの化合物であるCaSの晶出を有効に利用するところにある。このCaSは、酸化物に比べて低温で晶出するため、均一に微細分散することができる。そして、Ca,Sの添加量および添加時の溶鋼中の溶存酸素量を適性範囲に制御することによって、CaS晶出後でも固溶Sが確保され、CaSの表面上にMnSが析出する。このMnSは、フェライト核生成能があることが知られており、さらに析出したMnSの周囲には、Mnの希薄帯が形成されるので、フェライト変態がより促進される。しかも、析出したMnS上には、TiN,BN,AlN等のフェライト生成核が析出するので、よりいっそうフェライト変態が促進される。
【0017】
上記の技術によって、高温でも溶解しないフェライト変態生成核を微細分散させ、溶接熱影響部の組織を微細なフェライトパーライト化し、高靭性化することができる。また、多層溶接時の熱サイクルにより2相域に再加熱される領域についても、最初の溶接による熱影響部の組織を微細化することで、未変態の領域の靭性が向上し、かつ再変態するオーステナイト粒が微細に生成するので、劣化の度合いを抑制することができるという効果がある。
【0018】
本発明の第2の特徴は、熱影響部の靭性特性を改善するために、素材成分としてNiを必須の成分として含有させるところにある。この点について、発明者が行った実験の結果に基づき説明する。
C:0.08mass%、Si:0.2mass%、Mn:1.5mass%を基本成分とし、Ni添加量を変化させた鋼スラブを、熱間圧延により25mmtの厚鋼板とした。これに入熱4.5kJ/cmのサブマージアーク溶接を施し、−10℃において、ボンド部のCTOD試験を実施した。
【0019】
上記試験の結果を図1に示す。この図から、Ni添加量の増加とともにCTOD特性が著しく向上することがわかる。これは、最初の溶接におけるミクロ組織を微細にする効果と、続く、多層溶接によって2相域に加熱される領域に生成する、靭性に有害な島状マルテンサイトの生成量を低下させる効果があるからと考えられる。
【0020】
本発明の第3の特徴は、鋼材圧延後の冷却を、前段冷却と後段冷却の2段階に分けて制御し、後段冷却より前段冷却の冷却速度を大きくするところにある。この点についても、実験結果を基に説明する。
C:0.08mass%、Si:0.2mass%、Mn:1.4mass%、Ni:0.4mass%を基本成分とする鋼スラブを、1150℃に加熱後、950℃以上の累積圧下率を40%、950℃未満での累積圧下率を50%、圧延終了温度を850℃とする熱間圧延を行った後、圧延終了から500℃までを冷却速度2〜25℃/sで冷却する前段冷却の後、350℃までを冷却速度3℃/sで冷却する後段冷却を行い、その後、空冷して10〜50mmtの厚鋼板とした。この厚鋼板について、アシキュラ−フェライト組織の面積率、引張特性および−40℃における靱性(シャルピー吸収エネルギー)を調査した。
【0021】
図2は、母材強度およびアシキュラ−フェライト面積率に及ぼす前段冷却の冷却速度の影響を示したものである。この図から、前段冷却の冷却速度が増すに伴って強度が上昇し、靱性が低下する傾向があり、一方、アシキュラ−フェライト組織の面積率は、冷却速度の増大とともに上昇するが、おおよ10℃/s以上では勾配が緩やかになる。このように、前段冷却の冷却速度をある速度以上に高めることにより、比較的高温で生成するポリゴナルフェライトを抑制してアシキュラ−フェライト主体の組織とし、強度−靱性バランスに優れた鋼板を製造できることがわかった。
【0022】
次に、本発明において、各成分の組成範囲を限定した理由について説明する。
C:0.05〜0.15mass%
Cは、構造用鋼として必要な強度を得るためには0.05mass%以上含有させる必要があり、逆に多過ぎると、溶接割れの発生を助長するので上限を0.15mass%とする必要がある。好ましくは、0.05〜0.12mass%である。
【0023】
Si:0.05〜0.50mass%
Siは、脱酸成分として0.05mass%以上添加する必要があり、一方、0.50mass%を超えると、母材の靱性を劣化させるため0.50mass%以下に制限する必要がある。
【0024】
Mn:1.0〜2.0mass%
Mnは、母材の強度を確保するために1.0mass%以上添加する必要があり、一方、2.0mass%を超えると、溶接部の靱性を著しく劣化させるため、2.0mass%以下とする必要がある。好ましくは、1.2〜1.8mass%である。
【0025】
P:0.015mass%以下
Pは、0.015mass%を超えると、溶接部の靱性を劣化させるため、0.015mass%以下に制限する。好ましくは、0.012mass%以下である。
【0026】
S:0.0050mass%以下
Sは、0.0050mass%を超えて含有すると、母材および溶接部の靱性を劣化させるため、0.0050mass%以下とする。好ましくは、0.0035mass%以下である。
【0027】
Al:0.005〜0.06mass%
Alは、溶鋼を脱酸するために、0.005mass%以上含有させる必要があり、一方、0.06mass%を超えて含有すると、母材の靱性を低下させるとともに溶接時の希釈により溶接金属部に混入し靱性を劣化させるため、0.06mass%以下に制限する必要がある。
【0028】
Ni:0.3〜2.0mass%、
Niは、鋼の強度および溶接熱影響部のCTOD特性の向上に有効な元素である。この効果は、0.3mass%以上の添加によって発揮されるが、高価であるため、上限を2.0mass%とする。
【0029】
Ti:0.005〜0.02mass%
Tiは、凝固時にTiNとなって析出し、溶接部におけるオーステナイトの粗大化抑制やフェライト変態核となって高靱性化に寄与する。0.005mass%未満ではその効果が少なく、一方、0.02mass%を超えると、TiN粒子の粗大化によって期待した効果が得られなくなる。
【0030】
N:0.0030〜0.0065mass%
Nは、TiNを必要量、確保するために必須の元素であり、十分なTiN量を得るためには0.0030mass%以上が必要である。一方、0.0065mass%を超えると、溶接時の加熱によってTiNが溶解する領域における固溶N量を増加し、靱性を著しく低下させるため、0.0065mass%以下に制限する。
【0031】
Ca:0.0005〜0.0030mass%
Caは、Sを固定によることにより靱性を改善する効果を有する。このような効果を発揮させるためには少なくとも0.0005mass%は含有することが必要である。しかし、0.0030mass%を超えて含有してもその効果が飽和するため、Caは、0.0005〜0.0030mass%の範囲に限定する。
【0032】
0<(Ca−(0.18+130×Ca)×O)/(1.25×S)<1
CaおよびSは、高温でも溶解しないフェライト変態生成核を微細分散させるためには、次式;
0<(Ca−(0.18+130×Ca)×O)/(1.25×S)<1
ここに、Ca,O,S:各元素の含有量(mass%)
の関係を満足するよう含有する必要がある。上記式における、(Ca−(0.18+130×Ca)×O)/(1.25×S)は、硫化物形態制御に有効なCa濃度とSとの原子濃度の比を示す値であり、硫化物の形態を推定することができる(拝田他、「鉄と鋼」、日本鉄鋼協会、第66年(1980)、第3号、p.354〜362)。この式を満たした場合には、CaS上にMnSが析出し、複合硫化物の形態となる。一方、(Ca−(0.18+130×Ca)×O)/(1.25×S)≦0の場合には、CaSが晶出しないために、SはMnS単独の形態で析出する。このMnSは、鋼板圧延時に伸長されて、母材の靱性の低下を引き起こすとともに、本発明の主眼である溶接熱影響部でのα変態生成核の微細分散が達成されない。逆に、1≦(Ca−(0.18+130×Ca)×O)/(1.25×S)の場合には、Sが完全にCaによって固定され、フェライト生成核として働くMnSがCaS上に析出しないために、複合硫化物がα生成核として十分な機能が発揮されない。好ましい(Ca−(0.18+130×Ca)×O)/(1.25×S)の範囲は、0.2〜0.8である。
【0033】
本発明では、上記の必須成分に加えてさらに、強度および靱性を高めるために、B、V、Nb、Cu、CrおよびMoから選ばれる少なくとも1種または2種以上を含有させることができる。
B:0.0003〜0.0025mass%
Bは、オーステナイト粒界に偏析することで粒界からのフェライト変態を抑えてベイナイト組織分率を増加させ、高強度化する効果があり、0.0003mass%以上の添加することが望ましい。しかし、0.0025%を超えて添加すると逆に靱性が劣化する。好ましくは、0.0005〜0.0020mass%である。
【0034】
V:0.2mass%以下
Vは、母材の強度・靱性の向上に効果があり、また、VNとして析出してフェライト生成核として働くが、0.2mass%を超えるとかえって靱性の低下を招く。より好ましくは、0.15mass%以下である。
【0035】
Nb:0.05mass%以下
Nbは、鋼の強化に有効な元素であるが、0.05mass%を超える含有は溶接部の靱性を劣化させる。
【0036】
Cu:1.0mass%以下
Cuは、Niと同様の働きを有しているが、1.0mass%を超えると熱間脆性を生じ、鋼板の表面性状を劣化させる。より好ましくは、0.8mass%以下である。
【0037】
Cr:0.7mass%以下
Crは、母材の高強度化に有効な元素であるが、多量に含有すると靱性に悪影響を与えるので上限を0.7mass%とする。より好ましくは、0.5mass%以下である。
【0038】
Mo:0.7mass%以下
Moは、母材の高強度化に有効な元素であるが、多量に含有すると靱性に悪影響を与えるので上限を0.7mass%とする。より好ましくは、0.5mass%以下である。
【0039】
次に、本発明の製造工程について説明する。
上記組成の溶鋼を、転炉、電気炉、真空溶解炉等の通常の方法で溶製し、連続鋳造法、造塊法など通常の鋳造方法でスラブ等の圧延素材とする。この素材を以下の工程により厚肉の高張力鋼に製造する。
まず、上述した成分組成に調整した鋼素材を、1050〜1200℃の温度範囲に加熱する。1050℃以上に加熱するのは、鋳造欠陥を圧着させるためである。しかし、1200℃を超える温度に加熱するとTiNが粗大化して溶接部の靱性が劣化するため、加熱温度は1200℃以下に規制する必要がある。
【0040】
鋼素材を上記温度に加熱後、950℃以上の温度域における累積圧下率を30%以上とする熱間圧延を行う。この温度域では、圧延によってオーステナイト粒が再結晶するため、組織を微細にすることができる。しかし、累積圧下率が30%未満では、加熱時の異常粗大粒が残存し、母材の靱性に悪影響を及ぼすため、累積圧下率は30%以上とする必要がある。
【0041】
引き続き、950℃未満の温度域における累積圧下率を30〜70%とする熱間圧延を行う。この温度域では圧延されたオーステナイト粒の再結晶は起こらず、オーステナイト粒は扁平に変形し、かつ内部に変形帯などの欠陥が導入される。この蓄積された内部エネルギーが、その後のフェライト変態の駆動力として働くことになる。圧下率が30%未満では、上記蓄積される内部エネルギーが十分ではないために、フェライト変態が起こりにくく、ベイナイト組織が生成する。一方、70%を超えると、逆にポリゴナルフェライトの生成が促進され、アシキュラ−フェライトの生成が抑制される。
【0042】
熱間圧延後の冷却は、前段冷却と後段冷却に分け、前者の冷却速度を後者のそれよりも相対的に大きくする。すなわち、前段冷却では、熱間圧延終了温度から600〜450℃間の冷却停止温度まで、好ましくは熱間圧延終了温度から580〜480℃間の冷却停止温度までを5〜20℃/sec、好ましくは6〜16℃/secの冷却速度で冷却する。その後の後段冷却では、前段冷却の停止温度から450℃未満〜200℃の間の後段冷却停止温度まで、好ましくは前段冷却の停止温度から400〜300℃間の冷却停止温度までを1〜5℃/sec未満、好ましくは2〜4℃/secの冷却速度で冷却する。
【0043】
前段冷却における停止温度が上記温度域よりも高い場合には、強度の増加がほとんどなく、逆に、上記温度域よりも低い場合には靱性が劣化する。また、前段冷却速度が上記範囲の下限未満では、ポリゴナルフェライトが主体の組織となって強度上昇効果が得られず、逆に上記範囲の上限を超えると靱性特性が劣化する。
【0044】
さらに、後段冷却における冷却停止温度が上記温度域の上限よりも高い場合には、強度上昇量が不十分となる。また、本発明では、鋼材の残留応力を低減する目的で、上記した冷却後、450〜650℃の温度範囲で焼戻し処理を施すことが好ましい。焼戻し温度が450℃未満では、残留応力の除去効果が少なく、一方、650℃を超えて高くなると、各種炭窒化物が析出し、析出強化により靭性が劣化する。そのため、焼戻し温度は、450〜650℃の温度範囲に限定することが好ましい。
【0045】
以上説明したように、本発明の高張力鋼材の製造方法においては、熱間圧延の圧下率制御と圧延終了後の2段冷却条件の制御が重要であり、とくに前段冷却の冷却速度を後段冷却のそれより大きくすることにより、母材がアシキュラーフェライト主体の組織となり、強度・靱性に優れた鋼材を製造することができる。
【0046】
【実施例】
表1に示す種々の成分組成に調整した鋼スラブを素材とし、表2および表3に示す製造条件により55mmtまたは65mmtの厚鋼板を製造した。かくして、得られた各厚鋼板について、引張試験及びシャルピー試験を実施した。引張試験は、各鋼板の板厚中央部から、圧延幅方向にJIS4号引張試験片を採取し、降伏強さ(YP)、引張強さ(TS)を求めた。シャルピー衝撃試験は、各鋼板の板厚中央部から、圧延幅方向にJIS4号衝撃試験片を採取し、−40℃での吸収エネルギー(vE−40℃)を求めた。
【0047】
また、各鋼板から採取した溶接試験板にレ開先(開先角度30°)を加工し、入熱45kJ/cmのサブマージアーク溶接を行って溶接継手を作製し、板厚方向にほぼ直線的なボンド部近傍を評価対象としたCTOD試験を−10℃で行った。なお、CTOD試験片の作成および試験条件は、英国規格BS7448に準拠して行った。
また、切り欠き位置をボンド部とするJIS4号衝撃試験片を採取し、試験温度−40℃でシャルピー衝撃試験を実施し、吸収エネルギー(vE−40℃)を求めた。
【0048】
上記の試験結果を表2および表3中に併記した。この結果から、本発明例の鋼材は、いずれも降伏強さ(YP)が355MPa以上の強度とシャルピー吸収エネルギー(vE−40℃)が200J以上の靭性を有しており、母材の強度・靭性が共に優れていることがわかる。さらにサブマージアーク溶接継手ボンド部のvE−40℃は200J以上でかつCTOD値は0.50mm以上であり、溶接熱影響部の靭性特性にも優れた鋼材となっていることがわかる。これに対し、本発明の範囲を外れる比較例の鋼材は、母材の特性が、降伏応力が355MPa以下またはvE−40℃が103J以下であるか、もしくは、母材特性が良好でも、溶接部の靭性が、vE−40℃が91J以下またはCTOD値が0.25mm以下でしかなく、母材の強度、靭性あるいは溶接部の靭性のいずれか1つ以上の特性の劣化が認められる。
【0049】
【表1】

Figure 0004066850
【0050】
【表2】
Figure 0004066850
【0051】
【表3】
Figure 0004066850
【0052】
【発明の効果】
以上説明したように、本発明によれば、母材の降伏強さが355N/mm2(MPa)以上で靭性特性に優れると共に、溶接部の靭性特性にも優れる高強度鋼材を安価に製造できるので、構造物の大型化に大きく寄与する。
【図面の簡単な説明】
【図1】 溶接ボンド部のCTOD特性に及ぼすNi添加量の影響を示すグラフである。
【図2】 前段冷却速度(圧延終了温度から600〜450℃までの冷却)が母材特性およびアシキュラーフェライト面積率に及ぼす影響を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing high-strength steel excellent in CTOD characteristics of a welded portion, and is particularly used for offshore structures, line pipes, pressure vessels, etc. having a yield strength of 355 N / mm 2 (MPa) or more. The present invention relates to a method for producing high-strength steel to which is applied.
[0002]
[Prior art]
Steel used for offshore structures and the like is finished to a desired shape by welding. For this reason, these steels are required to have excellent toughness not only in the toughness of the base metal itself but also in the welded portion (welded metal and heat-affected zone) of the welded joint from the viewpoint of the safety of the structure.
[0003]
Conventionally, the energy absorbed by the Charpy test has been mainly used as an evaluation standard for the toughness characteristics of steel. However, in recent years, a crack tip opening displacement test (hereinafter abbreviated as “CTOD test”) is often required to increase reliability. This test evaluates the resistance to brittle fracture by measuring the amount of opening (plastic deformation) at the crack bottom just before fracture by performing a three-point bending test on a specimen that had fatigue fatigue cracks in the evaluation section. To do.
[0004]
By the way, for the above steel, welding of steel with a large plate thickness is performed by multi-layer welding, but in such welding, since the heat-affected zone receives a complex heat history, a local embrittlement zone is likely to occur, Deterioration of toughness especially in bond part (boundary between weld metal and base metal) and two-phase reheated part (rough grain in the first cycle and heated to α and γ in the second cycle) Is a problem. This is because the bond portion is exposed to a high temperature just below the melting point, so that the austenite grains are most coarsened and are easily transformed into a fragile upper bainite structure by subsequent cooling. In addition, since a brittle structure such as a Woodman stetten structure or island martensite is also generated in the bond portion, the toughness is further deteriorated.
[0005]
As a countermeasure, for example, a technique of finely dispersing TiN in steel to suppress austenite coarsening or using it as a core of ferrite transformation has been put into practical use. Further, in Patent Document 1 and Patent Document 2, rare earth elements (REM) are added in combination with Ti to disperse fine particles in the steel, thereby preventing austenite grain growth and improving the toughness of the weld. Technology is disclosed. In addition, there are technologies to disperse Ti oxides, combine BN ferrite nucleation ability with oxide dispersion, and further to control sulfide morphology by adding Ca and REM to obtain high toughness. Proposed.
[0006]
On the other hand, the two-phase region reheat zone, that is, the region exposed to a high temperature immediately below the melting point during the first welding, the region that becomes the two-phase region of ferrite and austenite is most embrittled by reheating during the subsequent lap welding. . This is because carbon is concentrated in the austenite region by reheating after the second pass, and this generates a fragile bainitic structure including island martensite during cooling, thereby degrading toughness. As a countermeasure, Patent Document 3 discloses a technique for suppressing generation of island martensite by reducing C and Si and further ensuring the strength of a base material by adding Cu.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 03-053367 [Patent Document 2]
Japanese Patent Laid-Open No. 60-184663 [Patent Document 3]
Japanese Patent Laid-Open No. 05-186823 [0008]
[Problems to be solved by the invention]
However, the above-described problem that the toughness of the heat-affected zone is inferior has been improved to some extent by the above-described conventional technique, but there are still some problems to be solved. For example, in the technology using TiN, the action is lost in the bond portion heated to a temperature range where TiN dissolves, and further, the toughness is significantly lowered due to the embrittlement of the base structure due to the solid solution Ti and the solid solution N. Sometimes. Further, the technique using Ti oxide has a problem that fine dispersion of the oxide cannot be made sufficiently uniform. Further, with the recent increase in size of structures and ships, steel materials used are being made stronger and thicker. In order to increase the strength and the wall thickness, it is effective to add an alloy element contrary to the technique of Patent Document 3. On the other hand, however, the addition of the alloy element has a problem that the toughness of the heat-affected zone is lowered.
[0009]
The object of the present invention is to solve the above-mentioned problems of the prior art, and to improve the toughness characteristics of the heat affected zone and increase the strength and toughness characteristics of the base material without increasing the amount of alloy elements added. It is to propose an advantageous manufacturing method.
[0010]
[Means for Solving the Problems]
The inventors diligently studied a method capable of improving the toughness of the heat-affected zone of high-tensile steel and improving the strength and toughness of the base material. As a result, it was found that the toughness deterioration of the heat affected zone was caused by the formation of an embrittled structure. Therefore, in order to increase the toughness of the heat-affected zone, it is effective to suppress the coarsening of austenite grains in the region heated to a high temperature and finely disperse the transformation nuclei to promote ferrite transformation during cooling. In this respect, it has been found that the conventional technology has insufficient such measures.
[0011]
Therefore, as a result of further study on the method for suppressing the formation of the above-mentioned embrittlement structure, the inventors are effective to control the addition amount of Ca added for sulfide morphology control within an appropriate range. I found out. It has also been found that the addition of Ni is effective for improving the CTOD characteristics of the heat-affected zone.
[0012]
Furthermore, when the influence of rolling conditions on the strength and toughness characteristics of the base metal was examined, the cooling after rolling was changed to a two-stage cooling consisting of a pre-stage cooling with a large cooling rate and a low-stage cooling, and each cooling rate was controlled. For example, the present inventors have found that the steel sheet structure becomes a structure mainly composed of acicular ferrite and can produce high-strength steel excellent in the strength and toughness of the base material.
[0013]
The present invention completed based on such knowledge is as follows: C: 0.05 to 0.15 mass%, Si: 0.05 to 0.50 mass%, Mn: 1.0 to 2.0 mass%, P: 0.015 mass% or less, S: 0.0050 mass% or less , Al: 0.005 to 0.06 mass%, Ni: 0.3 to 2.0 mass%, Ti: 0.005 to 0.02 mass%, N: 0.0030 to 0.0065 mass%, Ca: 0.0005 to 0.0030 mass%, and Ca, O, S Each content of is contained by satisfying the following formula, and the balance is a steel material composed of Fe and unavoidable impurities, heated to 1050-1200 ° C, and the cumulative reduction in a temperature range of 950 ° C or higher is 30% or more and 950 ° C Cooling rate of 5-20 ° C / sec for pre-stage cooling from the end temperature of hot rolling to the cooling stop temperature of 600-450 ° C, with hot rolling at a cumulative rolling reduction of 30-70% in the temperature range below The subsequent cooling from the subsequent cooling stop temperature to the cooling stop temperature between less than 450 ° C. and 200 ° C. is cooled at a cooling rate of less than 1 to 5 ° C./sec. We propose a method for manufacturing a high-tensile steel having an excellent CTOD characteristics parts.
0 <(Ca− (0.18 + 130 × Ca) × O) / (1.25 × S) <1
However, Ca, O, and S represent content (mass%) of each component.
[0014]
In the production method of the present invention, in addition to the above component composition, B: 0.0003 to 0.0025 mass%, V: 0.2 mass% or less, Cu: 1.0 mass% or less, Nb: 0.05 mass% or less, Cr: 0.7 It is preferable to contain at least one selected from mass% or less and Mo: 0.7 mass% or less.
[0015]
Furthermore, in the present invention, it is preferable to further temper the steel after cooling at 450 to 600 ° C.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The basic technical idea of the present invention will be described.
The first feature of the present invention is to effectively utilize crystallization of CaS, which is a Ca compound added for the purpose of controlling the morphology of sulfides, in order to improve the toughness of the heat affected zone. Since this CaS crystallizes at a lower temperature than the oxide, it can be uniformly finely dispersed. And by controlling the addition amount of Ca and S and the dissolved oxygen amount in the molten steel at the time of addition to an appropriate range, solid solution S is ensured even after CaS crystallization, and MnS precipitates on the surface of CaS. This MnS is known to have a ferrite nucleation ability. Further, since a Mn thin band is formed around the precipitated MnS, the ferrite transformation is further promoted. Moreover, since ferrite-forming nuclei such as TiN, BN, and AlN precipitate on the precipitated MnS, the ferrite transformation is further promoted.
[0017]
By the above technique, ferrite transformation nuclei that do not dissolve even at high temperatures can be finely dispersed, the structure of the weld heat affected zone can be made into fine ferrite pearlite, and high toughness can be achieved. In addition, for the region that is reheated to the two-phase region by the thermal cycle during multi-layer welding, the toughness of the untransformed region is improved by refining the structure of the heat-affected zone by the first welding, and the retransformation Since the austenite grains to be produced are finely produced, there is an effect that the degree of deterioration can be suppressed.
[0018]
The second feature of the present invention is that Ni is contained as an essential component as a material component in order to improve the toughness characteristics of the heat affected zone. This point will be described based on the results of experiments conducted by the inventors.
A steel slab having C: 0.08 mass%, Si: 0.2 mass%, and Mn: 1.5 mass% as the basic components and the amount of Ni added was changed to a 25 mmt thick steel plate by hot rolling. This was subjected to submerged arc welding with a heat input of 4.5 kJ / cm, and a CTOD test of the bond portion was performed at −10 ° C.
[0019]
The results of the above test are shown in FIG. From this figure, it can be seen that the CTOD characteristics are remarkably improved as the Ni addition amount increases. This has the effect of reducing the microstructure in the initial welding and the effect of reducing the amount of island martensite harmful to toughness, which is generated in the region heated to the two-phase region by multi-layer welding. It is thought from.
[0020]
The third feature of the present invention resides in that the cooling after rolling the steel material is controlled in two stages, namely, the pre-stage cooling and the post-stage cooling, and the cooling rate of the pre-stage cooling is made larger than the post-stage cooling. This point will also be described based on experimental results.
C: 0.08 mass%, Si: 0.2 mass%, Mn: 1.4 mass%, Ni: 0.4 mass% After heating the steel slab to 1150 ° C, the cumulative reduction ratio of 950 ° C or higher is 40%, 950 After performing hot rolling at a cumulative reduction rate of less than 50 ° C. and a rolling end temperature of 850 ° C., after pre-stage cooling, cooling from the end of rolling to 500 ° C. at a cooling rate of 2 to 25 ° C./s, Subsequent cooling was performed to cool to 350 ° C. at a cooling rate of 3 ° C./s, and then air-cooled to obtain a thick steel plate of 10 to 50 mmt. About this thick steel plate, the area ratio of the acicular ferrite structure, the tensile characteristics, and the toughness (Charpy absorbed energy) at −40 ° C. were investigated.
[0021]
FIG. 2 shows the influence of the cooling rate of the pre-cooling on the base material strength and the acicular-ferrite area ratio. From this figure, as the cooling rate of the pre-stage cooling increases, the strength increases and the toughness tends to decrease, while the area ratio of the acicular-ferrite structure increases with an increase in the cooling rate. Above ℃ / s, the gradient becomes gentle. In this way, by increasing the cooling rate of the pre-cooling to a certain rate or more, it is possible to produce a steel sheet with excellent strength-toughness balance by suppressing polygonal ferrite generated at a relatively high temperature to form a structure mainly composed of acicular-ferrite. I understood.
[0022]
Next, the reason why the composition range of each component is limited in the present invention will be described.
C: 0.05-0.15 mass%
C needs to be contained in an amount of 0.05 mass% or more in order to obtain the strength required for structural steel, and conversely if too large, the occurrence of weld cracks is promoted, so the upper limit needs to be 0.15 mass%. Preferably, it is 0.05-0.12 mass%.
[0023]
Si: 0.05-0.50mass%
Si needs to be added in an amount of 0.05 mass% or more as a deoxidizing component. On the other hand, if it exceeds 0.50 mass%, the toughness of the base material is deteriorated, so it is necessary to limit it to 0.50 mass% or less.
[0024]
Mn: 1.0-2.0mass%
In order to ensure the strength of the base material, Mn needs to be added in an amount of 1.0 mass% or more. On the other hand, if it exceeds 2.0 mass%, the toughness of the welded portion is remarkably deteriorated. . Preferably, it is 1.2-1.8 mass%.
[0025]
P: 0.015 mass% or less When P exceeds 0.015 mass%, the toughness of the welded portion is deteriorated, so that it is limited to 0.015 mass% or less. Preferably, it is 0.012 mass% or less.
[0026]
S: 0.0050 mass% or less When S is contained in excess of 0.0050 mass%, the toughness of the base metal and the welded portion is deteriorated. Preferably, it is 0.0035 mass% or less.
[0027]
Al: 0.005-0.06mass%
In order to deoxidize molten steel, Al must be contained in an amount of 0.005 mass% or more. On the other hand, if it exceeds 0.06 mass%, the toughness of the base metal is reduced and mixed in the weld metal due to dilution during welding. In order to deteriorate the toughness, it is necessary to limit to 0.06 mass% or less.
[0028]
Ni: 0.3-2.0mass%,
Ni is an element effective for improving the strength of steel and the CTOD characteristics of the weld heat affected zone. This effect is exhibited by addition of 0.3 mass% or more, but is expensive, so the upper limit is 2.0 mass%.
[0029]
Ti: 0.005-0.02mass%
Ti precipitates as TiN during solidification and contributes to high toughness by suppressing the coarsening of austenite in the weld zone and becoming a ferrite transformation nucleus. If it is less than 0.005 mass%, the effect is small. On the other hand, if it exceeds 0.02 mass%, the expected effect cannot be obtained due to the coarsening of TiN particles.
[0030]
N: 0.0030-0.0065mass%
N is an essential element for securing the necessary amount of TiN, and 0.0030 mass% or more is necessary to obtain a sufficient amount of TiN. On the other hand, if it exceeds 0.0065 mass%, the amount of solid solution N in the region where TiN is dissolved by heating at the time of welding is increased and the toughness is remarkably reduced, so that it is limited to 0.0065 mass% or less.
[0031]
Ca: 0.0005 to 0.0030 mass%
Ca has an effect of improving toughness by fixing S. In order to exhibit such an effect, it is necessary to contain at least 0.0005 mass%. However, even if it contains exceeding 0.0030 mass%, since the effect is saturated, Ca is limited to the range of 0.0005-0.0030 mass%.
[0032]
0 <(Ca− (0.18 + 130 × Ca) × O) / (1.25 × S) <1
In order to finely disperse the ferrite transformation nuclei that do not dissolve even at high temperatures, Ca and S have the following formula:
0 <(Ca− (0.18 + 130 × Ca) × O) / (1.25 × S) <1
Here, Ca, O, S: content of each element (mass%)
It is necessary to contain so as to satisfy the relationship. In the above formula, (Ca− (0.18 + 130 × Ca) × O) / (1.25 × S) is a value indicating the ratio of the atomic concentration between Ca concentration and S effective for sulfide morphology control. The morphology can be estimated (Hida et al., “Iron and Steel”, Japan Iron and Steel Institute, 66th (1980), No. 3, p.354-362). When this equation is satisfied, MnS precipitates on CaS and takes the form of a composite sulfide. On the other hand, when (Ca− (0.18 + 130 × Ca) × O) / (1.25 × S) ≦ 0, since CaS does not crystallize, S precipitates in the form of MnS alone. This MnS is elongated at the time of rolling the steel sheet to cause a decrease in the toughness of the base material, and the fine dispersion of α-transformation nuclei in the weld heat affected zone, which is the main point of the present invention, is not achieved. On the contrary, when 1 ≦ (Ca− (0.18 + 130 × Ca) × O) / (1.25 × S), S is completely fixed by Ca, and MnS acting as a ferrite nuclei does not precipitate on CaS. In addition, the composite sulfide does not function sufficiently as an α-forming nucleus. A preferable range of (Ca− (0.18 + 130 × Ca) × O) / (1.25 × S) is 0.2 to 0.8.
[0033]
In the present invention, in addition to the above essential components, at least one or more selected from B, V, Nb, Cu, Cr, and Mo can be contained in order to further increase the strength and toughness.
B: 0.0003-0.0025 mass%
B segregates at the austenite grain boundaries to suppress the ferrite transformation from the grain boundaries to increase the bainite structure fraction and increase the strength, and it is desirable to add 0.0003 mass% or more. However, if added over 0.0025%, the toughness deteriorates. Preferably, it is 0.0005 to 0.0020 mass%.
[0034]
V: 0.2 mass% or less V is effective in improving the strength and toughness of the base metal, and precipitates as VN and functions as a ferrite-forming nucleus. However, if it exceeds 0.2 mass%, the toughness is lowered. More preferably, it is 0.15 mass% or less.
[0035]
Nb: 0.05 mass% or less
Nb is an element effective for strengthening steel, but inclusion exceeding 0.05 mass% degrades the toughness of the weld.
[0036]
Cu: 1.0 mass% or less
Cu has the same function as Ni, but when it exceeds 1.0 mass%, it causes hot brittleness and deteriorates the surface properties of the steel sheet. More preferably, it is 0.8 mass% or less.
[0037]
Cr: 0.7 mass% or less
Cr is an element effective for increasing the strength of the base material, but if it is contained in a large amount, it adversely affects toughness, so the upper limit is set to 0.7 mass%. More preferably, it is 0.5 mass% or less.
[0038]
Mo: 0.7 mass% or less
Mo is an element effective for increasing the strength of the base material, but if it is contained in a large amount, it adversely affects toughness, so the upper limit is set to 0.7 mass%. More preferably, it is 0.5 mass% or less.
[0039]
Next, the manufacturing process of the present invention will be described.
Molten steel having the above composition is melted by a normal method such as a converter, electric furnace, vacuum melting furnace or the like, and used as a rolling material such as a slab by a normal casting method such as a continuous casting method or an ingot-making method. This material is manufactured into a thick high-strength steel by the following process.
First, the steel material adjusted to the above-described component composition is heated to a temperature range of 1050 to 1200 ° C. The reason for heating to 1050 ° C. or higher is to crimp the casting defect. However, when heated to a temperature exceeding 1200 ° C., TiN becomes coarse and the toughness of the welded portion deteriorates, so the heating temperature must be regulated to 1200 ° C. or lower.
[0040]
After the steel material is heated to the above temperature, hot rolling is performed so that the cumulative rolling reduction in the temperature range of 950 ° C. or higher is 30% or higher. In this temperature range, the austenite grains are recrystallized by rolling, so that the structure can be made fine. However, if the cumulative rolling reduction is less than 30%, abnormal coarse grains remain during heating, which adversely affects the toughness of the base material. Therefore, the cumulative rolling reduction needs to be 30% or more.
[0041]
Subsequently, hot rolling is performed in which the cumulative rolling reduction in the temperature range below 950 ° C. is 30 to 70%. In this temperature range, recrystallization of the rolled austenite grains does not occur, the austenite grains are deformed flat, and defects such as deformation bands are introduced inside. This accumulated internal energy works as a driving force for the subsequent ferrite transformation. When the rolling reduction is less than 30%, the accumulated internal energy is not sufficient, so that ferrite transformation hardly occurs and a bainite structure is generated. On the other hand, if it exceeds 70%, the production of polygonal ferrite is accelerated, and the production of acicular ferrite is suppressed.
[0042]
Cooling after hot rolling is divided into pre-stage cooling and post-stage cooling, and the former cooling rate is relatively larger than that of the latter. That is, in the pre-stage cooling, from the hot rolling end temperature to the cooling stop temperature between 600 to 450 ° C, preferably from the hot rolling end temperature to the cooling stop temperature between 580 to 480 ° C, 5 to 20 ° C / sec, preferably Is cooled at a cooling rate of 6 to 16 ° C./sec. In the subsequent stage cooling, the temperature from the stop temperature of the former stage cooling to the rear stage cooling stop temperature of less than 450 ° C. to 200 ° C., preferably from the stop temperature of the former stage cooling to the cooling stop temperature of 400 to 300 ° C. is 1 to 5 ° C. / Sec, preferably at a cooling rate of 2 to 4 ° C./sec.
[0043]
When the stop temperature in the pre-cooling is higher than the above temperature range, there is almost no increase in strength, and conversely, when it is lower than the above temperature range, the toughness deteriorates. Further, if the cooling rate at the front stage is less than the lower limit of the above range, polygonal ferrite becomes a main structure and the effect of increasing the strength cannot be obtained. Conversely, if the upper limit of the above range is exceeded, the toughness characteristics deteriorate.
[0044]
Furthermore, when the cooling stop temperature in the rear stage cooling is higher than the upper limit of the temperature range, the amount of increase in strength becomes insufficient. Moreover, in this invention, it is preferable to give a tempering process in the temperature range of 450-650 degreeC after an above described cooling in order to reduce the residual stress of steel materials. If the tempering temperature is less than 450 ° C, the effect of removing the residual stress is small. On the other hand, if the tempering temperature is higher than 650 ° C, various carbonitrides precipitate and the toughness deteriorates due to precipitation strengthening. Therefore, the tempering temperature is preferably limited to a temperature range of 450 to 650 ° C.
[0045]
As described above, in the method for producing a high-strength steel material according to the present invention, it is important to control the reduction ratio of hot rolling and the control of two-stage cooling conditions after the end of rolling. By making it larger than that, the base material becomes a structure mainly composed of acicular ferrite, and a steel material excellent in strength and toughness can be produced.
[0046]
【Example】
Steel slabs adjusted to various component compositions shown in Table 1 were used as raw materials, and 55 mmt or 65 mmt thick steel plates were manufactured under the manufacturing conditions shown in Tables 2 and 3. Thus, the tensile test and the Charpy test were implemented about each obtained thick steel plate. In the tensile test, a JIS No. 4 tensile test piece was sampled in the rolling width direction from the center of the thickness of each steel plate, and yield strength (YP) and tensile strength (TS) were determined. In the Charpy impact test, a JIS No. 4 impact test piece was taken in the rolling width direction from the center of the plate thickness of each steel plate, and the absorbed energy at -40 ° C (vE-40 ° C) was determined.
[0047]
Welded test plates taken from each steel plate are processed into a groove (groove angle of 30 °) and submerged arc welding with a heat input of 45 kJ / cm is made to produce a welded joint, which is almost linear in the thickness direction. A CTOD test was conducted at −10 ° C. with the vicinity of the bond portion as an evaluation target. The preparation of CTOD test pieces and the test conditions were performed in accordance with British Standard BS7448.
Further, a JIS No. 4 impact test piece having a notch position as a bond portion was collected, and a Charpy impact test was performed at a test temperature of −40 ° C. to obtain an absorbed energy (vE−40 ° C.).
[0048]
The test results are shown in Tables 2 and 3. From this result, all the steel materials of the present invention have a yield strength (YP) of 355 MPa or more and a toughness of Charpy absorbed energy (vE−40 ° C.) of 200 J or more. It can be seen that both toughness is excellent. Furthermore, vE-40 degreeC of a submerged arc welding joint bond part is 200J or more, and CTOD value is 0.50 mm or more, and it turns out that it is the steel material excellent also in the toughness characteristic of a welding heat affected zone. On the other hand, the steel material of the comparative example that is outside the scope of the present invention has a base metal property that the yield stress is 355 MPa or less or vE-40 ° C is 103 J or less, or the base material property is good. As for toughness, vE-40 ° C is only 91 J or less or CTOD value is 0.25 mm or less, and deterioration of one or more of the strength, toughness and toughness of the welded part is recognized.
[0049]
[Table 1]
Figure 0004066850
[0050]
[Table 2]
Figure 0004066850
[0051]
[Table 3]
Figure 0004066850
[0052]
【The invention's effect】
As described above, according to the present invention, it is possible to produce a high-strength steel material that is excellent in toughness characteristics when the yield strength of the base material is 355 N / mm 2 (MPa) or more, and excellent in toughness characteristics of the welded portion, at low cost. Therefore, it greatly contributes to the enlargement of the structure.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of Ni addition amount on CTOD characteristics of a weld bond.
FIG. 2 is a graph showing the influence of the pre-stage cooling rate (cooling from the rolling end temperature to 600 to 450 ° C.) on the base material characteristics and the acicular ferrite area ratio.

Claims (3)

C:0.05〜0.15mass%、Si:0.05〜0.50mass%、
Mn:1.0〜2.0mass%、P:0.015mass%以下、
S:0.0050mass%以下、Al:0.005〜0.06mass%、
Ni:0.3〜2.0mass%、Ti:0.005〜0.02mass%、
N:0.0030〜0.0065mass%、Ca:0.0005〜0.0030mass%
を含み、かつ、Ca,O,Sの各含有量は下記式を満たして含有し、残部はFeおよび不可避的不純物からなる鋼素材を1050〜1200℃に加熱後、950℃以上の温度域における累積圧下率が30%以上かつ950℃未満の温度域における累積圧下率が30〜70%となる熱間圧延を施し、熱間圧延終了温度から600〜450℃間の冷却停止温度までの前段冷却を5〜20℃/secの冷却速度で、続く該前段冷却停止温度から450℃未満〜200℃間の冷却停止温度までの後段冷却を1〜5℃/sec未満の冷却速度で冷却することを特徴とする溶接部のCTOD特性に優れる高張力鋼の製造方法。

0<(Ca−(0.18+130×Ca)×O)/(1.25×S)<1
ただし、Ca,OおよびSは各成分の含有量(mass%)を表す。
C: 0.05-0.15 mass%, Si: 0.05-0.50 mass%,
Mn: 1.0 to 2.0 mass%, P: 0.015 mass% or less,
S: 0.0050 mass% or less, Al: 0.005-0.06 mass%,
Ni: 0.3-2.0 mass%, Ti: 0.005-0.02 mass%,
N: 0.0030 to 0.0065 mass%, Ca: 0.0005 to 0.0030 mass%
In addition, each content of Ca, O, S satisfies the following formula, and the balance is in a temperature range of 950 ° C. or higher after heating a steel material composed of Fe and inevitable impurities to 1050-1200 ° C. Preliminary cooling from hot rolling finish temperature to cooling stop temperature between 600-450 ° C, with hot rolling to 30-70% cumulative rolling reduction in the temperature range where the cumulative reduction rate is 30% or more and less than 950 ° C At a cooling rate of 5 to 20 ° C./sec, followed by cooling the subsequent cooling from the preceding cooling stop temperature to a cooling stop temperature between 450 ° C. and 200 ° C. at a cooling rate of less than 1 to 5 ° C./sec. A method for producing high-strength steel excellent in CTOD characteristics of a welded portion.
0 <(Ca− (0.18 + 130 × Ca) × O) / (1.25 × S) <1
However, Ca, O, and S represent content (mass%) of each component.
上記成分組成に加えてさらに、
B:0.0003〜0.0025mass%、V:0.2mass%以下、
Cu:1.0mass%以下、Nb:0.05mass%以下、
Cr:0.7mass%以下、Mo:0.7mass%以下
から選ばれる少なくとも1種または2種以上を含有することを特徴とする請求項1に記載の高張力鋼の製造方法。
In addition to the above component composition,
B: 0.0003 to 0.0025 mass%, V: 0.2 mass% or less,
Cu: 1.0 mass% or less, Nb: 0.05 mass% or less,
It contains at least 1 sort (s) or 2 or more types chosen from Cr: 0.7 mass% or less and Mo: 0.7 mass% or less, The manufacturing method of the high strength steel of Claim 1 characterized by the above-mentioned.
前記冷却後の鋼に、さらに450〜600℃で焼戻し処理を施すことを特徴とする請求項1または2に記載の高張力鋼の製造方法。The method for producing high-tensile steel according to claim 1 or 2, wherein the steel after cooling is further tempered at 450 to 600 ° C.
JP2003055108A 2003-03-03 2003-03-03 Method for producing high-tensile steel with excellent CTOD characteristics of welds Expired - Lifetime JP4066850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055108A JP4066850B2 (en) 2003-03-03 2003-03-03 Method for producing high-tensile steel with excellent CTOD characteristics of welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055108A JP4066850B2 (en) 2003-03-03 2003-03-03 Method for producing high-tensile steel with excellent CTOD characteristics of welds

Publications (2)

Publication Number Publication Date
JP2004263248A JP2004263248A (en) 2004-09-24
JP4066850B2 true JP4066850B2 (en) 2008-03-26

Family

ID=33119204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055108A Expired - Lifetime JP4066850B2 (en) 2003-03-03 2003-03-03 Method for producing high-tensile steel with excellent CTOD characteristics of welds

Country Status (1)

Country Link
JP (1) JP4066850B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5265944B2 (en) * 2008-03-04 2013-08-14 株式会社神戸製鋼所 Marine steel with excellent corrosion resistance
JP5347827B2 (en) * 2009-08-17 2013-11-20 新日鐵住金株式会社 High yield point 490 MPa class welded structural steel excellent in acoustic anisotropy and method for producing the same
JP6008042B2 (en) 2013-03-29 2016-10-19 Jfeスチール株式会社 Steel plate for thick-walled steel pipe, method for producing the same, and thick-walled high-strength steel pipe
KR101758520B1 (en) * 2015-12-23 2017-07-17 주식회사 포스코 High strength structural steel sheet having excellent heat treatment resistance and method of manufacturing the same
CN111426722B (en) * 2020-03-24 2022-04-19 北京科技大学 Device and method for rapidly determining recrystallization temperature of metal material

Also Published As

Publication number Publication date
JP2004263248A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP5439887B2 (en) High-strength steel and manufacturing method thereof
JP5950045B2 (en) Steel sheet and manufacturing method thereof
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP2009041079A (en) Steel for welded structure having excellent toughness in weld heat-affected zone, method for producing the same, and method for producing welded structure
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
KR101679498B1 (en) Superhigh-tensile steel plate for welding
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
TWI526545B (en) Steel material for welding
JP4507669B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP3733898B2 (en) Manufacturing method of thick high-tensile steel with excellent heat input weld toughness
JP4066850B2 (en) Method for producing high-tensile steel with excellent CTOD characteristics of welds
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP3644398B2 (en) Manufacturing method of non-tempered thick high-tensile steel sheet with excellent weld heat-affected zone toughness
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP4433844B2 (en) Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone
JP6299676B2 (en) High-tensile steel plate and manufacturing method thereof
JP4066879B2 (en) Manufacturing method of thick-walled high-tensile steel plate with excellent weld heat affected zone CTOD characteristics
JP4539100B2 (en) Super high heat input welded heat affected zone
WO2016068094A1 (en) High-tensile steel sheet having excellent low-temperature toughness in weld heat-affected zone, and method for manufacturing same
JP2022505840A (en) High-strength steel with excellent sulfide stress corrosion cracking resistance and its manufacturing method
JP2012046808A (en) Thick high-tensile-strength steel sheet excellent in low temperature toughness at welding portion, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4066850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term