JP2009235548A - Low yield ratio high tensile strength thick steel plate having excellent toughness in super-large heat input weld affected zone, and method for producing the same - Google Patents

Low yield ratio high tensile strength thick steel plate having excellent toughness in super-large heat input weld affected zone, and method for producing the same Download PDF

Info

Publication number
JP2009235548A
JP2009235548A JP2008086221A JP2008086221A JP2009235548A JP 2009235548 A JP2009235548 A JP 2009235548A JP 2008086221 A JP2008086221 A JP 2008086221A JP 2008086221 A JP2008086221 A JP 2008086221A JP 2009235548 A JP2009235548 A JP 2009235548A
Authority
JP
Japan
Prior art keywords
steel plate
thick steel
less
content
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008086221A
Other languages
Japanese (ja)
Other versions
JP5136156B2 (en
Inventor
Akio Omori
章夫 大森
Keiji Ueda
圭治 植田
Kimihiro Nishimura
公宏 西村
Shinichi Suzuki
伸一 鈴木
Nobuo Shikauchi
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008086221A priority Critical patent/JP5136156B2/en
Publication of JP2009235548A publication Critical patent/JP2009235548A/en
Application granted granted Critical
Publication of JP5136156B2 publication Critical patent/JP5136156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low yield ratio high tensile strength thick steel plate having excellent toughness in a super-large heat input weld affected zone, which has a tensile strength of ≥590 MPa and a yield ratio of ≤80%, can obtain a high toughness HAZ by super-large heat input welding, and used in the fields of civil engineering, building, bridges or the like, and to provide a method for producing the same. <P>SOLUTION: A steel stock having a composition comprising prescribed amounts of C, Si, Mn, P, S, Al, Cr, Nb, Mo, V, B, Ti, Ca, N and O, and further comprising one or more kinds selected from Cu and Ni, and in which Ceq satisfies 0.44 to 0.50, Pcm satisfies ≤0.21 and ACR satisfies 0.2 to 0.8, and the balance Fe with inevitable impurities is subjected to hot rolling, so as to be a thick steel plate. The thick steel plate is then reheated at 900 to 1,000°C, is held for ≥20 min, is thereafter subjected to reheat quenching treatment, is further heated to the two phase region temperature of (Ac1+20°C) to (Ac1+80°C), is held for ≥30 min, is subsequently subjected to two phase region quenching treatment, and is further subjected to tempering treatment at 400 to 600°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、土木,建築,橋梁等の分野で構築される溶接構造物に好適な低降伏比高張力厚鋼板の製造方法に関し、特に入熱400kJ/cmを超える大入熱溶接(以下、超大入熱溶接という)あるいは20〜50kJ/cmの小入熱の溶接を繰り返す溶接(以下、小入熱多パス溶接という)による熱影響部の靭性に優れ、降伏強さ440MPa以上,引張強さ590MPa以上,降伏比80%以下の低降伏比高張力厚鋼板およびその製造方法に関するものである。   The present invention relates to a method for producing a low-yield-ratio high-tensile steel plate suitable for welded structures constructed in the fields of civil engineering, architecture, bridges, and the like, and in particular, high heat input welding (hereinafter referred to as super-large size) exceeding 400 kJ / cm. Excellent heat-affected zone toughness by repeated welding (hereinafter referred to as small heat input multi-pass welding) with a low heat input of 20 to 50 kJ / cm, yield strength of 440 MPa or more, and tensile strength of 590 MPa As described above, the present invention relates to a low yield ratio high tensile steel plate having a yield ratio of 80% or less and a method for manufacturing the same.

近年、溶接構造物の大型化が進められ、それに伴って鋼板の高強度化や厚肉化の要求が高まっている。また、溶接構造物を構築する工事における施工能率の向上および施工コストの低減という観点から、溶接効率の向上が求められており、大入熱溶接が広く採用されている。特に、高層建築に用いられるボックス柱の接合では、溶接入熱が400kJ/cmを超えるような超大入熱溶接(たとえばサブマージアーク溶接,エレクトロスラグ溶接等)が行なわれている。   In recent years, the size of welded structures has been increased, and along with this, there has been an increasing demand for higher strength and thicker steel sheets. Further, from the viewpoint of improvement in construction efficiency and construction cost in construction for constructing a welded structure, improvement in welding efficiency is demanded, and high heat input welding is widely adopted. In particular, in the joining of box columns used in high-rise buildings, super-high heat input welding (for example, submerged arc welding, electroslag welding, etc.) is performed such that the welding heat input exceeds 400 kJ / cm.

一方で、土木,建築,橋梁等の分野の溶接構造物には耐震性が求められ、溶接構造物の塑性変形性を確保して倒壊を防止するために低降伏比(たとえば降伏比80%以下)の鋼板が使用されている。さらに、溶接構造物の耐震性を一層向上するために、鋼板の溶接継手にも高い靭性が要求されるようになって来た。たとえば高層建築では、ボックス柱同士の溶接継手やボックス柱と梁との溶接継手にも、0℃におけるシャルピー吸収エネルギーが70J以上といった高い靭性が要求されている。   On the other hand, welded structures in the fields of civil engineering, architecture, bridges, etc. are required to have earthquake resistance, and a low yield ratio (for example, a yield ratio of 80% or less) in order to ensure plastic deformation of the welded structure and prevent collapse ) Steel plate is used. Furthermore, in order to further improve the earthquake resistance of the welded structure, high toughness has been required for the welded joints of steel plates. For example, in high-rise buildings, high toughness such as Charpy absorbed energy at 0 ° C. of 70 J or more is also required for welded joints between box columns and welded joints between box columns and beams.

超大入熱溶接を行なった場合に、靭性が著しく低下するのは溶接熱影響部(以下、HAZという)であり、そのHAZの中でも溶融線近傍のボンド部と呼ばれる領域にて最も低下する。ボンド部では、超大入熱溶接の際に融点に近い高温に曝されることによってオーステナイト粒が粗大化し、引き続き冷却されて上部ベイナイトやマルテンサイトのような靭性の低い組織がオーステナイト粒内に生成する。その結果、HAZの靭性が低下する。   When super-high heat input welding is performed, it is the weld heat affected zone (hereinafter referred to as HAZ) that significantly reduces toughness, and is most reduced in a region called a bond portion in the vicinity of the melt line. In the bond part, the austenite grains become coarse by being exposed to a high temperature close to the melting point during super-high heat input welding, and subsequently cooled to form a structure with low toughness such as upper bainite and martensite in the austenite grains. . As a result, the toughness of HAZ decreases.

また、小入熱多パス溶接を行なった場合は、ボンド部に後続パスによって2相域まで再加熱される領域(以下、ICCGHAZという)が生じる。このICCGHAZでは、島状マルテンサイトが生成して、靭性が低下する。
特に引張強さが590MPaを超える高強度鋼では、合金元素を多量に添加するので、鋼板の降伏比が上昇し、HAZ(たとえば超大入熱溶接のボンド部,小入熱多パス溶接のICCGHAZ等)の靭性が低下する傾向が認められる。そのため、HAZの靭性に優れ、かつ降伏比の低い高強度厚鋼板を製造する技術が種々検討されている。
In addition, when small heat input multi-pass welding is performed, a region (hereinafter referred to as ICCGHAZ) is reheated to a two-phase region by a subsequent pass in the bond portion. In this ICCGHAZ, island-like martensite is generated and the toughness is lowered.
Particularly in high-strength steel with a tensile strength exceeding 590 MPa, a large amount of alloying elements is added, so that the yield ratio of the steel plate increases, and HAZ (for example, bond portion of super-high heat input welding, ICCGHAZ of small heat input multi-pass welding, etc.) ) Tendencies to decrease. Therefore, various techniques for producing high-strength thick steel plates having excellent HAZ toughness and low yield ratio have been studied.

たとえば特許文献1には、希土類元素(以下、REMという)の酸硫化物(すなわちオキシサルファイド)とTiNとを複合して鋼板中に分散させてオーステナイト粒の粗大化を抑制し、大入熱溶接におけるHAZの靭性を改善する技術が開示されている。しかしながら超大入熱溶接においては、TiNが融点に近い高温に長時間曝されて固溶するので、オーステナイト粒の成長を抑制する効果が得られないという問題がある。また、鋼板の強度を高めるためにREMやTi等の合金元素を多量に添加すると、鋼板の焼入れ性が増加するので、上部ベイナイトやマルテンサイトのような靭性の低い組織がオーステナイト粒内に生成し易くなるという問題がある。   For example, Patent Document 1 discloses that a rare earth element (hereinafter referred to as REM) oxysulfide (that is, oxysulfide) and TiN are combined and dispersed in a steel sheet to suppress coarsening of austenite grains, and high heat input welding. A technique for improving the toughness of HAZ in is disclosed. However, in ultra-high heat input welding, TiN is exposed to a high temperature close to the melting point for a long time and is dissolved, so that there is a problem that the effect of suppressing the growth of austenite grains cannot be obtained. In addition, when a large amount of alloying elements such as REM and Ti are added to increase the strength of the steel sheet, the hardenability of the steel sheet increases, so a structure with low toughness such as upper bainite and martensite is generated in the austenite grains. There is a problem that it becomes easy.

特許文献2には、Ti酸化物を鋼板中に分散させてフェライトの生成核として活用することによって、HAZの靭性を改善する技術が開示されている。しかしながら、Ti酸化物を均一かつ微細に分散させることは困難であり、大量に生産する鋼板の品質を安定して維持することは困難である。また、鋼板の強度を高めるために各種の合金元素を多量に添加すると、鋼板の焼入れ性が増加するので、上部ベイナイトやマルテンサイトが生成し易くなり、フェライトの生成が困難になる。   Patent Document 2 discloses a technique for improving the toughness of HAZ by dispersing Ti oxide in a steel sheet and utilizing it as a ferrite nucleus. However, it is difficult to uniformly and finely disperse the Ti oxide, and it is difficult to stably maintain the quality of the steel plate produced in large quantities. Further, when various alloy elements are added in a large amount in order to increase the strength of the steel sheet, the hardenability of the steel sheet is increased, so that upper bainite and martensite are easily generated and ferrite is difficult to generate.

特許文献3には、形態を最適化したCa酸硫化物を鋼板中に分散させてフェライトの生成を促進するとともに、2相域温度から急冷する焼入れ処理(以下、2相域焼入れ処理という)を施して、鋼板を硬質相と軟質相からなる2相組織とすることによって、降伏比の低い鋼板を得る技術が開示されている。さらに、Ca,O,Sの含有量を適正範囲に規定することによって、大入熱溶接におけるHAZの靭性を改善できることが開示されている。この技術を適用すれば、HAZの靭性に優れ、かつ降伏比が低く強度が高い厚鋼板を製造できる。しかしながら、鋼板の強度を高めるためにCや各種の合金元素を多量に添加すると、鋼板の焼入れ性が増加するので、上部ベイナイトやマルテンサイトのような靭性の低い組織がHAZに生成し易くなる。HAZの靭性低下を防止するためにはCや合金元素の添加を抑制しなければならない。つまり、HAZの靭性に優れ低降伏比かつ高強度という特性を安定して維持することは困難である。
特開昭60-152626号公報 特開昭57-51243号公報 特開2005-68519号公報
Patent Document 3 includes a quenching process (hereinafter referred to as a two-phase region quenching process) in which Ca oxysulfide having an optimized form is dispersed in a steel sheet to promote the formation of ferrite and rapidly cooled from a two-phase region temperature. A technique for obtaining a steel sheet with a low yield ratio by applying the steel sheet to a two-phase structure composed of a hard phase and a soft phase is disclosed. Furthermore, it is disclosed that the toughness of HAZ in high heat input welding can be improved by regulating the contents of Ca, O, and S within an appropriate range. If this technique is applied, a thick steel plate having excellent HAZ toughness, low yield ratio and high strength can be produced. However, when a large amount of C or various alloy elements is added to increase the strength of the steel sheet, the hardenability of the steel sheet is increased, so that a structure with low toughness such as upper bainite or martensite is easily generated in the HAZ. In order to prevent the HAZ toughness from being lowered, the addition of C and alloy elements must be suppressed. That is, it is difficult to stably maintain the characteristics of HAZ excellent in toughness, low yield ratio and high strength.
JP-A-60-152626 JP 57-51243 A JP 2005-68519 JP

本発明は、土木,建築,橋梁等の分野で使用される低降伏比高張力厚鋼板の製造方法を提供することを目的とする。詳しくは、440MPa以上の降伏強さ,590MPa以上の引張強さと80%以下の降伏比を有するとともに、超大入熱溶接によって高靭性のHAZが得られる超大入熱溶接熱影響部靭性に優れた低降伏比高張力厚鋼板およびその製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the low yield ratio high tension thick steel plate used in field | areas, such as a civil engineering, a building, and a bridge. Specifically, it has a yield strength of 440 MPa or more, a tensile strength of 590 MPa or more, and a yield ratio of 80% or less, and a super-high heat input heat-affected zone toughness that provides high toughness HAZ by super-high heat input welding. An object of the present invention is to provide a high yield strength high strength steel plate and a method for producing the same.

ここで、超大入熱溶接とは400kJ/cmを超える入熱量で行なう溶接を指し、溶接熱影響部(すなわちHAZ)の優れた靭性とは、400kJ/cmを超える超大入熱溶接で得られるボンド部のシャルピー吸収エネルギー(0℃)が70J以上であることを指す。さらに、20〜50kJ/cmの小入熱の溶接を繰り返す小入熱多パス溶接も、ここでは超大入熱溶接に分類し、その溶接熱影響部の優れた靭性とは、小入熱多パス溶接で得られるICCGHAZのシャルピー吸収エネルギー(0℃)が70J以上であることを意味する。   Here, super high heat input welding refers to welding performed with a heat input exceeding 400 kJ / cm, and the excellent toughness of the weld heat affected zone (ie HAZ) is the bond obtained by super high heat input welding exceeding 400 kJ / cm. The Charpy absorbed energy (0 ° C.) of the part is 70 J or more. Furthermore, small heat input multi-pass welding that repeats welding with a small heat input of 20 to 50 kJ / cm is also classified here as super large heat input welding, and the excellent toughness of the weld heat affected zone is the small heat input multi-pass. It means that the Charpy absorbed energy (0 ° C.) of ICCGHAZ obtained by welding is 70 J or more.

超大入熱溶接を行なって得られるHAZやICCGHAZの靭性を向上するためには、従来から知られている通り、
(1)TiNを微細に分散させる、
(2)Ca,S,Oの添加量を調整してACR値を0.2〜0.8の範囲内に維持する
ことが有効である。
In order to improve the toughness of HAZ and ICCGHAZ obtained by performing ultra-high heat input welding, as conventionally known,
(1) Finely disperse TiN.
(2) It is effective to maintain the ACR value within the range of 0.2 to 0.8 by adjusting the addition amount of Ca, S, and O.

ただし発明者らの研究によれば、板厚が80〜100mmの厚鋼板では、その強度を確保するためにCeq値を高く設定して0.44〜0.50の範囲内に維持しなければならず、その結果、厚鋼板の焼入れ性が増加するので、上部ベイナイトやマルテンサイトのような靭性の低い組織がHAZやICCGHAZに生成し易くなり、上記の(1)(2)のみでは十分な効果が得られないことが判明した。   However, according to the research by the inventors, in the case of a thick steel plate having a thickness of 80 to 100 mm, the Ceq value must be set high and maintained within the range of 0.44 to 0.50 in order to ensure the strength. As a result, the hardenability of the thick steel plate is increased, so that a structure with low toughness such as upper bainite and martensite is likely to be formed in HAZ and ICCGHAZ, and sufficient effects can be obtained only by the above (1) and (2). Not found out.

そこで発明者らは、Ceq値を上記の範囲内に維持して厚鋼板の強度を確保した上で、超大入熱溶接におけるHAZやICCGHAZの靭性を改善できる低降伏比高張力厚鋼板について鋭意検討した。その結果、下記の(A)〜(C)の知見が得られた。なお各元素の含有量の単位は、いずれも質量%である。
(A)小入熱多パス溶接におけるICCGHAZの靭性を向上するためには、厚鋼板のC含有量の過剰な増加を抑制する必要がある。C含有量を0.070%以下(好ましくは0.064%以下)とすることによって、島状マルテンサイトの生成量が減少し、0℃におけるシャルピー吸収エネルギーV0が70J以上である優れた靭性を確保できる。
Therefore, the inventors have intensively studied a low yield ratio high tensile steel plate that can improve the toughness of HAZ and ICCGHAZ in super high heat input welding while maintaining the strength of the steel plate while maintaining the Ceq value within the above range. did. As a result, the following findings (A) to (C) were obtained. The unit of the content of each element is mass%.
(A) In order to improve the toughness of ICCGHAZ in small heat input multi-pass welding, it is necessary to suppress an excessive increase in the C content of the thick steel plate. By making the C content 0.070% or less (preferably 0.064% or less), the amount of island-like martensite produced is reduced, and excellent toughness with Charpy absorbed energy V E 0 at 0 ° C. of 70 J or more can be secured. .

(B)厚鋼板の降伏比を低減するためには、2相域焼入れ処理が有効である。2相域温度に保持する間に特定の合金元素(たとえばMn,Cu,Ni等)がフェライトとオーステナイトの界面に偏在することによって、厚鋼板の合金元素の含有量に濃淡が生じる。この合金元素の濃淡は、HAZが曝されるような短時間の加熱では消失しないので、合金元素の含有量が低い領域では溶接によって加熱されるときにフェライトが容易に生成される。したがってCeq値が高い場合にも、合金元素の含有量が低い領域が存在することによって、Ca酸硫化物をフェライトの生成核として活用することが可能となる。このような効果を得るためには、Mn,Cu,Niを平均濃度の90%程度以下まで淡化させたミクロ組織を形成する必要があり、さらにその淡化領域の分率を10%以上にする必要がある。   (B) In order to reduce the yield ratio of the thick steel plate, a two-phase quenching treatment is effective. A specific alloy element (for example, Mn, Cu, Ni, etc.) is unevenly distributed at the interface between ferrite and austenite while maintaining the temperature at the two-phase region temperature, and thus the content of the alloy element in the thick steel plate is shaded. Since the density of the alloy element does not disappear by heating in a short time such that the HAZ is exposed, ferrite is easily generated when heated by welding in a region where the content of the alloy element is low. Therefore, even when the Ceq value is high, Ca oxysulfide can be used as a ferrite nucleation because of the presence of a region having a low content of alloy elements. In order to obtain such an effect, it is necessary to form a microstructure in which Mn, Cu, and Ni are thinned to about 90% or less of the average concentration, and the fraction of the lightened region must be 10% or more. There is.

(C)Mn,Cu,Ni等の合金元素は置換型合金元素であり、2相域温度に保持する間に拡散によって移動する距離はわずかである。したがって2相域温度に保持する間に合金元素の含有量に濃淡を効率良く生じさせるためには、加熱する前の厚鋼板の組織を微細にする必要がある。そこで2相域温度に加熱する前に焼入れを行なう。この焼入れ処理は、熱間圧延によって得られた厚鋼板を900〜1000℃に再加熱して焼入れ(以下、再加熱焼入れ処理という)するものであり、2相域焼入れ処理とは異なる。再加熱焼入れ処理によって生成したマルテンサイトやベイナイトの高密度ラス界面には、2相域温度に保持する間にオーステナイトが生成し、その結果、厚鋼板にオーステナイトとフェライトの微細な混合組織が形成される。また、マルテンサイトやベイナイトに存在する高密度の転位が、Mn,Cu,Ni等の拡散を促進する。そのため、Mn,Cu,Ni等の拡散距離が短くても、その含有量の濃淡を生じさせる効果を得ることが可能となる。   (C) Alloy elements such as Mn, Cu, and Ni are substitutional alloy elements, and the distance traveled by diffusion is small while being maintained at the two-phase temperature. Therefore, in order to efficiently produce the light and shade in the content of the alloy element while maintaining the two-phase region temperature, it is necessary to make the structure of the thick steel plate before heating fine. Therefore, quenching is performed before heating to the two-phase region temperature. This quenching process is a process in which a thick steel plate obtained by hot rolling is reheated to 900 to 1000 ° C. and quenched (hereinafter referred to as reheating quenching process), and is different from the two-phase region quenching process. Austenite is formed at the high-density lath interface of martensite and bainite generated by reheating and quenching while maintaining the temperature in the two-phase region, and as a result, a fine mixed structure of austenite and ferrite is formed on the thick steel plate. The In addition, high-density dislocations existing in martensite and bainite promote the diffusion of Mn, Cu, Ni, and the like. Therefore, even if the diffusion distance of Mn, Cu, Ni or the like is short, it is possible to obtain the effect of causing the density of the content.

本発明は、以上のような知見に基づいてなされたものである。
すなわち本発明は、質量%で、C:0.040〜0.070%,Si:0.05〜0.45%,Mn:1.0〜1.6%,P:0.020%以下,S:0.0007〜0.0040%,Al:0.005〜0.05%,Cr:0.03〜1.0%,Nb:0.003%以下,Mo:0.04%以下,V:0.030%以下,B:0.0005〜0.0030%,Ti:0.005〜0.030%,Ca:0.0005〜0.0035%,N:0.0030〜0.0070%,O:0.0010〜0.0040%を含有し、さらにCu:0.05〜1.0%およびNi:0.05〜2.0%のうちの1種以上をCu含有量とNi含有量の合計が1.0〜2.0%となるように含有し、かつ各元素の含有量を用いて(1)式で定義されるCeqが0.44〜0.50を満足し、(2)式で定義されるPcmが0.21以下を満足し、(3)式で定義されるACRが0.2〜0.8を満足し、残部がFeおよび不可避的不純物からなる組成を有し、ミクロ組織が、Mn,Cu,Niの含有量が鋼材平均よりも高い濃化領域と低い淡化領域を含み、(Mn/6+Cu/15+Ni/15)の値が鋼材平均の90%以下である淡化領域の分率が10%以上である超大入熱溶接熱影響部靭性に優れた低降伏比高張力厚鋼板である。
The present invention has been made based on the above findings.
That is, the present invention is, in mass%, C: 0.040 to 0.070%, Si: 0.05 to 0.45%, Mn: 1.0 to 1.6%, P: 0.020% or less, S: 0.0007 to 0.0040%, Al: 0.005 to 0.05%, Cr: 0.03-1.0%, Nb: 0.003% or less, Mo: 0.04% or less, V: 0.030% or less, B: 0.0005-0.0030%, Ti: 0.005-0.030%, Ca: 0.0005-0.0035%, N: 0.0030- 0.0070%, O: 0.0010 to 0.0040%, and Cu: 0.05 to 1.0% and Ni: 0.05 to 2.0%, the total of Cu content and Ni content is 1.0 to 2.0% And Ceq defined by the formula (1) satisfies 0.44 to 0.50, and Pcm defined by the formula (2) satisfies 0.21 or less, using the content of each element, (3) The ACR defined by the formula satisfies 0.2 to 0.8, the balance has a composition composed of Fe and inevitable impurities, and the microstructure has a concentration region in which the content of Mn, Cu, and Ni is higher than the steel average Including low lightening area, (Mn / 6 + Cu / 15 Ni / 15 value of) the low yield ratio high-strength thick steel plate fraction and excellent ultra-large heat input welded heat affected zone toughness is 10% or more of Awaka area is less than 90% of the steel average.

また本発明は、質量%で、C:0.040〜0.070%,Si:0.05〜0.45%,Mn:1.0〜1.6%,P:0.020%以下,S:0.0007〜0.0040%,Al:0.005〜0.05%,Cr:0.03〜1.0%,Nb:0.003%以下,Mo:0.04%以下,V:0.030%以下,B:0.0005〜0.0030%,Ti:0.005〜0.030%,Ca:0.0005〜0.0035%,N:0.0030〜0.0070%,O:0.0010〜0.0040%を含有し、さらにCu:0.05〜1.0%およびNi:0.05〜2.0%のうちの1種以上をCu含有量とNi含有量の合計が1.0〜2.0%となるように含有し、かつ各元素の含有量を用いて(1)式で定義されるCeqが0.44〜0.50を満足し、(2)式で定義されるPcmが0.21以下を満足し、(3)式で定義されるACRが0.2〜0.8を満足し、残部がFeおよび不可避的不純物からなる組成を有する鋼素材を熱間圧延によって厚鋼板とし、次いで厚鋼板を900〜1000℃の温度に再加熱して20分以上保持した後、800〜500℃の温度範囲を平均冷却速度1℃/秒以上で冷却して焼入れを行なう再加熱焼入れ処理を施し、さらに(Ac1+20℃)〜(Ac1+80℃)の2相域温度に加熱して30分以上保持した後、(Ac1−20℃)〜500℃の温度範囲を平均冷却速度1℃/秒以上で冷却して焼入れを行なう2相域焼入れ処理を施し、さらに400〜600℃の温度に加熱して保持する焼戻し処理を施す超大入熱溶接熱影響部靭性に優れた低降伏比高張力厚鋼板の製造方法である。   Moreover, this invention is the mass%, C: 0.040-0.070%, Si: 0.05-0.45%, Mn: 1.0-1.6%, P: 0.020% or less, S: 0.0007-0.0040%, Al: 0.005-0.05%, Cr: 0.03-1.0%, Nb: 0.003% or less, Mo: 0.04% or less, V: 0.030% or less, B: 0.0005-0.0030%, Ti: 0.005-0.030%, Ca: 0.0005-0.0035%, N: 0.0030- 0.0070%, O: 0.0010 to 0.0040%, and Cu: 0.05 to 1.0% and Ni: 0.05 to 2.0%, the total of Cu content and Ni content is 1.0 to 2.0% And Ceq defined by the formula (1) satisfies 0.44 to 0.50, and Pcm defined by the formula (2) satisfies 0.21 or less, using the content of each element, (3) A steel material having a composition in which the ACR defined by the formula satisfies 0.2 to 0.8 and the balance is composed of Fe and inevitable impurities is made into a thick steel plate by hot rolling, and then the thick steel plate is reheated to a temperature of 900 to 1000 ° C. 800 minutes after holding for more than 20 minutes Reheat quenching treatment is performed in which the temperature range of 500 ° C is cooled at an average cooling rate of 1 ° C / second or higher, and then heated to a two-phase temperature range of (Ac1 + 20 ° C) to (Ac1 + 80 ° C) for 30 minutes or longer After holding, a two-phase quenching process is performed in which the temperature range of (Ac1−20 ° C) to 500 ° C is cooled at an average cooling rate of 1 ° C / second or more, and then heated to a temperature of 400 to 600 ° C. This is a method for producing a low yield ratio high-tensile thick steel plate excellent in toughness of a heat-affected zone with a super-high heat input weld subjected to tempering treatment.

Ceq=[%C]+([%Mn]/6)+{([%Ni]+[%Cu])/15}
+{([%Cr]+[%Mo]+[%V])/5} ・・・(1)
Pcm=[%C]+([%Si]/30)+([%Mn]/20)+([%Cu]/20)
+([%Ni]/60)+([%Cr]/20)+([%Mo]/15)
+([%V]/10)+(5×[%B]) ・・・(2)
ACR={[%Ca]−(0.18+130×[%Ca])×[%O]}/(1.25×[%S])
・・・(3)
ここで[%C]はCの含有量,[%Mn]はMnの含有量,[%Ni]はNiの含有量,[%Cu]はCuの含有量,[%Cr]はCrの含有量,[%Mo]はMoの含有量,[%V]はVの含有量,[%Si]はSiの含有量,[%B]はBの含有量,[%Ca]はCaの含有量,[%O]はOの含有量,[%S]はSの含有量を指す。含有量の単位は、いずれも質量%である。
Ceq = [% C] + ([% Mn] / 6) + {([% Ni] + [% Cu]) / 15}
+ {([% Cr] + [% Mo] + [% V]) / 5} (1)
Pcm = [% C] + ([% Si] / 30) + ([% Mn] / 20) + ([% Cu] / 20)
+ ([% Ni] / 60) + ([% Cr] / 20) + ([% Mo] / 15)
+ ([% V] / 10) + (5 × [% B]) (2)
ACR = {[% Ca] − (0.18 + 130 × [% Ca]) × [% O]} / (1.25 × [% S])
... (3)
Where [% C] is the C content, [% Mn] is the Mn content, [% Ni] is the Ni content, [% Cu] is the Cu content, and [% Cr] is the Cr content. [% Mo] is the Mo content, [% V] is the V content, [% Si] is the Si content, [% B] is the B content, and [% Ca] is the Ca content. The amount, [% O] indicates the O content, and [% S] indicates the S content. The unit of content is mass%.

本発明の超大入熱溶接熱影響部靭性に優れた低降伏比高張力厚鋼板の製造方法においては、鋼素材が、前記した組成に加えて、質量%でREM:0.0010〜0.020%およびMg:0.0010〜0.0050%のうちの1種以上を含有することが好ましい。
また、鋼素材を熱間圧延して得られる厚鋼板の板厚が100mm以下であることが好ましい。厚鋼板の板厚は80〜100mmの範囲内が一層好ましい。
In the manufacturing method of the low yield ratio high-tensile steel plate excellent in the super high heat input welding heat-affected zone toughness of the present invention, in addition to the above-described composition, the steel material is REM: 0.0010 to 0.020% and Mg: It is preferable to contain one or more of 0.0010 to 0.0050%.
Moreover, it is preferable that the plate | board thickness of the thick steel plate obtained by hot-rolling a steel raw material is 100 mm or less. The thickness of the thick steel plate is more preferably in the range of 80 to 100 mm.

本発明によれば、土木,建築,橋梁等の分野で好適な、440MPa以上の降伏強さ,590MPa以上の引張強さと80%以下の降伏比を有するとともに、超大入熱溶接によって高靭性のHAZやICCGHAZが得られる超大入熱溶接熱影響部靭性に優れた低降伏比高張力厚鋼板を製造できる。   According to the present invention, it has a yield strength of 440 MPa or more, a tensile strength of 590 MPa or more and a yield ratio of 80% or less, which is suitable in the fields of civil engineering, architecture, bridges, etc., and has high toughness HAZ by super-high heat input welding. In addition, it is possible to manufacture a high yield thick steel plate having a low yield ratio and excellent in super heat input welding heat affected zone toughness from which ICCGHAZ can be obtained.

まず、本発明を適用して厚鋼板を製造するために熱間圧延を行なう鋼素材の成分を限定する理由を説明する。各元素の含有量の単位は、いずれも質量%である。なお、以下では超大入熱溶接によるHAZとICCGHAZを総称してHAZと記す。
C:0.040〜0.070%
Cは、厚鋼板の強度を増加させる作用を有し、構造用鋼材として必要な強度を確保する上で重要な元素である。C含有量が0.040%未満では、590MPa以上の引張強さが得られない。一方、0.070%を超えると、超大入熱溶接のHAZのうち、Ac3以上に加熱された領域(いわゆる細粒域HAZ)に島状マルテンサイトが生成して、HAZの靭性が低下する。したがって、Cは0.040〜0.070%の範囲内を満足する必要がある。好ましくは0.050〜0.064%である。
First, the reason for limiting the components of the steel material that is hot-rolled in order to apply the present invention to produce a thick steel plate will be described. The unit of the content of each element is mass%. Hereinafter, HAZ and ICCGHAZ by super-high heat input welding are collectively referred to as HAZ.
C: 0.040-0.070%
C has an effect of increasing the strength of the thick steel plate, and is an important element in securing the strength required as a structural steel material. If the C content is less than 0.040%, a tensile strength of 590 MPa or more cannot be obtained. On the other hand, if it exceeds 0.070%, island-shaped martensite is generated in a region heated to Ac3 or higher (so-called fine-grained region HAZ) in the HAZ of super high heat input welding, and the toughness of the HAZ is reduced. Therefore, C needs to satisfy the range of 0.040 to 0.070%. Preferably it is 0.050 to 0.064%.

Si:0.05〜0.45%
Siは、超大入熱溶接の溶融メタル中で脱酸剤として作用する。Si含有量が0.05%未満では、脱酸剤としての効果が得られない。一方、0.45%を超えると、厚鋼板の靭性が劣化するとともに、HAZの靭性が著しく劣化する。したがって、Siは0.05〜0.45%の範囲内を満足する必要がある。好ましくは0.05〜0.35%である。
Si: 0.05-0.45%
Si acts as a deoxidizer in the molten metal for super high heat input welding. When the Si content is less than 0.05%, the effect as a deoxidizer cannot be obtained. On the other hand, if it exceeds 0.45%, the toughness of the thick steel plate deteriorates and the toughness of the HAZ significantly deteriorates. Therefore, Si needs to satisfy the range of 0.05 to 0.45%. Preferably it is 0.05 to 0.35%.

Mn:1.0〜1.6%
Mnは、厚鋼板の強度を増加させる作用を有し、構造用鋼材として必要な強度を確保する上で重要な元素である。Mn含有量が1.0%未満では、590MPa以上の引張強さが得られない。一方、1.6%を超えると、後述するCeq値(すなわち0.44〜0.50)の範囲内では、厚鋼板のみならずHAZの靭性が著しく劣化する。したがって、Mnは1.0〜1.6%の範囲内を満足する必要がある。
Mn: 1.0-1.6%
Mn has an effect of increasing the strength of the thick steel plate, and is an important element for ensuring the strength required as a structural steel material. If the Mn content is less than 1.0%, a tensile strength of 590 MPa or more cannot be obtained. On the other hand, if it exceeds 1.6%, the toughness of the HAZ as well as the thick steel plate deteriorates significantly within the range of the Ceq value (that is, 0.44 to 0.50) described later. Therefore, Mn needs to satisfy the range of 1.0 to 1.6%.

P:0.020%以下
Pは、厚鋼板の強度を増加させる一方で靭性を劣化させる元素である。そのため、超大入熱溶接によるHAZの靭性の劣化を防止する観点から、Pを可能な限り低減する必要がある。P含有量が0.020%を超えると、HAZの靭性が著しく劣化する。したがって、Pは0.020%以下とする。なお、P含有量の下限値は特に限定しないが、Pを過剰に低減すれば、溶鋼を溶製する段階で精錬コストの上昇を招く。したがって、Pは0.005〜0.020%が好ましい。より好ましくは0.005〜0.015%である。
P: 0.020% or less P is an element that increases the strength of a thick steel plate while degrading toughness. Therefore, it is necessary to reduce P as much as possible from the viewpoint of preventing the deterioration of the toughness of the HAZ due to super large heat input welding. When the P content exceeds 0.020%, the toughness of the HAZ is significantly deteriorated. Therefore, P is set to 0.020% or less. In addition, although the lower limit of P content is not specifically limited, if P is reduced excessively, the refining cost will increase at the stage of melting molten steel. Therefore, P is preferably 0.005 to 0.020%. More preferably, it is 0.005 to 0.015%.

S:0.0007〜0.0040%
Sは、溶鋼の凝固段階でCaと結合してCaS粒子を晶出する。CaS粒子は熱間圧延後の冷却時にフェライト生成核として作用し、厚鋼板の降伏比低下に寄与する。さらに、その厚鋼板の超大入熱溶接を行なう際には、CaS粒子上にMnSが析出してフェライト生成核として作用し、溶接金属の靭性を向上させる。S含有量が0.0007%未満では、この効果が得られない。一方、0.0040%を超えると、溶鋼の連続鋳造にて鋳片の中央部に多量のMnSが偏析して、鋳片内部に欠陥が生じるばかりでなく、その鋳片から製造した厚鋼板の靭性が劣化する。したがって、Sは0.0007〜0.0040%の範囲内を満足する必要がある。
S: 0.0007-0.0040%
S combines with Ca in the solidification stage of molten steel to crystallize CaS particles. CaS particles act as ferrite nuclei during cooling after hot rolling and contribute to lowering the yield ratio of thick steel plates. Furthermore, when performing ultra-high heat input welding of the thick steel plate, MnS precipitates on the CaS particles and acts as ferrite nuclei, thereby improving the toughness of the weld metal. When the S content is less than 0.0007%, this effect cannot be obtained. On the other hand, if it exceeds 0.0040%, a large amount of MnS is segregated in the center of the slab by continuous casting of molten steel, not only causing defects inside the slab, but also the toughness of the thick steel plate produced from the slab. to degrade. Therefore, S needs to satisfy the range of 0.0007 to 0.0040%.

Al:0.005〜0.05%
Alは、溶鋼を溶製する段階で脱酸剤として使用される。また、溶鋼中のNをAlNとして固定し、後述するBによる焼入れ性向上の効果を維持する効果も有する。Al含有量が0.005%未満では、これらの効果が得られない。一方、0.05%を超えると、厚鋼板の靭性が劣化するとともに、厚鋼板の超大入熱溶接を行なう際に溶接金属に混入して、溶接金属の靭性を劣化させる。したがって、Alは0.005〜0.05%の範囲内を満足する必要がある。好ましくは0.010〜0.045%である。
Al: 0.005-0.05%
Al is used as a deoxidizer at the stage of melting molten steel. Moreover, N in molten steel is fixed as AlN, and it also has the effect of maintaining the effect of improving the hardenability by B described later. If the Al content is less than 0.005%, these effects cannot be obtained. On the other hand, if it exceeds 0.05%, the toughness of the thick steel plate deteriorates, and at the time of performing super-high heat input welding of the thick steel plate, it is mixed into the weld metal to deteriorate the toughness of the weld metal. Therefore, Al needs to satisfy the range of 0.005-0.05%. Preferably it is 0.010 to 0.045%.

Cr:0.03〜1.0%
Crは、厚鋼板の焼入れ性を向上することによって、厚鋼板の強度を増加させる作用を有する。しかも、HAZに及ぼす悪影響が少ないので有用な元素である。Cr含有量が0.03%未満では、厚鋼板の強度増加の効果が得られない。一方、1.0%を超えると、厚鋼板のみならずHAZの靭性を劣化させる。したがって、Crは0.03〜1.0%の範囲内を満足する必要がある。好ましくは0.1〜0.5%である。
Cr: 0.03-1.0%
Cr has the effect of increasing the strength of the thick steel sheet by improving the hardenability of the thick steel sheet. Moreover, it is a useful element because it has little adverse effect on HAZ. If the Cr content is less than 0.03%, the effect of increasing the strength of the thick steel plate cannot be obtained. On the other hand, if it exceeds 1.0%, the toughness of the HAZ as well as the thick steel plate is degraded. Therefore, Cr needs to satisfy the range of 0.03-1.0%. Preferably it is 0.1 to 0.5%.

Nb:0.003%以下
Nbは、HAZに上部ベイナイトやマルテンサイトの生成を助長して、HAZの靭性を劣化させる元素である。そのため、Nbを可能な限り低減する必要がある。Nb含有量が0.003%を超えると、HAZの靭性が著しく劣化する。したがって、Nbは0.003%以下とする。
Mo:0.04%以下
Moは、HAZに上部ベイナイトやマルテンサイトの生成を助長して、HAZの靭性を劣化させる元素である。そのため、Moを可能な限り低減する必要がある。Mo含有量が0.04%を超えると、HAZの靭性が著しく劣化する。したがって、Moは0.04%以下とする。
Nb: 0.003% or less
Nb is an element that promotes the formation of upper bainite and martensite in the HAZ and degrades the toughness of the HAZ. Therefore, it is necessary to reduce Nb as much as possible. When the Nb content exceeds 0.003%, the toughness of the HAZ is significantly deteriorated. Therefore, Nb is 0.003% or less.
Mo: 0.04% or less
Mo is an element that promotes the formation of upper bainite and martensite in the HAZ and degrades the toughness of the HAZ. Therefore, it is necessary to reduce Mo as much as possible. When the Mo content exceeds 0.04%, the toughness of the HAZ is significantly deteriorated. Therefore, Mo is set to 0.04% or less.

V:0.030%以下
Vは、Nb,Moと同様に、HAZの靭性を劣化させる元素であるが、NbやMoと比べてその脆化の程度が低いので、母材およびHAZの強度を高めたいときに添加することができる。しかしながら0.030%を超えると、析出硬化が著しくなり、母材およびHAZの靭性を著しく低下させるので、0.030%以下とする。好ましくはVは0.020%以下である。
V: 0.030% or less V, like Nb and Mo, is an element that degrades the toughness of HAZ, but its degree of embrittlement is low compared to Nb and Mo, so we want to increase the strength of the base metal and HAZ. Sometimes it can be added. However, if it exceeds 0.030%, precipitation hardening becomes remarkable, and the toughness of the base material and HAZ is remarkably reduced, so the content is made 0.030% or less. Preferably V is 0.020% or less.

B:0.0005〜0.0030%
Bは、微量の添加で厚鋼板の焼入れ性を向上することによって、厚鋼板の強度を増加させる元素である。また、Bは溶鋼を溶製する段階でNと結合してBNを生成し、熱間圧延後の冷却時にそのBNがフェライト生成核として作用し、厚鋼板の降伏比低下に寄与する。さらにBは、TiNが固溶するような超大入熱溶接によるHAZにBNを生成させる。このBNはフェライト生成核として作用するばかりでなく、固溶Nを低減する効果も有するので、HAZの靭性向上に寄与する。B含有量が0.0005%未満では、これらの効果が得られない。一方、0.0030%を超えると、厚鋼板のみならずHAZの靭性が劣化するばかりでなく、厚鋼板の降伏強度が著しく上昇するので降伏比の制御が困難になる。したがって、Bは0.0005〜0.0030%の範囲内を満足する必要がある。好ましくは0.0007〜0.0020%である。
B: 0.0005-0.0030%
B is an element that increases the strength of the thick steel plate by improving the hardenability of the thick steel plate by adding a small amount. Further, B combines with N at the stage of melting the molten steel to produce BN, and the BN acts as a ferrite nucleation during cooling after hot rolling, contributing to a decrease in the yield ratio of the thick steel plate. Furthermore, B generates BN in HAZ by super-high heat input welding in which TiN is dissolved. This BN not only acts as a ferrite nuclei but also has an effect of reducing the solid solution N, contributing to the improvement of HAZ toughness. If the B content is less than 0.0005%, these effects cannot be obtained. On the other hand, if it exceeds 0.0030%, not only the thick steel plate but also the toughness of the HAZ is deteriorated, and the yield strength of the thick steel plate is remarkably increased, so that it is difficult to control the yield ratio. Therefore, B needs to satisfy the range of 0.0005 to 0.0030%. Preferably it is 0.0007 to 0.0020%.

Ti:0.005〜0.030%
Tiは、Nとの親和力が強く、溶鋼の連続鋳造にてTiNとして析出し、熱間圧延後の冷却時にそのTiNがフェライト生成核として作用し、厚鋼板の降伏比低下に寄与する。さらにTiNは、超大入熱溶接のHAZにおけるオーステナイトの成長を抑制し、かつフェライト生成核として作用するので、HAZの靭性向上に寄与する。Ti含有量が0.005%未満では、これらの効果が得られない。一方、0.030%を超えると、TiN粒子が粗大化するので、これらの効果が得られない。したがって、Tiは0.005〜0.030%の範囲内を満足する必要がある。好ましくは0.010〜0.020%である。
Ti: 0.005-0.030%
Ti has a strong affinity for N and precipitates as TiN in the continuous casting of molten steel, and TiN acts as a ferrite nucleation during cooling after hot rolling, contributing to a decrease in the yield ratio of the thick steel plate. Furthermore, since TiN suppresses the growth of austenite in the HAZ of super high heat input welding and acts as a ferrite formation nucleus, it contributes to improving the toughness of the HAZ. If the Ti content is less than 0.005%, these effects cannot be obtained. On the other hand, if it exceeds 0.030%, TiN particles are coarsened, so these effects cannot be obtained. Therefore, Ti needs to satisfy the range of 0.005-0.030%. Preferably it is 0.010 to 0.020%.

Ca:0.0005〜0.0035%
Caは、Sと結合してCaSを生成することによって厚鋼板の靭性を向上させる作用を有する。Caは溶鋼の溶製段階で添加されるが、溶存酸素量を0.0050%以下に調整した後でCaを添加する。このようにしてCaOの生成を抑制して、CaSの生成を促進する。CaSは、溶鋼中で酸化物に比べて低温で晶出し、均一かつ微細に分散する。この微細なCaS粒子が、厚鋼板の溶接時にMnSと複合してフェライト生成核として作用して、HAZの靭性向上に寄与する。Ca含有量が0.0005%未満では、これらの効果が得られない。一方、0.0035%を超えると、過剰のCaが酸化物を形成して、厚鋼板の靭性を劣化させる。したがって、Caは0.0005〜0.0035%の範囲内を満足する必要がある。
Ca: 0.0005-0.0035%
Ca has the effect of improving the toughness of the thick steel plate by combining with S to produce CaS. Ca is added at the melting stage of molten steel, but after adjusting the dissolved oxygen amount to 0.0050% or less, Ca is added. In this way, the production of CaO is suppressed and the production of CaS is promoted. CaS crystallizes in molten steel at a lower temperature than oxides, and is uniformly and finely dispersed. These fine CaS particles are combined with MnS during welding of thick steel plates to act as ferrite nuclei and contribute to the improvement of HAZ toughness. If the Ca content is less than 0.0005%, these effects cannot be obtained. On the other hand, if it exceeds 0.0035%, excess Ca forms an oxide and deteriorates the toughness of the thick steel plate. Therefore, Ca needs to satisfy the range of 0.0005 to 0.0035%.

N:0.0030〜0.0070%
Nは、溶鋼の連続鋳造にてTiNとして析出し、熱間圧延後の冷却時にそのTiNがフェライト生成核として作用し、厚鋼板の降伏比低下に寄与する。さらにTiNは、超大入熱溶接のHAZにおけるオーステナイトの成長を抑制し、かつフェライト生成核として作用するので、HAZの靭性向上に寄与する。N含有量が0.0030%未満では、これらの効果が得られない。一方、0.0070%を超えると、超大入熱溶接によってHAZのTiNが溶解し、その結果、固溶N量が増加してHAZの靭性が著しく劣化する。したがって、Nは0.0030〜0.0070%の範囲内を満足する必要がある。
N: 0.0030-0.0070%
N precipitates as TiN in the continuous casting of molten steel, and TiN acts as a ferrite nucleation during cooling after hot rolling, contributing to a decrease in the yield ratio of the thick steel plate. Furthermore, since TiN suppresses the growth of austenite in the HAZ of super high heat input welding and acts as a ferrite formation nucleus, it contributes to improving the toughness of the HAZ. If the N content is less than 0.0030%, these effects cannot be obtained. On the other hand, if it exceeds 0.0070%, the TiN of HAZ is melted by super-high heat input welding, and as a result, the amount of solid solution N increases and the toughness of HAZ is significantly deteriorated. Therefore, N needs to satisfy the range of 0.0030 to 0.0070%.

O:0.0010〜0.0040%
Oは、溶鋼を溶製する段階で不可避的に混入する不純物であり、他の元素と結合して酸化物を形成する。そのためO含有量を低減することが好ましいが、0.0010%未満とするためには溶鋼を溶製する段階で精錬コストの上昇を招く。一方、0.0040%を超えると、酸化物が粗大化して厚鋼板の靭性を劣化させる。したがって、Oは0.0010〜0.0040%の範囲内を満足する必要がある。
O: 0.0010 to 0.0040%
O is an impurity that is inevitably mixed at the stage of melting molten steel, and forms an oxide by combining with other elements. Therefore, it is preferable to reduce the O content. However, in order to make it less than 0.0010%, the refining cost is increased at the stage of melting the molten steel. On the other hand, if it exceeds 0.0040%, the oxide becomes coarse and the toughness of the thick steel plate is deteriorated. Therefore, O needs to satisfy the range of 0.0010 to 0.0040%.

Cu:0.05〜1.0%およびNi:0.05〜2.0%のうちの1種以上
Cuは、厚鋼板の靭性を低下させず強度を増加する作用を有する。しかも、HAZに及ぼす悪影響が少ないので有用な元素である。Cu含有量が0.05%未満では、厚鋼板の強度増加の効果が得られない。一方、1.0%を超えると、熱間脆性が生じて厚鋼板の表面性状が劣化する。したがって、Cuは0.05〜1.0%の範囲内を満足する必要がある。好ましくは0.1〜0.5%である。好ましくは0.1〜0.5%である。
One or more of Cu: 0.05-1.0% and Ni: 0.05-2.0%
Cu has the effect of increasing the strength without reducing the toughness of the thick steel plate. Moreover, it is a useful element because it has little adverse effect on HAZ. If the Cu content is less than 0.05%, the effect of increasing the strength of the thick steel plate cannot be obtained. On the other hand, if it exceeds 1.0%, hot brittleness occurs and the surface properties of the thick steel plate deteriorate. Therefore, Cu needs to satisfy the range of 0.05 to 1.0%. Preferably it is 0.1 to 0.5%. Preferably it is 0.1 to 0.5%.

Niは、厚鋼板の靭性を低下させず強度を増加する作用を有する。しかも、HAZに及ぼす悪影響が少ないので有用な元素である。Ni含有量が0.05%未満では、厚鋼板の強度増加の効果が得られない。一方、2.0%を超えると、熱間脆性が生じて厚鋼板の表面性状が劣化する。したがって、Niは0.05〜2.0%の範囲内を満足する必要がある。好ましくは0.2〜1.5%である。   Ni has the effect of increasing the strength without reducing the toughness of the thick steel plate. Moreover, it is a useful element because it has little adverse effect on HAZ. If the Ni content is less than 0.05%, the effect of increasing the strength of the thick steel plate cannot be obtained. On the other hand, if it exceeds 2.0%, hot brittleness occurs and the surface properties of the thick steel plate deteriorate. Therefore, Ni needs to satisfy the range of 0.05 to 2.0%. Preferably it is 0.2 to 1.5%.

Cu含有量とNi含有量の合計:1.0〜2.0%
既に説明した通り、本発明では、2相域焼入れ処理に先立って2相域温度に保持する間に、Mn,Cu,Ni等がフェライトとオーステナイトの界面に偏在することによって、厚鋼板のMn,Cu,Ni等の含有量に濃淡を生じさせてフェライト生成核として活用する。このような効果を得るためには、Mn,Cu,Ni等の含有量を高く設定する必要がある。しかしMnを過剰に添加すると、厚鋼板およびHAZの靭性が劣化する。そこで、CuとNiの含有量を大きく設定し、その合計含有量を規定する。Cu含有量とNi含有量の合計が1.0%未満では、フェライト生成核が十分に得られない。一方、2.0%超えると、フェライト生成核が飽和し、含有量の増加に見合う効果が得られず、厚鋼板の製造コストが上昇する。したがって、Cu含有量とNi含有量の合計は1.0〜2.0%の範囲内とする。
Total Cu content and Ni content: 1.0-2.0%
As already described, in the present invention, Mn, Cu, Ni, etc. are unevenly distributed at the interface between ferrite and austenite while maintaining the temperature in the two-phase region prior to the two-phase region quenching treatment, thereby causing the Mn, Concentration is produced in the content of Cu, Ni, etc., and used as ferrite nuclei. In order to obtain such an effect, it is necessary to set the content of Mn, Cu, Ni, etc. high. However, when Mn is added excessively, the toughness of the thick steel plate and the HAZ deteriorates. Therefore, the contents of Cu and Ni are set large, and the total content is defined. If the total of Cu content and Ni content is less than 1.0%, ferrite nuclei cannot be obtained sufficiently. On the other hand, if it exceeds 2.0%, the ferrite nuclei are saturated, an effect commensurate with the increase in content cannot be obtained, and the manufacturing cost of the thick steel plate increases. Therefore, the total of Cu content and Ni content is in the range of 1.0 to 2.0%.

Ceq:0.44〜0.50
Ceqは下記の(1)式で定義される値である。Ceqが0.44未満では、再加熱焼入れ処理や2相域焼入れ処理における焼入れ性が不足するので、フェライトが生成する。その結果、板厚80mm以上の厚鋼板では所望の引張強さ(すなわち590MPa以上)が得られない。また再加熱焼入れ処理を行なっても厚鋼板にマルテンサイトまたはベイナイトの微細な組織が得られないので、2相域焼入れ処理で合金元素の濃淡を生じさせることが困難になる。一方、0.50を超えると、HAZの靭性が著しく劣化する。したがって、Ceqは0.44〜0.50の範囲内を満足する必要がある。好ましくは0.45〜0.48である。
Ceq: 0.44-0.50
Ceq is a value defined by the following equation (1). When Ceq is less than 0.44, the hardenability in the reheating quenching process and the two-phase quenching process is insufficient, and thus ferrite is generated. As a result, the desired tensile strength (ie, 590 MPa or more) cannot be obtained with a thick steel plate having a thickness of 80 mm or more. Further, even if the reheating quenching process is performed, a fine structure of martensite or bainite cannot be obtained in the thick steel plate, so that it becomes difficult to cause the density of the alloy elements by the two-phase region quenching process. On the other hand, if it exceeds 0.50, the toughness of the HAZ is significantly deteriorated. Therefore, Ceq needs to satisfy the range of 0.44 to 0.50. Preferably it is 0.45-0.48.

Ceq=[%C]+([%Mn]/6)+{([%Ni]+[%Cu])/15}
+{([%Cr]+[%Mo]+[%V])/5} ・・・(1)
上記の(1)式の[%C]はC含有量,[%Mn]はMn含有量,[%Ni]はNi含有量,[%Cu]はCu含有量,[%Cr]はCr含有量,[%Mo]はMo含有量,[%V]はV含有量を指す。含有量の単位は、いずれも質量%である。
Ceq = [% C] + ([% Mn] / 6) + {([% Ni] + [% Cu]) / 15}
+ {([% Cr] + [% Mo] + [% V]) / 5} (1)
In the above formula (1), [% C] is C content, [% Mn] is Mn content, [% Ni] is Ni content, [% Cu] is Cu content, [% Cr] is Cr content The amount, [% Mo] indicates the Mo content, and [% V] indicates the V content. The unit of content is mass%.

Pcm:0.21以下
Pcmは下記の(2)式で定義される値である。Pcmが0.21を超えると、低温割れ感受性が高くなり、溶接金属に割れが発生し易くなる。したがって、Pcmは0.21以下とする。
Pcm=[%C]+([%Si]/30)+([%Mn]/20)+([%Cu]/20)
+([%Ni]/60)+([%Cr]/20)+([%Mo]/15)
+([%V]/10)+(5×[%B]) ・・・(2)
ここで[%C]はC含有量,[%Si]はSi含有量,[%Mn]Mnの含有量,[%Cu]はCu含有量,[%Ni]はNi含有量,[%Cr]はCr含有量,[%Mo]はMo含有量,[%V]はV含有量,[%B]はB含有量を指す。含有量の単位は、いずれも質量%である。
Pcm: 0.21 or less Pcm is a value defined by the following equation (2). When Pcm exceeds 0.21, the low temperature cracking sensitivity is increased, and cracking is likely to occur in the weld metal. Therefore, Pcm is 0.21 or less.
Pcm = [% C] + ([% Si] / 30) + ([% Mn] / 20) + ([% Cu] / 20)
+ ([% Ni] / 60) + ([% Cr] / 20) + ([% Mo] / 15)
+ ([% V] / 10) + (5 × [% B]) (2)
Where [% C] is the C content, [% Si] is the Si content, [% Mn] Mn content, [% Cu] is the Cu content, [% Ni] is the Ni content, [% Cr ] Indicates the Cr content, [% Mo] indicates the Mo content, [% V] indicates the V content, and [% B] indicates the B content. The unit of content is mass%.

ACR:0.2〜0.8
ACRは下記の(3)式で定義される値である。ACRが0.2未満では、CaSが生成せず、MnSが析出する。このMnSは、厚鋼板に均一かつ微細に分散せず、熱間圧延によって伸長される。その結果、厚鋼板のみならずHAZの靭性が劣化する。一方、0.8を超えると、CaSが多量に生成し、MnSが不足する。その結果、厚鋼板を溶接する際に、CaS粒子上にMnSが析出せず、十分な量のフェライト生成核が得られない。したがって、ACRは0.2〜0.8の範囲内を満足する必要がある。この範囲内にACRを維持することによって、CaS粒子上にMnSが析出した複合硫化物となる。その複合硫化物がフェライト生成核として作用して、HAZの組織が微細化され、HAZの靭性が向上する。
ACR: 0.2-0.8
ACR is a value defined by the following equation (3). If the ACR is less than 0.2, CaS is not generated and MnS is precipitated. This MnS is not uniformly and finely dispersed in the thick steel plate, but is elongated by hot rolling. As a result, not only the thick steel plate but also the HAZ toughness deteriorates. On the other hand, when it exceeds 0.8, a large amount of CaS is generated and MnS is insufficient. As a result, when welding thick steel plates, MnS does not precipitate on the CaS particles, and a sufficient amount of ferrite forming nuclei cannot be obtained. Therefore, the ACR needs to satisfy the range of 0.2 to 0.8. By maintaining ACR within this range, a composite sulfide in which MnS is precipitated on CaS particles is obtained. The composite sulfide acts as a ferrite formation nucleus, the HAZ structure is refined, and the toughness of the HAZ is improved.

ACR={[%Ca]−(0.18+130×[%Ca])×[%O]}/(1.25×[%S])
・・・(3)
ここで[%Ca]はCa含有量,[%O]はO含有量,[%S]はS含有量を指す。含有量の単位は、いずれも質量%である。
本発明では、上記の成分に加えて、希土類元素(すなわちREM):0.0010〜0.020%およびMg:0.0010〜0.0050%のうちの1種以上を含有しても良い。
ACR = {[% Ca] − (0.18 + 130 × [% Ca]) × [% O]} / (1.25 × [% S])
... (3)
Here, [% Ca] indicates the Ca content, [% O] indicates the O content, and [% S] indicates the S content. The unit of content is mass%.
In this invention, in addition to said component, you may contain 1 or more types of rare earth elements (namely, REM): 0.0010-0.020% and Mg: 0.0010-0.0050%.

REM:0.0010〜0.020%およびMg:0.0010〜0.0050%のうちの1種以上
REMは、厚鋼板およびHAZの靭性を向上する作用を有する。REM含有量が0.0010%未満では、この効果が得られない。一方、0.020%を超えると、靭性向上の効果が飽和し、含有量の増加に見合う効果が得られず、厚鋼板の製造コストが上昇する。したがって、REMは0.0010〜0.020%の範囲内が好ましい。
One or more of REM: 0.0010-0.020% and Mg: 0.0010-0.0050%
REM has the effect | action which improves the toughness of a thick steel plate and HAZ. If the REM content is less than 0.0010%, this effect cannot be obtained. On the other hand, if it exceeds 0.020%, the effect of improving toughness is saturated, an effect commensurate with the increase in content cannot be obtained, and the production cost of the thick steel plate increases. Therefore, REM is preferably in the range of 0.0010 to 0.020%.

Mgは、厚鋼板およびHAZの靭性を向上する作用を有する。Mg含有量が0.0010%未満では、この効果が得られない。一方、0.0050%を超えると、靭性向上の効果が飽和し、含有量の増加に見合う効果が得られず、厚鋼板の製造コストが上昇する。したがって、Mgは0.0010〜0.0050%の範囲内が好ましい。
上記した成分以外の残部は、Feおよび不可避的不純物である。
Mg has the effect | action which improves the toughness of a thick steel plate and HAZ. If the Mg content is less than 0.0010%, this effect cannot be obtained. On the other hand, if it exceeds 0.0050%, the effect of improving toughness is saturated, an effect commensurate with the increase in content cannot be obtained, and the production cost of the thick steel plate increases. Therefore, Mg is preferably in the range of 0.0010 to 0.0050%.
The balance other than the above components is Fe and inevitable impurities.

なお本発明では、ミクロレベルでMn,Cu,Niの濃化領域と淡化領域を形成し、淡化領域からの粒内フェライト核生成を促進することにより、HAZの靭性の向上を図る。フェライト核生成を促進するためには、EPMA等によって測定される局所的な(Mn/6+Cu/15+Ni/15)の値を、鋼材平均値の90%以下とする必要がある。また、このような淡化領域の分率が10%未満の場合は、十分な量の粒内フェライトを生成することができない。そこで、(Mn/6+Cu/15+Ni/15)の値が鋼材平均値の90%以下である淡化領域の分率を10%以上に限定した。   In the present invention, the toughness of HAZ is improved by forming Mn, Cu, Ni enriched regions and lightened regions at the micro level and promoting intragranular ferrite nucleation from the lightened regions. In order to promote ferrite nucleation, the local (Mn / 6 + Cu / 15 + Ni / 15) value measured by EPMA or the like needs to be 90% or less of the steel average value. In addition, when the fraction of such a lightened region is less than 10%, a sufficient amount of intragranular ferrite cannot be generated. Therefore, the fraction of the lightened region where the value of (Mn / 6 + Cu / 15 + Ni / 15) is 90% or less of the average steel material value is limited to 10% or more.

次に、厚鋼板の製造工程について説明する。
溶鋼を溶製し、さらに鋳造して、上記した成分を有する鋼素材を製造する工程で採用する技術は特に限定せず、従来から知られている技術を使用する。ただし厚鋼板を大量に製造することを考慮すると、溶鋼を転炉,電気炉,真空溶解炉等で溶製し、脱ガス処理を施してガス成分を調整した後、CaSiワイヤを用いて介在物制御を行ない、さらに連続鋳造を行なって鋼素材(すなわちスラブ)を製造することが好ましい。
Next, the manufacturing process of a thick steel plate will be described.
The technique employed in the process of producing the steel material having the above-described components by melting and casting the molten steel is not particularly limited, and a conventionally known technique is used. However, considering the production of a large number of thick steel plates, the molten steel is melted in a converter, electric furnace, vacuum melting furnace, etc., degassed to adjust the gas components, and then inclusions using CaSi wire It is preferable to carry out the control and further perform continuous casting to produce a steel material (that is, a slab).

なお、溶鋼の溶製段階でCaSの生成を促進するために、Caとの結合力が強いOを0.0050%以下に調整した後でCaを添加することが好ましい。Caの添加は、CaSiワイヤを装入する等の方法で行なう。
この鋼素材を加熱し、さらに熱間圧延を施して厚鋼板とする。熱間圧延は、従来から知られている技術を使用する。なお厚鋼板の板厚が100mmを超えると、本発明を適用しても、超大入熱溶接によるHAZの靭性を板厚方向全域にわたって向上することは困難である。厚鋼板の板厚が100mm以下であればHAZの靭性を板厚方向全域にわたって改善できるので、板厚の下限値は特に限定しない。ただし、超大入熱溶接によるHAZの靭性改善が困難であると一般に言われていた板厚80mm以上の厚鋼板に本発明を適用すると、多大な効果が得られる。したがって、厚鋼板の板厚は100mm以下が好ましく、80〜100mmの範囲内が一層好ましい。
In addition, in order to promote the production | generation of CaS in the melting stage of molten steel, it is preferable to add Ca after adjusting O with strong binding force with Ca to 0.0050% or less. Ca is added by a method such as charging a CaSi wire.
This steel material is heated and further hot-rolled to obtain a thick steel plate. Hot rolling uses a conventionally known technique. When the thickness of the thick steel plate exceeds 100 mm, it is difficult to improve the toughness of the HAZ by super-high heat input welding throughout the thickness direction even if the present invention is applied. If the plate thickness of the thick steel plate is 100 mm or less, the toughness of the HAZ can be improved throughout the plate thickness direction, so the lower limit value of the plate thickness is not particularly limited. However, when the present invention is applied to a thick steel plate having a thickness of 80 mm or more, which is generally said to be difficult to improve the toughness of HAZ by super-high heat input welding, a great effect is obtained. Accordingly, the thickness of the thick steel plate is preferably 100 mm or less, and more preferably in the range of 80 to 100 mm.

得られた厚鋼板を再加熱する。再加熱の温度が900℃未満では、引き続き行なう焼入れ(すなわち再加熱焼入れ処理)における焼入れ性が低下して、好適な組織(すなわちマルテンサイトまたはベイナイトの微細な組織)が得られない。その結果、厚鋼板の強度が低下し、かつHAZの靭性が劣化する。一方、1000℃を超えると、オーステナイトが粗大化して、厚鋼板の靭性が劣化する。したがって、再加熱の温度は900〜1000℃の範囲内を満足する必要がある。   The obtained thick steel plate is reheated. When the reheating temperature is less than 900 ° C., the hardenability in the subsequent quenching (that is, the reheating quenching process) is lowered, and a suitable structure (that is, a fine structure of martensite or bainite) cannot be obtained. As a result, the strength of the thick steel plate decreases and the toughness of the HAZ deteriorates. On the other hand, when it exceeds 1000 ° C., austenite coarsens and the toughness of the thick steel plate deteriorates. Therefore, the reheating temperature needs to satisfy the range of 900 to 1000 ° C.

また、再加熱にて上記の温度範囲に保持する時間が20分未満では、Bを粒界に偏析させる上で十分な時間が確保されないので、Bによる焼入れ性向上の効果が得られない。したがって、再加熱の保持時間は20分以上とする。好ましくは30分以上である。
再加熱が終了した後、厚鋼板に再加熱焼入れ処理を施す。再加熱焼入れ処理では、800〜500℃の温度範囲を平均冷却速度1℃/秒以上で冷却する。平均冷却速度が1℃/秒未満では、好適な組織(すなわちマルテンサイトまたはベイナイトの微細な組織)が得られない。
In addition, if the time for maintaining in the above temperature range by reheating is less than 20 minutes, sufficient time for segregating B at the grain boundaries is not secured, so that the effect of improving hardenability by B cannot be obtained. Therefore, the reheating holding time is set to 20 minutes or longer. Preferably it is 30 minutes or more.
After the reheating is completed, the thick steel plate is subjected to a reheating quenching process. In the reheating quenching process, the temperature range of 800 to 500 ° C. is cooled at an average cooling rate of 1 ° C./second or more. When the average cooling rate is less than 1 ° C./second, a suitable structure (that is, a fine structure of martensite or bainite) cannot be obtained.

再加熱焼入れの後、厚鋼板を2相域温度に加熱する。2相域に加熱する温度がAc1+20℃未満では、加熱温度に保持中のオーステナイトの分率が低すぎるので、母材の硬質相の分率が不足して、厚鋼板の強度が低下する。一方、Ac1+80℃を超えると、オーステナイトの分率が過剰に増加するので、オーステナイト中に濃化するCが減少する。その結果、引き続き行なう焼入れ(すなわち2相域焼入れ処理)における焼入れ性が低下して、厚鋼板の強度が低下する。したがって、2相域に加熱する温度は(Ac1+20℃)〜(Ac1+80℃)の範囲内を満足する必要がある。   After reheating and quenching, the thick steel plate is heated to a two-phase region temperature. If the temperature at which the two-phase region is heated is less than Ac1 + 20 ° C., the fraction of austenite being held at the heating temperature is too low, so that the fraction of the hard phase of the base material is insufficient and the strength of the thick steel plate is lowered. On the other hand, if it exceeds Ac1 + 80 ° C., the fraction of austenite increases excessively, so that C concentrated in the austenite decreases. As a result, the hardenability in the subsequent quenching (that is, the two-phase region quenching process) is lowered, and the strength of the thick steel plate is lowered. Therefore, the temperature for heating in the two-phase region needs to satisfy the range of (Ac1 + 20 ° C.) to (Ac1 + 80 ° C.).

また、2相域加熱にて上記の温度範囲に保持する時間が30分未満では、Mn,CuやNiの濃淡を生じさせる上で十分な時間が確保されないので、HAZの靭性向上の効果が得られない。したがって、2相域加熱の保持時間は30分以上とする。好ましくは40分以上である。
2相域加熱が終了した後、厚鋼板に2相域焼入れ処理を施す。2相域焼入れ処理では、(Ac1−20℃)〜500℃の温度範囲を平均冷却速度1℃/秒以上で冷却する。平均冷却速度が1℃/秒未満では、硬質相の硬さが不足し、好適な組織が得られない。
In addition, if the time for maintaining in the above temperature range by the two-phase region heating is less than 30 minutes, sufficient time is not ensured for producing the density of Mn, Cu and Ni, and the effect of improving the toughness of HAZ is obtained. I can't. Therefore, the holding time for the two-phase region heating is 30 minutes or more. Preferably it is 40 minutes or more.
After the two-phase region heating is completed, the thick steel plate is subjected to a two-phase region quenching process. In the two-phase quenching treatment, the temperature range of (Ac1-20 ° C) to 500 ° C is cooled at an average cooling rate of 1 ° C / second or more. When the average cooling rate is less than 1 ° C./second, the hardness of the hard phase is insufficient and a suitable structure cannot be obtained.

2相域焼入れ処理の後、厚鋼板を加熱して焼戻し処理を施す。焼戻し処理の加熱温度が400℃未満では、2相域焼入れ処理によって脆化した厚鋼板の靭性を向上できない。一方、600℃を超えると、厚鋼板の強度が低下する。したがって、焼戻し処理の加熱温度は400〜600℃)の範囲内を満足する必要がある。
また、焼戻し処理にて上記の温度範囲に保持する時間は、特に限定せず、厚鋼板の用途や要求される特性に応じて適宜設定する。ただし、60分を超えると厚鋼板の強度が著しく低下するので、焼戻し処理の保持時間は60分以下が好ましい。
After the two-phase quenching treatment, the thick steel plate is heated and tempered. When the heating temperature in the tempering treatment is less than 400 ° C., the toughness of the thick steel plate embrittled by the two-phase region quenching treatment cannot be improved. On the other hand, when it exceeds 600 degreeC, the intensity | strength of a thick steel plate will fall. Therefore, the heating temperature in the tempering process needs to satisfy the range of 400 to 600 ° C.
In addition, the time for maintaining the temperature range in the tempering process is not particularly limited, and is appropriately set according to the use of the thick steel plate and the required characteristics. However, if it exceeds 60 minutes, the strength of the thick steel plate is remarkably lowered, so that the holding time of the tempering treatment is preferably 60 minutes or less.

以上の手順で製造した厚鋼板は、低降伏比と高強度とを兼ね備えており、しかも超大入熱溶接によるHAZは優れた靭性を発揮する。   The steel plate produced by the above procedure has both a low yield ratio and high strength, and HAZ by super-high heat input welding exhibits excellent toughness.

転炉を用いて溶製した溶鋼に取鍋精錬を施し、さらに連続鋳造によって鋼素材(すなわちスラブ)を製造した。鋼素材の板厚は310mmであり、その成分は表1に示す通りである。表1に示す発明例(すなわち鋼種A〜I)は、成分が本発明の範囲を満足する例である。比較例のうち、鋼種J,KはC含有量が本発明の範囲を外れる例、鋼種LはCu含有量とNi含有量の合計が本発明の範囲を外れる例、鋼種MはN含有量が本発明の範囲を外れる例、鋼種N,OはACRが本発明の範囲を外れる例、鋼種PはCeqが本発明の範囲を外れる例、鋼種QはCeqとPcmが本発明の範囲を外れる例である。   Ladle refining was performed on molten steel melted using a converter, and a steel material (ie, slab) was produced by continuous casting. The thickness of the steel material is 310 mm, and its components are as shown in Table 1. The invention examples (namely, steel types A to I) shown in Table 1 are examples in which the components satisfy the scope of the present invention. Among the comparative examples, steel types J and K are examples in which the C content is outside the range of the present invention, steel type L is an example in which the sum of the Cu content and the Ni content is outside the range of the present invention, and steel type M has an N content. Examples outside the scope of the present invention, steel grades N and O are examples where ACR is outside the scope of the present invention, steel grade P is an example where Ceq is outside the scope of the present invention, steel grade Q is an example where Ceq and Pcm are outside the scope of the present invention It is.

Figure 2009235548
Figure 2009235548

これら鋼素材に熱間圧延を行ない板厚100mmの厚鋼板とした後、表2に示す条件で再加熱焼入れ処理,2相域焼入れ処理,焼戻し処理を行なった。表2に示す厚鋼板記号A,B,D〜Qは、それぞれ鋼種A,B,D〜Q(表1参照)の鋼素材から製造した厚鋼板であり、再加熱焼入れ処理,2相域焼入れ処理,焼戻し処理の条件はいずれも本発明の範囲を満足する。厚鋼板記号C−1〜C−8は、鋼種C(表1参照)の鋼素材から製造した厚鋼板であり、再加熱焼入れ処理,2相域焼入れ処理,焼戻し処理の条件はいずれも本発明の範囲を満足する。   These steel materials were hot-rolled to obtain a steel plate having a thickness of 100 mm, and then subjected to reheating quenching treatment, two-phase region quenching treatment, and tempering treatment under the conditions shown in Table 2. Thick steel plate symbols A, B, and D to Q shown in Table 2 are thick steel plates manufactured from steel materials of steel types A, B, and D to Q (see Table 1), respectively, reheating and quenching, and two-phase quenching. The conditions for the treatment and the tempering treatment both satisfy the scope of the present invention. Thick steel plate symbols C-1 to C-8 are thick steel plates manufactured from a steel material of steel type C (see Table 1), and the conditions of the reheating quenching process, the two-phase region quenching process, and the tempering process are all the present invention. Satisfies the range.

厚鋼板記号C−9,C−10は、鋼種C(表1参照)の鋼素材から製造した厚鋼板であるが、再加熱焼入れ処理の加熱温度が本発明の範囲を外れる。厚鋼板記号C−11は、鋼種Cの鋼素材から製造した厚鋼板であるが、再加熱焼入れ処理の保持時間が本発明の範囲を外れる。厚鋼板記号C−12は、鋼種Cの鋼素材から製造した厚鋼板であるが、再加熱焼入れ処理と2相焼入れ処理の冷却速度が本発明の範囲を外れる。厚鋼板記号C−13,C−14は、鋼種Cの鋼素材から製造した厚鋼板であるが、2相域焼入れ処理の加熱温度が本発明の範囲を外れる。厚鋼板記号C−15は、鋼種Cの鋼素材から製造した厚鋼板であるが、2相域焼入れ処理の保持時間が本発明の範囲を外れる。厚鋼板記号C−16,C−17は、鋼種Cの鋼素材から製造した厚鋼板であるが、焼戻し処理の加熱温度が本発明の範囲を外れる。   Thick steel plate symbols C-9 and C-10 are thick steel plates manufactured from a steel material of steel type C (see Table 1), but the heating temperature of the reheating quenching process is out of the scope of the present invention. Thick steel plate symbol C-11 is a thick steel plate manufactured from a steel material of steel type C, but the holding time of the reheating quenching treatment is out of the scope of the present invention. Thick steel plate symbol C-12 is a thick steel plate manufactured from a steel material of steel type C, but the cooling rates of the reheating quenching process and the two-phase quenching process are out of the scope of the present invention. Thick steel plate symbols C-13 and C-14 are thick steel plates manufactured from a steel material of steel type C, but the heating temperature of the two-phase quenching treatment is out of the scope of the present invention. Thick steel plate symbol C-15 is a thick steel plate manufactured from a steel material of steel type C, but the holding time of the two-phase region quenching treatment is out of the scope of the present invention. Thick steel plate symbols C-16 and C-17 are thick steel plates manufactured from a steel material of steel type C, but the heating temperature of the tempering treatment is out of the scope of the present invention.

Figure 2009235548
Figure 2009235548

これらの厚鋼板の板厚方向1/4の深さの位置からJIS4号引張試験片を採取し、JIS規格Z2241の規定に準拠して引張試験を行ない、降伏強さ(YS)と引張強さ(TS)を調査した。さらに、得られた降伏強さと引張強さから降伏比を算出した。その結果を表3に示す。
また、厚鋼板の板厚方向1/4の深さの位置からJIS規格Z2202の規定に準拠してVノッチ試験片を採取し、JIS規格Z2242の規定に準拠してシャルピー衝撃試験を行ない、0℃における吸収エネルギー(V0)を調査した。その結果を表3に示す。
JIS No. 4 tensile test specimens are taken from the position of the depth of 1/4 in the plate thickness direction of these thick steel plates and subjected to a tensile test in accordance with the provisions of JIS standard Z2241, yield strength (YS) and tensile strength. (TS) was investigated. Furthermore, the yield ratio was calculated from the obtained yield strength and tensile strength. The results are shown in Table 3.
In addition, a V-notch test piece was taken from a position at a depth of 1/4 in the plate thickness direction of the thick steel plate in accordance with the JIS standard Z2202, and a Charpy impact test was conducted in accordance with the JIS standard Z2242. We investigated the absorption energy (V E 0) in ℃. The results are shown in Table 3.

さらに、これらの厚鋼板の板厚方向1/4の深さの位置から淡化領域の分率測定用の試験片を採取し、圧延方向に平行な断面(すなわちL断面)をEPMAにて面分析して、Mn,Cu,Niの濃度分布を測定した。濃度分布の測定面積は50μm×50μmとし、4視野ずつ測定し、淡化領域(すなわち(Mn/6+Cu/15+Ni/15)の値が鋼材平均値の90%以下である領域)の分率を算出した。これらの4視野の平均値を淡化領域の分率とした。その結果を表3に示す。   Further, test pieces for measuring the fraction of the thinned region are taken from the position of the depth in the plate thickness direction 1/4 of these thick steel plates, and the cross section parallel to the rolling direction (that is, the L cross section) is subjected to surface analysis by EPMA. Then, the concentration distribution of Mn, Cu, and Ni was measured. The measurement area of the concentration distribution was 50 μm × 50 μm, and each field of view was measured, and the fraction of the lightened region (that is, the region where the value of (Mn / 6 + Cu / 15 + Ni / 15) was 90% or less of the average steel material value) was calculated. . The average value of these four visual fields was used as the fraction of the lightened area. The results are shown in Table 3.

次に、各厚鋼板から継手用試験板(400mm×600mm)を2枚ずつ採取し、図1に示すような開先を形成した。すなわち、継手用試験板1を直角に組み合わせ、かつ幅25mmの隙間3を設けて、その隙間3の両側に当て金2を配置して開先を形成した。
この開先にエレクトロスラグ溶接(以下、ESWという)を行なって、溶接継手を作製した。ESWの溶接入熱は1000kJ/cmとし、溶接ワイヤはJIS規格3353YES62相当品,溶接フラックスはJIS規格3353FS-FG3相当品を使用した。
Next, two joint test plates (400 mm × 600 mm) were sampled from each thick steel plate to form a groove as shown in FIG. That is, the joint test plate 1 was combined at a right angle, and a gap 3 having a width of 25 mm was provided, and a groove 2 was formed by disposing the stopper 2 on both sides of the gap 3.
This groove was electroslag welded (hereinafter referred to as ESW) to produce a welded joint. The welding heat input of ESW was 1000 kJ / cm, the welding wire was JIS standard 3353YES62 equivalent, and the welding flux was JIS standard 3353FS-FG3 equivalent.

得られた溶接継手から、図2に示すように、切欠き位置をボンド部としてVノッチ試験片5を採取し、JIS規格Z2242の規定に準拠してシャルピー衝撃試験を行ない、0℃における吸収エネルギー(V0)を調査した。その結果を表3に示す。
さらに、誘導加熱によって1400℃および800℃をピーク温度として、平均冷却速度を50℃/秒とする2重熱サイクルを与えた小入熱多パス溶接のICCGHAZに相当する試験片からVノッチ試験片を採取し、JIS規格Z2242の規定に準拠してシャルピー衝撃試験を行ない、0℃における吸収エネルギー(V0)を調査した。その結果を表3に示す。
From the obtained welded joint, as shown in FIG. 2, a V-notch test piece 5 is taken with the notch position as a bond part, and subjected to a Charpy impact test in accordance with the JIS standard Z2242, and the absorbed energy at 0 ° C. ( V E 0 ) was investigated. The results are shown in Table 3.
Furthermore, from a test piece corresponding to ICCGHAZ of small heat input multi-pass welding to which a double heat cycle with an average cooling rate of 50 ° C./second was given by induction heating at peak temperatures of 1400 ° C. and 800 ° C., a V-notch test piece The Charpy impact test was conducted in accordance with the provisions of JIS standard Z2242, and the absorbed energy ( V E 0 ) at 0 ° C. was investigated. The results are shown in Table 3.

Figure 2009235548
Figure 2009235548

表3から明らかなように、発明例の厚鋼板の機械的特性の調査結果は、降伏強さ(YS)が446〜489MPaであり、いずれも440MPa以上であった。また、引張強さ(TS)が593〜647MPaであり、いずれも590MPa以上であった。さらに、降伏比が74〜79%であり、いずれも80%以下であった。
発明例の厚鋼板とその溶接継手の靭性の調査結果は、厚鋼板の吸収エネルギー(V0)が112〜264J,ESW継手のボンド部の吸収エネルギー(V0)が79〜156J,ICCGHAZ相当の再現HAZの吸収エネルギー(V0)が94〜188Jであり、いずれもV0が70J以上の優れた靭性を有していた。
As is clear from Table 3, the investigation results of the mechanical properties of the thick steel plates of the inventive examples were yield strength (YS) of 446 to 489 MPa, and all were 440 MPa or more. Moreover, tensile strength (TS) was 593-647 MPa, and all were 590 MPa or more. Furthermore, the yield ratio was 74 to 79%, and all were 80% or less.
Invention Example steel plate and its weld joint toughness findings of the steel plates absorbed energy (V E 0) is 112~264J the absorbed energy (V E 0) of the bond portion of the ESW joint 79~156J, ICCGHAZ The absorbed energy ( V E 0 ) of considerably reproduced HAZ was 94 to 188 J, and all of them had excellent toughness with V E 0 of 70 J or more.

一方、比較例では、厚鋼板記号C−9,C−17,Pは厚鋼板の降伏強さと引張強さが不十分であった。厚鋼板記号C−10は厚鋼板の降伏強さと靭性が不十分であった。厚鋼板記号C−11,C−15,L〜O,QはESWボンド部の靭性が不十分であった。厚鋼板記号C−12〜C−14,Jは厚鋼板の降伏強さと引張強さおよびESWボンド部の靭性が不十分であった。厚鋼板記号C−16は厚鋼板の靭性が不十分であった。厚鋼板記号KはICCGHAZの靭性が不十分であった。   On the other hand, in the comparative example, the steel plate symbols C-9, C-17, and P were insufficient in yield strength and tensile strength of the thick steel plate. Thick steel plate symbol C-10 was insufficient in yield strength and toughness of the thick steel plate. Thick steel plate symbols C-11, C-15, L to O, and Q had insufficient toughness at the ESW bond part. Thick steel plate symbols C-12 to C-14, J were insufficient in yield strength and tensile strength of the thick steel plate and toughness of the ESW bond part. Thick steel plate symbol C-16 was insufficient in toughness of the thick steel plate. Thick steel plate symbol K had insufficient ICCGHAZ toughness.

本発明を適用して溶接を行なう開先の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the groove | channel which welds by applying this invention. シャルピー試験片の採取位置を模式的に示す断面図である。It is sectional drawing which shows typically the collection position of a Charpy test piece.

符号の説明Explanation of symbols

1 継手用試験板
2 当て金
3 隙間
4 溶接金属
5 Vノッチ試験片
DESCRIPTION OF SYMBOLS 1 Test plate for joints 2 Lid 3 Clearance 4 Weld metal 5 V notch test piece

Claims (3)

質量%で、C:0.040〜0.070%、Si:0.05〜0.45%、Mn:1.0〜1.6%、P:0.020%以下、S:0.0007〜0.0040%、Al:0.005〜0.05%、Cr:0.03〜1.0%、Nb:0.003%以下、Mo:0.04%以下、V:0.030%以下、B:0.0005〜0.0030%、Ti:0.005〜0.030%、Ca:0.0005〜0.0035%、N:0.0030〜0.0070%、O:0.0010〜0.0040%を含有し、さらにCu:0.05〜1.0%およびNi:0.05〜2.0%のうちの1種以上をCu含有量とNi含有量の合計が1.0〜2.0%となるように含有し、かつ各元素の含有量を用いて(1)式で定義されるCeqが0.44〜0.50を満足し、(2)式で定義されるPcmが0.21以下を満足し、(3)式で定義されるACRが0.2〜0.8を満足し、残部がFeおよび不可避的不純物からなる組成を有し、ミクロ組織が、Mn、Cu、Niの含有量が鋼材平均よりも高い濃化領域と低い淡化領域を含み、(Mn/6+Cu/15+Ni/15)の値が鋼材平均の90%以下である淡化領域の分率が10%以上であることを特徴とする超大入熱溶接熱影響部靭性に優れた低降伏比高張力厚鋼板。
Ceq=[%C]+([%Mn]/6)+{([%Ni]+[%Cu])/15}
+{([%Cr]+[%Mo]+[%V])/5} ・・・(1)
Pcm=[%C]+([%Si]/30)+([%Mn]/20)+([%Cu]/20)
+([%Ni]/60)+([%Cr]/20)+([%Mo]/15)
+([%V]/10)+(5×[%B]) ・・・(2)
ACR={[%Ca]−(0.18+130×[%Ca])×[%O]}/(1.25×[%S])
・・・(3)
In mass%, C: 0.040-0.070%, Si: 0.05-0.45%, Mn: 1.0-1.6%, P: 0.020% or less, S: 0.0007-0.0040%, Al: 0.005-0.05%, Cr: 0.03-1.0 %, Nb: 0.003% or less, Mo: 0.04% or less, V: 0.030% or less, B: 0.0005 to 0.0030%, Ti: 0.005 to 0.030%, Ca: 0.0005 to 0.0035%, N: 0.0030 to 0.0070%, O: Containing 0.0010 to 0.0040%, further containing one or more of Cu: 0.05 to 1.0% and Ni: 0.05 to 2.0% so that the total of Cu content and Ni content is 1.0 to 2.0%, And using the content of each element, Ceq defined by equation (1) satisfies 0.44 to 0.50, Pcm defined by equation (2) satisfies 0.21 or less, and is defined by equation (3). ACR satisfies 0.2 to 0.8, the balance is composed of Fe and inevitable impurities, and the microstructure includes a thickening region and a low lightening region in which the contents of Mn, Cu, and Ni are higher than the steel average. , (Mn / 6 + Cu / 15 + Ni / 15) value is steel Low yield ratio high-strength thick steel plate fraction of Awaka region of 90% or less and excellent ultra-large heat input welded heat affected zone toughness, characterized in that at least 10% of the average.
Ceq = [% C] + ([% Mn] / 6) + {([% Ni] + [% Cu]) / 15}
+ {([% Cr] + [% Mo] + [% V]) / 5} (1)
Pcm = [% C] + ([% Si] / 30) + ([% Mn] / 20) + ([% Cu] / 20)
+ ([% Ni] / 60) + ([% Cr] / 20) + ([% Mo] / 15)
+ ([% V] / 10) + (5 × [% B]) (2)
ACR = {[% Ca] − (0.18 + 130 × [% Ca]) × [% O]} / (1.25 × [% S])
... (3)
質量%で、C:0.040〜0.070%、Si:0.05〜0.45%、Mn:1.0〜1.6%、P:0.020%以下、S:0.0007〜0.0040%、Al:0.005〜0.05%、Cr:0.03〜1.0%、Nb:0.003%以下、Mo:0.04%以下、V:0.030%以下、B:0.0005〜0.0030%、Ti:0.005〜0.030%、Ca:0.0005〜0.0035%、N:0.0030〜0.0070%、O:0.0010〜0.0040%を含有し、さらにCu:0.05〜1.0%およびNi:0.05〜2.0%のうちの1種以上をCu含有量とNi含有量の合計が1.0〜2.0%となるように含有し、かつ各元素の含有量を用いて(1)式で定義されるCeqが0.44〜0.50を満足し、(2)式で定義されるPcmが0.21以下を満足し、(3)式で定義されるACRが0.2〜0.8を満足し、残部がFeおよび不可避的不純物からなる組成を有する鋼素材を熱間圧延によって厚鋼板とし、次いで前記厚鋼板を900〜1000℃の温度に再加熱して20分以上保持した後、800〜500℃の温度範囲を平均冷却速度1℃/秒以上で冷却して焼入れを行なう再加熱焼入れ処理を施し、さらに(Ac1+20℃)〜(Ac1+80℃)の2相域温度に加熱して30分以上保持した後、(Ac1−20℃)〜500℃の温度範囲を平均冷却速度1℃/秒以上で冷却して焼入れを行なう2相域焼入れ処理を施し、さらに400〜600℃の温度に加熱して保持する焼戻し処理を施すことを特徴とする超大入熱溶接熱影響部靭性に優れた低降伏比高張力厚鋼板の製造方法。
Ceq=[%C]+([%Mn]/6)+{([%Ni]+[%Cu])/15}
+{([%Cr]+[%Mo]+[%V])/5} ・・・(1)
Pcm=[%C]+([%Si]/30)+([%Mn]/20)+([%Cu]/20)
+([%Ni]/60)+([%Cr]/20)+([%Mo]/15)
+([%V]/10)+(5×[%B]) ・・・(2)
ACR={[%Ca]−(0.18+130×[%Ca])×[%O]}/(1.25×[%S])
・・・(3)
In mass%, C: 0.040-0.070%, Si: 0.05-0.45%, Mn: 1.0-1.6%, P: 0.020% or less, S: 0.0007-0.0040%, Al: 0.005-0.05%, Cr: 0.03-1.0 %, Nb: 0.003% or less, Mo: 0.04% or less, V: 0.030% or less, B: 0.0005 to 0.0030%, Ti: 0.005 to 0.030%, Ca: 0.0005 to 0.0035%, N: 0.0030 to 0.0070%, O: Containing 0.0010 to 0.0040%, further containing one or more of Cu: 0.05 to 1.0% and Ni: 0.05 to 2.0% so that the total of Cu content and Ni content is 1.0 to 2.0%, And using the content of each element, Ceq defined by equation (1) satisfies 0.44 to 0.50, Pcm defined by equation (2) satisfies 0.21 or less, and is defined by equation (3). A steel material having a composition with ACR of 0.2 to 0.8 and the balance of Fe and inevitable impurities is made into a thick steel plate by hot rolling, and then the thick steel plate is reheated to a temperature of 900 to 1000 ° C. for 20 minutes. After holding above, the temperature of 800 ~ 500 ℃ After reheating and quenching treatment in which the range is cooled at an average cooling rate of 1 ° C./second or more and quenched, and further heated to a two-phase temperature range of (Ac1 + 20 ° C.) to (Ac1 + 80 ° C.) and held for 30 minutes or more, (Ac1-20 ° C) to 500 ° C is cooled at an average cooling rate of 1 ° C / second or more and subjected to a two-phase quenching process, and further tempered by heating to 400 to 600 ° C. A method for producing a high yield thick steel sheet having a low yield ratio and excellent heat-affected zone toughness.
Ceq = [% C] + ([% Mn] / 6) + {([% Ni] + [% Cu]) / 15}
+ {([% Cr] + [% Mo] + [% V]) / 5} (1)
Pcm = [% C] + ([% Si] / 30) + ([% Mn] / 20) + ([% Cu] / 20)
+ ([% Ni] / 60) + ([% Cr] / 20) + ([% Mo] / 15)
+ ([% V] / 10) + (5 × [% B]) (2)
ACR = {[% Ca] − (0.18 + 130 × [% Ca]) × [% O]} / (1.25 × [% S])
... (3)
前記鋼素材が、前記組成に加えて、質量%でREM:0.0010〜0.020%およびMg:0.0010〜0.0050%のうちの1種以上を含有することを特徴とする請求項2に記載の超大入熱溶接熱影響部靭性に優れた低降伏比高張力厚鋼板の製造方法。
The super high heat input according to claim 2, wherein the steel material contains one or more of REM: 0.0010 to 0.020% and Mg: 0.0010 to 0.0050% by mass% in addition to the composition. A method for producing a low-yield ratio, high-tensile steel plate with excellent weld heat-affected zone toughness.
JP2008086221A 2008-03-28 2008-03-28 Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method Active JP5136156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086221A JP5136156B2 (en) 2008-03-28 2008-03-28 Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086221A JP5136156B2 (en) 2008-03-28 2008-03-28 Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2009235548A true JP2009235548A (en) 2009-10-15
JP5136156B2 JP5136156B2 (en) 2013-02-06

Family

ID=41249854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086221A Active JP5136156B2 (en) 2008-03-28 2008-03-28 Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5136156B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107747043A (en) * 2017-11-13 2018-03-02 山东钢铁股份有限公司 A kind of yield strength 650MPa and above rank is weather-resistance hot rolled H-shaped and its manufacture method
WO2018079026A1 (en) * 2016-10-27 2018-05-03 Jfeスチール株式会社 Steel for high heat input welding
JP2019183205A (en) * 2018-04-05 2019-10-24 Jfeスチール株式会社 Steel sheet and manufacturing method therefor
CN112195402A (en) * 2020-09-28 2021-01-08 首钢集团有限公司 Precipitation-strengthened high-strength and high-toughness medium manganese steel plate and preparation method thereof
CN113235004A (en) * 2021-05-12 2021-08-10 新疆八一钢铁股份有限公司 Production method of bridge weathering steel with optimized alloy components
CN115537681A (en) * 2021-06-30 2022-12-30 宝山钢铁股份有限公司 500 MPa-grade steel plate with high toughness, low yield ratio and low longitudinal and transverse strength anisotropy and manufacturing method thereof
WO2024016419A1 (en) * 2022-07-22 2024-01-25 南京钢铁股份有限公司 Low-yield-ratio weather-resistant bridge steel and manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068478A (en) * 2003-08-22 2005-03-17 Jfe Steel Kk Method for manufacturing thick steel plate with low yield ratio and high tension superior in toughness at heat-affected zone in super heavy-heat-input welding
JP2005068519A (en) * 2003-08-27 2005-03-17 Jfe Steel Kk Method for producing high strength thick steel plate for building structure, having excellent toughness to super-large heat input welding-affected zone
JP2005187853A (en) * 2003-12-24 2005-07-14 Jfe Steel Kk Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068478A (en) * 2003-08-22 2005-03-17 Jfe Steel Kk Method for manufacturing thick steel plate with low yield ratio and high tension superior in toughness at heat-affected zone in super heavy-heat-input welding
JP2005068519A (en) * 2003-08-27 2005-03-17 Jfe Steel Kk Method for producing high strength thick steel plate for building structure, having excellent toughness to super-large heat input welding-affected zone
JP2005187853A (en) * 2003-12-24 2005-07-14 Jfe Steel Kk Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079026A1 (en) * 2016-10-27 2018-05-03 Jfeスチール株式会社 Steel for high heat input welding
JPWO2018079026A1 (en) * 2016-10-27 2018-10-25 Jfeスチール株式会社 Steel material for large heat input welding
EP3533891A4 (en) * 2016-10-27 2019-09-04 JFE Steel Corporation Steel for high heat input welding
CN107747043A (en) * 2017-11-13 2018-03-02 山东钢铁股份有限公司 A kind of yield strength 650MPa and above rank is weather-resistance hot rolled H-shaped and its manufacture method
JP2019183205A (en) * 2018-04-05 2019-10-24 Jfeスチール株式会社 Steel sheet and manufacturing method therefor
CN112195402A (en) * 2020-09-28 2021-01-08 首钢集团有限公司 Precipitation-strengthened high-strength and high-toughness medium manganese steel plate and preparation method thereof
CN112195402B (en) * 2020-09-28 2022-08-05 首钢集团有限公司 Precipitation-strengthened high-strength and high-toughness medium manganese steel plate and preparation method thereof
CN113235004A (en) * 2021-05-12 2021-08-10 新疆八一钢铁股份有限公司 Production method of bridge weathering steel with optimized alloy components
CN115537681A (en) * 2021-06-30 2022-12-30 宝山钢铁股份有限公司 500 MPa-grade steel plate with high toughness, low yield ratio and low longitudinal and transverse strength anisotropy and manufacturing method thereof
CN115537681B (en) * 2021-06-30 2023-10-17 宝山钢铁股份有限公司 High-toughness low-yield ratio low-longitudinal-transverse-strength anisotropic 500 MPa-grade steel plate and manufacturing method thereof
WO2024016419A1 (en) * 2022-07-22 2024-01-25 南京钢铁股份有限公司 Low-yield-ratio weather-resistant bridge steel and manufacturing method

Also Published As

Publication number Publication date
JP5136156B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
KR101386042B1 (en) Steel material for high heat input welding
JP5509685B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP5136156B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5849940B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
WO2014199488A1 (en) Ultrahigh-tensile-strength steel plate for welding
JP5796636B2 (en) Steel material for large heat input welding
JP2011074447A (en) High strength steel excellent in toughness in high heat input weld heat-affected zone
JP2009235549A (en) Method for producing low yield ratio high tension thick steel plate excellent in toughness at super-high heat input welding affected part
JP2005068519A (en) Method for producing high strength thick steel plate for building structure, having excellent toughness to super-large heat input welding-affected zone
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP2014198866A (en) Low yield ratio high tensile steel sheet excellent in heat affected zone toughness and method of producing the same
JP2013049894A (en) High toughness steel for heavy heat input welding and method for manufacturing the same
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP2016169403A (en) Low yield ratio high strength thick steel plate for building structure excellent in toughness at super high heat-input heat affected zone and production method therefor
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP2009242852A (en) Steel member for high-heat input welding
JP6226163B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
JP6299676B2 (en) High-tensile steel plate and manufacturing method thereof
JP5862592B2 (en) High-tensile steel plate with excellent weld heat-affected zone toughness
JP2011074445A (en) Method for manufacturing non-heat-treated high-tensile-strength thick steel superior in toughness at heat-affected zone in high-heat-input weld
JP4259374B2 (en) High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same
WO2013128650A1 (en) Steel material for high-heat-input welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R150 Certificate of patent or registration of utility model

Ref document number: 5136156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250