JP2016169403A - Low yield ratio high strength thick steel plate for building structure excellent in toughness at super high heat-input heat affected zone and production method therefor - Google Patents

Low yield ratio high strength thick steel plate for building structure excellent in toughness at super high heat-input heat affected zone and production method therefor Download PDF

Info

Publication number
JP2016169403A
JP2016169403A JP2015048325A JP2015048325A JP2016169403A JP 2016169403 A JP2016169403 A JP 2016169403A JP 2015048325 A JP2015048325 A JP 2015048325A JP 2015048325 A JP2015048325 A JP 2015048325A JP 2016169403 A JP2016169403 A JP 2016169403A
Authority
JP
Japan
Prior art keywords
less
temperature
steel plate
toughness
yield ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015048325A
Other languages
Japanese (ja)
Other versions
JP6308148B2 (en
Inventor
佐藤 祐也
Yuya Sato
祐也 佐藤
章夫 大森
Akio Omori
章夫 大森
室田 康宏
Yasuhiro Murota
康宏 室田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015048325A priority Critical patent/JP6308148B2/en
Publication of JP2016169403A publication Critical patent/JP2016169403A/en
Application granted granted Critical
Publication of JP6308148B2 publication Critical patent/JP6308148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low yield ratio high strength thick steel plate for a building structure, excellent in toughness at a super high heat-input heat affected zone.SOLUTION: The low yield ratio high strength thick steel plate for a building structure, excellent in toughness at a super high heat-input heat affected zone is provided that contains, by mass%, C:0.05 to 0.15%, Si:0.01 to 0.5%, Mn:1.0 to 1.6%, P≤0.02%, S≤0.003%, 0≤0.003%, Al:0.001 to 0.060%, Ti:0.005 to 0.030%, Cr:0.10 to 0.50%, B:0.0003 to 0.0020%, N:0.0025 to 0.0055% and further contains C, Cr and B so as to satisfy 0.28≤3/2×C+1/2×Cr+100×B≤0.38 and contains Cu, Ni and V each adjusted to be 0.05% or less. The low yield ratio high strength thick steel plate has structure at a position of 1/4 of the steel plate thickness, containing a tempered bainite phase of 40% or more by a volume ratio or further a ferrite phase of 90% or more in total of both phases and the balance perlite of 0 to 10% by a volume ratio.SELECTED DRAWING: None

Description

本発明は、溶接鋼構造物用、なかでも建築構造物用として好適な、高強度厚鋼板に係り、とくに建築ボックス柱等の施工に際し適用されるような大入熱溶接、例えば、サブマージアーク溶接あるいはエレクトロスラグ溶接で、入熱400kJ/cmを超える超大入熱溶接を施されても溶接熱影響部靭性の低下がない、超大入熱溶接熱影響部靭性に優れ高強度で、かつ低降伏比である、低降伏比高強度厚鋼板およびその製造方法に関する。なお、ここでいう「高強度」とは、降伏強さYS:385MPa以上、引張強さTS:550MPa以上である場合を、また、「低降伏比」とは、降伏比YR:80%以下である場合をいうものとする。また、ここでいう「厚鋼板」とは、板厚:60mm以上、好ましくは100mm以下である鋼板をいうものとする。   The present invention relates to a high-strength thick steel plate suitable for use in welded steel structures, in particular, for building structures, and in particular, high heat input welding applied to construction box columns and the like, for example, submerged arc welding. Alternatively, even if electroslag welding is performed with super-high heat input welding exceeding 400 kJ / cm, heat-affected zone toughness does not deteriorate, super-high heat welding heat-affected zone toughness is excellent, high strength, and low yield ratio The present invention relates to a low yield ratio high strength thick steel plate and a method for producing the same. “High strength” as used herein refers to the case where the yield strength is YS: 385 MPa or more and the tensile strength TS is 550 MPa or more. The “low yield ratio” is the yield ratio YR: 80% or less. It shall mean a certain case. In addition, the “thick steel plate” here refers to a steel plate having a thickness of 60 mm or more, preferably 100 mm or less.

近年、溶接鋼構造物の大型化に伴い、使用する鋼材として、高強度の厚肉鋼材が要望されてきた。最近では、建築構造物において、鉄骨部材用として、引張強さTS:550MPa以上で、板厚60mm以上の高強度厚鋼板が要求されている。さらに阪神淡路大震災以来、とくに建築構造物の耐震性向上が強く要望され、鋼材自体の塑性変形能を確保するために鋼材には、降伏比YR:80%以下を有することが要求されている。しかも、鋼構造物は溶接接合により組み立てられるため、鋼材には溶接部を含め、優れた靭性を保持することが求められている。さらに最近では、経済性という観点から、溶接鋼構造物の施工コストの削減も要望されている。   In recent years, with the increase in size of welded steel structures, high-strength thick steel materials have been demanded as steel materials to be used. In recent years, high strength steel sheets having a tensile strength of TS: 550 MPa or more and a thickness of 60 mm or more have been demanded for building structures. Furthermore, since the Great Hanshin-Awaji Earthquake, there has been a strong demand for improving the earthquake resistance of building structures, and steel materials are required to have a yield ratio of YR: 80% or less in order to ensure the plastic deformability of the steel materials themselves. And since a steel structure is assembled by welding joining, it is calculated | required that steel materials hold | maintain the outstanding toughness including a welding part. Furthermore, recently, from the viewpoint of economy, there has been a demand for reducing the construction cost of welded steel structures.

このような要望に対し、溶接効率を高め、施工効率を高めるために、大入熱溶接の適用範囲の拡大が指向されている。例えば、高層建築物に用いられるボックス柱のうち、角継手部やダイヤフラム接合部などの部位では、サブマージアーク溶接やエレクトロスラグ溶接などの溶接入熱が400kJ/cmを超えるような超大入熱溶接が適用されるようになっている。   In response to such demands, in order to increase welding efficiency and increase construction efficiency, expansion of the application range of large heat input welding is directed. For example, among box columns used in high-rise buildings, super-high heat input welding, such as submerged arc welding and electroslag welding, that exceeds 400 kJ / cm is applied to parts such as corner joints and diaphragm joints. Applicable.

一般に、このような大入熱溶接あるいは超大入熱溶接を施された溶接部では、溶接熱影響部(以下、HAZともいう)の靭性劣化が問題となる。これは、大入熱溶接あるいは超大入熱溶接により融点近傍まで加熱された領域では、冷却が遅くなり、高温域での滞留時間が長くなって、オーステナイト粒が粗大化しやすいうえ、さらにその後の冷却の際に、MA(島状マルテンサイトともいう)等の硬質な脆化相が生じやすいことに起因する。このようなHAZの靭性劣化は、鋼材の強度が増加するにしたがい顕著となり、とくに、引張強さTSが550MPa級以上の高強度鋼材で顕著となる。このため、高強度鋼材におけるHAZ靭性の向上が要望されていた。   Generally, in a welded portion subjected to such high heat input welding or super-high heat input welding, deterioration of toughness of a weld heat affected zone (hereinafter also referred to as HAZ) becomes a problem. This is because in the region heated to near the melting point by high heat input welding or super high heat input welding, the cooling is slow, the residence time in the high temperature region becomes long, and the austenite grains tend to coarsen, and further cooling after that. This is because a hard embrittlement phase such as MA (also called island-like martensite) is likely to occur. Such HAZ toughness deterioration becomes more noticeable as the strength of the steel increases, and is particularly noticeable in a high-strength steel having a tensile strength TS of 550 MPa or higher. For this reason, the improvement of the HAZ toughness in high strength steel materials has been desired.

このような要望に対し、従来から、鋼中に微細な介在物や析出物を分散させて、オーステナイト粒の粗大化を防止するとともに、これら介在物や析出物を粒内フェライトの核生成サイトとして機能させて、旧オーステナイト粒内組織の微細化を図る技術が、数多く提案されてきた。   In response to such demands, conventionally, fine inclusions and precipitates are dispersed in steel to prevent the austenite grains from coarsening, and these inclusions and precipitates are used as nucleation sites for intragranular ferrite. Many techniques have been proposed that function to refine the microstructure of the prior austenite grains.

最近では、例えば、特許文献1には、溶鋼に、Siおよび/またはMnを添加して脱酸し、溶存酸素量を0.0030〜0.0120質量%に調整したのち、REMを添加し溶存酸素量を0.0010〜0.0050質量%に調整するとともに、質量%で、C:0.03〜0.18%、Si:0.05〜0.40%、Mn:0.5〜2.0%、REM:0.0030〜0.0200%、N:0.0040〜0.0070%を含み、さらにNb、Cu、Niのうちの1種または2種以上を含有し、AlおよびTiをそれぞれ0.004%以下に調整した溶鋼とし、鋳造して鋼素材としたのち、1000℃以上に加熱し圧延終了温度をAr変態点以上とする熱間圧延を施し、1℃/s以上の冷却速度で、冷却停止温度を600〜250℃とする加速冷却を施し、空冷する、優れた超大入熱溶接熱影響部靭性を有する建築構造用厚鋼板の製造方法が記載されている。これにより、溶接冷却時にREMオキシサルファイド、REMサルファイドを核として、REMのうちCeがNと結合したCeNが析出し、このCeNがフェライト生成核として作用して、微細なフェライトが多数生成し、大入熱HAZ靭性が向上するとしている。 Recently, for example, in Patent Document 1, Si and / or Mn is added to a molten steel for deoxidation, and the amount of dissolved oxygen is adjusted to 0.0030 to 0.0120% by mass, and then REM is added to reduce the amount of dissolved oxygen to 0.0010. In addition to adjusting to ~ 0.0050 mass%, in mass%, C: 0.03-0.18%, Si: 0.05-0.40%, Mn: 0.5-2.0%, REM: 0.0030-0.0200%, N: 0.0040-0.0070%, Furthermore, it contains one or more of Nb, Cu, Ni, and is made of molten steel with Al and Ti adjusted to 0.004% or less respectively, cast into a steel material, and then heated to 1000 ° C or higher to finish rolling. Excellent super-high heat input welding heat that is hot-rolled at an Ar 3 transformation point or higher, accelerated at a cooling rate of 600-250 ° C at a cooling rate of 1 ° C / s or higher, and air-cooled. A method for producing a thick steel plate for building structures having an affected zone toughness is described. As a result, CeN with REM oxysulfide and REM sulfide as nuclei and Ce combined with N precipitates during welding cooling, and this CeN acts as ferrite nuclei, producing many fine ferrites. It is said that heat input HAZ toughness is improved.

また、特許文献2には、質量%で、C:0.04〜0.20%、Si:0.05〜0.35%、Mn:0.50〜2.50%、Al:0.003〜0.03%、Ti:0.001〜0.02%、B:0.0002〜0.003%、Ca:0.0003〜0.0025%を含みN:0.006%以下で、C+100Bの値が0.1〜0.32%である組成を有し、鋼中に、0.005〜2.0μmのCa、Alを含む酸化物粒子を100〜3000個/mm分散させた鋼板を、熱間圧延終了後、Ar変態点以上から水冷焼入れを開始し、150℃以下まで水冷し、板厚方向で、板表面下5mmまでを除いた領域においてベイナイト分率が50%以上の組織とする、低YR高張力鋼板の製造方法が記載されている。これにより、板厚が70mm以上であっても、焼入れままで、耐力440MPa以上、引張強さ590MPa以上、降伏比80%以下で優れた大入熱継手靭性を有する鋼板とすることができるとしている。 Patent Document 2 includes mass%, C: 0.04 to 0.20%, Si: 0.05 to 0.35%, Mn: 0.50 to 2.50%, Al: 0.003 to 0.03%, Ti: 0.001 to 0.02%, and B: 0.0002. -0.003%, Ca: 0.0003-0.0025% included, N: 0.006% or less, C + 100B value is 0.1-0.32%, and steel contains 0.005-2.0μm Ca, Al oxide the 100 to 3000 pieces / mm 2 dispersed so steel plates particles, after the end of hot rolling, water cooling quenching starting from Ar 3 transformation point or higher, water cooling to 0.99 ° C. or less, in thickness direction, until under the plate surface 5mm A method for producing a low-YR high-tensile steel sheet is described in which the bainite fraction has a structure of 50% or more in the region excluding. As a result, even if the plate thickness is 70 mm or more, it is said that it can be made into a steel plate having excellent large heat input joint toughness with as-quenched, proof stress 440 MPa or more, tensile strength 590 MPa or more, yield ratio 80% or less. .

また、特許文献3には、溶鋼中のAl含有量が0.005〜0.08質量%の範囲となるようにAlを添加して脱酸し、さらに脱ガス装置で15分以上処理した後、溶鋼温度を1600±70℃に保った状態でCaを添加し、鋳造して、質量%で、C:0.01〜0.2%、Si:0.03〜0.5%、Mn:0.5〜2.0%、Al:0.005%超0.08%以下、Ti:0.0005〜0.02%、Ca:0.0003〜0.02%、N:0.002〜0.009%、O:0.001〜0.0035%を含有するスラブとし、該スラブを熱間圧延したのち、750℃以下の温度から水冷を開始する、大入熱溶接熱影響部靭性に優れた鋼材の製造方法が記載されている。これにより、球状化したCa酸硫化物が鋼中に分散し、さらに熱延後に、750℃以下の温度から水冷することにより、フェライト面積率が15%以上となり、低降伏比で、大入熱溶接熱影響部靭性にすぐれた鋼材が得られるとしている。   Further, in Patent Document 3, Al is added so that the Al content in the molten steel is in the range of 0.005 to 0.08 mass%, deoxidation is performed, and further, the degassing apparatus is used for 15 minutes or more, and then the molten steel temperature is set. Ca is added and cast in a state maintained at 1600 ± 70 ° C, and in terms of mass%, C: 0.01 to 0.2%, Si: 0.03 to 0.5%, Mn: 0.5 to 2.0%, Al: more than 0.005%, 0.08% Hereinafter, a slab containing Ti: 0.0005 to 0.02%, Ca: 0.0003 to 0.02%, N: 0.002 to 0.009%, O: 0.001 to 0.0035%, and after hot rolling the slab, from a temperature of 750 ° C. or less A method for producing a steel material that starts water cooling and has excellent high heat input weld heat affected zone toughness is described. As a result, the spheroidized Ca oxysulfide is dispersed in the steel, and after hot rolling, water cooling from a temperature of 750 ° C. or lower results in a ferrite area ratio of 15% or higher, a low yield ratio, and a large heat input. It is said that steel materials with excellent weld heat affected zone toughness can be obtained.

また、特許文献4には、質量%で、C:0.05〜0.12%、Si:0.3%以下、Mn:1〜2%、B:0.0003〜0.003%、V:0.03〜0.15%、Al:0.001〜0.1%、Ti:0.005〜0.02%を含有し、炭素当量Ceqが0.32〜0.45%、有効ボロン量が0%以下、有効チタン量が0.005%以上である連続鋳造スラブを、1100℃超1300℃以下に加熱した後、鋼表面温度が850℃以上で累積圧下率が50%以上の圧延を行い、ついで鋼表面温度が800℃以上から加速冷却を適用し500℃以下まで冷却する、大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法が記載されている。特許文献4に記載された技術では、V、Bを複合含有させ、N量を調整することにより、γ中のBとVの存在状態を最適化し、母材と大入熱溶接HAZの変態組織を制御でき、板厚50〜100mmで、降伏強さ400〜650MPa、引張強さ490〜720MPaの厚手高強度で、溶接入熱20kJ/mm以上のHAZでも、−20℃におけるシャルピー衝撃試験吸収エネルギーが70J以上となる良好な大入熱溶接HAZ靭性を有する鋼板が得られるとしている。   In Patent Document 4, the mass% is C: 0.05 to 0.12%, Si: 0.3% or less, Mn: 1 to 2%, B: 0.0003 to 0.003%, V: 0.03 to 0.15%, Al: 0.001 to Continuous cast slab containing 0.1%, Ti: 0.005-0.02%, carbon equivalent Ceq of 0.32-0.45%, effective boron content of 0% or less, and effective titanium content of 0.005% or more, more than 1100 ° C and less than 1300 ° C The steel surface temperature is 850 ° C or higher and the rolling reduction is 50% or higher, and then the steel surface temperature is 800 ° C or higher and accelerated cooling is applied to cool to 500 ° C or lower. A method for producing a thick high-strength steel sheet excellent in heat-affected zone toughness is described. In the technique described in Patent Document 4, the presence state of B and V in γ is optimized by compounding V and B and adjusting the amount of N, and the transformation structure of the base material and the high heat input welding HAZ. , Charpy impact test absorption energy at -20 ° C even in HAZ with a thickness of 50-100mm, yield strength 400-650MPa, tensile strength 490-720MPa, thick high strength and welding heat input 20kJ / mm or more It is said that a steel sheet having good high heat input welded HAZ toughness with a J of 70 J or more can be obtained.

特開2003−277828号公報JP 2003-277828 A 特開2005−336541号公報JP 2005-336541 A 特開2010−180424号公報JP 2010-180424 A 特許第4681690号公報Japanese Patent No. 4681690

しかしながら、特許文献1〜4に記載された技術では、板厚60mm以上の厚鋼板において、母材および溶接継手で、550MPa以上の引張強さTSを確保するためには、Cu、Niの添加や、N量の増加が必要となる。Cu、Niの添加や、N量の増加は、連鋳スラブの表面性状を劣化させ、鋳片表面の手入負荷が増大したり、歩留が低下したりして、製造コストの高騰を招くという問題があった。   However, in the techniques described in Patent Documents 1 to 4, in a thick steel plate having a thickness of 60 mm or more, in order to ensure a tensile strength TS of 550 MPa or more with a base material and a welded joint, addition of Cu and Ni, , N amount needs to be increased. Addition of Cu and Ni and an increase in the amount of N deteriorate the surface properties of the continuous cast slab, increase the care load on the slab surface and decrease the yield, leading to an increase in manufacturing costs. There was a problem.

本発明は、上記した従来技術の問題を解決し、表面性状を低下させる合金元素や、製造コストを高騰させる合金元素を低減、あるいは、含有することなく、建築構造物用として好適な、降伏強さYS:385MPa以上、引張強さTS:550MPa以上、降伏比YR:80%以下を有し、さらに入熱400kJ/cmを超える超大入熱溶接で形成された溶接部(以下、超大入熱溶接部ともいう)において、優れた溶接熱影響部(HAZ)靭性(以下、超大入熱溶接HAZ靭性ともいう)を有する高強度厚鋼板およびその安価な製造方法を提供することを目的とする。なお、ここでいう「優れた超大入熱溶接HAZ靭性」とは、超大入熱溶接(入熱:1000kJ/cm)のHAZで、シャルピー衝撃試験における試験温度:0℃での吸収エネルギーが平均で70J以上である場合をいうものとする。   The present invention solves the above-mentioned problems of the prior art and is suitable for use in building structures without reducing or containing alloy elements that reduce surface properties or alloy elements that increase manufacturing costs. YS: 385MPa or more, tensile strength TS: 550MPa or more, yield ratio YR: 80% or less, and a weld formed by super high heat input welding with heat input exceeding 400kJ / cm (hereinafter, super high heat input welding) It is an object of the present invention to provide a high-strength thick steel plate having excellent welding heat affected zone (HAZ) toughness (hereinafter also referred to as super high heat input welding HAZ toughness) and an inexpensive manufacturing method thereof. The “excellent super high heat input welding HAZ toughness” as used herein is HAZ of super high heat input welding (heat input: 1000 kJ / cm), and the average absorbed energy at a test temperature of 0 ° C. in the Charpy impact test. The case of 70J or more shall be said.

本発明者らは、上記した目的を達成するために、鋼板の製造性、強度、HAZ靭性に及ぼす各種要因について、鋭意検討した。その結果、不純物としてCu、Ni、Vを所定値以下に調整し、さらにN量を所定範囲に低く調整したうえで、Cr、Bを複合含有し、かつC、Cr、Bを特定関係を満足するように調整して含有することにより、優れた超大入熱溶接HAZ靭性を有する鋼板を、安定して、しかも安価に製造できることを、新規に知見した。   In order to achieve the above-described object, the present inventors diligently studied various factors affecting the productivity, strength, and HAZ toughness of the steel sheet. As a result, Cu, Ni, and V as impurities are adjusted to a predetermined value or less, N content is adjusted to a low range, Cr and B are combined, and C, Cr, and B satisfy a specific relationship. It was newly found out that a steel sheet having excellent super high heat input welding HAZ toughness can be stably and inexpensively produced by adjusting and containing.

本発明者らの更なる研究によれば、質量%で、C:0.05〜0.15%、Cr:0.10〜0.50%、B:0.0003〜0.0020%の範囲内で含み、かつC、Cr、Bを次(1)式
0.28 ≦ 3/2×C+1/2×Cr+100×B ≦ 0.38 ‥‥(1)
(ここで、C、Cr、B:各元素の含有量(質量%))
を満足するように調整して含有することにより、とくに超大入熱溶接HAZにおいても、粗大な粒界フェライトや上部ベイナイト、フェライトサイドプレートの生成を抑え、粒内アシキュラーフェライトの生成を促進して、高強度でかつ優れた靭性を有する溶接HAZとすることができることを見出した。
According to further studies by the present inventors, it is contained in the ranges of C: 0.05 to 0.15%, Cr: 0.10 to 0.50%, B: 0.0003 to 0.0020% by mass%, and C, Cr and B are as follows: (1) Formula
0.28 ≦ 3/2 × C + 1/2 × Cr + 100 × B ≦ 0.38 (1)
(Here, C, Cr, B: Content of each element (mass%))
By adjusting and containing so as to satisfy the requirements, especially in super high heat input welding HAZ, the generation of coarse grain boundary ferrite, upper bainite, and ferrite side plate is suppressed, and the generation of intragranular acicular ferrite is promoted. The present inventors have found that a welded HAZ having high strength and excellent toughness can be obtained.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎの通りである。
(1)質量%で、C:0.05〜0.15%、Si:0.01〜0.5%、Mn:1.0〜1.6%、P:0.02%以下、S:0.003%以下、Al:0.001〜0.060%、Ti:0.005〜0.030%、Cr:0.10〜0.50%、B:0.0003〜0.0020%、N:0.0025〜0.0055%、O:0.003%以下を含み、さらにC、Cr、Bを次(1)式
0.28 ≦ 3/2×C+1/2×Cr+100×B ≦ 0.38 ‥‥(1)
(ここで、C、Cr、B:各元素の含有量(質量%))
を満足するように調整して含み、かつ不純物としてCu、Ni、Vを、それぞれ:0.05%以下に調整してなり、残部Feおよび不可避的不純物からなる組成と、板厚1/4位置において、体積率で40%以上の焼戻ベイナイト相、あるいはさらにフェライト相を合計で90%以上含み、残部が体積率で10%以下(0%を含む)のパーライトからなる組織と、を有し、降伏強さ:385MPa以上、引張強さ:550MPa以上の高強度、降伏比:80%以下の低降伏比で、超大入熱溶接熱影響部靭性に優れることを特徴とする建築構造物用低降伏比高強度厚鋼板。
(2)(1)において、前記組成に加えてさらに、質量%で、Mo:0.01〜0.30%、Nb:0.003〜0.020%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする建築構造物用低降伏比高強度厚鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ca:0.0005〜0.0020%、REM:0.0010〜0.0030%、Mg:0.0010〜0.0020%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする建築構造物用低降伏比高強度厚鋼板。
(4)鋼素材に、熱間圧延とそれに引続き、直接焼入れ処理と焼戻処理とを施して厚鋼板とする、建築構造物用厚鋼板の製造方法であって、前記鋼素材が、質量%で、C:0.05〜0.15%、Si:0.01〜0.5%、Mn:1.0〜1.6%、P:0.02%以下、S:0.003%以下、Al:0.001〜0.060%、Ti:0.005〜0.030%、Cr:0.10〜0.50%、B:0.0003〜0.0020%、N:0.0025〜0.0055%、O:0.003%以下を含み、さらにC、Cr、Bを次(1)式
0.28 ≦ 3/2×C+1/2×Cr+100×B ≦ 0.38 ‥‥(1)
(ここで、C、Cr、B:各元素の含有量(質量%))
を満足するように調整して含み、かつ不純物としてCu、Ni、Vを、それぞれ:0.05%以下に調整してなり、残部Feおよび不可避的不純物からなる組成を有する鋼素材であり、前記熱間圧延を、前記鋼素材を平均温度で1050〜1200℃の範囲の温度に加熱し、表面温度で950℃以下の温度域での累積圧下率が30%以上で、圧延終了温度を表面温度で900℃以下Ar変態点以上とする圧延とし、前記直接焼入れ処理を、表面温度でAr変態点以上の温度から冷却を開始し、板厚1/4位置で2℃/s以上40℃/s以下の平均冷却速度で、板厚1/4位置の温度で200℃以下の温度域の冷却停止温度まで冷却する処理とし、前記焼戻処理を、表面温度で400℃以上Ac変態点未満の温度域に加熱する処理とすることを特徴とする建築構造物用低降伏比高強度厚鋼板の製造方法。
(5)(4)において、前記組成に加えてさらに、質量%で、Mo:0.01〜0.30%、Nb:0.003〜0.020%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする建築構造物用低降伏比高強度厚鋼板の製造方法。
(6)(4)または(5)において、前記組成に加えてさらに、質量%で、Ca:0.0005〜0.0020%、REM:0.0010〜0.0030%、Mg:0.0010〜0.0020%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする建築構造物用低降伏比高強度厚鋼板の製造方法。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.05 to 0.15%, Si: 0.01 to 0.5%, Mn: 1.0 to 1.6%, P: 0.02% or less, S: 0.003% or less, Al: 0.001 to 0.060%, Ti: 0.005 ~ 0.030%, Cr: 0.10 ~ 0.50%, B: 0.0003 ~ 0.0020%, N: 0.0025 ~ 0.0055%, O: 0.003% or less, and C, Cr, B
0.28 ≦ 3/2 × C + 1/2 × Cr + 100 × B ≦ 0.38 (1)
(Here, C, Cr, B: Content of each element (mass%))
And Cu, Ni, and V as impurities, respectively, adjusted to 0.05% or less, the composition consisting of the balance Fe and inevitable impurities, and at the position of the thickness 1/4, A tempered bainite phase with a volume fraction of 40% or more, or a ferrite phase with a total of 90% or more of the ferrite phase and the balance of pearlite with a volume fraction of 10% or less (including 0%). Strength: 385MPa or higher, tensile strength: high strength of 550MPa or higher, yield ratio: low yield ratio of 80% or less, and low yield ratio for building structures characterized by excellent heat-affected zone toughness of super high heat input welding High strength thick steel plate.
(2) In (1), in addition to the above composition, the composition further contains, by mass%, one or two selected from Mo: 0.01 to 0.30% and Nb: 0.003 to 0.020%. Low yield ratio high strength thick steel plate for building structures.
(3) In (1) or (2), in addition to the above composition, 1% selected from Ca: 0.0005 to 0.0020%, REM: 0.0010 to 0.0030%, and Mg: 0.0010 to 0.0020% in mass% A low-yield-ratio high-strength thick steel plate for building structures characterized by comprising a seed or a composition containing two or more.
(4) A method for producing a thick steel plate for a building structure, which is obtained by subjecting a steel material to hot rolling and subsequent direct quenching treatment and tempering treatment to obtain a thick steel plate, wherein the steel material comprises mass%. C: 0.05 to 0.15%, Si: 0.01 to 0.5%, Mn: 1.0 to 1.6%, P: 0.02% or less, S: 0.003% or less, Al: 0.001 to 0.060%, Ti: 0.005 to 0.030%, Cr : 0.10 to 0.50%, B: 0.0003 to 0.0020%, N: 0.0025 to 0.0055%, O: 0.003% or less, further C, Cr, B is the following (1) formula
0.28 ≦ 3/2 × C + 1/2 × Cr + 100 × B ≦ 0.38 (1)
(Here, C, Cr, B: Content of each element (mass%))
Is a steel material having a composition comprising the balance Fe and unavoidable impurities, wherein Cu, Ni, and V are each adjusted to 0.05% or less and are adjusted so as to satisfy In rolling, the steel material is heated to an average temperature in the range of 1050 to 1200 ° C., the cumulative rolling reduction in the temperature range of 950 ° C. or less at the surface temperature is 30% or more, and the rolling end temperature is 900 ° C. in the surface temperature. ° C. or less and rolling to Ar 3 transformation point or higher, the direct quenching process, start cooling from Ar 3 transformation point or more of the temperature at a surface temperature, 2 ° C. / s or higher sheet thickness 1/4 position 40 ° C. / s the following average cooling rate, a process of cooling to the cooling stop temperature of the temperature range of 200 ° C. or less at a temperature of ¼ of the sheet thickness position, the tempering treatment, the surface temperature of 400 ° C. or higher Ac less than 1 transformation point Manufacturing of low-yield ratio high-strength steel sheets for building structures, characterized by heating to a temperature range Method.
(5) In (4), in addition to the above composition, the composition further contains one or two selected from Mo: 0.01 to 0.30% and Nb: 0.003 to 0.020% by mass%. A method for producing a low yield ratio high strength thick steel sheet for building structures.
(6) In (4) or (5), in addition to the above-mentioned composition, in mass%, Ca: 0.0005 to 0.0020%, REM: 0.0010 to 0.0030%, Mg: 0.0010 to 0.0020% The manufacturing method of the low yield ratio high strength thick steel plate for building structures characterized by setting it as the composition containing a seed | species or 2 or more types.

本発明によれば、建築構造物用として好適な、板厚60mm以上で、降伏強さ:385MPa以上、引張強さTS:550MPa以上の高強度で、降伏比YR:80%以下という低降伏比を有し、かつ超大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板を、鋼素材(スラブ)の手入を必要とすることなく安価にしかも生産性高く製造でき、産業上格段の効果を奏する。また、本発明は、鋼構造物の大型化や、耐震性の向上、施工効率の向上などに、大きく寄与するという効果もある。   According to the present invention, it is suitable for building structures, with a thickness of 60 mm or more, yield strength: 385 MPa or more, tensile strength TS: high strength of 550 MPa or more, and yield ratio YR: 80% or less. Low yield ratio high-strength thick steel plates with excellent heat-affected zone toughness and super-high heat input can be manufactured at low cost and with high productivity without requiring the maintenance of steel materials (slabs). There is a remarkable effect. Moreover, this invention also has the effect of making a big contribution to the enlargement of a steel structure, the improvement of earthquake resistance, the improvement of construction efficiency, etc.

実施例で用いた溶接継手の開先形状を模式的に示す説明図である。It is explanatory drawing which shows typically the groove shape of the welded joint used in the Example. 実施例で実施したシャルピー衝撃試験で使用するVノッチ試験片の採取要領を模式的に示す説明図である。It is explanatory drawing which shows typically the sampling procedure of the V notch test piece used by the Charpy impact test implemented in the Example.

まず、本発明低降伏比高強度厚鋼板の組成限定理由について、説明する。なお、とくに断わらないかぎり、質量%は単に%で記す。   First, the reason for limiting the composition of the low yield ratio high strength thick steel sheet of the present invention will be described. Unless otherwise specified, mass% is simply expressed as%.

C:0.05〜0.15%
Cは、鋼の強度を増加させ、建築構造物用鋼材として必要な強度を確保するのに有用な元素である。このような効果を得るため、さらに他の合金元素量を必要最小限に抑えるために、Cは、0.05%以上含有する必要がある。一方、0.15%を超えて含有すると、耐溶接割れ性の低下、HAZ靭性の低下が顕著になる。このため、Cは0.05〜0.15%の範囲に限定した。なお、好ましくは、0.08〜0.12%である。
C: 0.05-0.15%
C is an element useful for increasing the strength of steel and ensuring the strength necessary for steel for building structures. In order to obtain such an effect, in order to further minimize the amount of other alloy elements, C needs to be contained by 0.05% or more. On the other hand, if the content exceeds 0.15%, the weld cracking resistance and HAZ toughness are significantly reduced. For this reason, C was limited to the range of 0.05 to 0.15%. In addition, Preferably, it is 0.08 to 0.12%.

Si:0.01〜0.5%
Siは、固溶して鋼の強度を増加させ、建築構造用鋼板として必要な強度を確保するのに有用な元素である。このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.5%を超える含有は、超大入熱溶接HAZにおいて、MA(Martensite-Austenite constituent)相の生成を助長し、HAZ靭性を低下させる恐れが高くなる。このようなことから、Siは0.01〜0.5%の範囲に限定した。なお、SiはHAZ靭性の観点から、好ましくは0.30%以下である。
Si: 0.01-0.5%
Si is an element useful for solid solution to increase the strength of steel and to secure the strength required for steel plates for building structures. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, the content exceeding 0.5% promotes the formation of MA (Martensite-Austenite constituent) phase in the super-high heat input welding HAZ, and increases the risk of reducing the HAZ toughness. For these reasons, Si is limited to the range of 0.01 to 0.5%. Si is preferably 0.30% or less from the viewpoint of HAZ toughness.

Mn:1.0〜1.6%
Mnは、鋼の強度を増加させ、建築構造物用鋼板として必要な強度を確保するのに有用な元素である。このような効果を得て、引張強さ550MPa以上を確保するためには、1.0%以上の含有を必要とする。一方、1.6%を超えて含有すると、凝固時に中央偏析部への濃化が著しくなり、スラブ欠陥の増加などの原因となる。また、多量のMn含有は、母材およびHAZ靱性の著しい低下を招く。このため、Mnは1.0〜1.6%の範囲に限定した。なお、好ましくは1.2〜1.6%であり、より好ましくは、1.4〜1.6%の範囲である。
Mn: 1.0-1.6%
Mn is an element useful for increasing the strength of steel and ensuring the strength required for steel plates for building structures. In order to obtain such an effect and secure a tensile strength of 550 MPa or more, it is necessary to contain 1.0% or more. On the other hand, if the content exceeds 1.6%, the concentration in the central segregation part becomes remarkable during solidification, which causes an increase in slab defects. Moreover, a large amount of Mn content causes a significant decrease in the base material and the HAZ toughness. For this reason, Mn was limited to 1.0 to 1.6%. In addition, Preferably it is 1.2 to 1.6%, More preferably, it is 1.4 to 1.6% of range.

P:0.02%以下
Pは、不純物として鋼中に不可避的に含有される元素であり、鋼板の靭性を低下させるため、できるだけ低減することが好ましいが、0.02%以下であれば許容できる。0.02%を超える含有は、とくにHAZ靭性を著しく低下させる。このため、Pは0.02%以下に限定した。なお、過度のP低減は、精錬コストを高騰させ、経済的に不利となるため、0.005%以上とすることが好ましい。
P: 0.02% or less
P is an element inevitably contained in the steel as an impurity, and is preferably reduced as much as possible in order to reduce the toughness of the steel sheet. However, 0.02% or less is acceptable. If the content exceeds 0.02%, the HAZ toughness is particularly lowered. For this reason, P was limited to 0.02% or less. In addition, excessive P reduction increases the refining cost and is economically disadvantageous. Therefore, the P content is preferably 0.005% or more.

S:0.003%以下
Sは、鋼中では硫化物系介在物として存在し、鋼板の延性、靭性の低下を招くため、できるだけ低減することが好ましい。とくに、Mnと結合したMnSは、板厚中央の中心偏析部に多く偏在し、熱間圧延により伸長して、特に板厚方向(Z方向)のシャルピー衝撃試験吸収エネルギーを顕著に低下させる。このような悪影響を避けるためには、Sは0.003%以下に低減する必要がある。とくに、エレクトロスラグ溶接の熱影響部は広範囲に及ぶため、中心偏析部が熱影響部に含まれることがあり、このような場合には、熱影響部におけるシャルピー衝撃試験吸収エネルギーは顕著に低下する。そのため、Sは0.003%以下に限定した。なお、好ましくは0.002%以下である。また、過度のS低減は、精錬コストの高騰を招き、経済的に不利となるため、0.0005%以上とすることが好ましい。
S: 0.003% or less
S is present as sulfide inclusions in steel and causes a reduction in the ductility and toughness of the steel sheet, so it is preferably reduced as much as possible. In particular, MnS bonded to Mn is unevenly distributed in the center segregation portion at the center of the plate thickness, and is elongated by hot rolling, and significantly reduces the Charpy impact test absorbed energy particularly in the plate thickness direction (Z direction). In order to avoid such an adverse effect, S needs to be reduced to 0.003% or less. In particular, since the heat affected zone of electroslag welding covers a wide range, the central segregation zone may be included in the heat affected zone. In such a case, the Charpy impact test absorbed energy in the heat affected zone is significantly reduced. . Therefore, S is limited to 0.003% or less. In addition, Preferably it is 0.002% or less. Moreover, excessive S reduction leads to an increase in the refining cost and is economically disadvantageous, so 0.0005% or more is preferable.

Al:0.001〜0.060%
Alは、脱酸剤として作用し、高張力鋼の溶鋼脱酸プロセスにおいて、もっとも汎用的に使われる元素である。また、鋼中のNをAlNとして固定し、Nによる靭性低下や割れ発生を抑制する効果も有する。このような効果は、0.001%以上の含有で認められるが、0.060%を超えて含有すると、母材靱性が低下するうえ、溶接時に溶接金属に混入して溶接部靱性を低下させる。このため、Alは0.001〜0.060%の範囲とする。なお、好ましくは0.010〜0.045%、より好ましくは、0.020〜0.035%である。
Al: 0.001 to 0.060%
Al acts as a deoxidizer and is the most commonly used element in the high-strength steel deoxidation process. Moreover, N in steel is fixed as AlN, and it has the effect of suppressing the toughness fall and crack generation by N. Such an effect is recognized when the content is 0.001% or more. However, when the content exceeds 0.060%, the toughness of the base metal is lowered, and the weld metal is mixed with the weld metal at the time of welding to lower the weld toughness. For this reason, Al is taken as 0.001 to 0.060% of range. In addition, Preferably it is 0.010 to 0.045%, More preferably, it is 0.020 to 0.035%.

Ti:0.005〜0.030%
Tiは、Nとの親和力が強く凝固時にTiNとして析出し、HAZでのオーステナイト粒の粗大化抑制、あるいはフェライト変態核として作用しHAZの高靱化に寄与する。このような効果を得るためには、0.005%以上の含有を必要とする。一方、0.030%を超える含有は、TiN粒子が粗大化し、上記した効果が期待できなくなる。このため、Tiは0.005〜0.030%の範囲に限定した。なお、好ましくは、0.008〜0.020%である。
Ti: 0.005-0.030%
Ti has a strong affinity for N and precipitates as TiN during solidification, and suppresses the coarsening of austenite grains in the HAZ or acts as a ferrite transformation nucleus and contributes to increasing the toughness of the HAZ. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, if the content exceeds 0.030%, the TiN particles become coarse and the above-described effects cannot be expected. For this reason, Ti was limited to 0.005 to 0.030% of range. In addition, Preferably, it is 0.008 to 0.020%.

Cr:0.10〜0.50%
Crは、本発明における重要な元素の1つである。Crは、固溶して母材と大入熱溶接HAZの強度を高めるとともに、とくに大入熱溶接HAZにおいて、粒界フェライトの生成を抑制し、アシキュラーフェライトの生成を促進して、HAZ組織の微細化を図りHAZ靭性向上に寄与する作用を有する。このような効果を得るためには、0.10%以上の含有を必要とする。一方、0.50%を超えて含有すると、溶接性が低下する。このようなことから、Crは0.10〜0.50%の範囲に限定した。なお、好ましくは0.15〜0.30%である。
Cr: 0.10 to 0.50%
Cr is one of the important elements in the present invention. Cr dissolves to increase the strength of the base metal and the high heat input weld HAZ, and suppresses the formation of intergranular ferrite, especially in the high heat input weld HAZ, and promotes the formation of acicular ferrite, thereby reducing the HAZ structure. Has the effect of contributing to improvement in HAZ toughness. In order to obtain such an effect, the content of 0.10% or more is required. On the other hand, if the content exceeds 0.50%, weldability decreases. For these reasons, Cr is limited to the range of 0.10 to 0.50%. In addition, Preferably it is 0.15-0.30%.

B:0.0003〜0.0020%
Bは、本発明では重要な元素の1つである。Bは、大入熱溶接HAZにおいて、粒界フェライトの生成を抑制するとともに、その後、オーステナイト(γ)中にB炭窒化物として析出し、変態核として、γ粒内におけるフェライトの核生成を促進し、HAZの組織微細化に寄与し、大入熱HAZ靭性を向上させる。このような効果を得るためには0.0003%以上の含有を必要とする。一方、0.0020を超える含有は、粗大なB析出物を生成しHAZ靭性を低下させる。このため、Bは0.0003%〜0.0020%の範囲に限定した。なお、好ましくは0.0010%以下である。
B: 0.0003-0.0020%
B is one of the important elements in the present invention. B suppresses the formation of intergranular ferrite in high heat input welding HAZ, and then precipitates as B carbonitride in austenite (γ) and promotes nucleation of ferrite in γ grains as a transformation nucleus It contributes to the refinement of the HAZ structure and improves the high heat input HAZ toughness. In order to acquire such an effect, 0.0003% or more of content is required. On the other hand, if the content exceeds 0.0020, coarse B precipitates are produced and the HAZ toughness is lowered. For this reason, B was limited to the range of 0.0003% to 0.0020%. In addition, Preferably it is 0.0010% or less.

N:0.0025〜0.0055%
Nは、Ti、Nb等の窒化物形成元素と結合し窒化物を形成し、ピンニング効果によりオーステナイト粒の粗大化を防いだり、フェライトやベイナイトの核生成サイトとして機能し、HAZ組織の微細化に寄与する元素である。このような効果を得るためには、0.0025%以上含有する必要がある。また、Nは、固溶して、母材や、超大入熱溶接のCGHAZ(Coarse Grain HAZ)および小入熱多パス溶接におけるICCGHAZ(Inter Critically reheated Coarse Grain HAZ)で、島状マルテンサイトの生成を促進し、靭性の低下をもたらす。一方、Nが0.0055%を超えて多すぎると、窒化物量が多くなりすぎ、また窒化物が粗大化して、靱性が低下する。このようなことから、Nは0.0025〜0.0055%の範囲に限定した。なお、好ましくは0.0030〜0.0050%である。
N: 0.0025 to 0.0055%
N combines with nitride-forming elements such as Ti and Nb to form nitrides, prevents the austenite grains from coarsening due to the pinning effect, functions as a nucleation site for ferrite and bainite, and refines the HAZ structure It is a contributing element. In order to acquire such an effect, it is necessary to contain 0.0025% or more. In addition, N forms a solid solution and forms island martensite in CGHAZ (Coarse Grain HAZ) for super high heat input welding and ICCGHAZ (Inter Critically reheated Coarse Grain HAZ) for small heat input multi-pass welding. Promotes reduction of toughness. On the other hand, if N exceeds 0.0055% and the amount of nitride is too large, the amount of nitride becomes too large, and the nitride becomes coarse and toughness decreases. For these reasons, N is limited to a range of 0.0025 to 0.0055%. In addition, Preferably it is 0.0030 to 0.0050%.

O:0.003%以下
O(酸素)は、鋼中では酸化物系介在物として存在するが、酸化物系介在物は、延性、靭性を低下させるため、できるだけ低減することが好ましい。0.003%を超えて含有すると、鋼板の清浄度が著しく低下し、延性、靭性が著しく低下する。このため、Oは0.003%以下に限定した。
O: 0.003% or less
O (oxygen) is present as oxide inclusions in steel, but oxide inclusions are preferably reduced as much as possible because they reduce ductility and toughness. When the content exceeds 0.003%, the cleanliness of the steel sheet is remarkably lowered, and the ductility and toughness are remarkably lowered. For this reason, O was limited to 0.003% or less.

さらに本発明では、C、Cr、Bは、上記した範囲で含有し、かつ次(1)式
0.28 ≦ 3/2×C+1/2×Cr+100×B ≦ 0.38 ‥‥(1)
(ここで、C、Cr、B:各元素の含有量(質量%))
を満足するように調整して含有する。
Further, in the present invention, C, Cr and B are contained in the above-mentioned range, and the following formula (1)
0.28 ≦ 3/2 × C + 1/2 × Cr + 100 × B ≦ 0.38 (1)
(Here, C, Cr, B: Content of each element (mass%))
The content is adjusted so as to satisfy.

(1)式を満足するように、C、Cr、Bの含有量を調整することにより、B炭窒化物による粒内核生成サイトの増加と、固溶Crによる焼入性の増加でγ粒内におけるアシキュラーフェライトの生成が促進されて、高強度でかつ優れた靭性を有する溶接HAZとすることができる。(1)式中央値が0.38を超えて大きくなると、靭性に悪影響を及ぼす上部ベイナイトやフェライトサイドプレートが生成し、靭性が低下する。一方、(1)式中央値が0.28未満では、溶接継手部強度を低下させる恐れがある粒内ポリゴナルフェライトや粗大な粒界フェライトの生成を抑制できなくなる。このようなことから、本発明ではC、Cr、Bの含有量を(1)式を満足するように調整することとした。   By adjusting the contents of C, Cr, and B so as to satisfy the formula (1), an increase in intragranular nucleation sites by B carbonitride and an increase in hardenability by solute Cr will result in γ grains. The generation of acicular ferrite in is promoted, and a weld HAZ having high strength and excellent toughness can be obtained. (1) When the median value of the formula exceeds 0.38, upper bainite and ferrite side plates that adversely affect toughness are generated, and toughness decreases. On the other hand, when the median value of the formula (1) is less than 0.28, it becomes impossible to suppress the formation of intragranular polygonal ferrite and coarse grain boundary ferrite which may reduce the weld joint strength. Therefore, in the present invention, the contents of C, Cr and B are adjusted so as to satisfy the expression (1).

さらに本発明では、不純物としてCu、Ni、Vを、それぞれ0.05%以下になるように調整する。   Furthermore, in the present invention, Cu, Ni, and V as impurities are adjusted to be 0.05% or less, respectively.

Cu、Niは、スラブ割れを発生しやすくし、歩留、生産性に悪影響を及ぼし、またVは、析出脆化による靭性低下が懸念される元素であり、本発明ではできるだけ低減し、それぞれ、0.05%以下に制限した。なお、好ましくは0.03%以下である。   Cu and Ni easily cause slab cracking, adversely affecting yield and productivity, and V is an element that is concerned about a decrease in toughness due to precipitation embrittlement, and is reduced as much as possible in the present invention. Limited to 0.05% or less. In addition, Preferably it is 0.03% or less.

以上が、本発明の基本の成分であるが、本発明では基本の組成に加えてさらに、選択元素として、Mo:0.01〜0.3%、Nb:0.003〜0.020%のうちから選ばれた1種または2種、および/または、Ca:0.0005〜0.0020%、REM:0.0010〜0.0030%、Mg:0.0010〜0.0020%のうちから選ばれた1種または2種以上、を含有してもよい。   The above is the basic component of the present invention. In the present invention, in addition to the basic composition, as a selection element, one selected from Mo: 0.01 to 0.3% and Nb: 0.003 to 0.020% or You may contain 1 type (s) or 2 or more types chosen from 2 types and / or Ca: 0.0005-0.0020%, REM: 0.0010-0.0030%, Mg: 0.0010-0.0020%.

Mo:0.01〜0.30%、Nb:0.003〜0.020%のうちから選ばれた1種または2種
Mo、Nbは、いずれも鋼の強度増加に寄与する元素であり、必要に応じて、選択して1種または2種を含有できる。
One or two selected from Mo: 0.01-0.30%, Nb: 0.003-0.020%
Mo and Nb are both elements that contribute to an increase in the strength of the steel, and can be selected to contain one or two as required.

Moは、鋼の強度増加に有効に寄与する元素である。このような効果を得るためには、0.01%以上含有することが望ましい。一方、0.30%を超えて含有すると、大入熱溶接HAZ靭性が低下する。このため、含有する場合には、Moは0.01〜0.30%の範囲に限定することが好ましい。なお、MoはNiと同様に、高価な元素であり、またMoは、HAZにおけるMA生成を助長する恐れが高いため、上記した範囲内のうち、極力低くすることが好ましい。HAZ靭性向上の観点からは、Moは0.10%以下とすることがより好ましい。   Mo is an element that contributes effectively to increasing the strength of steel. In order to acquire such an effect, it is desirable to contain 0.01% or more. On the other hand, if the content exceeds 0.30%, the high heat input welding HAZ toughness decreases. For this reason, when it contains, it is preferable to limit Mo to 0.01 to 0.30% of range. Mo is an expensive element like Ni, and Mo is likely to promote MA formation in HAZ, so it is preferable to make it as low as possible within the above range. From the viewpoint of improving HAZ toughness, Mo is more preferably 0.10% or less.

Nbは、析出強化によって鋼の強度増加に寄与するとともに、オーステナイトの再結晶を抑制し、未再結晶温度域を拡大する作用を有し、未再結晶温度域での加工を容易にして、その後の変態組織を微細化し、母材の強靱化に寄与する元素である。このような効果を得るためには、Nbは、0.003%以上の含有を必要とする。一方、0.020%を超える含有は、母材およびHAZ靱性を著しく低下させる。このため、含有する場合には、Nbは0.003〜0.020%範囲に限定することが好ましい。なお、より好ましくは0.003〜0.010%である。   Nb contributes to increasing the strength of the steel by precipitation strengthening, has the effect of suppressing the recrystallization of austenite and expanding the non-recrystallization temperature range, facilitates the processing in the non-recrystallization temperature range, and then It is an element that contributes to the toughening of the base metal by refining the transformation structure. In order to acquire such an effect, Nb needs to contain 0.003% or more. On the other hand, if the content exceeds 0.020%, the base material and the HAZ toughness are significantly reduced. For this reason, when it contains, it is preferable to limit Nb to 0.003 to 0.020% of range. In addition, More preferably, it is 0.003 to 0.010%.

Ca:0.0005〜0.0020%、REM:0.0010〜0.0030%、Mg:0.0010〜0.0020%のうちから選ばれた1種または2種以上
Ca、REM、Mgはいずれも、硫化物の形態制御を介して鋼の延性向上に寄与する元素である。またさらに、これらの元素の硫化物または酸化物粒子は、MnSと複合して、溶接時にフェライト変態核として作用し、HAZ靱性の向上に寄与する。このような効果を得るためには、Ca:0.0005%以上、REM:0.0010%以上、Mg:0.0010%以上の含有を必要とする。一方、Ca:0.0020%、REM:0.0030%、Mg:0.0020%、をそれぞれ、超えて含有すると、過剰の介在物が生成し、かえって靭性が低下する場合がある。このため、含有する場合には、Ca:0.0005〜0.0020%、REM:0.0010〜0.0030%、Mg:0.0010〜0.0020%の範囲にそれぞれ限定することが好ましい。
One or more selected from Ca: 0.0005 to 0.0020%, REM: 0.0010 to 0.0030%, Mg: 0.0010 to 0.0020%
Ca, REM, and Mg are all elements that contribute to improving the ductility of steel through the control of sulfide morphology. Furthermore, sulfides or oxide particles of these elements are combined with MnS and act as ferrite transformation nuclei during welding, contributing to the improvement of HAZ toughness. In order to obtain such effects, it is necessary to contain Ca: 0.0005% or more, REM: 0.0010% or more, and Mg: 0.0010% or more. On the other hand, if Ca: 0.0020%, REM: 0.0030%, and Mg: 0.0020% are respectively contained in excess, excessive inclusions may be generated, which may lower the toughness. For this reason, when it contains, it is preferable to limit to Ca: 0.0005-0.0020%, REM: 0.0010-0.0030%, and Mg: 0.0010-0.0020%, respectively.

上記した成分以外の残部は、Fe及び不可避的不純物からなる。   The balance other than the components described above consists of Fe and inevitable impurities.

つぎに、本発明厚鋼板の組織限定理由について、説明する。   Next, the reason for limiting the structure of the steel plate of the present invention will be described.

本発明厚鋼板は、上記した組成を有し、板厚1/4位置において、体積率で40%以上の焼戻ベイナイト相、あるいはさらにフェライト相を合計で90%以上含み、残部が体積率で10%以下(0%を含む)のパーライトからなる組織を有する。   The steel plate according to the present invention has the above-described composition, and includes a tempered bainite phase of 40% or more by volume ratio, or a ferrite phase in total at 90% or more in the plate thickness 1/4 position, with the balance being the volume ratio. It has a structure composed of pearlite of 10% or less (including 0%).

本発明厚鋼板は、板厚1/4位置において、体積率で40%以上の焼戻ベイナイト相と、あるいはさらにフェライト相とからなる組織を主体とする。ここでいう「主体とする」とは、体積率で90%以上である場合をいうものとする。   The thick steel plate of the present invention is mainly composed of a structure composed of a tempered bainite phase having a volume ratio of 40% or more and further a ferrite phase at a position where the thickness is 1/4. Here, “mainly” means a case where the volume ratio is 90% or more.

焼戻ベイナイト相が、体積率で40%未満では、建築構造物用として、所望の高強度(降伏強さ:385MPa以上、引張強さ:550MPa以上)を確保できなくなる。このため、焼戻ベイナイト相は体積率で40%以上に限定した。焼戻ベイナイト相を体積率で40%以上含むことで、高強度と高靭性を兼備することができる。なお、より確実に所望の高強度を確保するためには、焼戻ベイナイト相は体積率で50%以上とすることが好ましい。また、焼戻ベイナイト相は降伏比が低いため、焼戻ベイナイト相のみでも所望の高強度と降伏比:80%以下の低降伏比を兼備させることができるが、より確実に降伏比:80%以下の低降伏比を得るためには、体積率で20%以上のフェライト相を含むことが望ましい。   If the tempered bainite phase is less than 40% by volume, it is impossible to secure desired high strength (yield strength: 385 MPa or more, tensile strength: 550 MPa or more) for a building structure. For this reason, the tempered bainite phase was limited to 40% or more by volume ratio. By containing 40% or more of the tempered bainite phase by volume, it is possible to combine high strength and high toughness. In order to ensure a desired high strength more reliably, the tempered bainite phase is preferably 50% or more by volume. In addition, since the tempered bainite phase has a low yield ratio, the tempered bainite phase alone can have the desired high strength and yield ratio: low yield ratio of 80% or less, but the yield ratio: 80% more reliably. In order to obtain the following low yield ratio, it is desirable to include a ferrite phase having a volume ratio of 20% or more.

上記した焼戻ベイナイト相とフェライト相以外の残部は、体積率で10%以下(0%を含む)のパーライトとする。体積率で10%を超えると所望の母材靭性を確保できなくなる。パーライトは母材靭性を低下させるため、少ないほど望ましい。   The balance other than the tempered bainite phase and the ferrite phase described above is pearlite having a volume ratio of 10% or less (including 0%). If the volume ratio exceeds 10%, the desired base material toughness cannot be secured. Since pearlite lowers the base material toughness, the smaller the pearlite, the better.

このようなことから、本発明厚鋼板の組織は、板厚1/4位置において、体積率で40%以上の焼戻ベイナイト相と、あるいはさらにフェライト相とを合計で90%以上含み、残部が体積率で10%以下(0%を含む)のパーライトからなる組織に限定した。   For this reason, the structure of the steel plate of the present invention includes a tempered bainite phase having a volume ratio of 40% or more, or a ferrite phase in a total thickness of 90% or more at the 1/4 thickness position, with the balance being the balance. It was limited to a structure composed of pearlite having a volume ratio of 10% or less (including 0%).

なお、組織を、板厚1/4位置で規定したのは、板厚1/4位置の組織が、鋼板の表層および板厚中央の中間の組織を示し、鋼板全体の平均的な組織を代表していると考えられるためである。   In addition, the structure was defined at the position of the sheet thickness 1/4 because the structure at the position of the sheet thickness 1/4 represents an intermediate structure between the surface layer of the steel sheet and the center of the sheet thickness, and represents the average structure of the entire steel sheet. It is because it is thought that it is doing.

つぎに、本発明厚鋼板の製造方法について説明する。   Below, the manufacturing method of this invention thick steel plate is demonstrated.

本発明では、上記した組成の鋼素材に、熱間圧延とそれに引続き、直接焼入れ処理と焼戻処理とを施して、所定寸法の厚鋼板とする。   In the present invention, the steel material having the above composition is subjected to hot rolling, followed by direct quenching and tempering to obtain a thick steel plate having a predetermined size.

なお、鋼素材の製造方法は、特に限定する必要はないが、転炉、電気炉、真空溶解炉等の常用の溶製方法で、上記した組成の溶鋼を溶製し、あるいはさらに常用の脱酸処理や脱ガスプロセスを経て、連続鋳造法等の常用の鋳造方法で鋼素材(スラブ)とすることが好ましい。なお、これらに限定されないことは言うまでもない。   The method for producing the steel material is not particularly limited. However, it is possible to melt the molten steel having the above-described composition by a conventional melting method such as a converter, electric furnace, vacuum melting furnace, etc. It is preferable that the steel material (slab) is obtained by an ordinary casting method such as a continuous casting method through an acid treatment or a degassing process. Needless to say, the present invention is not limited to these.

ついで、得られた鋼素材(スラブ)に、熱間圧延を施す。   Next, hot rolling is performed on the obtained steel material (slab).

熱間圧延は、鋼素材を平均温度で1050〜1200℃の範囲の温度に加熱し、表面温度で950℃以下の温度域での累積圧下率が30%以上で、圧延終了温度を表面温度で900℃以下Ar変態点以上とする圧延とする。 In hot rolling, the steel material is heated to an average temperature in the range of 1050 to 1200 ° C, the cumulative rolling reduction in the temperature range of 950 ° C or less at the surface temperature is 30% or more, and the rolling end temperature is the surface temperature. Rolling is performed at 900 ° C. or lower and Ar 3 transformation point or higher.

加熱温度:平均温度で1050〜1200℃
加熱温度が、平均温度で1050℃未満では、凝固時に析出した粗大な炭化物等の析出物を完全に溶解することができず、所望の高強度を確保できない。一方、1200℃を超える高温では、組織が粗大化し、所望の母材靱性を確保できなくなり、また焼入性が増加しすぎて、所望の組織が得られなくなる。このようなことから、鋼素材の加熱温度は平均温度で1050〜1200℃の範囲の温度に限定した。なお、好ましくは1080〜1150℃である。なお、ここでいう「平均温度」とは、測定される表面温度から伝熱計算により算出した鋼素材の温度分布から求めた肉厚方向断面での平均値をいう。
Heating temperature: 1050 ~ 1200 ℃ at average temperature
When the heating temperature is less than 1050 ° C. as an average temperature, precipitates such as coarse carbides precipitated during solidification cannot be completely dissolved, and a desired high strength cannot be ensured. On the other hand, at a high temperature exceeding 1200 ° C., the structure becomes coarse, the desired base material toughness cannot be secured, and the hardenability increases too much to obtain the desired structure. For this reason, the heating temperature of the steel material is limited to an average temperature in the range of 1050 to 1200 ° C. In addition, Preferably it is 1080-1150 degreeC. Here, the “average temperature” refers to an average value in the cross section in the thickness direction obtained from the temperature distribution of the steel material calculated by heat transfer calculation from the measured surface temperature.

表面温度で950℃以下の温度域での累積圧下率:30%以上
本発明では、ミクロ組織を適度に微細化するため、表面温度で950℃以下の温度域で制御圧延を行う。950℃以下の温度域での累積圧下率が30%未満では、組織が粗大化し、所望の組織微細化が図れず所望の高靭性を確保できない。また、組織の粗大化により焼入性が増加しすぎて、所望の組織を確保できなくなる。このため、熱間圧延における、表面温度で950℃以下の温度域での累積圧下率を30%以上に限定した。なお、好ましくは35%以上である。なお、表面温度で950℃以下の温度域での累積圧下率が60%を超えて高すぎると圧延方向に結晶粒が伸展した組織となり、シャルピー衝撃試験でセパレーションが発生し、母材靭性が低下する。このため、表面温度で950℃以下の温度域での累積圧下率は60%以下とすることが好ましい。
Cumulative rolling reduction in a temperature range of 950 ° C. or lower at the surface temperature: 30% or more In the present invention, controlled rolling is performed in a temperature range of 950 ° C. or lower in the surface temperature in order to appropriately refine the microstructure. If the cumulative rolling reduction in the temperature range of 950 ° C. or lower is less than 30%, the structure becomes coarse, and the desired structure cannot be refined, and the desired high toughness cannot be ensured. Moreover, hardenability increases too much by coarsening of a structure | tissue, and it becomes impossible to ensure a desired structure | tissue. For this reason, the cumulative rolling reduction in the temperature range of 950 ° C. or less at the surface temperature in hot rolling is limited to 30% or more. In addition, Preferably it is 35% or more. If the cumulative rolling reduction at a surface temperature of 950 ° C or less exceeds 60% and is too high, a crystal grain is stretched in the rolling direction, separation occurs in the Charpy impact test, and the base metal toughness decreases. To do. For this reason, it is preferable that the cumulative rolling reduction in the temperature range of 950 ° C. or less at the surface temperature is 60% or less.

圧延終了温度:表面温度で900℃以下Ar変態点以上
圧延終了温度が表面温度で900℃を超えると、組織が粗大化し所望の母材靭性を確保できないうえ、焼入性が増加しすぎて、所望の組織を確保できなくなる。一方、圧延終了温度が表面温度でAr変態点未満では、圧延中あるいは圧延直後にフェライト相が生成し粗大化して、母材の靱性が低下する。このため、圧延終了温度は表面温度で900℃以下Ar変態点以上に限定した。なお、好ましくは880〜780℃である。
Rolling end temperature: 900 ° C or less at surface temperature and above Ar 3 transformation point If rolling end temperature exceeds 900 ° C at surface temperature, the structure becomes coarse and the desired base metal toughness cannot be secured, and the hardenability increases too much. The desired organization cannot be secured. On the other hand, the rolling end temperature is in the Ar less than 3 transformation point at a surface temperature, coarsened to produce the ferrite phase immediately during rolling or rolling, toughness of the base material is lowered. For this reason, the rolling end temperature is limited to the surface temperature of 900 ° C. or lower and the Ar 3 transformation point or higher. In addition, Preferably it is 880-780 degreeC.

なお、Ar変態点は、次式
Ar変態点(℃)=900−332C+6Si−77Mn−20Cu−50Ni−18Cr−68Mo
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo:各元素の含有量(質量%))
を用いて算出した値を用いるものとする。なお、式中に記載された元素のうち、含有されない元素については、当該元素を零として計算するものとする。
The Ar 3 transformation point is expressed by the following formula: Ar 3 transformation point (° C.) = 900−332C + 6Si−77Mn−20Cu−50Ni−18Cr−68Mo
(Here, C, Si, Mn, Cu, Ni, Cr, Mo: content of each element (mass%))
The value calculated using is used. In addition, about the element which is not contained among the elements described in a type | formula, the said element shall be calculated as zero.

また、上記した熱間圧延で得られた厚鋼板には、熱間圧延に引続き、直接焼入れ処理を施す。   In addition, the thick steel plate obtained by the above hot rolling is directly quenched after the hot rolling.

直接焼入れ処理は、表面温度で、Ar変態点以上の温度から、板厚1/4位置の温度で2℃/s以上40℃/s以下の平均冷却速度で、200℃以下の温度域の冷却停止温度まで冷却する処理とする。 The direct quenching process is performed at a temperature range of 200 ° C. or less at an average cooling rate of 2 ° C./s or more and 40 ° C./s or less at a temperature at the position of the plate thickness ¼ from the temperature above the Ar 3 transformation point. It is set as the process which cools to cooling stop temperature.

冷却の開始温度:表面温度でAr変態点以上の温度
冷却の開始温度が、表面温度でAr変態点未満では、冷却処理の開始前にフェライト相が生成し、粗大化する。このため、表層部のフェライト粒の微細化が達成できなくなり、所望の低降伏比を達成できなくなる。このため、冷却の開始温度は表面温度でAr変態点以上に限定した。
Cooling start temperature: temperature above the Ar 3 transformation point at the surface temperature If the cooling start temperature is below the Ar 3 transformation point at the surface temperature, a ferrite phase is generated and coarsened before the start of the cooling treatment. For this reason, refinement | miniaturization of the ferrite grain of a surface layer part cannot be achieved, and a desired low yield ratio cannot be achieved. For this reason, the starting temperature of cooling was limited to the Ar 3 transformation point or higher at the surface temperature.

平均冷却速度:板厚1/4位置の温度で、2℃/s以上40℃/s以下
板厚1/4位置の温度での平均冷却速度が2℃/s未満では、冷却が遅く、冷却中に粗く靭性の低いフェライト粒が生成する。板厚1/4位置の温度で平均冷却速度が40℃/sを超えると、マルテンサイト相が生成し靭性が低下する。このため、直接焼入れ処理における冷却は、板厚1/4位置での平均冷却速度で2〜40℃/sの範囲に限定した。なお、板厚が100mmを超えると、板厚1/4位置での平均冷却速度で2℃/s以上を確保することが困難となる。
Average cooling rate: 2 ° C / s or more and 40 ° C / s or less at a temperature of 1/4 position of the plate thickness When the average cooling rate at the position of 1/4 thickness of the plate is less than 2 ° C / s, cooling is slow and cooling Coarse and low toughness ferrite grains are formed inside. When the average cooling rate exceeds 40 ° C./s at the temperature of the thickness 1/4 position, a martensite phase is generated and toughness is lowered. For this reason, the cooling in the direct quenching process was limited to the range of 2 to 40 ° C./s at the average cooling rate at the position of the plate thickness ¼. When the plate thickness exceeds 100 mm, it becomes difficult to ensure 2 ° C./s or more at the average cooling rate at the 1/4 position of the plate thickness.

なお、ここでいう「平均冷却速度」とは、冷却開始から500℃までの平均の冷却速度をいうものとする。また、「板厚1/4位置」の冷却速度は、測定された表面温度から伝熱計算により算出された板厚1/4位置の温度から計算された値を用いるものとする。   Here, the “average cooling rate” refers to an average cooling rate from the start of cooling to 500 ° C. The cooling rate at the “plate thickness ¼ position” uses a value calculated from the temperature at the plate thickness ¼ position calculated by heat transfer calculation from the measured surface temperature.

冷却停止温度:板厚1/4位置で200℃以下の温度域の温度
冷却停止温度が、板厚1/4位置で200℃超では、ベイナイト相への変態量が低下し、焼戻ベイナイト相が体積率で40%以上となる組織を得ることができず、所望の高強度を確保することができなくなる。このため、冷却停止温度を板厚1/4位置で200℃以下に限定した。
Cooling stop temperature: Temperature in the temperature range of 200 ° C or less at the 1/4 thickness position If the cooling stop temperature exceeds 200 ° C at the 1/4 thickness position, the transformation to bainite phase decreases and the tempered bainite phase. However, a structure having a volume ratio of 40% or more cannot be obtained, and a desired high strength cannot be ensured. For this reason, the cooling stop temperature is limited to 200 ° C. or less at the position of the thickness ¼.

また、直接焼入れ処理を施した後に、さらに、鋼板表面温度で400℃以上Ac変態点未満の温度に加熱する焼戻処理を施す。 Moreover, after performing a direct quenching process, the steel plate surface temperature is further subjected to a tempering process in which the steel sheet is heated to a temperature of 400 ° C. or higher and lower than the Ac 1 transformation point.

焼戻温度が表面温度で400℃未満では、所望の高強度・高靭性を兼備させることができない。一方、鋼板表面温度でAc変態点を超える温度では、強度低下が著しくなる。このため、焼戻処理は、鋼板表面温度で400℃以上Ac変態点未満の温度に加熱する処理とした。なお、この焼戻処理は、雰囲気温度(炉温)で400〜700℃の温度に調整した加熱炉に厚鋼板を装入することにより達成できる。 If the tempering temperature is less than 400 ° C., the desired high strength and high toughness cannot be achieved. On the other hand, at a temperature exceeding the Ac 1 transformation point at the steel sheet surface temperature, the strength is significantly reduced. For this reason, the tempering process was a process of heating to a temperature of 400 ° C. or higher and lower than the Ac 1 transformation point at the steel sheet surface temperature. In addition, this tempering process can be achieved by charging a thick steel plate into a heating furnace adjusted to a temperature of 400 to 700 ° C. at an atmospheric temperature (furnace temperature).

なお、Ac変態点は、次式
Ac変態点(℃)=751−27C+18Si−12Mn−23Cu−23Ni+24Cr+23Mo−40V−6Ti+233Nb−169Al−895B
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、Ti、Nb、Al、B:各元素の含有量(質量%))
を用いて算出した値を用いるものとする。なお、式中に記載された元素のうち、含有されない元素は、零として計算するものとする。
Ac 1 transformation point is the following formula: Ac 1 transformation point (° C.) = 751−27C + 18Si−12Mn−23Cu−23Ni + 24Cr + 23Mo−40V−6Ti + 233Nb−169Al−895B
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, Ti, Nb, Al, B: content of each element (mass%))
The value calculated using is used. In addition, the element which is not contained among the elements described in the formula shall be calculated as zero.

つぎに、実施例に基づき、さらに本発明について説明する。   Next, the present invention will be further described based on examples.

転炉と取鍋精錬とを用いて、表1に示す組成の溶鋼を溶製し、連続鋳造法で鋳造して、鋼素材(スラブ:肉厚250mm)とした。得られた鋼素材を、表2に示す加熱温度に加熱したのち、表2に示す条件の熱間圧延と、それに引続き、表2に示す条件の直接焼入れ処理と焼戻処理とを施し、表2に示す板厚の厚鋼板とした。   Using a converter and ladle refining, molten steel having the composition shown in Table 1 was melted and cast by a continuous casting method to obtain a steel material (slab: wall thickness 250 mm). After the obtained steel material was heated to the heating temperature shown in Table 2, it was subjected to hot rolling under the conditions shown in Table 2, followed by direct quenching treatment and tempering treatment under the conditions shown in Table 2, A thick steel plate having a thickness shown in FIG.

得られた厚鋼板から、試験片を採取し、組織観察、引張試験、衝撃試験、溶接継手試験を実施した。試験方法はつぎの通りである。
(1)組織観察
得られた厚鋼板から組織観察用試験片を採取し、圧延方向に直交する断面(C断面)が観察面となるように研磨し、腐食(ナイタール液腐食)して、板厚1/4位置近傍での組織を光学顕微鏡および走査型電子顕微鏡で観察し、撮像した。得られた組織写真を画像解析して、組織の同定および組織分率を測定した。
(2)引張試験
得られた厚鋼板の板厚1/4位置から、引張方向が圧延方向と平行な方向(L方向)となるようにJIS 4号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を測定し、降伏比YR(=(YS/TS)×100%)を算出した。
(3)衝撃試験
得られた厚鋼板の板厚1/4位置から、試験片長手方向が圧延方向に直交する方向(C方向)となるようにVノッチシャルピー衝撃試験片を採取し、JIS Z 2242の規定に準拠して、試験温度:0℃でシャルピー衝撃試験を実施し、吸収エネルギーvE(J)を求めた。なお、吸収エネルギーは各3本の平均値とした。
(4)溶接継手試験
得られた厚鋼板から、継手用試験板(大きさ:400×600mm)を採取し、図1に示す開先形状となるように組み立てたのち、エレクトロスラグ溶接(溶接入熱量:1000kJ/cm)により、溶接継手を作製した。なお、使用したワイヤは、JIS Z 3353 YES62相当品とし、フラックスはJIS Z 3353 FS−FG3相当品とした。
Test pieces were collected from the obtained thick steel plates and subjected to structure observation, tensile test, impact test, and welded joint test. The test method is as follows.
(1) Microstructure observation A specimen for microstructural observation is collected from the obtained thick steel plate, polished so that a cross section (C cross section) perpendicular to the rolling direction becomes an observation surface, and corroded (Nital liquid corrosion). The structure in the vicinity of the 1/4 thickness position was observed with an optical microscope and a scanning electron microscope and imaged. The obtained tissue photograph was subjected to image analysis, and tissue identification and tissue fraction were measured.
(2) Tensile test JIS No. 4 tensile test specimens were taken from the position of 1/4 thickness of the obtained steel plate so that the tensile direction was parallel to the rolling direction (L direction). A tensile test was performed in accordance with the regulations, tensile properties (yield strength YS, tensile strength TS) were measured, and yield ratio YR (= (YS / TS) × 100%) was calculated.
(3) Impact test V-notch Charpy impact test specimens were collected from the position of 1/4 thickness of the obtained thick steel plate so that the longitudinal direction of the specimen was in the direction perpendicular to the rolling direction (C direction). In accordance with the provisions of 2242, a Charpy impact test was performed at a test temperature of 0 ° C. to determine the absorbed energy vE 0 (J). The absorbed energy was an average value of three of each.
(4) Welded joint test From the obtained thick steel plate, a joint test plate (size: 400 x 600 mm) was sampled and assembled into the groove shape shown in Fig. 1, and then electroslag welding (welding-in) Welded joints were produced with a heat quantity of 1000 kJ / cm). The wire used was JIS Z 3353 YES62 equivalent, and the flux was JIS Z 3353 FS-FG3 equivalent.

得られた溶接継手部から、図2に示すように、切欠き位置をボンド部とするVノッチ試験片を採取し、JIS Z 2242の規定に準拠して、試験温度:0℃でシャルピー衝撃試験を実施し、吸収エネルギーvE(J)を求め、超大入熱溶接熱影響部(超大入熱溶接継手ボンド部)の靭性を評価した。なお、吸収エネルギーは各3本の平均値とした。 As shown in Fig. 2, a V-notch test piece with the notch position as the bond part is taken from the welded joint part obtained, and Charpy impact test is performed at a test temperature of 0 ° C in accordance with the provisions of JIS Z 2242. The absorbed energy vE 0 (J) was obtained, and the toughness of the super-high heat input welding heat-affected zone (super-high heat input weld joint bond portion) was evaluated. The absorbed energy was an average value of three of each.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 2016169403
Figure 2016169403

Figure 2016169403
Figure 2016169403

Figure 2016169403
Figure 2016169403

本発明例はいずれも、降伏強さYS:385MPa以上、引張強さTS:550MPa以上、降伏比YR:80%以下と、低降伏比高強度で、かつ0℃における吸収エネルギーvE:70J以上と、高母材靭性を有する、厚鋼板となっている。さらに、本発明例はいずれも、入熱400kJ/cmを超える、入熱1000kJ/cmのエレクトロスラグ溶接継手ボンド部で0℃における吸収エネルギーvE:70J以上となる、超大入熱溶接熱影響部靭性に優れた厚鋼板となっている。 In all of the examples of the present invention, the yield strength YS: 385 MPa or more, the tensile strength TS: 550 MPa or more, the yield ratio YR: 80% or less, the low yield ratio high strength, and the absorbed energy at 0 ° C. vE 0 : 70 J or more And a thick steel plate having high base metal toughness. Furthermore, in all of the examples of the present invention, the super heat input welding heat-affected zone, in which the absorbed energy vE 0 at 70 ° C. is 70 J or more at an electroslag weld joint bond portion with a heat input exceeding 1000 kJ / cm and a heat input exceeding 400 kJ / cm. It is a thick steel plate with excellent toughness.

一方、本発明の範囲を外れる比較例は、母材部強度が所望の範囲を低く外れているか、あるいは溶接熱影響部靭性が所望の範囲を低く外れている。   On the other hand, in the comparative example outside the scope of the present invention, the base metal part strength is out of the desired range, or the weld heat affected zone toughness is out of the desired range.

Claims (6)

質量%で、
C :0.05〜0.15%、 Si:0.01〜0.5%、
Mn:1.0〜1.6%、 P :0.02%以下、
S :0.003%以下、 Al:0.001〜0.060%、
Ti:0.005〜0.030%、 Cr:0.10〜0.50%、
B :0.0003〜0.0020%、 N :0.0025〜0.0055%、
O :0.003%以下
を含み、さらにC、Cr、Bを下記(1)式を満足するように調整して含み、かつ不純物としてCu、Ni、Vを、それぞれ:0.05%以下に調整してなり、残部Feおよび不可避的不純物からなる組成と、
板厚1/4位置において、体積率で40%以上の焼戻ベイナイト相、あるいはさらにフェライト相を合計で90%以上含み、残部が体積率で10%以下(0%を含む)のパーライトからなる組織と、を有し、降伏強さ:385MPa以上、引張強さ:550MPa以上、降伏比:80%以下で、超大入熱溶接熱影響部靭性に優れることを特徴とする建築構造物用低降伏比高強度厚鋼板。

0.28 ≦ 3/2×C+1/2×Cr+100×B ≦ 0.38 ‥‥(1)
ここで、C、Cr、B:各元素の含有量(質量%)
% By mass
C: 0.05-0.15%, Si: 0.01-0.5%,
Mn: 1.0 to 1.6%, P: 0.02% or less,
S: 0.003% or less, Al: 0.001 to 0.060%,
Ti: 0.005-0.030%, Cr: 0.10-0.50%,
B: 0.0003-0.0020%, N: 0.0025-0.0055%,
O: Including 0.003% or less, further including C, Cr, B so as to satisfy the following formula (1), and adjusting impurities Cu, Ni, V to 0.05% or less respectively. A composition comprising the balance Fe and inevitable impurities,
The tempered bainite phase with a volume ratio of 40% or more or a ferrite phase with a total volume of 90% or more at the 1/4 thickness position, and the balance is made of pearlite with a volume ratio of 10% or less (including 0%). Low yield for building structures, characterized by excellent yield strength: 385 MPa or more, tensile strength: 550 MPa or more, yield ratio: 80% or less, and super high heat input welding heat-affected zone toughness Specific high strength thick steel plate.
Record
0.28 ≦ 3/2 × C + 1/2 × Cr + 100 × B ≦ 0.38 (1)
Here, C, Cr, B: Content of each element (mass%)
前記組成に加えてさらに、質量%で、Mo:0.01〜0.30%、Nb:0.003〜0.020%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項1に記載の建築構造物用低降伏比高強度厚鋼板。   In addition to the said composition, it is set as the composition containing 1 type or 2 types chosen from Mo: 0.01-0.30% and Nb: 0.003-0.020% by the mass% further. Low yield ratio high strength thick steel plate for building structures as described. 記組成に加えてさらに、質量%で、Ca:0.0005〜0.0020%、REM:0.0010〜0.0030%、Mg:0.0010〜0.0020%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1または2に記載の建築構造物用低降伏比高強度厚鋼板。   In addition to the above composition, the composition further contains one or more selected from Ca: 0.0005 to 0.0020%, REM: 0.0010 to 0.0030%, and Mg: 0.0010 to 0.0020% by mass%. The low yield ratio high-strength thick steel plate for building structures according to claim 1 or 2. 鋼素材に、熱間圧延とそれに引続き、直接焼入れ処理と焼戻処理とを施して厚鋼板とする、建築構造物用厚鋼板の製造方法であって、
前記鋼素材が、質量%で、
C :0.05〜0.15%、 Si:0.01〜0.5%、
Mn:1.0〜1.6%、 P :0.02%以下、
S :0.003%以下、 Al:0.001〜0.060%、
Ti:0.005〜0.030%、 Cr:0.10〜0.50%、
B :0.0003〜0.0020%、 N :0.0025〜0.0055%、
O :0.003%以下
を含み、さらにC、Cr、Bを下記(1)式を満足するように調整して含み、かつ不純物としてCu、Ni、Vを、それぞれ:0.05%以下に調整してなり、残部Feおよび不可避的不純物からなる組成を有する鋼素材であり、
前記熱間圧延を、前記鋼素材を平均温度で1050〜1200℃の範囲の温度に加熱し、表面温度で950℃以下の温度域での累積圧下率が30%以上で、圧延終了温度を表面温度で900℃以下Ar変態点以上とする圧延とし、
前記直接焼入れ処理を、表面温度でAr変態点以上の温度から冷却を開始し、板厚1/4位置で2℃/s以上40℃/s以下の平均冷却速度で、板厚1/4位置の温度で200℃以下の温度域の冷却停止温度まで冷却する処理とし、
前記焼戻処理を、表面温度で400℃以上Ac変態点未満の温度域に加熱する処理とする
ことを特徴とする建築構造物用低降伏比高強度厚鋼板の製造方法。

0.28 ≦ 3/2×C+1/2×Cr+100×B ≦ 0.38 ‥‥(1)
ここで、C、Cr、B:各元素の含有量(質量%)
A steel material is a method of manufacturing a steel plate for a building structure, which is hot rolled and subsequently subjected to direct quenching treatment and tempering treatment to make a steel plate,
The steel material is mass%,
C: 0.05-0.15%, Si: 0.01-0.5%,
Mn: 1.0 to 1.6%, P: 0.02% or less,
S: 0.003% or less, Al: 0.001 to 0.060%,
Ti: 0.005-0.030%, Cr: 0.10-0.50%,
B: 0.0003-0.0020%, N: 0.0025-0.0055%,
O: Including 0.003% or less, further including C, Cr, B so as to satisfy the following formula (1), and adjusting impurities Cu, Ni, V to 0.05% or less respectively. A steel material having a composition consisting of the balance Fe and inevitable impurities,
In the hot rolling, the steel material is heated to a temperature in the range of 1050 to 1200 ° C. at an average temperature, the cumulative rolling reduction in the temperature range of 950 ° C. or less at the surface temperature is 30% or more, and the rolling end temperature is the surface Rolling at a temperature of 900 ° C. or lower and Ar 3 transformation point or higher,
In the direct quenching process, the cooling is started from the surface temperature at or above the Ar 3 transformation point, and the plate thickness is 1/4 at an average cooling rate of 2 ° C./s or more and 40 ° C./s or less at the plate thickness 1/4 position. It is a process to cool to the cooling stop temperature in the temperature range of 200 ° C or less at the temperature of the position,
A method for producing a low-yield ratio high-strength thick steel sheet for a building structure, wherein the tempering treatment is a treatment in which the surface temperature is heated to a temperature range of 400 ° C. or higher and lower than the Ac 1 transformation point.
Record
0.28 ≦ 3/2 × C + 1/2 × Cr + 100 × B ≦ 0.38 (1)
Here, C, Cr, B: Content of each element (mass%)
前記組成に加えてさらに、質量%で、Mo:0.01〜0.30%、Nb:0.003〜0.020%のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項4に記載の建築構造物用低降伏比高強度厚鋼板の製造方法。   In addition to the said composition, it is set as the composition containing 1 type or 2 types chosen from Mo: 0.01-0.30% and Nb: 0.003-0.020% by the mass% further. The manufacturing method of the low yield ratio high-strength thick steel plate for building structures as described. 前記組成に加えてさらに、質量%で、Ca:0.0005〜0.0020%、REM:0.0010〜0.0030%、Mg:0.0010〜0.0020%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項4または5に記載の建築構造物用低降伏比高強度厚鋼板の製造方法。   In addition to the above composition, the composition further contains, by mass%, one or more selected from Ca: 0.0005 to 0.0020%, REM: 0.0010 to 0.0030%, and Mg: 0.0010 to 0.0020%. The manufacturing method of the low yield ratio high-strength thick steel plate for building structures of Claim 4 or 5 characterized by these.
JP2015048325A 2015-03-11 2015-03-11 Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof Active JP6308148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015048325A JP6308148B2 (en) 2015-03-11 2015-03-11 Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015048325A JP6308148B2 (en) 2015-03-11 2015-03-11 Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016169403A true JP2016169403A (en) 2016-09-23
JP6308148B2 JP6308148B2 (en) 2018-04-11

Family

ID=56983221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015048325A Active JP6308148B2 (en) 2015-03-11 2015-03-11 Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6308148B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114405996A (en) * 2021-10-29 2022-04-29 马鞍山钢铁股份有限公司 CSP flow low-carbon steel plate and manufacturing method thereof
CN114480959A (en) * 2021-12-24 2022-05-13 安阳钢铁集团有限责任公司 Low-compression-ratio super-thick Q690 quenched and tempered steel and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202936A (en) * 1995-11-24 1997-08-05 Kobe Steel Ltd Low yield ratio/high tension strength steel plate excellent in toughness heat-affected zone toughness in large heat input weld zone and its production
JP2011214053A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP2013133543A (en) * 2011-12-27 2013-07-08 Jfe Steel Corp Thick steel plate and method for producing thick steel plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202936A (en) * 1995-11-24 1997-08-05 Kobe Steel Ltd Low yield ratio/high tension strength steel plate excellent in toughness heat-affected zone toughness in large heat input weld zone and its production
JP2011214053A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP2013133543A (en) * 2011-12-27 2013-07-08 Jfe Steel Corp Thick steel plate and method for producing thick steel plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114405996A (en) * 2021-10-29 2022-04-29 马鞍山钢铁股份有限公司 CSP flow low-carbon steel plate and manufacturing method thereof
CN114405996B (en) * 2021-10-29 2023-08-29 马鞍山钢铁股份有限公司 CSP process low-carbon steel plate and manufacturing method thereof
CN114480959A (en) * 2021-12-24 2022-05-13 安阳钢铁集团有限责任公司 Low-compression-ratio super-thick Q690 quenched and tempered steel and manufacturing method thereof
CN114480959B (en) * 2021-12-24 2023-03-10 安阳钢铁集团有限责任公司 Low-compression-ratio super-thick Q690 quenched and tempered steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP6308148B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
KR101119240B1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP6308151B2 (en) Low yield ratio high strength thick steel plate for building structures with excellent toughness of super high heat input welds and its manufacturing method
JP4120531B2 (en) Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP2007177326A (en) High tensile strength thin steel sheet having low yield ratio and its production method
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2010248621A (en) Method for manufacturing high-strength high-toughness steel
JPWO2013088715A1 (en) Steel material for large heat input welding
JP2009235548A (en) Low yield ratio high tensile strength thick steel plate having excellent toughness in super-large heat input weld affected zone, and method for producing the same
TWI526545B (en) Steel material for welding
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP2009235549A (en) Method for producing low yield ratio high tension thick steel plate excellent in toughness at super-high heat input welding affected part
JP2005068478A (en) Method for manufacturing thick steel plate with low yield ratio and high tension superior in toughness at heat-affected zone in super heavy-heat-input welding
JP4868762B2 (en) High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP6308148B2 (en) Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP2004323917A (en) High strength high toughness steel sheet
JP5493658B2 (en) A method for producing non-tempered thick high-strength steel with high heat input heat-affected zone toughness.
JPWO2019180957A1 (en) Rolled H-section steel and manufacturing method thereof
JP6226163B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
JP7506305B2 (en) High-strength steel plate for large heat input welding
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180226

R150 Certificate of patent or registration of utility model

Ref document number: 6308148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250