JP2007177326A - High tensile strength thin steel sheet having low yield ratio and its production method - Google Patents

High tensile strength thin steel sheet having low yield ratio and its production method Download PDF

Info

Publication number
JP2007177326A
JP2007177326A JP2006316971A JP2006316971A JP2007177326A JP 2007177326 A JP2007177326 A JP 2007177326A JP 2006316971 A JP2006316971 A JP 2006316971A JP 2006316971 A JP2006316971 A JP 2006316971A JP 2007177326 A JP2007177326 A JP 2007177326A
Authority
JP
Japan
Prior art keywords
cooling
less
mass
temperature
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006316971A
Other languages
Japanese (ja)
Other versions
JP5045074B2 (en
Inventor
Yasuhiro Murota
康宏 室田
Kimihiro Nishimura
公宏 西村
Akio Omori
章夫 大森
Nobuo Shikauchi
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006316971A priority Critical patent/JP5045074B2/en
Publication of JP2007177326A publication Critical patent/JP2007177326A/en
Application granted granted Critical
Publication of JP5045074B2 publication Critical patent/JP5045074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high tensile strength thin steel sheet having a YR (yield ratio) of ≤80% and a TS (tensile strength) of ≥590 MPa. <P>SOLUTION: A steel stock having a composition comprising 0.045 to 0.18% C, 0.05 to 0.50% Si and 0.6 to 2.0% Mn, comprising proper amounts of P, S, Al and N, and further comprising Mo and W in such a manner that (Mo+W/2) satisfies 0.08 to 0.70%, and the balance Fe with inevitable impurities, and having a weld crack sensitivity parameter Pcm of ≤0.22% is subjected to: hot rolling in which rolling finishing temperature reaches the one in the range of 800 to 950°C at the surface; and cooling treatment composed of primary cooling in which cooling is performed till the central part reaches a temperature in the range of 750 to 650°C at a cooling rate of ≥10°C/s immediately after the rolling, air cooling for 2 to 10s, and the subsequent secondary cooling in which cooling is performed at a cooling rate of ≥10°C/s and is stopped at a temperature in the range of 500 to 650°C at the central part. By the above process, the high tensile strength thin steel sheet simultaneously satisfying a TS of ≥590 and a YR of ≤80%, and also having excellent weldability and toughness can be obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、橋梁、造船、建築、ラインパイプ、建産機械などに用いて好適な、高張力薄肉鋼板およびその製造方法に関し、とくに地震によって大きな塑性変形を受け、耐震性を必要とする建築構造物用として好適な、低降伏比を有する高張力薄肉鋼板に関する。なお、本発明でいう「薄肉鋼板」とは、板厚19以上40mm以下の厚板をいうものとする。   The present invention relates to a high-strength thin steel plate suitable for use in bridges, shipbuilding, construction, line pipes, construction machinery, and the like, and a method for producing the same, and particularly to a building structure that is subjected to large plastic deformation due to an earthquake and requires earthquake resistance. The present invention relates to a high-tension thin-walled steel sheet having a low yield ratio, which is suitable for goods. In the present invention, the “thin steel plate” refers to a thick plate having a thickness of 19 to 40 mm.

近年、建築構造物などでは、地震時の安全性確保の観点から、優れた耐震性を有する鋼板が要求されている。また、降伏比の低い鋼板ほど耐震性に優れることが、従来の研究結果から明らかにされており、建築構造物には、降伏比が80%以下の鋼材を使用することが義務付けられている。
また、建築構造物の高層化や大スパン化などに伴い、従来より高い強度を有する、例えば、590MPa級高張力鋼材の建築構造物への適用が増加している。
In recent years, steel sheets having excellent earthquake resistance have been required for building structures and the like from the viewpoint of ensuring safety during an earthquake. Moreover, it has been clarified from the conventional research results that the steel plate having a lower yield ratio is superior in earthquake resistance, and it is obliged to use steel materials having a yield ratio of 80% or less for the building structure.
In addition, with an increase in the height of a building structure and an increase in span, the application of, for example, a 590 MPa class high-tensile steel material having a higher strength than before, to the building structure is increasing.

従来、建築構造物用として用いられる、低降伏比を有する590MPa級高張力鋼材は、二相域熱処理やその後の焼戻し熱処理など、複数回の熱処理を実施して製造されるのが一般的であった。しかし、二相域熱処理やその後の焼戻し熱処理など、複数回の熱処理を施すことは、製造コストを高騰させるうえ、製造工期の長期化など、問題を残していた。
このような問題に対して、二相域熱処理や焼戻し熱処理の省略、すなわち、非調質化が考えられる。例えば、特許文献1には、粗圧延の後に加速冷却を行って、オーステナイト(γ)を過冷却したうえで、フェライト(α)変態を促進するための仕上圧延を行い、さらに仕上圧延後に加速冷却を行うことで軟質相であるαの微細化と軟質相と硬質相の比率を適切に制御して高靭性と低降伏比化を両立させる、低降伏比高張力鋼材の製造方法が開示されている。特許文献1に記載された技術によれば、高価な合金元素の添加や生産性の低い複雑な熱処理を必要とすることなく、低降伏比高張力鋼材が製造できるとしている。
Conventionally, 590 MPa class high-strength steel materials having a low yield ratio used for building structures are generally manufactured by performing multiple heat treatments such as two-phase region heat treatment and subsequent tempering heat treatment. It was. However, multiple heat treatments such as two-phase region heat treatment and subsequent tempering heat treatment have caused problems such as a rise in manufacturing costs and an increase in the manufacturing period.
In order to solve such a problem, it is conceivable to omit the two-phase region heat treatment or the tempering heat treatment, that is, non-tempering. For example, in Patent Document 1, accelerated cooling is performed after rough rolling to supercool austenite (γ), then finish rolling to promote ferrite (α) transformation is performed, and accelerated cooling is further performed after finish rolling. Has disclosed a method for producing a high-tensile steel material with a low yield ratio that achieves both high toughness and a low yield ratio by appropriately controlling the refinement of the soft phase α and the ratio of the soft phase to the hard phase. Yes. According to the technique described in Patent Document 1, a low-yield-ratio high-strength steel material can be manufactured without adding expensive alloy elements or requiring complicated heat treatment with low productivity.

また、特許文献2、特許文献3、特許文献4には、C、Si、Mn、Nb、Ti、V、Al等の含有量を適正範囲に調整した鋼片を加熱し圧延するに際し、800℃以下の温度での圧下量を5〜15mmとし、Ar3変態点以下の温度で圧延を完了する、低降伏比を有する590〜690MPa級高張力鋼板の製造方法が提案されている。しかし、特許文献2、特許文献3、特許文献4に記載された技術では、板厚を25mm以下に限定し、かつ、降伏比のレベルも85%以下を目標としており、耐震性確保の観点からは十分とは言い難いうえ、Ti等の合金元素を多量に添加することを必要とし、溶接熱影響部の靭性確保の観点からも問題を残していた。 In Patent Document 2, Patent Document 3, and Patent Document 4, when heating and rolling a steel slab in which the content of C, Si, Mn, Nb, Ti, V, Al, etc. is adjusted to an appropriate range, 800 ° C. A method for producing a 590 to 690 MPa class high-tensile steel sheet having a low yield ratio, in which the rolling amount at the following temperature is 5 to 15 mm and the rolling is completed at a temperature equal to or lower than the Ar 3 transformation point, has been proposed. However, in the techniques described in Patent Document 2, Patent Document 3, and Patent Document 4, the thickness is limited to 25 mm or less, and the yield ratio level is set to 85% or less, from the viewpoint of ensuring earthquake resistance. Is not sufficient, and requires addition of a large amount of an alloying element such as Ti, leaving a problem from the viewpoint of ensuring the toughness of the heat affected zone.

また、特許文献5には、C:0.02〜0.04%、固溶B:0.0002〜0.002%を含有し、合金元素含有量に関係する式CENを所定範囲とする組成と、ベイナイトを主体とし、島状マルテンサイトを0.8〜2.5体積%分散させた組織からなる590MPa級の非調質型低降伏比高張力鋼板が提案されている。また、特許文献6には、C:0.025〜0.045%を含み、Si、Mn、Al、Nb、B、Nを適正範囲に調整し、さらにTiをNとの関係で適正範囲に限定するとともに、合金元素含有量に関係する式CENを所定範囲とする組成の鋼素材を、Nb固溶温度以上1250℃以下に加熱後圧延を開始し、オーステナイトの未再結晶温度域で累積圧下率を60%以下とし、{(オーステナイトの未再結晶温度)−80℃}以上で圧延を終了し、空冷して、ベイナイト地に島状マルテンサイト相が微細分散した組織とする590MPa級の非調質型低降伏比高張力鋼板の製造方法が提案されている。しかし、特許文献5、特許文献6に記載された技術では、鋼素材のC含有量を0.02〜0.04%あるいは0.025〜0.045%と低炭素化し、さらに、特に厚物材の強度を確保するためには合金元素量を多量に添加することが必要となり、製造コストが増大するという問題がある。また、さらに、特許文献6に記載された技術では、圧延仕上温度を低温化することを必須としており、圧延機負荷の観点から安定製造が困難になるという問題もある。   Patent Document 5 contains C: 0.02 to 0.04%, solid solution B: 0.0002 to 0.002%, a composition having a formula CEN related to the alloy element content within a predetermined range, bainite as a main component, and islands. 590 MPa class non-tempered type low yield ratio high tensile strength steel sheets having a structure in which 0.8 to 2.5 volume% of martensite is dispersed have been proposed. Patent Document 6 includes C: 0.025 to 0.045%, Si, Mn, Al, Nb, B, and N are adjusted to an appropriate range, and Ti is limited to an appropriate range in relation to N. Rolling was started after heating the steel material with a composition within the prescribed range CEN related to alloy element content to the Nb solid solution temperature or higher and 1250 ° C or lower, and the cumulative reduction ratio was 60% in the austenite non-recrystallization temperature range. 590MPa class non-refining type low in which the rolling is finished at {(non-recrystallization temperature of austenite) -80 ° C} or more, air cooled, and the island-like martensite phase is finely dispersed in bainite. A method for producing a high yield strength steel sheet has been proposed. However, in the techniques described in Patent Document 5 and Patent Document 6, the carbon content of the steel material is reduced to 0.02 to 0.04% or 0.025 to 0.045% to further reduce carbon, and in particular, to ensure the strength of thick materials. However, it is necessary to add a large amount of alloying elements, which increases the manufacturing cost. Furthermore, in the technique described in Patent Document 6, it is essential to lower the rolling finishing temperature, and there is a problem that stable production becomes difficult from the viewpoint of rolling mill load.

また、特許文献7には、C:0.05〜0.15%、Mo:0.7〜1.2%を含み、さらにSi、Mn、P、S、Nb、Al、Nを適正量含み、Pcmが0.25%以下の組成を有する鋼片に、950℃以下での累積圧下量を50%以上とし700〜800℃の温度で圧延を完了、放冷して、板厚方向1/4厚位置のミクロ組織がポリゴナルまたは擬ポリゴナル・フェライトを主体とする組織となる高温強度に優れた非調質低降伏比高張力鋼の製造方法が提案されている。しかし、特許文献7に記載された技術では、圧延仕上温度を低温化して、高強度と低降伏比化を図っているが、合金元素添加量が多く、特にMoを0.7%以上添加することを必須としており、製造コストの高騰が避けられないという問題がある。   Further, Patent Document 7 contains C: 0.05 to 0.15%, Mo: 0.7 to 1.2%, further contains Si, Mn, P, S, Nb, Al, N, and Pcm is 0.25% or less. Rolling is completed at a temperature of 700 to 800 ° C. with a cumulative reduction amount of 950 ° C. or less at 50% or more and allowed to cool, and the microstructure at the 1/4 thickness position in the thickness direction is polygonal or pseudo. There has been proposed a method for producing a non-tempered low yield ratio high strength steel excellent in high temperature strength and having a structure mainly composed of polygonal ferrite. However, in the technique described in Patent Document 7, the rolling finishing temperature is lowered to increase the strength and the yield ratio. However, the amount of alloying elements added is large, and in particular, Mo should be added in an amount of 0.7% or more. There is a problem that the manufacturing cost is inevitable.

一方、特許文献8〜13には、合金元素添加量を削減するために、加速冷却を活用し、高強度化を図り、高強度と低降伏比を両立させる、低降伏比非調質高張力鋼の製造方法が提案されている。
特許文献8、特許文献9、特許文献10に記載された技術は、鋼片にAr3変態点以上で圧延を完了する熱間圧延を施した後、冷却を開始する前に、所定の温度になるまで空冷してフェライトを生成させ、二相域から冷却して、低降伏比化を図る方法である。しかし、このような方法では、僅かな冷却開始温度の違いによっても、フェライト生成率が異なってくるため、材質ばらつきが大きくなる。そのため、実際にこの方法で鋼板を製造する場合には、厳密な冷却開始温度の管理が必要となり、安定生産が困難になるという問題があった。
On the other hand, in Patent Documents 8 to 13, a low yield ratio non-tempered high tension that uses accelerated cooling to increase strength and achieve both high strength and low yield ratio in order to reduce the amount of alloying elements added. Steel manufacturing methods have been proposed.
The techniques described in Patent Document 8, Patent Document 9, and Patent Document 10 are such that the steel slab is subjected to hot rolling that completes rolling at the Ar 3 transformation point or higher, and then is cooled to a predetermined temperature before starting cooling. This is a method in which ferrite is generated by air cooling until it becomes, and cooling is performed from a two-phase region to achieve a low yield ratio. However, in such a method, even if the cooling start temperature is slightly different, the ferrite generation rate is different, so that the material variation becomes large. For this reason, when a steel sheet is actually produced by this method, it is necessary to strictly control the cooling start temperature, and there is a problem that stable production becomes difficult.

また、特許文献11には、鋼片に、オーステナイト未再結晶温度域での累積圧下量を30%以上として720℃以上の温度で熱間圧延を終了し、680℃以上の温度から加速冷却を開始し、150〜350℃の温度で加速冷却を停止して、板厚方向1/4厚の組織を、マルテンサイト又はマルテンサイト−オーステナイト混合相を1〜10%含む組織とする、低降伏比高張力鋼の製造方法が提案されている。   In Patent Document 11, hot rolling is completed at a temperature of 720 ° C or higher with a cumulative reduction amount in the austenite non-recrystallization temperature range of 30% or higher, and accelerated cooling is started from a temperature of 680 ° C or higher. Start, stop accelerated cooling at a temperature of 150 to 350 ° C., and make the structure of 1/4 thickness in the thickness direction into a structure containing 1 to 10% of martensite or martensite-austenite mixed phase, low yield ratio A method for producing high-strength steel has been proposed.

また、特許文献12には、C:0.005〜0.03%を含有する鋼片に、加熱後、1000〜1250℃の温度域における累積圧下率を30%以上、オーステナイト未再結晶温度域での累積圧下率を30%以上、圧延終了温度をAr3点以上とする熱間圧延を施し、熱間圧延終了後、冷却速度:0.1〜20℃/sで加速冷却する非調質高強度低降伏比高靭性厚鋼板の製造方法が提案されている。これにより、700MPa以上の高強度と80%以下の低降伏比とが両立できるとしている。 Patent Document 12 discloses that a steel piece containing C: 0.005 to 0.03% has a cumulative reduction ratio of 30% or more in a temperature range of 1000 to 1250 ° C. after heating and a cumulative reduction in an austenite non-recrystallization temperature range. Non-refined, high strength, low yield ratio, high rate of 30% or more, hot rolling with rolling end temperature of Ar 3 point or higher, and after hot rolling, cooling is accelerated at 0.1-20 ° C / s A method for producing a tough steel plate has been proposed. As a result, a high strength of 700 MPa or more and a low yield ratio of 80% or less can be achieved.

また、特許文献13には、C:0.02%以上0.05%未満を含有する鋼片に、加熱後、1100℃以下の温度域における累積圧下量を30%以上とし、Ae3温度以上の温度で圧延を終了する熱間圧延を施し、熱間圧延終了後、Ae3温度以上の温度から300℃までの冷却速度を、3K/s以上とする加速冷却を施す低降伏比570MPa級高張力鋼の製造方法が提案されている。
特開平10-306316号公報 特開平4-210419号公報 特開平4-221017号公報 特開平5-171271号公報 特開2000-219934号公報 特開2002-53912号公報 特開2004-84068号公報 特開昭63-219523号公報 特開昭63-223123号公報 特開平1-301819号公報 特開2002-3983号公報 特開2003-147477号公報 特開2004-339550号公報
Patent Document 13 states that a steel slab containing C: 0.02% or more and less than 0.05% is heated to a cumulative reduction amount of 30% or more in a temperature range of 1100 ° C. or less after rolling and rolled at a temperature of Ae 3 temperature or more. Of low yield ratio 570MPa class high strength steel with accelerated cooling at a cooling rate of 3K / s or higher from Ae 3 temperature to 300 ° C after hot rolling is completed. A method has been proposed.
Japanese Patent Laid-Open No. 10-306316 JP-A-4-104419 Japanese Unexamined Patent Publication No. H4-221017 Japanese Patent Laid-Open No. 5-171271 JP 2000-219934 JP 2002-53912 A JP 2004-84068 A Japanese Unexamined Patent Publication No. 63-219523 JP 63-223123 A Japanese Unexamined Patent Publication No. 1-301819 JP 2002-3983 A Japanese Patent Laid-Open No. 2003-147477 JP 2004-339550 A

しかしながら、特許文献11に記載された技術では、冷却停止時の温度が鋼板内で大きくばらつくことが原因で、鋼板に歪が発生したり、鋼板内に残留応力が発生する場合がある。このため、特許文献11に記載された技術で製造された鋼板では、鋼板をガス切断する時に、いわゆる条切りキャンバーと呼ばれる歪が発生するため、製造条件の厳密な管理を必要とするという問題がある。   However, in the technique described in Patent Document 11, distortion may occur in the steel sheet or residual stress may occur in the steel sheet because the temperature at the time of cooling stop varies greatly in the steel sheet. For this reason, in the steel plate manufactured by the technique described in Patent Document 11, when the steel plate is gas-cut, distortion called a so-called cut-off camber occurs, so that there is a problem that strict management of manufacturing conditions is required. is there.

また、特許文献12に記載された技術では、特許文献5、特許文献6、特許文献7に記載された技術と同様に、低C化したため、高強度化を図るために高価な合金元素の多量添加を必要とする。このため、製造コストの高騰を招くという問題がある。
また、特許文献13に記載された技術では、低C化したため、高強度化を図るために高価な合金元素を多量添加する必要があり、製造コストの高騰を招くという問題がある。またさらに、特許文献13に記載された技術では、冷却停止温度を300℃以下と低温化しているため、冷却停止時の温度が鋼板内で大きくばらつき、鋼板に歪が発生したり、鋼板内に残留応力が発生する場合がある。このため、特許文献13に記載された技術で製造された鋼板では、鋼板をガス切断する時に、いわゆる条切りキャンバーと呼ばれる歪が発生するため、製造条件の厳密な管理を必要とするという問題がある。
Further, in the technique described in Patent Document 12, as in the techniques described in Patent Document 5, Patent Document 6, and Patent Document 7, since the C is reduced, a large amount of expensive alloy elements are required to increase the strength. Requires addition. For this reason, there is a problem that the manufacturing cost increases.
Further, the technique described in Patent Document 13 has a problem in that since the C content is lowered, it is necessary to add a large amount of an expensive alloy element in order to increase the strength, resulting in an increase in manufacturing cost. Furthermore, in the technique described in Patent Document 13, since the cooling stop temperature is lowered to 300 ° C. or lower, the temperature at the time of cooling stop varies greatly in the steel plate, and the steel plate is distorted or Residual stress may occur. For this reason, in the steel sheet manufactured by the technique described in Patent Document 13, when the steel sheet is gas-cut, distortion called a so-called striation camber occurs, so that there is a problem that strict management of manufacturing conditions is required. is there.

本発明は、上記したような従来技術の問題点を解決し、オフラインの熱処理を必要とせずにオンラインで、さらに上記したような、高価な合金元素の多量添加や、製造条件の厳密な管理を必要とすることなく、溶接性に優れ、かつ低降伏比を有し、さらに好ましくは板厚方向の材質変動が小さい高張力薄肉鋼板、および該高張力薄肉鋼板を安価に製造できる、高張力薄肉鋼板の製造方法を提供することを目的とする。なお、本発明でいう「高張力薄肉鋼板」は、板厚19mm以上40mm以下で、引張強さTS:590MPa以上の高強度を有する鋼板(厚板)をいうものとする。また、「低降伏比」とは、降伏比:80%以下を指すものとする。また、「板厚方向の材質変動が小さい」とは、鋼板の板厚全厚(以降、全厚位置と称す)での降伏強さおよび引張強さと板厚1/2t位置における降伏強さおよび引張強さのと差が、それぞれ40MPa以下である場合をいうものとする。   The present invention solves the problems of the prior art as described above, online without the need for off-line heat treatment, and further adds a large amount of expensive alloy elements as described above, and strictly controls manufacturing conditions. A high-strength thin steel plate that has excellent weldability and has a low yield ratio, and preferably has a small material variation in the thickness direction, and can produce the high-tensile thin steel plate at a low cost. It aims at providing the manufacturing method of a steel plate. The “high-tensile thin steel plate” in the present invention refers to a steel plate (thick plate) having a thickness of 19 mm to 40 mm and a high strength of tensile strength TS: 590 MPa or more. The “low yield ratio” refers to a yield ratio of 80% or less. In addition, “the material fluctuation in the thickness direction is small” means that the yield strength and tensile strength at the full thickness of the steel plate (hereinafter referred to as the full thickness position) and the yield strength at the position of the thickness 1/2 t The difference between the tensile strength and each is 40 MPa or less.

本発明者らは、上記した目的を達成するために、高強度化と低降伏比化に影響する要因について鋭意研究した。その結果、Moおよび/またはWを、Mo+W/2で0.08〜0.70mass%含有した組成の鋼素材に、熱間圧延を施し薄肉鋼板としたのち、該薄肉鋼板に所定条件の加速冷却を施すことにより、非調質で、引張強さTS:590MPa以上の高強度と80%以下の低降伏比を同時に満足する高張力薄肉鋼板を製造できることを見出した。また、上記した条件を満足させたうえ、さらにC含有量を0.045〜0.08%に制限することにより、非調質で、引張強さTS:590MPa以上の高強度と80%以下の低降伏比と、さらに板厚全厚位置と板厚1/2t位置とにおける降伏強さおよび引張強さの差が、それぞれ40MPa以下を同時に満足する、低降伏比でかつ板厚方向における材質変動が小さい高張力薄肉鋼板を製造できることを見出した。   In order to achieve the above-mentioned object, the present inventors diligently studied the factors affecting the increase in strength and the decrease in yield ratio. As a result, a steel material having a composition containing Mo and / or W at 0.08 to 0.70 mass% in Mo + W / 2 is hot rolled to form a thin steel plate, and then the thin steel plate is subjected to accelerated cooling under predetermined conditions. Thus, it was found that a high-strength thin steel sheet that is non-tempered and that simultaneously satisfies a high strength of tensile strength TS: 590 MPa or more and a low yield ratio of 80% or less can be produced. In addition to satisfying the above conditions, and further limiting the C content to 0.045 to 0.08%, non-refining, tensile strength TS: high strength of 590MPa or more and low yield ratio of 80% or less In addition, the difference in yield strength and tensile strength between the full thickness position and the 1 / 2t position is 40MPa or less at the same time, with low yield ratio and small material fluctuation in the thickness direction. It has been found that thin steel plates can be produced.

まず、本発明の基礎となった実験結果について説明する。
mass%で、0.08%C−0.25%Si−1.25%Mn−0.018%P−0.002%Sを基本成分として、Cu、Ni、Cr、Mo、W、V、Nb、Ti、Bのうちの1種または2種以上を添加して、炭素当量Ceq(=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14)を0.39%と一定にしたスラブに、熱間圧延を施して20mm厚の鋼板とし、熱間圧延直後に板厚中心部の温度が700℃(一次冷却停止温度)となるまで加速冷却し、ついで4s間空冷した後、再度、板厚中心部の温度が580℃(二次冷却停止温度)になるまで加速冷却し、その後空冷した。得られた鋼板について、JIS Z 2201の規定に準拠して、JIS5号試験片を採取して引張試験を実施し、引張特性(引張強さTS、降伏強さYS)を求めた。得られた結果を図1に示す。図1から、引張強さTS:590MPa以上でかつ降伏比YR:80%以下を確保するためには、Mo+W/2を0.08%以上とする必要があることがわかる。
First, the experimental results on which the present invention is based will be described.
One of Cu, Ni, Cr, Mo, W, V, Nb, Ti, B with mass%, 0.08% C-0.25% Si-1.25% Mn-0.018% P-0.002% S Or, adding two or more kinds, hot rolling the slab with a constant carbon equivalent Ceq (= C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14) to 0.39% to make a 20mm thick steel plate, Immediately after hot rolling, accelerated cooling is performed until the temperature at the center of the plate reaches 700 ° C (primary cooling stop temperature), then air cooling for 4 s, and then the temperature at the center of the plate again reaches 580 ° C (stops secondary cooling) (Accelerated cooling) until the temperature reached, and then air cooling. The obtained steel sheet was subjected to a tensile test by collecting a JIS No. 5 test piece in accordance with the provisions of JIS Z 2201, and the tensile properties (tensile strength TS, yield strength YS) were obtained. The obtained results are shown in FIG. FIG. 1 shows that Mo + W / 2 needs to be 0.08% or more in order to ensure the tensile strength TS: 590 MPa or more and the yield ratio YR: 80% or less.

つぎに、熱間圧延後の加速冷却における一次冷却停止温度の影響について調査した。
mass%で、0.06%C−0.25%Si−1.35%Mn−0.012%P−0.003%S−0.24%Mo−0.025%Al−0.0025%Nを含む鋼素材を熱間圧延し板厚25mmの鋼板とした。このときの熱間圧延の圧延終了温度は表面で900℃であった。熱間圧延終了直後に、平均冷却速度が30℃/sの冷却速度で、板厚中心部の温度が800〜550℃の範囲内の温度(一次冷却停止温度)まで加速冷却し、その後3s間空冷したのち、再度平均冷却速度が30℃/sの冷却速度で、板厚中心部の温度が520℃(二次冷却停止温度)となるまで加速冷却し、その後空冷した。
Next, the influence of the primary cooling stop temperature in the accelerated cooling after hot rolling was investigated.
A steel material having a mass of 0.06% C-0.25% Si-1.35% Mn-0.012% P-0.003% S-0.24% Mo-0.025% Al-0.0025% N did. At this time, the rolling end temperature of the hot rolling was 900 ° C. on the surface. Immediately after the end of hot rolling, the average cooling rate is 30 ° C./s, and the cooling at the center of the plate thickness is accelerated to a temperature within the range of 800 to 550 ° C. (primary cooling stop temperature), and then for 3 s. After air cooling, accelerated cooling was performed until the temperature at the center of the plate thickness reached 520 ° C. (secondary cooling stop temperature) at an average cooling rate of 30 ° C./s again, and then air cooling was performed.

得られた鋼板から、JIS Z 2201の規定に準拠してJIS 5号全厚引張試験片を採取して引張試験を実施した。得られた引張特性(降伏強さYS、引張強さTSおよび降伏比YR)と一次冷却停止温度との関係を、図2に示す。図2から、一次冷却停止温度が750℃を超えて高い場合、あるいは650℃未満の場合に、降伏比YRが80%を超えて高くなっており、低降伏比を確保するためには一次冷却停止温度を750〜650℃の範囲の温度とする必要があることがわかる。なお、一次冷却停止温度が750℃超えや650℃未満の場合に降伏比YRが高くなるのは、表層付近がベイナイト化し、硬さが上昇するためである。この結果から、750〜650℃の範囲の温度で一旦冷却を停止することにより、表層付近のベイナイト化を抑制することが可能となり、全厚引張試験片を用いた場合でも降伏比を低くすることができるという知見を得た。   From the obtained steel plate, a JIS No. 5 full-thickness tensile test piece was collected in accordance with the provisions of JIS Z 2201, and a tensile test was performed. FIG. 2 shows the relationship between the obtained tensile properties (yield strength YS, tensile strength TS, and yield ratio YR) and the primary cooling stop temperature. From Fig. 2, when the primary cooling stop temperature is higher than 750 ° C or lower than 650 ° C, the yield ratio YR is higher than 80%, and primary cooling is necessary to ensure a low yield ratio. It can be seen that the stop temperature needs to be in the range of 750-650 ° C. The reason why the yield ratio YR is high when the primary cooling stop temperature is higher than 750 ° C. or lower than 650 ° C. is that the vicinity of the surface layer becomes bainite and the hardness increases. From this result, it is possible to suppress bainite formation near the surface layer by temporarily stopping cooling at a temperature in the range of 750 to 650 ° C., and lower the yield ratio even when using a full thickness tensile specimen. I got the knowledge that I can.

また、熱間圧延後の加速冷却における、一次冷却停止後の空冷時間の影響について調査した。
mass%で、0.06%C−0.25%Si−1.35%Mn−0.012%P−0.003%S−0.24%Mo−0.025%Al−0.0025%Nを含む鋼素材に熱間圧延を施して板厚25mmの鋼板とした。このときの熱間圧延終了温度は表面で900℃であった。熱間圧延終了直後に、平均冷却速度が30℃/sの冷却速度で、板厚中心部の温度が650℃(一次冷却停止温度)となるまで加速冷却し、空冷時間を0〜20sに変化して空冷した後、再度、平均冷却速度が30℃/sの冷却速度で、板厚中心部の温度が550℃(二次冷却停止温度)となるまで加速冷却し、その後空冷した。
In addition, the effect of the air cooling time after stopping the primary cooling in the accelerated cooling after hot rolling was investigated.
A steel material containing 0.06% C-0.25% Si-1.35% Mn-0.012% P-0.003% S-0.24% Mo-0.025% Al-0.0025% N is hot rolled to a thickness of 25 mm. A steel plate was used. At this time, the hot rolling end temperature was 900 ° C. on the surface. Immediately after the end of hot rolling, the cooling rate is 30 ° C / s, and the cooling is accelerated until the temperature at the center of the plate reaches 650 ° C (primary cooling stop temperature), and the air cooling time is changed to 0 to 20s. After air cooling, accelerated cooling was performed again at an average cooling rate of 30 ° C./s until the temperature at the center of the plate thickness reached 550 ° C. (secondary cooling stop temperature), and then air cooling was performed.

得られた鋼板から、JIS Z 2201の規定に準拠してJIS 5号全厚引張試験片を採取して引張試験を実施した。得られた引張特性(降伏強さYS、引張強さTSおよび降伏比YR)と空冷時間との関係を、図3に示す。図3から、空冷時間が0s(空冷なし)または、1sの場合には、降伏比が80%を超え、また、空冷時間が10sを超えた場合には、引張強さTSが低下し590MPaを大きく下回る。なお、空冷時間が2s未満の場合に,降伏比が80%を超えるのは、表層付近の組織がベイナイト化し、硬さが上昇したためである。また、空冷時間が10sを超えて長くなると、空冷中に過度にフェライト変態が進行するため、強度低下が生じる。このようなことから、低降伏比と高強度をともに確保するためには、空冷時間を2〜10sの範囲とする必要があるという知見を得た。   From the obtained steel plate, a JIS No. 5 full-thickness tensile test piece was collected in accordance with the provisions of JIS Z 2201, and a tensile test was performed. FIG. 3 shows the relationship between the obtained tensile properties (yield strength YS, tensile strength TS, and yield ratio YR) and air cooling time. From Fig. 3, when the air cooling time is 0 s (no air cooling) or 1 s, the yield ratio exceeds 80%, and when the air cooling time exceeds 10 s, the tensile strength TS decreases and 590 MPa. It is far below. The reason why the yield ratio exceeds 80% when the air cooling time is less than 2 s is that the structure near the surface layer becomes bainite and the hardness increases. On the other hand, if the air cooling time is longer than 10 s, the ferrite transformation proceeds excessively during air cooling, resulting in a decrease in strength. For this reason, in order to ensure both a low yield ratio and high strength, it was found that the air cooling time must be in the range of 2 to 10 s.

また、熱間圧延後の加速冷却における、二次冷却停止温度の影響について調査した。
mass%で、0.06%C−0.25%Si−1.35%Mn−0.012%P−0.003%S−0.24%Mo−0.025%Al−0.0025%Nを含む鋼素材に、熱間圧延を施して板厚25mmの鋼板とした。このときの熱間圧延終了温度は表面で900℃であった。熱間圧延終了直後に、平均冷却速度が30℃/sの冷却速度で、板厚中心部の温度が720℃(一次冷却停止温度)になるまで加速冷却し、5s間空冷したのち、再度、平均冷却速度が30℃/sの冷却速度で、板厚中心部の温度が700〜300℃(二次冷却停止温度)になるまで冷却し、その後空冷した。
Moreover, the influence of the secondary cooling stop temperature in the accelerated cooling after hot rolling was investigated.
A steel material containing 0.06% C-0.25% Si-1.35% Mn-0.012% P-0.003% S-0.24% Mo-0.025% Al-0.0025% N at mass% is subjected to hot rolling and has a thickness of 25 mm. Steel plate. At this time, the hot rolling end temperature was 900 ° C. on the surface. Immediately after the hot rolling is completed, the average cooling rate is 30 ° C./s, the cooling is accelerated until the temperature at the center of the plate thickness reaches 720 ° C. (primary cooling stop temperature), and after air cooling for 5 s, again, The cooling was performed at an average cooling rate of 30 ° C./s until the temperature at the center of the plate thickness reached 700 to 300 ° C. (secondary cooling stop temperature), and then air-cooled.

得られた鋼板から、JIS Z 2201の規定に準拠してJIS 5号全厚引張試験片を採取し、引張試験を実施した。得られた引張特性(降伏強さYS、引張強さTSおよび降伏比YR)と二次冷却停止温度との関係で、図4に示す。図4から、二次冷却停止温度が500℃未満の場合には、降伏比が80%を超え、650℃超えの場合には、引張強さTSが低下し、590MPaを下回るようになる。このようなことから、低降伏比と高強度をともに確保するためには、二次冷却停止温度を650〜500℃の範囲とする必要があるという知見を得た。   From the obtained steel sheet, a JIS No. 5 full-thickness tensile test piece was collected in accordance with JIS Z 2201 and subjected to a tensile test. FIG. 4 shows the relationship between the obtained tensile properties (yield strength YS, tensile strength TS, and yield ratio YR) and the secondary cooling stop temperature. From FIG. 4, when the secondary cooling stop temperature is less than 500 ° C., the yield ratio exceeds 80%, and when it exceeds 650 ° C., the tensile strength TS decreases and falls below 590 MPa. From such a thing, in order to ensure both a low yield ratio and high intensity | strength, the knowledge that it was necessary to make secondary cooling stop temperature into the range of 650-500 degreeC was acquired.

このように、板厚40mm以下の薄肉鋼板(厚板)に、上記した熱間圧延、および熱間圧延直後に、上記した一次冷却および二次冷却を有する冷却処理を施すことにより、表層以外の中央部組織がフェライト相を主体とし、所定量の硬質相を含む組織となり、しかも冷却の速い表層も復熱により焼戻され、降伏比が低い組織となり、板厚全体として590MPa以上の高強度と80%以下の低降伏比を有する高張力薄肉鋼板となることを新たに見出した。   In this way, by subjecting a thin steel plate (thick plate) having a thickness of 40 mm or less to the above-described hot rolling and the cooling treatment having the primary cooling and the secondary cooling immediately after the hot rolling, other than the surface layer The central structure is mainly composed of a ferrite phase and contains a predetermined amount of hard phase.Furthermore, the fast-cooled surface layer is tempered by recuperation, resulting in a structure with a low yield ratio. It was newly found that it becomes a high-tensile thin steel plate having a low yield ratio of 80% or less.

また、mass%で、0.06%C−0.25%Si−1.32%Mn−0.015%P−0.001%Sを基本成分として、Cu、Ni、Cr、Mo、W、V、Nb、Ti、Bのうちの1種または2種以上を添加して、炭素当量Ceqを0.40%と一定にしたスラブに、熱間圧延を施して20mm厚の鋼板とし、熱間圧延直後に板厚中心部の温度が700℃(一次冷却停止温度)となるまで加速冷却し、ついで4s間空冷した後、再度、板厚中心部の温度が580℃(二次冷却停止温度)になるまで加速冷却し、その後空冷した。得られた鋼板について、JIS Z 2201の規定に準拠して、全厚位置からJIS5号全厚試験片および板厚1/2t位置からJIS4号試験片をそれぞれ採取して引張試験を実施し、引張特性(引張強さTS、降伏強さYS)を求めた。得られた結果を図5に示す。   Moreover, in mass%, 0.06% C-0.25% Si-1.32% Mn-0.015% P-0.001% S is used as a basic component, among Cu, Ni, Cr, Mo, W, V, Nb, Ti, B. A slab with one or two or more added carbon constant Ceq of 0.40% is hot-rolled into a 20mm thick steel plate, and the temperature at the center of the plate thickness is 700 ° C immediately after hot rolling. After accelerating cooling until reaching the (primary cooling stop temperature), and then air cooling for 4 s, the cooling was accelerated until the temperature at the center of the plate thickness reached 580 ° C. (secondary cooling stop temperature), and then air cooling was performed. In accordance with JIS Z 2201, the JIS No. 5 full thickness test piece and the JIS No. 4 test piece are taken from the full thickness position, and a tensile test is conducted on the obtained steel plate. Properties (tensile strength TS, yield strength YS) were determined. The obtained results are shown in FIG.

図5から、引張強さTS:590MPa以上、降伏比YR:80%以下を満足し、かつ全厚位置と板厚1/2t位置との降伏強さ、引張強さの差、ΔYS、ΔTSがともに40MPa以下を満足する鋼板とするには、(Mo+W/2)を0.08〜0.20%に調整する必要があるという知見を得た。
また、mass%で、0.01〜0.11%C−0.25%Si−1.35%Mn−0.014%P−0.002%S−0.13%Moを基本成分として、Cu、Ni、Cr、V、Nb、Ti、Bのうちの1種または2種以上を添加して、炭素当量Ceqを0.39%と一定にしたスラブに、熱間圧延を施して20mm厚の鋼板とし、熱間圧延直後に板厚中心部の温度が680℃(一次冷却停止温度)となるまで加速冷却し、ついで5s間空冷した後、再度、板厚中心部の温度が620℃(二次冷却停止温度)になるまで加速冷却し、その後空冷した。得られた鋼板について、JIS Z 2201の規定に準拠して、全厚位置からJIS5号全厚試験片および板厚1/2t位置からJIS4号試験片をそれぞれ採取して引張試験を実施し、引張特性(引張強さTS、降伏強さYS)を求めた。得られた結果を図6に示す。
From Fig. 5, the tensile strength TS: 590MPa or more and the yield ratio YR: 80% or less are satisfied, and the yield strength, the difference in tensile strength, ΔYS, ΔTS between the full thickness position and the plate thickness 1 / 2t position are In both cases, it was found that (Mo + W / 2) must be adjusted to 0.08 to 0.20% in order to make steel sheets satisfying 40 MPa or less.
In addition, in mass%, 0.01 to 0.11% C-0.25% Si-1.35% Mn-0.014% P-0.002% S-0.13% Mo, Cu, Ni, Cr, V, Nb, Ti, B One or two or more of them are added, and a slab with a constant carbon equivalent Ceq of 0.39% is hot-rolled into a 20mm-thick steel plate. Accelerated cooling to 680 ° C (primary cooling stop temperature), then air-cooled for 5s, then accelerated cooling until the center of the plate thickness reaches 620 ° C (secondary cooling stop temperature), and then air-cooled . In accordance with JIS Z 2201, the JIS No. 5 full thickness test piece and the JIS No. 4 test piece are taken from the full thickness position, and a tensile test is conducted on the obtained steel plate. Properties (tensile strength TS, yield strength YS) were determined. The obtained result is shown in FIG.

図6から、引張強さTS:590MPa以上、降伏比YR:80%以下を満足し、かつ全厚位置と板厚1/2t位置との降伏強さ、引張強さの差、ΔYS、ΔTSがともに40MPa以下を満足する鋼板とするには、C含有量を0.045〜0.08%に調整する必要があるという知見を得た。
本発明は、上記したような知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
From Fig. 6, the tensile strength TS: 590MPa or more and the yield ratio YR: 80% or less are satisfied, and the yield strength, the difference in tensile strength, ΔYS, ΔTS between the full thickness position and the plate thickness 1 / 2t position are In both cases, it was found that the C content must be adjusted to 0.045 to 0.08% in order to make steel sheets satisfying 40 MPa or less.
The present invention has been completed based on the above-described findings and further studies. That is, the gist of the present invention is as follows.

(1)mass%で、C:0.045〜0.18%、Si:0.05〜0.50%、Mn:0.6〜2.0%、P:0.020%以下、S:0.005%以下、Al:0.1%以下、N:0.0060%以下を含み、さらにMoおよび/またはWを次(1)式
0.08≦ Mo+W/2 ≦0.70 ……(1)
(ここで、Mo、W:各元素の含有量(mass%))
を満足するように含有し、残部Feおよび不可避的不純物からなり、かつ次(2)式
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B……(2)
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(mass%))
で示される溶接割れ感受性指標Pcmが0.22%以下である組成を有し、板厚方向中央部の組織が、フェライトを主相とし、20体積%以下の硬質相を含む複合組織であることを特徴とする低降伏比を有する高張力薄肉鋼板。
(1) In mass%, C: 0.045 to 0.18%, Si: 0.05 to 0.50%, Mn: 0.6 to 2.0%, P: 0.020% or less, S: 0.005% or less, Al: 0.1% or less, N: 0.0060% Including Mo and / or W in the following formula (1)
0.08 ≦ Mo + W / 2 ≦ 0.70 (1)
(Where, Mo, W: content of each element (mass%))
Is contained, the balance is Fe and inevitable impurities, and the following formula (2) Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (2)
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: content of each element (mass%))
The weld cracking susceptibility index Pcm shown in Fig. 2 is 0.22% or less, and the structure in the central part in the thickness direction is a composite structure containing ferrite as the main phase and 20% by volume or less of the hard phase. A high-strength thin steel plate having a low yield ratio.

(2)mass%で、C:0.045〜0.08%、Si:0.05〜0.50%、Mn:0.6〜2.0%、P:0.020%以下、S:0.005%以下、Al:0.1%以下、N:0.0060%以下を含み、さらにMoおよび/またはWを次(1a)式
0.08≦ Mo+W/2 ≦0.20 ……(1a)
(ここで、Mo、W:各元素の含有量(mass%))
を満足するように含有し、残部Feおよび不可避的不純物からなり、かつ次(2)式
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B……(2)
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(mass%))
で示される溶接割れ感受性指標Pcmが0.22%以下である組成を有し、板厚方向中央部の組織が、フェライトを主相とし、20体積%以下の硬質相を含む複合組織であることを特徴とする低降伏比を有し、かつ板厚方向の材質変動の小さい高張力薄肉鋼板。
(2) In mass%, C: 0.045 to 0.08%, Si: 0.05 to 0.50%, Mn: 0.6 to 2.0%, P: 0.020% or less, S: 0.005% or less, Al: 0.1% or less, N: 0.0060% Including Mo and / or W in the following formula (1a)
0.08 ≦ Mo + W / 2 ≦ 0.20 (1a)
(Where, Mo, W: content of each element (mass%))
Is contained, the balance is Fe and inevitable impurities, and the following formula (2) Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (2)
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: content of each element (mass%))
The weld cracking susceptibility index Pcm shown in Fig. 2 is 0.22% or less, and the structure in the central part in the thickness direction is a composite structure containing ferrite as the main phase and 20% by volume or less of the hard phase. A high-strength thin steel plate with a low yield ratio and small material fluctuation in the thickness direction.

(3)(1)または(2)において、前記組成に加えてさらに、mass%で、Cu:0.03〜1%、Ni:0.03〜2%、Cr:0.05〜1%、V:0.01〜0.1%、Nb:0.005〜0.1%、Ti:0.005〜0.05%、B:0.0002〜0.0050%のうちの1種または2種以上を含有する組成とすることを特徴とする高張力薄肉鋼板。
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ca:0.0002〜0.0050%、REM:0.0002〜0.0050%のうちの1種または2種を含有する組成とすることを特徴とする高張力薄肉鋼板。
(3) In (1) or (2), in addition to the above composition, it is also in mass%, Cu: 0.03 to 1%, Ni: 0.03 to 2%, Cr: 0.05 to 1%, V: 0.01 to 0.1% Nb: 0.005-0.1%, Ti: 0.005-0.05%, B: 0.0002-0.0050%, It is set as the composition containing 1 type, or 2 or more types, The high tension thin-walled steel plate characterized by the above-mentioned.
(4) In any one of (1) to (3), in addition to the above-mentioned composition, it further contains one or two of Ca: 0.0002 to 0.0050% and REM: 0.0002 to 0.0050% in mass%. A high-tensile thin steel plate characterized by having a composition.

(5)鋼素材に、熱間圧延と、該熱間圧延後直ちに加速冷却する冷却処理とを施し、鋼板とするに当り、前記鋼素材を、mass%で、C:0.045〜0.18%、Si:0.05〜0.50%、Mn:0.6〜2.0%、P:0.020%以下、S:0.005%以下、Al:0.1%以下、N:0.0060%以下を含み、さらにMoおよび/またはWを次(1)式
0.08≦ Mo+W/2 ≦0.70 ……(1)
(ここで、Mo、W:各元素の含有量(mass%))
を満足するように含有し、残部Feおよび不可避的不純物からなり、かつ次(2)式
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B……(2)
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(mass%))
で示される溶接割れ感受性指標Pcmが0.22%以下である組成を有する鋼素材とし、前記熱間圧延を、圧延終了温度が表面で800〜950℃の範囲の温度となる熱間圧延とし、前記冷却処理を、平均冷却速度で10℃/s以上の冷却速度で板厚中心部が750〜650℃の範囲の温度となる一次冷却停止温度まで加速冷却する一次冷却と、ついで2〜10s間の空冷と、ついで平均冷却速度で10℃/s以上の冷却速度で加速冷却し、板厚中心部が500〜650℃の範囲の温度となる二次冷却停止温度で加速冷却を停止する二次冷却とからなる処理とすることを特徴とする低降伏比を有する高張力薄肉鋼板の製造方法。
(5) The steel material is subjected to hot rolling and a cooling treatment that is accelerated and cooled immediately after the hot rolling to obtain a steel plate. The steel material is mass%, C: 0.045 to 0.18%, Si. : 0.05-0.50%, Mn: 0.6-2.0%, P: 0.020% or less, S: 0.005% or less, Al: 0.1% or less, N: 0.0060% or less, and further Mo and / or W (1) formula
0.08 ≦ Mo + W / 2 ≦ 0.70 (1)
(Where, Mo, W: content of each element (mass%))
Is contained, the balance is Fe and inevitable impurities, and the following formula (2) Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (2)
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: content of each element (mass%))
The steel material having a composition having a weld crack sensitivity index Pcm of 0.22% or less, and the hot rolling is hot rolling with a rolling end temperature in the range of 800 to 950 ° C., and the cooling The primary cooling is accelerated cooling to the primary cooling stop temperature at a cooling rate of 10 ° C / s or more at an average cooling rate to a temperature in the center of the plate thickness ranging from 750 to 650 ° C, and then air cooling for 2 to 10s. Then, the secondary cooling that accelerates the cooling at an average cooling rate of 10 ° C./s or more and stops the accelerated cooling at the secondary cooling stop temperature at which the center of the plate thickness is in the range of 500 to 650 ° C. A method for producing a high-tensile thin steel plate having a low yield ratio, characterized in that the treatment comprises:

(6)鋼素材に、熱間圧延と、該熱間圧延後直ちに加速冷却する冷却処理とを施し、鋼板とするに当り、前記鋼素材を、mass%で、C:0.045〜0.08%、Si:0.05〜0.50%、Mn:0.6〜2.0%、P:0.020%以下、S:0.005%以下、Al:0.1%以下、N:0.0060%以下を含み、さらにMoおよび/またはWを次(1a)式
0.08≦ Mo+W/2 ≦0.20 ……(1a)
(ここで、Mo、W:各元素の含有量(mass%))
を満足するように含有し、残部Feおよび不可避的不純物からなり、かつ次(2)式
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B……(2)
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(mass%))
で示される溶接割れ感受性指標Pcmが0.22%以下である組成を有する鋼素材とし、
前記熱間圧延を、圧延終了温度が表面で800〜950℃の範囲の温度となる熱間圧延とし、
前記冷却処理を、平均冷却速度で10℃/s以上の冷却速度で板厚中心部が750〜650℃の範囲の温度となる一次冷却停止温度まで加速冷却する一次冷却と、ついで2〜10s間の空冷と、ついで平均冷却速度で10℃/s以上の冷却速度で加速冷却し、板厚中心部が500〜650℃の範囲の温度となる二次冷却停止温度で加速冷却を停止する二次冷却とからなる処理とすることを特徴とする低降伏比を有し、かつ板厚方向の材質変動の小さい高張力薄肉鋼板の製造方法。
(6) The steel material is subjected to hot rolling and a cooling treatment that is accelerated and cooled immediately after the hot rolling to obtain a steel plate. The steel material is mass%, C: 0.045 to 0.08%, Si : 0.05-0.50%, Mn: 0.6-2.0%, P: 0.020% or less, S: 0.005% or less, Al: 0.1% or less, N: 0.0060% or less, and further Mo and / or W (1a) formula
0.08 ≦ Mo + W / 2 ≦ 0.20 (1a)
(Where, Mo, W: content of each element (mass%))
Is contained, the balance is Fe and inevitable impurities, and the following formula (2) Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (2)
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: content of each element (mass%))
A steel material having a composition with a weld crack sensitivity index Pcm of 0.22% or less,
The hot rolling is hot rolling in which the rolling end temperature is a temperature in the range of 800 to 950 ° C on the surface,
The above cooling process is accelerated at an average cooling rate of 10 ° C./s or more to a primary cooling stop temperature at which the central portion of the plate thickness reaches a temperature in the range of 750 to 650 ° C., and then for 2 to 10 seconds. Air cooling, followed by accelerated cooling at an average cooling rate of 10 ° C / s or higher and secondary cooling to stop the accelerated cooling at the secondary cooling stop temperature at which the center of the plate thickness is in the range of 500 to 650 ° C A method for producing a high-strength thin steel plate having a low yield ratio and having a small material variation in the thickness direction, characterized in that the treatment comprises cooling.

(7)(5)または(6)において、前記鋼素材が、前記組成に加えてさらに、mass%で、Cu:0.03〜1%、Ni:0.03〜2%、Cr:0.05〜1%、V:0.01〜0.1%、Nb:0.005〜0.1%、Ti:0.005〜0.05%、B:0.0002〜0.0050%のうちの1種または2種以上を含有する組成とすることを特徴とする高張力薄肉鋼板の製造方法。
(8)(5)ないし(7)のいずれかにおいて、前記鋼素材が、前記組成に加えてさらに、mass%で、Ca:0.0002〜0.0050%、REM:0.0002〜0.0050%のうちの1種または2種を含有する組成とすることを特徴とする高張力薄肉鋼板の製造方法。
(7) In (5) or (6), in addition to the composition, the steel material is further in mass%, Cu: 0.03 to 1%, Ni: 0.03 to 2%, Cr: 0.05 to 1%, V : 0.01 to 0.1%, Nb: 0.005 to 0.1%, Ti: 0.005 to 0.05%, and B: 0.0002 to 0.0050% Manufacturing method.
(8) In any one of (5) to (7), in addition to the composition, the steel material may further be mass%, Ca: 0.0002 to 0.0050%, REM: 0.0002 to 0.0050%, or A method for producing a high-tension thin-walled steel sheet, comprising a composition containing two types.

本発明によれば、高価な合金元素の多量添加や、製造条件の厳密な管理、さらには、オフラインでの二相域熱処理を必要とせずに、溶接性、靭性に優れ、かつ低降伏比を有し、さらには板厚方向の材質変動の小さい高張力薄肉鋼板を非調質で製造でき、産業上格段の効果を奏する。また、本発明によれば、優れた特性を有する高張力薄肉鋼板を、容易にしかも安価に提供できるという効果もある。   According to the present invention, a large amount of expensive alloying elements, strict control of manufacturing conditions, and offline two-phase region heat treatment are not required, and weldability and toughness are excellent, and a low yield ratio is achieved. In addition, it is possible to manufacture a high-strength thin steel plate having a small variation in material in the thickness direction without any tempering. Moreover, according to this invention, there exists an effect that the high-tensile thin steel plate which has the outstanding characteristic can be provided easily and cheaply.

本発明の高張力薄肉鋼板は、板厚が40mm以下、好ましくは19mm以上の鋼板(厚板)で、所定の組成と組織を有し、引張強さTS:590MPa以上の高強度と、降伏比YR:80%以下の低降伏比を有する高張力鋼板である。
まず、本発明の高張力薄肉鋼板における組成限定理由について説明する。なお、以下、とくにことわらない限り、%はmass%を意味する。
The high-strength thin steel plate of the present invention is a steel plate (thick plate) having a thickness of 40 mm or less, preferably 19 mm or more, having a predetermined composition and structure, a tensile strength TS: high strength of 590 MPa or more, and a yield ratio. YR: A high-strength steel sheet having a low yield ratio of 80% or less.
First, the reason for limiting the composition of the high-strength thin steel plate of the present invention will be described. In the following, unless otherwise stated,% means mass%.

C:0.045〜0.18%
Cは、鋼の強度を向上させる元素であり、本発明では引張強さTS:590MPa以上を確保するために、0.045%以上の含有を必要とする。しかし、0.18%を超えてCを過剰に含有すると低温割れ感受性を増大させる。このため、本発明ではCは0.045〜0.18%の範囲に限定した。なお、0.08%を超えて含有すると、全厚位置と板厚1/2t位置での強度差、ΔYS、ΔTSが40MPa以上となる。このため、板厚方向の材質変動が小さいことが要求される使途には、Cは0.045〜0.08%の範囲に限定することが好ましい。
C: 0.045-0.18%
C is an element that improves the strength of steel. In the present invention, it is necessary to contain 0.045% or more in order to ensure a tensile strength TS: 590 MPa or more. However, when C is contained excessively exceeding 0.18%, the cold cracking sensitivity is increased. For this reason, in this invention, C was limited to 0.045 to 0.18% of range. If the content exceeds 0.08%, the difference in strength, ΔYS, ΔTS at the full thickness position and the 1 / 2-thickness position, becomes 40 MPa or more. For this reason, C is preferably limited to a range of 0.045% to 0.08% for uses that require a small material variation in the thickness direction.

Si:0.05〜0.50%
Siは、脱酸剤として作用し、製鋼上0.05%以上の含有を必要とする。一方、0.50%を超えて含有すると母材靭性が低下する。このため、Siは0.05〜0.50%の範囲に限定した。なお、好ましくは0.10〜0.40%である。
Mn:0.6〜2.0%
Mnは、鋼の焼入れ性を向上を介して、強度を向上させる元素である。このような効果を確保するためには、0.6%以上の含有を必要とする。一方、2.0%を超える含有は、溶接性を著しく低下させる。このため、本発明では、Mnは0.6〜2.0%の範囲に限定した。なお、好ましくは0.80〜1.60%である。
Si: 0.05-0.50%
Si acts as a deoxidizer and needs to contain 0.05% or more in steelmaking. On the other hand, if it exceeds 0.50%, the toughness of the base material is lowered. For this reason, Si was limited to the range of 0.05 to 0.50%. In addition, Preferably it is 0.10 to 0.40%.
Mn: 0.6-2.0%
Mn is an element that improves the strength through improving the hardenability of steel. In order to ensure such an effect, the content of 0.6% or more is required. On the other hand, if the content exceeds 2.0%, the weldability is significantly reduced. For this reason, in this invention, Mn was limited to 0.6 to 2.0% of range. In addition, Preferably it is 0.80 to 1.60%.

P:0.020%以下
Pは、不純物として鋼中に不可避的に含有される元素であり、鋼の靭性を低下させるため、できるだけ低減することが望ましい。特に、0.020%を超える含有は、著しく靭性を低下させる。このため、本発明ではPは0.020%以下に限定した。
S:0.005%以下
Sは、不純物として鋼中に不可避的に含有される元素であり、鋼の靭性や板厚方向引張試験における絞りを低下させるため、できるだけ低減することが望ましい。特に、0.005%を超えて含有すると、上記した特性の低下傾向が著しくなる。そのため、Sは0.005%以下に限定した。
P: 0.020% or less P is an element inevitably contained in steel as an impurity, and it is desirable to reduce it as much as possible in order to reduce the toughness of steel. In particular, a content exceeding 0.020% significantly reduces toughness. For this reason, in the present invention, P is limited to 0.020% or less.
S: 0.005% or less S is an element inevitably contained in steel as an impurity, and it is desirable to reduce as much as possible in order to reduce the toughness of steel and the drawing in the thickness direction tensile test. In particular, when the content exceeds 0.005%, the above-described tendency of deterioration of the characteristics becomes remarkable. Therefore, S is limited to 0.005% or less.

Al:0.1%以下
Alは、脱酸剤として作用する元素であり、溶鋼の脱酸プロセスにおいて、脱酸剤としてもっとも汎用的に使用される元素である。このような効果を得るためには0.001%以上含有することが望ましいが、0.1%を超える含有は、粗大な酸化物を形成して、鋼板母材の延性を著しく低下させる。このため、Alは0.1%以下に限定した。なお、好ましくは0.020〜0.080%である。
Al: 0.1% or less
Al is an element that acts as a deoxidizer and is the most widely used element as a deoxidizer in the deoxidation process of molten steel. In order to acquire such an effect, it is desirable to contain 0.001% or more. However, if it exceeds 0.1%, a coarse oxide is formed and the ductility of the steel sheet base material is remarkably lowered. For this reason, Al was limited to 0.1% or less. In addition, Preferably it is 0.020 to 0.080%.

N:0.0060%以下
Nは、固溶Nとして存在すると、歪時効後の母材靭性や溶接熱影響部靭性を低下させる。このため、Nは0.0060%以下に限定した。
上記した成分に加えてさらに、本発明では、Moおよび/またはWを含有する。
MoおよびWは、強度を確保しつつ、低降伏比化を図るために、重要な元素であり、本発明では、MoまたはW、あるいはMoおよびWを、次(1)式
0.08≦(Mo+W/2)≦0.70 ……(1)
(ここで、Mo、W:各元素の含有量(mass%))
を満足するように含有する。(Mo+W/2)が0.08%未満では、引張強さTSが590MPa以上、かつ降伏比YRが80%以下を確保することができない。一方、(Mo+W/2)が0.70%を超えるようにMoおよび/またはWを含有すると、溶接性が低下するとともに、製造コスト(材料コスト)が高騰する。そのため、Moおよび/またはWは、(Mo+W/2)が0.08〜0.70%の範囲となるように、すなわち(1)式を満足するように、含有するよう規定した。なお、板厚方向の材質変動を小さくすることが要求される使途には、次(1a)式
0.08≦ Mo+W/2 ≦0.20 ……(1a)
(ここで、Mo、W:各元素の含有量(mass%))
を満足するように規定することが好ましい。というのは、(Mo+W/2)が0.20を超えて大きくなると、全厚位置と板厚1/2t位置との強度差ΔYS、ΔTSが40MPaを超えて大きくなり、板厚方向の材質変動が著しくなる。
N: 0.0060% or less When N is present as solute N, it lowers the base metal toughness and weld heat affected zone toughness after strain aging. For this reason, N was limited to 0.0060% or less.
In addition to the components described above, the present invention further contains Mo and / or W.
Mo and W are important elements for reducing the yield ratio while securing the strength. In the present invention, Mo or W, or Mo and W is expressed by the following formula (1).
0.08 ≦ (Mo + W / 2) ≦ 0.70 (1)
(Where, Mo, W: content of each element (mass%))
Is contained so as to satisfy. If (Mo + W / 2) is less than 0.08%, it is impossible to ensure that the tensile strength TS is 590 MPa or more and the yield ratio YR is 80% or less. On the other hand, when Mo and / or W is contained so that (Mo + W / 2) exceeds 0.70%, the weldability is lowered and the manufacturing cost (material cost) is increased. Therefore, Mo and / or W are specified to be contained so that (Mo + W / 2) is in the range of 0.08 to 0.70%, that is, to satisfy the expression (1). In addition, the following (1a) formula is used for the usage in which it is required to reduce the material variation in the thickness direction.
0.08 ≦ Mo + W / 2 ≦ 0.20 (1a)
(Where, Mo, W: content of each element (mass%))
Is preferably defined so as to satisfy the above. This is because when (Mo + W / 2) increases beyond 0.20, the strength differences ΔYS and ΔTS between the full thickness position and the 1/2 t thickness position increase beyond 40 MPa, and the material variation in the thickness direction is significant. Become.

Pcm:0.22%以下
Pcm は、溶接時の割れ感受性を示す溶接割れ感受性指標であり、次(2)式
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B……(2)
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(mass%))
で定義される。なお、(2)式を用いてPcm値を計算する場合、含有されない元素は零として計算するものとする。
Pcm: 0.22% or less Pcm is a weld crack susceptibility index indicating crack susceptibility during welding. The following formula (2) Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (2)
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: content of each element (mass%))
Defined by In addition, when calculating Pcm value using (2) Formula, the element which is not contained shall be calculated as zero.

Pcm値が高くなると、溶接時に予熱処理、および/または後熱処理を実施する必要がある。溶接条件や溶接部の拘束条件などによって異なるが、概ねPcm 値を0.22%以下とすることにより、予熱をすることなく溶接施工が可能となる。このため、本発明ではPcm を0.22%以下に限定した。なお、好ましくは、0.20%以下である。   When the Pcm value becomes high, it is necessary to perform pre-heat treatment and / or post-heat treatment at the time of welding. Although it depends on the welding conditions and restraint conditions of the welded part, welding can be performed without preheating by setting the Pcm value to 0.22% or less. For this reason, in the present invention, Pcm is limited to 0.22% or less. In addition, Preferably, it is 0.20% or less.

本発明の高張力薄肉鋼板は、上記した成分を基本成分とするが、更に、必要に応じて、Cu:0.03〜1%、Ni:0.03〜2%、Cr:0.05〜1%、V:0.01〜0.1%、Nb:0.005〜0.1%、Ti:0.005〜0.05%、B:0.0002〜0.0050%のうちの1種または2種以上、および/または、Ca:0.0002〜0.0050%、REM:0.0002〜0.0050%のうちの1種または2種を含有してもよい。
Cu、Ni、Cr、V、Nb、Ti、Bはいずれも、鋼板の強度を向上させる元素であり、必要に応じて、選択して1種又は2種以上を含有できる。
Cu:0.03〜1%
Cuは、靭性を低下させずに強度を向上させる有効な元素であり、このような効果を得るためには、0.03%以上の含有を必要とする。一方、1%を超える含有は、熱間圧延時に表面疵を多発させる。このため、Cuは0.03〜1%に限定することが好ましい。
The high-strength thin steel plate of the present invention has the above-described components as basic components, and, if necessary, Cu: 0.03 to 1%, Ni: 0.03 to 2%, Cr: 0.05 to 1%, V: 0.01 -0.1%, Nb: 0.005-0.1%, Ti: 0.005-0.05%, B: One or more of 0.0002-0.0050%, and / or Ca: 0.0002-0.0050%, REM: 0.0002-0.0050 1 type or 2 types of% may be contained.
Cu, Ni, Cr, V, Nb, Ti, and B are all elements that improve the strength of the steel sheet, and can be selected to contain one or more as required.
Cu: 0.03-1%
Cu is an effective element that improves the strength without reducing toughness. In order to obtain such an effect, it is necessary to contain 0.03% or more. On the other hand, the content exceeding 1% frequently causes surface defects during hot rolling. For this reason, it is preferable to limit Cu to 0.03 to 1%.

Ni:0.03〜2%
Niは、靭性を低下させずに強度を向上させる有効な元素であり、このような効果を得るためには、0.03%以上の含有を必要とする。一方、2.0%を超える含有は、効果が飽和し含有量に見合う効果が期待できず経済的に不利となる。このため、Niは0.03〜2%の範囲に限定することが好ましい。
Ni: 0.03-2%
Ni is an effective element that improves strength without reducing toughness, and in order to obtain such an effect, it needs to be contained in an amount of 0.03% or more. On the other hand, if the content exceeds 2.0%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to limit Ni to 0.03 to 2% of range.

Cr:0.05〜1%
Crは、合金コストを著しく上昇させることなく、強度を向上させる有効な元素であり、このような効果を得るためには、0.05%以上の含有を必要とする。一方、1%を超える含有は、溶接性を低下させる。このため、Crは0.05〜1%の範囲に限定することが好ましい。
Cr: 0.05 to 1%
Cr is an effective element that improves the strength without significantly increasing the alloy cost. In order to obtain such an effect, it is necessary to contain 0.05% or more. On the other hand, the content exceeding 1% reduces weldability. For this reason, Cr is preferably limited to a range of 0.05 to 1%.

V:0.01〜0.1%
Vは、析出強化により鋼板の強度を向上させる有効な元素であり、このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.1%を超える含有は、溶接性を低下させる。このため、Vは0.01〜0.1%の範囲に限定することが好ましい。
Nb:0.005〜0.1%
Nbは、析出強化により鋼板の強度を向上させる有効な元素であり、このような効果を得るためには、0.005%以上の含有を必要とする。一方、0.1%を超える含有は、溶接性を低下させる。このめ、Nbは0.005〜0.1%の範囲に限定することが好ましい。
V: 0.01 to 0.1%
V is an effective element for improving the strength of the steel sheet by precipitation strengthening, and in order to obtain such an effect, the content of 0.01% or more is required. On the other hand, if the content exceeds 0.1%, weldability decreases. For this reason, it is preferable to limit V to the range of 0.01 to 0.1%.
Nb: 0.005-0.1%
Nb is an effective element that improves the strength of the steel sheet by precipitation strengthening, and in order to obtain such an effect, the Nb content needs to be 0.005% or more. On the other hand, if the content exceeds 0.1%, weldability decreases. For this reason, Nb is preferably limited to a range of 0.005 to 0.1%.

Ti:0.005〜0.05%
Tiは、析出強化により鋼板の強度を向上させるとともに、固溶Nを固定し、溶接熱影響部靭性を改善するために有効な元素であり、このためには、0.005%以上の含有を必要とする。一方、0.05%を超えて過剰に含有すると、溶接熱影響部靭性が低下する。このため、Tiは0.005〜0.05%の範囲に限定することが好ましい。
Ti: 0.005-0.05%
Ti is an element effective for improving the strength of the steel sheet by precipitation strengthening, fixing solute N, and improving the toughness of the heat affected zone. For this purpose, it needs to contain 0.005% or more. To do. On the other hand, if it exceeds 0.05% and contains excessively, the weld heat-affected zone toughness decreases. For this reason, Ti is preferably limited to a range of 0.005 to 0.05%.

B:0.0002〜0.0050%
Bは、極微量の含有で焼入れ性を向上させ、それにより鋼板の強度を向上させる有効な元素であり、このような効果を得るためには、0.0002%以上の含有を必要とする。一方、0.0050%を超えて含有すると、溶接性が低下する。このため、Bは0.0002〜0.0050%の範囲に限定することが好ましい。
B: 0.0002-0.0050%
B is an effective element that improves the hardenability and thereby improves the strength of the steel sheet by containing a trace amount, and in order to obtain such an effect, the content of 0.0002% or more is required. On the other hand, when it contains exceeding 0.0050%, weldability will fall. For this reason, it is preferable to limit B to the range of 0.0002 to 0.0050%.

また、Ca、REMは、板厚方向の延性、溶接熱影響部靭性を改善する元素であり、必要に応じて選択して1種または2種を含有できる。
Ca:0.0002〜0.0050%
Caは、Sを固定することにより、MnSの生成を抑制して、板厚方向の絞り特性を改善したり、また、溶接熱影響部靭性を改善する効果も有する。このような効果を得るためには、0.0002%以上の含有を必要とする。一方、0.0050%を超える過剰の含有は、母材靭性を低下させる。したがって、Caは0.0002〜0.0050%の範囲に限定することが好ましい。
Ca and REM are elements that improve ductility in the thickness direction and weld heat-affected zone toughness, and can be selected as necessary to contain one or two kinds.
Ca: 0.0002 to 0.0050%
By fixing S, Ca has the effect of suppressing the formation of MnS, improving the drawing characteristics in the thickness direction, and improving the weld heat affected zone toughness. In order to acquire such an effect, 0.0002% or more needs to be contained. On the other hand, an excessive content exceeding 0.0050% lowers the base metal toughness. Therefore, Ca is preferably limited to a range of 0.0002 to 0.0050%.

REM:0.0002〜0.0050%
REMは、Sを固定することにより、MnSの生成を抑制して、板厚方向の絞り特性を改善したり、また、溶接熱影響部靭性を改善する効果も有する。このような効果を得るためには、0.0002%以上の含有を必要とする。一方、0.0050%を超える過剰の含有は、母材靭性を低下させる。したがって、REMは0.0002〜0.0050%の範囲に限定することが好ましい。
REM: 0.0002 to 0.0050%
REM fixes S to suppress the generation of MnS, thereby improving the drawing characteristics in the thickness direction, and also has the effect of improving the weld heat affected zone toughness. In order to acquire such an effect, 0.0002% or more needs to be contained. On the other hand, an excessive content exceeding 0.0050% lowers the base metal toughness. Therefore, REM is preferably limited to a range of 0.0002 to 0.0050%.

上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、O:0.01%以下、Zr:0.01%以下、Co:0.01%以下、Sn:0.01%以下、Pb:0.01%以下、Sb:0.01%以下が許容できる。
本発明の高張力薄肉鋼板は、上記した組成を有し、さらに、板厚方向中央部の組織が、フェライトを主相とし、20体積%以下の硬質相を含む複合組織を有する。なお、板厚方向中央部とは、表層部分を除く範囲、すなわち板厚の1/4〜1/2の領域をいうものとする。
The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include O: 0.01% or less, Zr: 0.01% or less, Co: 0.01% or less, Sn: 0.01% or less, Pb: 0.01% or less, and Sb: 0.01% or less.
The high-tensile thin steel plate of the present invention has the above-described composition, and further, the structure in the central part in the thickness direction has a composite structure including ferrite as a main phase and a hard phase of 20% by volume or less. The central portion in the thickness direction means a range excluding the surface layer portion, that is, a region of 1/4 to 1/2 of the thickness.

鋼板の板厚方向中央部組織を、軟質相であるフェライト相を主相とすることにより、低降伏比を有する鋼板となる。なお、主相とは体積%で50%以上を含む相を云うものとする。そして、20体積%以下の硬質相を含むことにより、所望の高強度を確保することができる。なお、硬質相は、10体積%以下のMA相(MA相:島状マルテンサイトの略)を主とし、残りはパーライトおよび/またはベイナイトを含む相とすることが好ましい。MoおよびWはこの硬質相の硬度上昇に顕著に寄与する。   A steel sheet having a low yield ratio is obtained by using a ferrite phase, which is a soft phase, as a main phase in the thickness direction central structure of the steel sheet. The main phase is a phase containing 50% or more by volume. And desired high intensity | strength is securable by including a hard phase below 20 volume%. In addition, it is preferable that the hard phase is mainly a MA phase (MA phase: an abbreviation for island martensite) of 10% by volume or less, and the rest is a phase containing pearlite and / or bainite. Mo and W contribute significantly to the hardness increase of the hard phase.

なお、鋼板中央部以外の表層では、冷却に際し当初は急冷され、ベイナイト相が形成され、硬度が上昇するが、本発明では、一次冷却後の空冷による復熱で、表層は焼戻されることになる。このため、表層の硬度が低下し、降伏比も低下する。本発明の高張力薄肉鋼板では、表層の硬さは、300HV10以下とすることが低降伏比化の観点からも好ましい。なお、本発明でいう表層とは、中央部以外の領域で、概ね、表面から板厚方向に2mm以内の範囲をいうものとする。   Incidentally, in the surface layer other than the central part of the steel plate, it is rapidly cooled at the time of cooling, a bainite phase is formed and the hardness is increased, but in the present invention, the surface layer is tempered by recuperation by air cooling after primary cooling. Become. For this reason, the hardness of a surface layer falls and a yield ratio also falls. In the high-tensile thin steel plate of the present invention, the hardness of the surface layer is preferably 300 HV10 or less from the viewpoint of lowering the yield ratio. In addition, the surface layer as used in the field of this invention is an area | region except a center part, and shall mean the range within 2 mm from the surface in the plate | board thickness direction.

つぎに、本発明の高張力厚鋼板の製造方法について説明する。
上記した組成の溶鋼を、転炉等の常用の溶製炉で溶製し、連続鋳造法や、造塊−分塊法等の常用の方法で、スラブ(鋼素材)とする。ついで、鋼素材に、熱間圧延と、該熱間圧延後直ちに加速冷却する冷却処理とを施し、薄肉鋼板とする。
熱間圧延は、圧延終了温度が表面で800〜950℃の範囲の温度となる圧延とする。
Below, the manufacturing method of the high-tensile thick steel plate of this invention is demonstrated.
The molten steel having the above composition is melted in a conventional melting furnace such as a converter, and is made into a slab (steel material) by a conventional method such as a continuous casting method or an ingot-bundling method. Next, the steel material is subjected to hot rolling and a cooling process for accelerated cooling immediately after the hot rolling to obtain a thin steel plate.
Hot rolling is rolling in which the rolling end temperature is a temperature in the range of 800 to 950 ° C on the surface.

熱間圧延の加熱温度は、とくに限定する必要はないが、1050〜1250℃の範囲の温度に加熱することが好ましい。加熱温度が1050℃未満では、変形抵抗が大きくなり、圧延機負荷が増大する。一方、1250℃を超えると、熱間圧延時に表面疵が発生しやすくなる。そのため、加熱温度は1050〜1250℃の範囲の温度とするのが望ましい。
熱間圧延の圧延終了温度は、表面で800〜950℃の範囲の温度とする。圧延終了温度が800℃未満では、所望の強度が確保できず、一方、950℃を超える温度では、鋼板の母材靭性が低下する。このため、熱間圧延の圧延終了温度は、表面で800〜950℃の範囲の温度に限定した。なお、好ましくは800〜900℃である。
The heating temperature for hot rolling is not particularly limited, but is preferably heated to a temperature in the range of 1050 to 1250 ° C. When the heating temperature is less than 1050 ° C., the deformation resistance increases and the rolling mill load increases. On the other hand, if it exceeds 1250 ° C., surface flaws are likely to occur during hot rolling. Therefore, the heating temperature is desirably a temperature in the range of 1050 to 1250 ° C.
The rolling end temperature of the hot rolling is a temperature in the range of 800 to 950 ° C on the surface. If the rolling end temperature is less than 800 ° C, the desired strength cannot be ensured. On the other hand, if the temperature exceeds 950 ° C, the base material toughness of the steel sheet decreases. For this reason, the rolling end temperature of hot rolling was limited to a temperature in the range of 800 to 950 ° C. on the surface. In addition, Preferably it is 800-900 degreeC.

冷却処理は、平均冷却速度で10℃/s以上の冷却速度で板厚中心部が750〜650℃の範囲の温度となる一次冷却停止温度まで加速冷却する一次冷却と、ついで2〜10s間の空冷と、ついで平均冷却速度で10℃/s以上の冷却速度で加速冷却し、板厚中心部が500〜650℃の範囲の温度となる二次冷却停止温度で加速冷却を停止する二次冷却とからなる処理とする。なお、平均冷却速度とは、板厚1/4t位置における冷却速度で定義される値である。   The cooling process includes primary cooling that accelerates cooling to a primary cooling stop temperature at an average cooling rate of 10 ° C./s or higher to a temperature in the center of the plate thickness ranging from 750 to 650 ° C., and then between 2 and 10 seconds. Air cooling, followed by accelerated cooling at an average cooling rate of 10 ° C / s or higher, and secondary cooling that stops accelerated cooling at the secondary cooling stop temperature at which the center of the plate thickness is in the range of 500 to 650 ° C The process consisting of The average cooling rate is a value defined by the cooling rate at the position where the thickness is 1/4 t.

加速冷却における冷却速度は、鋼板を均一に冷却する観点からは速いほうが好ましく、平均冷却速度で、10℃/s以上とする。平均冷却速度が10℃/s未満では、冷却が不均一になる傾向が強くなり、冷却歪や残留応力の発生が大きくなり、形状不良や、鋼板をガス切断する際に条切りキャンバーが発生する危険性が高くなる。
また、一次冷却停止温度は、板厚中心部が750〜650℃の範囲となる温度とする。一次冷却停止温度が750℃を超えて高い場合には、所望の引張強さが確保できなくなる。一方、一次冷却停止温度が650℃未満では、降伏比が80%を超え、所望の低降伏比が確保できなくなる。このため、一次冷却停止温度は、750〜650℃の範囲内の温度に限定した。
The accelerated cooling rate is preferably higher from the viewpoint of uniformly cooling the steel sheet, and the average cooling rate is 10 ° C./s or more. When the average cooling rate is less than 10 ° C / s, the tendency for non-uniform cooling becomes strong, the generation of cooling strain and residual stress increases, and the shape defect and the cutting camber occur when gas cutting the steel sheet. Increased risk.
Further, the primary cooling stop temperature is a temperature at which the central portion of the plate thickness is in the range of 750 to 650 ° C. When the primary cooling stop temperature is higher than 750 ° C., the desired tensile strength cannot be secured. On the other hand, if the primary cooling stop temperature is less than 650 ° C., the yield ratio exceeds 80%, and a desired low yield ratio cannot be ensured. For this reason, the primary cooling stop temperature was limited to a temperature within the range of 750 to 650 ° C.

また、一次冷却停止後の空冷時間は、2〜10sの範囲とした。空冷時間が2s未満では、表層付近がベイナイト化して硬度が上昇し、降伏比が80%を超え、一方、空冷時間が10sを超えて長くなると、過度にフェライト変態が進行して強度低下が生じ、所望の引張強さが確保しにくくなる。このため、一次冷却停止後の空冷時間は2〜10sの範囲に限定した。   The air cooling time after stopping the primary cooling was in the range of 2 to 10 s. If the air cooling time is less than 2 s, the surface layer becomes bainite and the hardness increases, and the yield ratio exceeds 80%. On the other hand, if the air cooling time exceeds 10 s, the ferrite transformation proceeds excessively and the strength decreases. It becomes difficult to ensure the desired tensile strength. For this reason, the air cooling time after the primary cooling stop was limited to the range of 2 to 10 s.

また、二次冷却停止温度は、板厚中心部が500〜650℃の範囲内となる温度とする。二次冷却停止温度が650℃を超えて高くなると、強度が低下して所望の引張強さが確保できなくなる。一方、二次冷却停止温度が500℃未満では、降伏比が80%を超え、所望の低降伏比が確保できなくなる。このため、二次冷却停止温度は、板厚中心部が500〜650℃の範囲となる温度に限定した。なお、ガス切断時の条切りキャンバーの原因となる残留応力を軽減するためにも、二次冷却停止温度は、500℃以上の高温とすることが望ましい。   Further, the secondary cooling stop temperature is set to a temperature at which the central portion of the plate thickness is in the range of 500 to 650 ° C. When the secondary cooling stop temperature is higher than 650 ° C., the strength is lowered and the desired tensile strength cannot be secured. On the other hand, if the secondary cooling stop temperature is less than 500 ° C., the yield ratio exceeds 80%, and a desired low yield ratio cannot be ensured. For this reason, the secondary cooling stop temperature was limited to a temperature at which the thickness center portion is in the range of 500 to 650 ° C. It should be noted that the secondary cooling stop temperature is preferably set to a high temperature of 500 ° C. or higher in order to reduce residual stress that causes a cutting camber during gas cutting.

本発明における加速冷却は、鋼板の冷却速度を所望の範囲に制御する必要がある。冷却速度制御法としては、水量密度を調整する方法、強冷却と空冷とを複数回繰り返す方法、強冷却と弱冷却を繰り返す方法など、が挙げられるが、何れの方法を用いても、本発明の効果を損なうことはない。なお、加速冷却後の鋼板の冷却歪や残留応力を軽減するためには、1.5ton/m2/min以上の水量密度の強冷却と空冷とを複数回繰り返すことにより、平均冷却速度を制御する方法が最も望ましい。なお、加速冷却を停止後は空冷とすることが好ましい。 In the accelerated cooling in the present invention, it is necessary to control the cooling rate of the steel sheet within a desired range. Examples of the cooling rate control method include a method of adjusting water density, a method of repeating strong cooling and air cooling a plurality of times, a method of repeating strong cooling and weak cooling, and the like. There is no loss of effect. In order to reduce the cooling strain and residual stress of the steel sheet after accelerated cooling, the average cooling rate is controlled by repeating strong cooling and air cooling with a water density of 1.5 ton / m 2 / min or more multiple times. The method is most desirable. In addition, it is preferable to set it as air cooling after stopping accelerated cooling.

(実施例1)
表1に示した組成を有する鋼素材に、表2に示す条件で熱間圧延、および冷却処理(二次冷却停止後空冷)を施し、表2に示す板厚の薄肉鋼板とした。
得られた薄肉鋼板について、組織観察、引張試験、シャルピー衝撃試験、硬さ試験、y形溶接割れ試験を実施し、組織、引張特性、靭性、硬さ、および溶接割れ性を調査した。試験方法は次の通りとした。
Example 1
The steel material having the composition shown in Table 1 was subjected to hot rolling and cooling treatment (air cooling after stopping secondary cooling) under the conditions shown in Table 2 to obtain a thin steel plate having the thickness shown in Table 2.
The obtained thin steel plate was subjected to a structure observation, a tensile test, a Charpy impact test, a hardness test, and a y-type weld cracking test to investigate the structure, tensile properties, toughness, hardness, and weld cracking property. The test method was as follows.

(1)組織観察
得られた薄肉鋼板から組織観察用試験片を採取し、L方向断面を研磨、ナイタールで腐食し、板厚1/4t位置について、走査型電子顕微鏡で断面組織を5視野以上観察し、撮像して、画像解析により組織分率を求めた。
(2)引張試験
得られた薄肉鋼板から、JIS Z 2201の規定に準拠して、JIS 5号試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張り強さTS、降伏比YR)を求めた。
(1) Microstructure observation A specimen for microstructural observation is collected from the obtained thin steel plate, the cross section in the L direction is polished, corroded with nital, and the cross sectional structure is observed with a scanning electron microscope at a thickness of 1/4 t or more in 5 views or more. Observation, imaging, and tissue fraction were determined by image analysis.
(2) Tensile test JIS No. 5 test piece was collected from the thin steel plate obtained in accordance with the provisions of JIS Z 2201, and subjected to a tensile test in accordance with the provisions of JIS Z 2241. Strength YS, tensile strength TS, yield ratio YR).

(3)シャルピー衝撃試験
得られた薄肉鋼板の板厚1/4t位置から、JIS Z 2242の規定に準拠して、Vノッチ試験片を採取し、シャルピー衝撃試験を実施し、0℃における吸収エネルギーvE0(J)および破面遷移温度vTrs(℃)を求めた。
(4)硬さ試験
得られた薄肉鋼板から、硬さ試験片を採取し、板厚断面について板厚方向にビッカース硬さ計(荷重:98N)を用いて、断面硬さ分布を求め、表面下1mm位置の硬さを求めた。
(3) Charpy impact test V-notch test specimens were collected from the position of 1 / 4t thickness of the obtained thin steel plate in accordance with the provisions of JIS Z 2242, Charpy impact test was conducted, and the absorbed energy at 0 ° C vE 0 (J) and fracture surface transition temperature vTrs (° C.) were determined.
(4) Hardness test From the thin steel plate obtained, a hardness test piece was collected, and the cross-sectional hardness distribution was determined using a Vickers hardness tester (load: 98N) in the thickness direction for the thickness cross section. The hardness at the lower 1 mm position was determined.

(5)y形溶接割れ試験
得られた薄肉鋼板から、JIS Z 3158に準拠して採取したy形溶接割れ試験片を用いて、25℃において、溶接割れ試験を実施し、割れの有無を調査した。
得られた結果を表3に示す。
(5) y-type weld crack test Using the y-type weld crack test piece collected in accordance with JIS Z 3158 from the obtained thin steel plate, conduct a weld crack test at 25 ° C to investigate the presence of cracks. did.
The obtained results are shown in Table 3.

Figure 2007177326
Figure 2007177326

Figure 2007177326
Figure 2007177326

Figure 2007177326
Figure 2007177326

Figure 2007177326
Figure 2007177326

Figure 2007177326
Figure 2007177326

本発明例はいずれも、引張強さTSが590MPa以上、降伏比YRが80%以下を満足する、低降伏比を有する高張力薄肉鋼板となっており、しかもvE0が100J以上と良好な靭性を有し、さらに、25℃におけるy形溶接割れ試験においても割れは発生しておらず、優れた溶接性(溶接割れ性)を有している。一方、本発明の範囲を外れる比較例は、強度が不足しているか、降伏比が80%を上回っているか、靭性が低下しているか、または、25℃において溶接割れが発生している。 Each of the inventive examples is a high-strength thin steel plate having a low yield ratio that satisfies a tensile strength TS of 590 MPa or more and a yield ratio YR of 80% or less, and has a good toughness of vE 0 of 100 J or more. Furthermore, no cracks were generated in the y-type weld cracking test at 25 ° C., and excellent weldability (weld cracking property) was obtained. On the other hand, in comparative examples that are out of the scope of the present invention, the strength is insufficient, the yield ratio exceeds 80%, the toughness is reduced, or weld cracks occur at 25 ° C.

(実施例2)
表4に示した組成を有する鋼素材に、表5に示す条件で熱間圧延、および冷却処理(二次冷却停止後空冷)を施し、表5に示す板厚の薄肉鋼板とした。
得られた薄肉鋼板について、組織観察、引張試験、シャルピー衝撃試験、y形溶接割れ試験を実施し、組織、引張特性、靭性、および溶接割れ性を調査した。試験方法は実施例1と同様に、次の通りとした。
(Example 2)
The steel material having the composition shown in Table 4 was subjected to hot rolling and cooling treatment (air cooling after stopping the secondary cooling) under the conditions shown in Table 5 to obtain a thin steel plate having the thickness shown in Table 5.
The obtained thin steel plate was subjected to a structure observation, a tensile test, a Charpy impact test, and a y-type weld cracking test to investigate the structure, tensile properties, toughness, and weld cracking property. The test method was as follows as in Example 1.

(1)組織観察
得られた薄肉鋼板から組織観察用試験片を採取し、L方向断面を研磨、ナイタールで腐食し、板厚1/4t位置について、走査型電子顕微鏡で断面組織を5視野以上観察し、撮像して、画像解析により組織分率を求めた。
(2)引張試験
得られた薄肉鋼板の全厚位置からJIS 5号試験片(全厚)を、板厚1/2t位置からJIS 4号試験片を、それぞれ、JIS Z 2201の規定に準拠して採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張り強さTS、降伏比YR)を求めた。
(1) Microstructure observation A specimen for microstructural observation is collected from the obtained thin steel plate, the cross section in the L direction is polished, corroded with nital, and the cross sectional structure is observed with a scanning electron microscope at a thickness of 1/4 t or more by 5 fields Observation, imaging, and tissue fraction were determined by image analysis.
(2) Tensile test JIS No. 5 test piece (full thickness) from the full thickness position of the thin steel plate obtained, and JIS No. 4 test piece from the half thickness position, respectively, in accordance with the provisions of JIS Z 2201. Tensile tests were conducted in accordance with the provisions of JIS Z 2241 to determine tensile properties (yield strength YS, tensile strength TS, yield ratio YR).

(3)シャルピー衝撃試験
得られた薄肉鋼板の板厚1/4t位置、板厚1/2t位置からそれぞれ、JIS Z 2242の規定に準拠して、Vノッチ試験片を採取し、シャルピー衝撃試験を実施し、0℃における吸収エネルギーvE0(J)および破面遷移温度vTrs(℃)を求めた。
(4)y形溶接割れ試験
得られた薄肉鋼板から、JIS Z 3158に準拠して採取したy形溶接割れ試験片を用いて、25℃において、溶接割れ試験を実施し、割れの有無を調査した。
(3) Charpy impact test V-notch specimens were sampled from the obtained thin steel plate thickness 1 / 4t position and plate thickness 1 / 2t position in accordance with JIS Z 2242, and Charpy impact test was conducted. The absorption energy vE 0 (J) at 0 ° C. and the fracture surface transition temperature vTrs (° C.) were determined.
(4) y-type weld crack test Using the y-type weld crack test specimen collected from the thin steel plate obtained in accordance with JIS Z 3158, a weld crack test was conducted at 25 ° C to check for cracks. did.

得られた結果を表5に示す。   The results obtained are shown in Table 5.

Figure 2007177326
Figure 2007177326

Figure 2007177326
Figure 2007177326

Figure 2007177326
Figure 2007177326

Figure 2007177326
Figure 2007177326

Figure 2007177326
Figure 2007177326

Figure 2007177326
Figure 2007177326

本発明例はいずれも、引張強さTSが590MPa以上、降伏比YRが80%以下を満足する低降伏比を有する高張力薄肉鋼板となっており、しかもvE0が100J以上と良好な靭性を有し、さらに、25℃におけるy形溶接割れ試験においても割れは発生しておらず、優れた溶接性(溶接割れ性)を有している。さらに、C含有量が本発明の好適範囲内の本発明例では、全厚位置と板厚1/2t位置との強度差ΔYS、ΔTSがいずれも40MPa以下の板厚方向の材質変動が小さい高張力薄肉鋼板となっている。なお、C又は(Mo+W/2)量が本発明の好適範囲を外れる本発明例(鋼板No.2-52〜2-60)では、ΔYS、ΔTSが40MPaを超え、板厚方向の材質変動が大きくなっている。一方、本発明の範囲を外れる比較例は、強度が不足しているか、降伏比が80%を上回っているか、靭性が低下しているか、または、25℃において溶接割れが発生している。 Each of the inventive examples is a high-strength thin steel plate having a low yield ratio that satisfies a tensile strength TS of 590 MPa or more and a yield ratio YR of 80% or less, and has a good toughness of vE 0 of 100 J or more. Furthermore, no cracks are generated in the y-type weld cracking test at 25 ° C., and it has excellent weldability (weld cracking property). Further, in the present invention example in which the C content is within the preferred range of the present invention, the strength difference ΔYS, ΔTS between the full thickness position and the thickness 1/2 t position is both 40 MPa or less, and the material variation in the thickness direction is small. It is a tension thin wall steel plate. In the present invention example (steel plate No. 2-52 to 2-60) in which the amount of C or (Mo + W / 2) is outside the preferred range of the present invention, ΔYS and ΔTS exceed 40 MPa, and the material variation in the thickness direction is It is getting bigger. On the other hand, in comparative examples that are out of the scope of the present invention, the strength is insufficient, the yield ratio exceeds 80%, the toughness is reduced, or weld cracks occur at 25 ° C.

引張強さTS、降伏強さYS、降伏比YRと(Mo+W/2)量との関係を示すグラフである。It is a graph which shows the relationship between tensile strength TS, yield strength YS, yield ratio YR, and (Mo + W / 2) amount. 引張強さTS、降伏強さYS、降伏比YRと一次冷却停止温度との関係を示すグラフである。6 is a graph showing the relationship between tensile strength TS, yield strength YS, yield ratio YR, and primary cooling stop temperature. 引張強さTS、降伏強さYS、降伏比YRと空冷時間との関係を示すグラフである。5 is a graph showing the relationship between tensile strength TS, yield strength YS, yield ratio YR and air cooling time. 引張強さTS、降伏強さYS、降伏比YRと二次冷却停止温度との関係を示すグラフである。6 is a graph showing the relationship between tensile strength TS, yield strength YS, yield ratio YR, and secondary cooling stop temperature. 引張強さTS、降伏強さYS、降伏比YR、およびΔYS,ΔTSと(Mo+W/2)量との関係を示すグラフである。It is a graph which shows the relationship between tensile strength TS, yield strength YS, yield ratio YR, and ΔYS, ΔTS and the amount of (Mo + W / 2). 引張強さTS、降伏強さYS、降伏比YR、およびΔYS,ΔTSとC量との関係を示すグラフである。It is a graph which shows the relationship between tensile strength TS, yield strength YS, yield ratio YR, and ΔYS, ΔTS and the amount of C.

Claims (8)

mass%で、
C:0.045〜0.18%、 Si:0.05〜0.50%、
Mn:0.6〜2.0%、 P:0.020%以下、
S:0.005%以下、 Al:0.1%以下、
N:0.0060%以下
を含み、さらにMoおよび/またはWを下記(1)式を満足するように含有し、残部Feおよび不可避的不純物からなり、かつ下記(2)式で示される溶接割れ感受性指標Pcmが0.22%以下である組成を有し、板厚方向中央部の組織が、フェライトを主相とし、20体積%以下の硬質相を含む複合組織であることを特徴とする低降伏比を有する高張力薄肉鋼板。

0.08≦ Mo+W/2 ≦0.70 ……(1)
ここで、Mo、W:各元素の含有量(mass%)
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B……(2)
ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(mass%)
mass%
C: 0.045 to 0.18%, Si: 0.05 to 0.50%,
Mn: 0.6 to 2.0%, P: 0.020% or less,
S: 0.005% or less, Al: 0.1% or less,
N: 0.0060% or less, Mo and / or W are contained so as to satisfy the following formula (1), the balance is Fe and inevitable impurities, and the weld cracking sensitivity index represented by the following formula (2) It has a composition with Pcm of 0.22% or less, and has a low yield ratio characterized in that the structure in the central part in the thickness direction is a composite structure containing ferrite as the main phase and a hard phase of 20% by volume or less. High tensile thin steel plate.
Record
0.08 ≦ Mo + W / 2 ≦ 0.70 (1)
Where Mo, W: content of each element (mass%)
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (2)
Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: Content of each element (mass%)
mass%で、
C:0.045〜0.08%、 Si:0.05〜0.50%、
Mn:0.6〜2.0%、 P:0.020%以下、
S:0.005%以下、 Al:0.1%以下、
N:0.0060%以下
を含み、さらにMoおよび/またはWを下記(1a)式を満足するように含有し、残部Feおよび不可避的不純物からなり、かつ下記(2)式で示される溶接割れ感受性指標Pcmが0.22%以下である組成を有し、板厚方向中央部の組織が、フェライトを主相とし、20体積%以下の硬質相を含む複合組織であることを特徴とする低降伏比を有し、かつ板厚方向の材質変動の小さい高張力薄肉鋼板。

0.08≦ Mo+W/2 ≦0.20 ……(1a)
ここで、Mo、W:各元素の含有量(mass%)
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B……(2)
ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(mass%)
mass%
C: 0.045 to 0.08%, Si: 0.05 to 0.50%,
Mn: 0.6 to 2.0%, P: 0.020% or less,
S: 0.005% or less, Al: 0.1% or less,
N: containing 0.0060% or less, further containing Mo and / or W so as to satisfy the following formula (1a), the balance consisting of Fe and inevitable impurities, and a weld cracking sensitivity index represented by the following formula (2) It has a composition with Pcm of 0.22% or less, and has a low yield ratio characterized in that the structure in the center in the thickness direction is a composite structure containing ferrite as the main phase and 20% by volume or less of the hard phase. A high-strength thin steel plate with little material fluctuation in the thickness direction.
Record
0.08 ≦ Mo + W / 2 ≦ 0.20 (1a)
Where Mo, W: content of each element (mass%)
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (2)
Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: Content of each element (mass%)
前記組成に加えてさらに、mass%で、Cu:0.03〜1%、Ni:0.03〜2%、Cr:0.05〜1%、V:0.01〜0.1%、Nb:0.005〜0.1%、Ti:0.005〜0.05%、B:0.0002〜0.0050%のうちの1種または2種以上を含有する組成とすることを特徴とする請求項1または2に記載の高張力薄肉鋼板。   In addition to the above composition, it is also mass%, Cu: 0.03 to 1%, Ni: 0.03 to 2%, Cr: 0.05 to 1%, V: 0.01 to 0.1%, Nb: 0.005 to 0.1%, Ti: 0.005 to The high-tension thin-walled steel sheet according to claim 1 or 2, characterized in that the composition contains one or more of 0.05% and B: 0.0002 to 0.0050%. 前記組成に加えてさらに、mass%で、Ca:0.0002〜0.0050%、REM :0.0002〜0.0050%のうちの1種または2種を含有する組成とすることを特徴とする請求項1ないし3のいずれかに記載の高張力薄肉鋼板。   The composition according to any one of claims 1 to 3, wherein in addition to the composition, the composition further includes one or two of Ca: 0.0002 to 0.0050% and REM: 0.0002 to 0.0050% in mass%. The high-tensile thin-walled steel sheet according to crab. 鋼素材に、熱間圧延と、該熱間圧延後直ちに加速冷却する冷却処理とを施し、鋼板とするに当り、前記鋼素材を、mass%で、
C:0.045〜0.18%、 Si:0.05〜0.50%、
Mn:0.6〜2.0%、 P:0.020%以下、
S:0.005%以下、 Al:0.1%以下、
N:0.0060%以下
を含み、さらにMoおよび/またはWを下記(1)式を満足するように含有し、残部Feおよび不可避的不純物からなり、かつ下記(2)式で示される溶接割れ感受性指標Pcmが0.22%以下である組成を有する鋼素材とし、
前記熱間圧延を、圧延終了温度が表面で800〜950℃の範囲の温度となる熱間圧延とし、
前記冷却処理を、平均冷却速度で10℃/s以上の冷却速度で板厚中心部が750〜650℃の範囲の温度となる一次冷却停止温度まで加速冷却する一次冷却と、ついで2〜10s間の空冷と、ついで平均冷却速度で10℃/s以上の冷却速度で加速冷却し、板厚中心部が500〜650℃の範囲の温度となる二次冷却停止温度で加速冷却を停止する二次冷却とからなる処理とすることを特徴とする低降伏比を有する高張力薄肉鋼板の製造方法。

0.08≦ Mo+W/2 ≦0.70 ……(1)
ここで、Mo、W:各元素の含有量(mass%)
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B……(2)
ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(mass%)
The steel material is subjected to hot rolling and a cooling treatment that is accelerated and cooled immediately after the hot rolling, and when making a steel plate, the steel material is mass%,
C: 0.045 to 0.18%, Si: 0.05 to 0.50%,
Mn: 0.6 to 2.0%, P: 0.020% or less,
S: 0.005% or less, Al: 0.1% or less,
N: 0.0060% or less, Mo and / or W are contained so as to satisfy the following formula (1), the balance is Fe and inevitable impurities, and the weld cracking sensitivity index represented by the following formula (2) A steel material having a composition with a Pcm of 0.22% or less,
The hot rolling is hot rolling in which the rolling end temperature is a temperature in the range of 800 to 950 ° C on the surface,
The above cooling process is accelerated at an average cooling rate of 10 ° C./s or more to a primary cooling stop temperature at which the central portion of the plate thickness reaches a temperature in the range of 750 to 650 ° C., and then for 2 to 10 seconds. Air cooling, followed by accelerated cooling at an average cooling rate of 10 ° C / s or higher and secondary cooling to stop the accelerated cooling at the secondary cooling stop temperature at which the center of the plate thickness is in the range of 500 to 650 ° C A method for producing a high-strength thin steel plate having a low yield ratio, characterized in that the treatment comprises cooling.
Record
0.08 ≦ Mo + W / 2 ≦ 0.70 (1)
Where Mo, W: content of each element (mass%)
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (2)
Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: Content of each element (mass%)
鋼素材に、熱間圧延と、該熱間圧延後直ちに加速冷却する冷却処理とを施し、鋼板とするに当り、前記鋼素材を、mass%で、
C:0.045〜0.08%、 Si:0.05〜0.50%、
Mn:0.6〜2.0%、 P:0.020%以下、
S:0.005%以下、 Al:0.1%以下、
N:0.0060%以下
を含み、さらにMoおよび/またはWを下記(1a)式を満足するように含有し、残部Feおよび不可避的不純物からなり、かつ下記(2)式で示される溶接割れ感受性指標Pcmが0.22%以下である組成を有する鋼素材とし、
前記熱間圧延を、圧延終了温度が表面で800〜950℃の範囲の温度となる熱間圧延とし、
前記冷却処理を、平均冷却速度で10℃/s以上の冷却速度で板厚中心部が750〜650℃の範囲の温度となる一次冷却停止温度まで加速冷却する一次冷却と、ついで2〜10s間の空冷と、ついで平均冷却速度で10℃/s以上の冷却速度で加速冷却し、板厚中心部が500〜650℃の範囲の温度となる二次冷却停止温度で加速冷却を停止する二次冷却とからなる処理とすることを特徴とする低降伏比を有し、かつ板厚方向の材質変動の小さい高張力薄肉鋼板の製造方法。

0.08≦ Mo+W/2 ≦0.20 ……(1a)
ここで、Mo、W:各元素の含有量(mass%)
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B……(2)
ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(mass%)
The steel material is subjected to hot rolling and a cooling treatment that is accelerated and cooled immediately after the hot rolling, and when making a steel plate, the steel material is mass%,
C: 0.045 to 0.08%, Si: 0.05 to 0.50%,
Mn: 0.6 to 2.0%, P: 0.020% or less,
S: 0.005% or less, Al: 0.1% or less,
N: containing 0.0060% or less, further containing Mo and / or W so as to satisfy the following formula (1a), the balance consisting of Fe and inevitable impurities, and a weld cracking sensitivity index represented by the following formula (2) A steel material having a composition with a Pcm of 0.22% or less,
The hot rolling is hot rolling in which the rolling end temperature is a temperature in the range of 800 to 950 ° C on the surface,
The above cooling process is accelerated at an average cooling rate of 10 ° C./s or more to a primary cooling stop temperature at which the central portion of the plate thickness reaches a temperature in the range of 750 to 650 ° C., and then for 2 to 10 seconds. Air cooling, followed by accelerated cooling at an average cooling rate of 10 ° C / s or higher and secondary cooling to stop the accelerated cooling at the secondary cooling stop temperature at which the center of the plate thickness is in the range of 500 to 650 ° C A method for producing a high-strength thin steel plate having a low yield ratio and having a small material variation in the thickness direction, characterized in that the treatment comprises cooling.
Record
0.08 ≦ Mo + W / 2 ≦ 0.20 (1a)
Where Mo, W: content of each element (mass%)
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (2)
Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: Content of each element (mass%)
前記鋼素材が、前記組成に加えてさらに、mass%で、Cu:0.03〜1%、Ni:0.03〜2%、Cr:0.05〜1%、V:0.01〜0.1%、Nb:0.005〜0.1%、Ti:0.005〜0.05%、B:0.0002〜0.0050%のうちの1種または2種以上を含有する組成とすることを特徴とする請求項5または6に記載の高張力薄肉鋼板の製造方法。   In addition to the above composition, the steel material is further in mass%, Cu: 0.03-1%, Ni: 0.03-2%, Cr: 0.05-1%, V: 0.01-0.1%, Nb: 0.005-0.1% Ti: 0.005-0.05%, B: It is set as the composition containing 1 type, or 2 or more types in 0.0002-0.0050%, The manufacturing method of the high strength thin-walled steel plate of Claim 5 or 6 characterized by the above-mentioned. 前記鋼素材が、前記組成に加えてさらに、mass%で、Ca:0.0002〜0.0050%、REM:0.0002〜0.0050%のうちの1種または2種を含有する組成とすることを特徴とする請求項5ないし7のいずれかに記載の高張力薄肉鋼板の製造方法。   The steel material further comprises a composition containing at least one of Ca: 0.0002 to 0.0050% and REM: 0.0002 to 0.0050% in mass% in addition to the composition. A method for producing a high-tensile thin steel plate according to any one of 5 to 7.
JP2006316971A 2005-11-30 2006-11-24 High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof Active JP5045074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006316971A JP5045074B2 (en) 2005-11-30 2006-11-24 High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005347079 2005-11-30
JP2005347079 2005-11-30
JP2006316971A JP5045074B2 (en) 2005-11-30 2006-11-24 High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007177326A true JP2007177326A (en) 2007-07-12
JP5045074B2 JP5045074B2 (en) 2012-10-10

Family

ID=38302789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006316971A Active JP5045074B2 (en) 2005-11-30 2006-11-24 High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5045074B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228040A (en) * 2008-03-21 2009-10-08 Jfe Steel Corp Low yield ratio high strength steel plate and method for producing the same
WO2010087512A1 (en) * 2009-01-30 2010-08-05 Jfeスチール株式会社 Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
JP2010174332A (en) * 2009-01-29 2010-08-12 Jfe Steel Corp Non-heat-treated low yield ratio high tensile thick steel plate, and method for producing the same
JP2015214724A (en) * 2014-05-09 2015-12-03 Jfeスチール株式会社 Highly efficient production method of steel plate with excellent collision resistance
JP2016507649A (en) * 2012-12-27 2016-03-10 ポスコ High-strength steel sheet with excellent cryogenic toughness and low yield ratio characteristics and method for producing the same
US9580782B2 (en) 2009-01-30 2017-02-28 Jfe Steel Corporation Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
JP2020509156A (en) * 2016-12-21 2020-03-26 ポスコPosco Low yield ratio type ultra-high strength steel material and its manufacturing method
CN113061816A (en) * 2021-03-25 2021-07-02 德龙钢铁有限公司 Low-carbon boron-added steel for inhibiting precipitation of strip steel tertiary cementite along grain boundary
WO2023170882A1 (en) * 2022-03-10 2023-09-14 Jfeスチール株式会社 Steel sheet production method, trimming device, and production apparatus, rolled steel sheet, coiled material, and blank material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226713A (en) * 2000-02-14 2001-08-21 Nkk Corp Method for producing low yield ratio high tensile strength steel
JP2005264217A (en) * 2004-03-17 2005-09-29 Jfe Steel Kk Thick hot rolled steel plate having excellent hic resistance and its production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226713A (en) * 2000-02-14 2001-08-21 Nkk Corp Method for producing low yield ratio high tensile strength steel
JP2005264217A (en) * 2004-03-17 2005-09-29 Jfe Steel Kk Thick hot rolled steel plate having excellent hic resistance and its production method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228040A (en) * 2008-03-21 2009-10-08 Jfe Steel Corp Low yield ratio high strength steel plate and method for producing the same
JP2010174332A (en) * 2009-01-29 2010-08-12 Jfe Steel Corp Non-heat-treated low yield ratio high tensile thick steel plate, and method for producing the same
US9580782B2 (en) 2009-01-30 2017-02-28 Jfe Steel Corporation Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
CN103276291A (en) * 2009-01-30 2013-09-04 杰富意钢铁株式会社 Heavy gauge, high tensile strength, hot rolled steel sheet with excellent HIC resistance and manufacturing method therefor
WO2010087512A1 (en) * 2009-01-30 2010-08-05 Jfeスチール株式会社 Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
US9809869B2 (en) 2009-01-30 2017-11-07 Jfe Steel Corporation Thick-walled high-strength hot rolled steel sheet having excellent hydrogen induced cracking resistance and manufacturing method thereof
JP2016507649A (en) * 2012-12-27 2016-03-10 ポスコ High-strength steel sheet with excellent cryogenic toughness and low yield ratio characteristics and method for producing the same
JP2015214724A (en) * 2014-05-09 2015-12-03 Jfeスチール株式会社 Highly efficient production method of steel plate with excellent collision resistance
JP2020509156A (en) * 2016-12-21 2020-03-26 ポスコPosco Low yield ratio type ultra-high strength steel material and its manufacturing method
CN113061816A (en) * 2021-03-25 2021-07-02 德龙钢铁有限公司 Low-carbon boron-added steel for inhibiting precipitation of strip steel tertiary cementite along grain boundary
CN113061816B (en) * 2021-03-25 2022-04-12 德龙钢铁有限公司 Low-carbon boron-added steel for inhibiting precipitation of strip steel tertiary cementite along grain boundary
WO2023170882A1 (en) * 2022-03-10 2023-09-14 Jfeスチール株式会社 Steel sheet production method, trimming device, and production apparatus, rolled steel sheet, coiled material, and blank material
JP7355272B1 (en) 2022-03-10 2023-10-03 Jfeスチール株式会社 Manufacturing method of steel plate

Also Published As

Publication number Publication date
JP5045074B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP5045074B2 (en) High tensile thin-walled steel sheet having low yield ratio and manufacturing method thereof
JP6327282B2 (en) High strength hot rolled steel sheet and method for producing the same
JP6477570B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP5045073B2 (en) Non-tempered high-tensile steel plate with low yield ratio and method for producing the same
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP2018053281A (en) Rectangular steel tube
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP2013139610A (en) HIGH-TENSILE STRENGTH THICK STEEL SHEET HAVING TENSILE STRENGTH OF 780 MPa OR MORE, AND METHOD FOR MANUFACTURING THE SAME
JP4848960B2 (en) Thin-walled low-yield-ratio high-tensile steel plate and method for producing the same
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP5821929B2 (en) High-strength hot-rolled steel sheet with excellent material stability and weldability and method for producing the same
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP3737300B2 (en) Non-tempered low yield ratio high tensile strength steel plate with excellent weldability
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP5447778B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same
JP6308148B2 (en) Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof
JP2012158791A (en) High-tensile thick steel plate and method for manufacturing the same
JP2017186594A (en) H-shaped steel for low temperature and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5045074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250