JP2020509156A - Low yield ratio type ultra-high strength steel material and its manufacturing method - Google Patents

Low yield ratio type ultra-high strength steel material and its manufacturing method Download PDF

Info

Publication number
JP2020509156A
JP2020509156A JP2019525987A JP2019525987A JP2020509156A JP 2020509156 A JP2020509156 A JP 2020509156A JP 2019525987 A JP2019525987 A JP 2019525987A JP 2019525987 A JP2019525987 A JP 2019525987A JP 2020509156 A JP2020509156 A JP 2020509156A
Authority
JP
Japan
Prior art keywords
mass
steel material
less
ppm
yield ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019525987A
Other languages
Japanese (ja)
Other versions
JP6829765B2 (en
Inventor
ホ ユ,スン
ホ ユ,スン
ヨン ジョン,ムン
ヨン ジョン,ムン
ジン ジョン,ヨン
ジン ジョン,ヨン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2020509156A publication Critical patent/JP2020509156A/en
Application granted granted Critical
Publication of JP6829765B2 publication Critical patent/JP6829765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本発明は、炭素(C):0.05〜0.09質量%、シリコン(Si):0.1〜0.4質量%、マンガン(Mn):1.8〜2.5質量%、アルミニウム(Al):0.01〜0.06質量%、ニッケル(Ni):0.1〜0.5質量%、銅(Cu):0.1〜0.5質量%、チタン(Ti):0.01〜0.05質量%、ニオブ(Nb):0.01〜0.07質量%、クロム(Cr):0.1〜0.5質量%、モリブデン(Mo):0.1〜0.6質量%、バナジウム(V):0.01〜0.05質量%、リン(P):0.01質量%以下(0質量%は除く)、硫黄(S):0.01質量%以下(0質量%は除く)、ボロン(B):5〜30質量ppm、窒素(N):20〜60質量ppm、カルシウム(Ca):50質量ppm以下(0質量ppmは除く)、コバルト(Co):10〜500質量ppmを含み、残りが鉄(Fe)及びその他の不可避不純物からなることを特徴とする。【選択図】図2In the present invention, carbon (C): 0.05 to 0.09 mass%, silicon (Si): 0.1 to 0.4 mass%, manganese (Mn): 1.8 to 2.5 mass%, aluminum (Al): 0.01 to 0.06 mass%, nickel (Ni): 0.1 to 0.5 mass%, copper (Cu): 0.1 to 0.5 mass%, titanium (Ti): 0 0.01 to 0.05% by mass, niobium (Nb): 0.01 to 0.07% by mass, chromium (Cr): 0.1 to 0.5% by mass, molybdenum (Mo): 0.1 to 0. 6% by mass, vanadium (V): 0.01 to 0.05% by mass, phosphorus (P): 0.01% by mass or less (excluding 0% by mass), sulfur (S): 0.01% by mass or less ( 0% by mass), boron (B): 5 to 30 mass ppm, nitrogen (N): 20 to 60 mass ppm, calcium (Ca): 50 mass ppm or less ( Mass ppm is excluded), cobalt (Co): comprises 10 to 500 ppm by weight, wherein the balance being iron (Fe) and other unavoidable impurities. [Selection diagram] FIG.

Description

本発明は、低降伏比型超高強度鋼材及びその製造方法に係り、より詳しくは、低い降伏比及び高い引張強度を有して建設用鋼材として好適に用いることができる低降伏比型超高強度鋼材及びその製造方法に関する。   The present invention relates to a low-yield-ratio ultrahigh-strength steel material and a method for producing the same, and more particularly, to a low-yield-ratio ultrahigh-strength steel material having a low yield ratio and a high tensile strength, which can be suitably used as a construction steel material. The present invention relates to a high-strength steel material and a method for manufacturing the same.

近年、国内外のビルや橋梁など構造物の超高層化、長スパン化が進むにつれて、極厚、高強度鋼材の開発が求められている。高強度鋼を用いると、高い許容応力を有するため、建築及び橋梁の構造を合理化、軽量化することができ、経済的な建設が可能であるのみならず、板厚を薄くすることができるため、切断や穿孔などの機械加工と溶接作業が容易となる。   In recent years, as structures such as buildings and bridges in Japan and overseas have become ultra-high-rise and long-span, the development of ultra-thick and high-strength steel materials has been required. When high-strength steel is used, it has a high allowable stress, so it is possible to rationalize and lighten the structure of buildings and bridges, and not only economical construction is possible, but also the thickness can be reduced. In addition, machining and welding operations such as cutting and drilling are facilitated.

一方、鋼材の強度を高くすると、引張強度と降伏強度との比である降伏比(降伏強度/引張強度)が上昇する場合が多いが、降伏比が上昇すると、塑性変形が起こる時点(降伏点)から破壊が起こる時点までの応力差が大きくないため、建築物が変形によるエネルギーを吸収して破壊を防止する余裕があまりなく、地震などのような巨大な外力が作用したときに安全性を保証するのが困難となる問題がある。したがって、構造用鋼材は、高強度及び低降伏比をともに満たさなければならない。   On the other hand, when the strength of the steel material is increased, the yield ratio (yield strength / tensile strength), which is the ratio between the tensile strength and the yield strength, often increases, but when the yield ratio increases, the point at which plastic deformation occurs (the yield point) ) To the point at which the failure occurs is not large, so there is not much room for the building to absorb the energy due to the deformation and prevent the damage, and to ensure safety when a huge external force such as an earthquake acts. There is a problem that is difficult to guarantee. Therefore, structural steel materials must satisfy both high strength and low yield ratio.

一般に鋼材の降伏比は、鋼材の金属組織においてフェライト(ferrite)のような軟質相(soft phase)を主組織とし、ベイナイト(bainite)やマルテンサイト(martensite)などの硬質相(hard phase)が適度に分散した組織を実現することにより低くできることが知られている。   Generally, the yield ratio of a steel material is such that a soft phase such as ferrite is a main structure in a metal structure of the steel material, and a hard phase such as bainite or martensite is suitable in a metal structure of the steel material. It is known that the cost can be reduced by realizing a distributed organization.

上述の軟質相ベースの微細組織に硬質相が適度に分散した組織を得るために、特許文献1には、フェライトとオーステナイト(austenite)の二相領域(dual phase region)で適切な焼入れ(quenching)と焼戻し(tempering)によって降伏比を低くする方法が開示されている。しかし、前記方法は、圧延製造工程以外に熱処理工程数が追加されるため、生産性の低下はもちろん製造コストの増加も不可避であるという問題がある。   In order to obtain a structure in which a hard phase is appropriately dispersed in a soft phase-based microstructure described above, Patent Document 1 discloses an appropriate quenching in a dual phase region of ferrite and austenite. And a method of lowering the yield ratio by tempering. However, in the above method, the number of heat treatment steps is added in addition to the rolling production step, so that there is a problem that not only productivity is lowered but also production cost is unavoidably increased.

したがって、生産性の低下と製造コストの上昇などの問題をすべて解決し、且つ超高強度及び低降伏比を確保することができる低降伏比型超高強度鋼材及びその製造方法の開発が求められているのが実情である。   Therefore, there is a need for the development of a low-yield-ratio type ultra-high-strength steel material capable of solving all problems such as a decrease in productivity and an increase in manufacturing cost, and capable of securing an ultra-high strength and a low yield ratio, and a method of manufacturing the same. That is the fact.

特開昭55−97425号公報JP-A-55-97425

本発明の一側面は、低降伏比型超高強度鋼材及びその製造方法を提供することにある。より詳細には、生産性の低下と製造コストの上昇なしに、超高強度及び低降伏比を確保することができる低降伏比型超高強度鋼材及びその製造方法を提供することにある。   An aspect of the present invention is to provide a low yield ratio type ultra-high strength steel material and a method for manufacturing the same. More specifically, an object of the present invention is to provide a low-yield-ratio type ultra-high-strength steel material capable of securing an ultra-high strength and a low yield ratio without lowering productivity and increasing manufacturing cost, and a method for manufacturing the same.

一方、本発明の課題は、上述の内容に限定されない。本発明の課題は、本明細書の内容全般から理解することができるものであり、本発明が属する技術分野における通常の知識を有する者であれば、本発明の付加的な課題を理解するのに何ら困難がない。   On the other hand, the subject of the present invention is not limited to the above contents. The objects of the present invention can be understood from the entire contents of the present specification, and those having ordinary knowledge in the technical field to which the present invention pertains will understand the additional problems of the present invention. There is no difficulty.

本発明の一側面は、炭素(C):0.05〜0.09質量%、シリコン(Si):0.1〜0.4質量%、マンガン(Mn):1.8〜2.5質量%、アルミニウム(Al):0.01〜0.06質量%、ニッケル(Ni):0.1〜0.5質量%、銅(Cu):0.1〜0.5質量%、チタン(Ti):0.01〜0.05質量%、ニオブ(Nb):0.01〜0.07質量%、クロム(Cr):0.1〜0.5質量%、モリブデン(Mo):0.1〜0.6質量%、バナジウム(V):0.01〜0.05質量%、リン(P):0.01質量%以下(0質量%は除く)、硫黄(S):0.01質量%以下(0質量%は除く)、ボロン(B):5〜30質量ppm、窒素(N):20〜60質量ppm、カルシウム(Ca):50質量ppm以下(0質量ppmは除く)、コバルト(Co):10〜500質量ppm、を含み、残りが鉄(Fe)及びその他の不可避不純物からなる低降伏比型超高強度鋼材に関するものである。   One aspect of the present invention is as follows: carbon (C): 0.05 to 0.09 mass%, silicon (Si): 0.1 to 0.4 mass%, manganese (Mn): 1.8 to 2.5 mass. %, Aluminum (Al): 0.01 to 0.06% by mass, nickel (Ni): 0.1 to 0.5% by mass, copper (Cu): 0.1 to 0.5% by mass, titanium (Ti) ): 0.01 to 0.05 mass%, niobium (Nb): 0.01 to 0.07 mass%, chromium (Cr): 0.1 to 0.5 mass%, molybdenum (Mo): 0.1 0.6% by mass, vanadium (V): 0.01 to 0.05% by mass, phosphorus (P): 0.01% by mass or less (excluding 0% by mass), sulfur (S): 0.01% by mass % Or less (excluding 0 mass%), boron (B): 5 to 30 mass ppm, nitrogen (N): 20 to 60 mass ppm, calcium (Ca): 50 mass pp Or less (0 wt ppm is excluded), cobalt (Co): 10 to 500 ppm by weight, comprises, to a low yield ratio ultrahigh strength steel balance being iron (Fe) and other unavoidable impurities.

また、本発明は、炭素(C):0.05〜0.09質量%、シリコン(Si):0.1〜0.4質量%、マンガン(Mn):1.8〜2.5質量%、アルミニウム(Al):0.01〜0.06質量%、ニッケル(Ni):0.1〜0.5質量%、銅(Cu):0.1〜0.5質量%、チタン(Ti):0.01〜0.05質量%、ニオブ(Nb):0.01〜0.07質量%、クロム(Cr):0.1〜0.5質量%、モリブデン(Mo):0.1〜0.6質量%、バナジウム(V):0.01〜0.05質量%、リン(P):0.01質量%以下(0質量%は除く)、硫黄(S):0.01質量%以下(0質量%は除く)、ボロン(B):5〜30質量ppm、窒素(N):20〜60質量ppm、カルシウム(Ca):50質量ppm以下(0質量ppmはを除く)、コバルト(Co):10〜500質量ppmを含み、残りが鉄(Fe)及びその他の不可避不純物からなるスラブを1050〜1200℃の温度で加熱する段階と、
前記加熱されたスラブを粗圧延してバー(Bar)を得る段階と、
前記バー(Bar)を700〜950℃の仕上げ圧延温度で熱間圧延して熱延鋼板を得る段階と、
前記熱延鋼板を10〜30℃/sの冷却速度でAr3以下まで冷却する一次冷却段階と、
前記一次冷却された熱延鋼板を30〜70℃/sの冷却速度でBs以下まで冷却する二次冷却段階と、を含む低降伏比型超高強度鋼材の製造方法に関するものである。
In the present invention, carbon (C): 0.05 to 0.09% by mass, silicon (Si): 0.1 to 0.4% by mass, and manganese (Mn): 1.8 to 2.5% by mass. , Aluminum (Al): 0.01 to 0.06 mass%, nickel (Ni): 0.1 to 0.5 mass%, copper (Cu): 0.1 to 0.5 mass%, titanium (Ti) : 0.01 to 0.05 mass%, niobium (Nb): 0.01 to 0.07 mass%, chromium (Cr): 0.1 to 0.5 mass%, molybdenum (Mo): 0.1 to 0.6% by mass, vanadium (V): 0.01 to 0.05% by mass, phosphorus (P): 0.01% by mass or less (excluding 0% by mass), sulfur (S): 0.01% by mass The following (excluding 0 mass%), boron (B): 5 to 30 mass ppm, nitrogen (N): 20 to 60 mass ppm, calcium (Ca): 50 mass ppm Under (0 ppm by weight excluding), cobalt (Co): it comprises 10 to 500 ppm by weight, and heating the slab balance being iron (Fe) and other unavoidable impurities at a temperature of 1050 to 1200 ° C.,
Rough-rolling the heated slab to obtain a bar;
Hot-rolling the bar at a finish rolling temperature of 700 to 950 ° C. to obtain a hot-rolled steel sheet;
A primary cooling step of cooling the hot-rolled steel sheet to Ar 3 or less at a cooling rate of 10 to 30 ° C./s,
And a secondary cooling step of cooling the primary-cooled hot-rolled steel sheet to Bs or less at a cooling rate of 30 to 70 ° C./s.

なお、上述の課題の解決手段は、本発明の特徴をすべて列挙したものではない。本発明の様々な特徴とそれに伴う利点と効果は、以下の具体的な実施形態を参照して、より詳細に理解することができる。   It should be noted that the means for solving the above problems do not list all the features of the present invention. The various features of the invention and the advantages and advantages associated therewith can be more fully understood with reference to the following specific embodiments.

本発明によると、生産性の低下と製造コストの上昇なしに、超高強度及び低降伏比を確保することができる低降伏比型超高強度鋼材及びその製造方法を提供することができる効果がある。   ADVANTAGE OF THE INVENTION According to this invention, the effect which can provide the low-yield-ratio type ultra-high-strength steel material which can ensure an ultra-high strength and a low yield ratio, without lowering productivity and a rise in manufacturing cost, and the manufacturing method thereof can be provided. is there.

CSL粒界と一般粒界を示した写真である。It is a photograph showing a CSL grain boundary and a general grain boundary. 発明例である試験番号7の微細組織を電子後方散乱回折(Electron Back Scattering Diffraction、EBSD)装置で撮影した写真である。It is the photograph which image | photographed the fine structure of the test number 7 which is an invention example by an electron backscattering diffraction (EBSD) apparatus. 比較例である試験番号4の微細組織を電子後方散乱回折(Electron Back Scattering Diffraction、EBSD)装置で撮影した写真である。It is the photograph which image | photographed the fine structure of the test number 4 which is a comparative example with an electron backscattering diffraction (EBSD) apparatus.

以下、本発明の好ましい実施形態について説明する。しかし、本発明の実施形態は、様々な他の形態に変形されることができ、本発明の範囲が以下に説明する実施形態に限定されるものではない。また、本発明の実施形態は、当該技術分野における平均的な知識を有する者に本発明をさらに完全に説明するために提供されるものである。   Hereinafter, a preferred embodiment of the present invention will be described. However, the embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are also provided to more completely explain the present invention to those having average knowledge in the art.

以下、本発明による低降伏比型超高強度鋼材について詳細に説明する。   Hereinafter, the low yield ratio type ultra-high strength steel material according to the present invention will be described in detail.

本発明による低降伏比型超高強度鋼材は、炭素(C):0.05〜0.09質量%、シリコン(Si):0.1〜0.4質量%、マンガン(Mn):1.8〜2.5質量%、アルミニウム(Al):0.01〜0.06質量%、ニッケル(Ni):0.1〜0.5質量%、銅(Cu):0.1〜0.5質量%、チタン(Ti):0.01〜0.05質量%、ニオブ(Nb):0.01〜0.07質量%、クロム(Cr):0.1〜0.5質量%、モリブデン(Mo):0.1〜0.6質量%、バナジウム(V):0.01〜0.05質量%、リン(P):0.01質量%以下(0質量%は除く)、硫黄(S):0.01質量%以下(0質量%は除く)、ボロン(B):5〜30質量ppm、窒素(N):20〜60質量ppm、カルシウム(Ca):50質量ppm以下(0質量ppmは除く)、コバルト(Co):10〜500質量ppmを含み、残りが鉄(Fe)及びその他の不可避不純物からなる。   The low-yield-ratio ultra-high-strength steel material according to the present invention comprises carbon (C): 0.05 to 0.09 mass%, silicon (Si): 0.1 to 0.4 mass%, and manganese (Mn): 1. 8 to 2.5 mass%, aluminum (Al): 0.01 to 0.06 mass%, nickel (Ni): 0.1 to 0.5 mass%, copper (Cu): 0.1 to 0.5 Mass%, titanium (Ti): 0.01 to 0.05 mass%, niobium (Nb): 0.01 to 0.07 mass%, chromium (Cr): 0.1 to 0.5 mass%, molybdenum ( Mo): 0.1 to 0.6% by mass, vanadium (V): 0.01 to 0.05% by mass, phosphorus (P): 0.01% by mass or less (excluding 0% by mass), sulfur (S ): 0.01 mass% or less (excluding 0 mass%), boron (B): 5 to 30 mass ppm, nitrogen (N): 20 to 60 mass ppm, calcium ( a): 50 ppm by mass or less (0 wt ppm is excluded), cobalt (Co): comprises 10 to 500 ppm by weight, the remainder being iron (Fe) and other unavoidable impurities.

炭素(C):0.05〜0.09質量%
Cは、ベイナイトまたはマルテンサイトを形成し、形成されるベイナイトまたはマルテンサイトの大きさ及び分率を決定する重要な元素である。
Carbon (C): 0.05 to 0.09 mass%
C is an important element that forms bainite or martensite and determines the size and fraction of bainite or martensite formed.

C含量が0.09質量%を超えると、低温靭性を低下させ、C含量が0.05質量%未満であると、ベイナイトまたはマルテンサイトの形成を妨害して強度の低下を招く。したがって、C含量は0.05〜0.09質量%であることが好ましい。   When the C content exceeds 0.09% by mass, the low-temperature toughness is reduced, and when the C content is less than 0.05% by mass, the formation of bainite or martensite is hindered and the strength is reduced. Therefore, the C content is preferably 0.05 to 0.09 mass%.

一方、C含量の上限は、より好ましくは0.085質量%であり、溶接用鋼構造物として用いられる板材の場合には、より良い溶接性のためにC含量の上限を0.08質量%とすることがさらに好ましい。   On the other hand, the upper limit of the C content is more preferably 0.085% by mass. In the case of a plate used as a steel structure for welding, the upper limit of the C content is set to 0.08% by mass for better weldability. More preferably,

シリコン(Si):0.1〜0.4質量%
Siは、脱酸剤として用いられ、強度及び靭性を向上させる元素である。
Silicon (Si): 0.1 to 0.4 mass%
Si is used as a deoxidizing agent and is an element that improves strength and toughness.

Si含量が0.4質量%を超えると、低温靭性及び溶接性が低下するだけではなく、板材の表面にスケールが厚く形成され、ガス切断性不良及びその他の表面クラックなどを引き起こす。一方、Si含量が0.1質量%未満であると、脱酸効果が不十分となる。したがって、Si含量は0.1〜0.4質量%である。   When the Si content exceeds 0.4% by mass, not only low-temperature toughness and weldability are reduced, but also a thick scale is formed on the surface of the sheet material, causing poor gas cutting properties and other surface cracks. On the other hand, if the Si content is less than 0.1% by mass, the deoxidizing effect becomes insufficient. Therefore, the Si content is 0.1-0.4% by mass.

また、Si含量のより好ましい上限は0.35質量%であり、さらに好ましい下限は0.15質量%である。   Further, a more preferred upper limit of the Si content is 0.35% by mass, and a still more preferred lower limit is 0.15% by mass.

マンガン(Mn):1.8〜2.5質量%
Mnは、固溶強化によって強度を向上させる有用な元素であるため、1.8質量%以上添加される必要がある。しかし、Mn含量が2.5質量%を超えると、過剰な硬化能の増加によって溶接部の靭性が大きく低下し得る。したがって、Mn含量は1.8〜2.5質量%であることが好ましい。
Manganese (Mn): 1.8 to 2.5 mass%
Since Mn is a useful element for improving the strength by solid solution strengthening, it needs to be added by 1.8% by mass or more. However, if the Mn content exceeds 2.5% by mass, the toughness of the weld may be significantly reduced due to an excessive increase in hardening ability. Therefore, the Mn content is preferably 1.8 to 2.5% by mass.

アルミニウム(Al):0.01〜0.06質量%
Alは、溶鋼を安価に脱酸することができ、また、フェライトを安定化させる元素である。Al含量が0.01質量%未満であると、上述の効果が不十分となる。一方、Al含量が0.06質量%を超えると、連続鋳造時にノズルの目詰まりが発生する。したがって、Al含量は0.01〜0.06質量%であることが好ましい。
Aluminum (Al): 0.01 to 0.06 mass%
Al is an element that can deoxidize molten steel at low cost and stabilizes ferrite. When the Al content is less than 0.01% by mass, the above-mentioned effects become insufficient. On the other hand, if the Al content exceeds 0.06% by mass, nozzle clogging occurs during continuous casting. Therefore, the Al content is preferably 0.01 to 0.06% by mass.

また、Al含量のより好ましい上限は0.05質量%であり、さらに好ましい下限は0.015質量%である。   Further, a more preferred upper limit of the Al content is 0.05% by mass, and a still more preferred lower limit is 0.015% by mass.

ニッケル(Ni):0.1〜0.5質量%
Niは、母材の強度と靭性を同時に向上させる元素である。本発明において上述の効果を十分に示すためには、0.1質量%以上添加することが好ましい。しかし、Niは高価な元素であるため、添加量が0.5質量%を超えると、経済性及び溶接性が低下し得る。したがって、Ni含量は0.1〜0.5質量%であることが好ましい。
Nickel (Ni): 0.1 to 0.5% by mass
Ni is an element that simultaneously improves the strength and toughness of the base material. In order to sufficiently exhibit the above effects in the present invention, it is preferable to add 0.1% by mass or more. However, since Ni is an expensive element, if the addition amount exceeds 0.5% by mass, economic efficiency and weldability may be reduced. Therefore, the Ni content is preferably 0.1 to 0.5% by mass.

銅(Cu):0.1〜0.5質量%
Cuは、母材の靭性低下を最小限に抑えると共に、強度を高める元素である。上述の効果を十分に得るためには0.1質量%以上添加することが好ましい。しかし、Cu含量が0.5質量%を超えると、製品の表面品質を大きく阻害する恐れがある。したがって、Cu含量は0.1〜0.5質量%であることが好ましい。
Copper (Cu): 0.1-0.5% by mass
Cu is an element that increases the strength while minimizing the decrease in the toughness of the base material. In order to sufficiently obtain the above effects, it is preferable to add 0.1% by mass or more. However, if the Cu content exceeds 0.5% by mass, the surface quality of the product may be greatly impaired. Therefore, the Cu content is preferably 0.1 to 0.5% by mass.

チタン(Ti):0.01〜0.05質量%
Tiは、再加熱時に結晶粒の成長を抑制し、低温靭性を大きく向上させるため、0.01質量%以上添加するが、0.05質量%以上の過剰な添加は、連続鋳造ノズルの目詰まりや中心部の晶出による低温靭性の減少のような問題点を発生させる恐れがある。したがって、Tiの上限は0.05質量%であることが好ましい。
Titanium (Ti): 0.01-0.05% by mass
Ti is added in an amount of 0.01% by mass or more in order to suppress the growth of crystal grains during reheating and greatly improve low-temperature toughness. However, an excessive addition of 0.05% by mass or more causes clogging of the continuous casting nozzle. In addition, problems such as a decrease in low-temperature toughness due to crystallization at the center and the like may occur. Therefore, the upper limit of Ti is preferably 0.05% by mass.

ニオブ(Nb):0.01〜0.07質量%
Nbは、TMCP鋼の製造において重要な元素であり、NbCまたはNbCNの形態で析出し、母材及び溶接部の強度を大きく向上させる。また、高温での再加熱時に固溶されたNbは、オーステナイトの再結晶及びフェライトまたはベイナイトの変態を抑制して組織が微細化する効果を奏する。さらに、本発明では、粗圧延後にスラブが冷却されるとき、低い冷却速度でもベイナイトを形成させるのみならず、最終圧延後の冷却時にもオーステナイトの安定性を高め、低い速度の冷却でもマルテンサイトの生成を促進させる役割も果たす。
Niobium (Nb): 0.01 to 0.07% by mass
Nb is an important element in the production of TMCP steel, and precipitates in the form of NbC or NbCN, and greatly improves the strength of the base material and the weld. Further, Nb dissolved as a solid solution at the time of reheating at a high temperature has an effect of suppressing recrystallization of austenite and transformation of ferrite or bainite to make the structure finer. Furthermore, in the present invention, when the slab is cooled after the rough rolling, not only does bainite form at a low cooling rate, but also increases the stability of austenite even at the time of cooling after final rolling. It also plays a role in promoting production.

上述の効果を十分に得るためには、Nb含量が0.01質量%以上であることが好ましい。しかし、Nb含量が0.07質量%を超えると、鋼材のエッジに脆性クラックが発生する。したがって、Nb含量は0.01〜0.07質量%であることが好ましい。   In order to sufficiently obtain the above-described effects, the Nb content is preferably 0.01% by mass or more. However, when the Nb content exceeds 0.07% by mass, brittle cracks occur at the edges of the steel material. Therefore, the Nb content is preferably 0.01 to 0.07% by mass.

クロム(Cr):0.1〜0.5質量%
Crは、強度を確保するために添加される元素であり、焼入れ性を増加させる役割も果たす。上述の効果を十分に得るためには0.1%以上添加する必要がある。しかし、Cr含量が0.5%を超えると、溶接部の硬度を過剰に増加させ、靭性を阻害する恐れがある。したがって、Cr含量は0.1〜0.5%であることが好ましい。
Chromium (Cr): 0.1 to 0.5% by mass
Cr is an element added to secure strength, and also plays a role in increasing hardenability. In order to obtain the above effects sufficiently, it is necessary to add 0.1% or more. However, if the Cr content exceeds 0.5%, the hardness of the welded portion is excessively increased, and the toughness may be impaired. Therefore, the Cr content is preferably 0.1 to 0.5%.

モリブデン(Mo):0.1〜0.6質量%
Moは、少量の添加でも硬化能を大きく向上させる効果があり、強度を大きく向上させることができるため、0.1質量%以上添加する必要があるが、0.6質量%を超えて添加すると、溶接部の硬度を過剰に増加させ、靭性を阻害する恐れがある。したがって、Moの含量は0.1〜0.6質量%であることが好ましい。
Molybdenum (Mo): 0.1 to 0.6 mass%
Mo has the effect of greatly improving the curability even with a small amount of addition, and can greatly improve the strength. Therefore, it is necessary to add Mo in an amount of 0.1% by mass or more. However, there is a possibility that the hardness of the welded portion is excessively increased and the toughness is impaired. Therefore, the content of Mo is preferably 0.1 to 0.6% by mass.

バナジウム(V):0.01〜0.05質量%
Vは、他の微細合金に比べて固溶する温度が低く、溶接熱影響部に析出して強度の低下を防止する効果がある。上述の効果を十分に得るためには0.01質量%以上添加することが好ましい。しかし、V含量が0.05質量%を超えると、靭性をむしろ低下させる。したがって、V含量は0.01〜0.05質量%であることが好ましい。
Vanadium (V): 0.01 to 0.05% by mass
V has a lower solid solution temperature than other fine alloys, and has the effect of preventing a decrease in strength by depositing in the heat affected zone. In order to sufficiently obtain the above effects, it is preferable to add 0.01% by mass or more. However, if the V content exceeds 0.05% by mass, the toughness is rather reduced. Therefore, the V content is preferably 0.01 to 0.05% by mass.

リン(P):0.01質量%以下(0質量%は除く)
Pは、強度向上及び耐食性に有利な元素であるが、衝撃靭性を大きく阻害する恐れがあるため、できるだけ低く維持することが有利である。したがって、その上限を0.01質量%とすることが好ましい。
Phosphorus (P): 0.01% by mass or less (excluding 0% by mass)
P is an element that is advantageous for strength improvement and corrosion resistance, but it may significantly impair impact toughness, so it is advantageous to keep P as low as possible. Therefore, the upper limit is preferably set to 0.01% by mass.

硫黄(S):0.01質量%以下(0質量%は除く)
Sは、MnSなどを形成して衝撃靭性を大きく阻害する元素であるため、できるだけ低く維持することが有利である。したがって、その上限を0.01質量%とすることが好ましい。
Sulfur (S): 0.01% by mass or less (excluding 0% by mass)
Since S is an element that forms MnS and the like and greatly impairs impact toughness, it is advantageous to keep S as low as possible. Therefore, the upper limit is preferably set to 0.01% by mass.

ボロン(B):5〜30質量ppm
Bは、非常に安価な添加元素であり、強力な硬化能を示し、粗圧延後の冷却において低速冷却でもベイナイトの形成に大きく寄与する有益な元素である。
Boron (B): 5 to 30 mass ppm
B is a very inexpensive additive element, has a strong hardening ability, and is a useful element that greatly contributes to the formation of bainite even in low-speed cooling after rough rolling.

少量の添加でも強度を大きく向上させることができるため、5質量ppm以上添加することができる。しかし、B含量が30質量ppmを超えると、Fe23(CB)を形成してむしろ硬化能を低下させ、低温靭性も大きく低下させる。したがって、B含量は5〜30質量ppmであることが好ましい。 Since the strength can be greatly improved even by adding a small amount, 5 mass ppm or more can be added. However, when the B content exceeds 30 mass ppm, Fe 23 (CB) 6 is formed, and the hardening ability is rather lowered, and the low-temperature toughness is also greatly reduced. Therefore, the B content is preferably 5 to 30 ppm by mass.

窒素(N):20〜60質量ppm以下
Nは、強度を上昇させる一方、靭性を大きく減少させるため、60質量ppm以下に制御することが好ましい。但し、N含量を20質量ppm未満に制御することは製鋼負荷を増加させるため、前記N含量の下限は20質量ppmであることが好ましい。
Nitrogen (N): 20 to 60 ppm by mass N is preferably controlled to 60 ppm by mass or less in order to increase strength and greatly reduce toughness. However, since controlling the N content to less than 20 ppm by mass increases the steelmaking load, the lower limit of the N content is preferably 20 ppm by mass.

カルシウム(Ca):50質量ppm以下(0質量ppmは除く)
Caは、主にMnSの非金属介在物を抑制し、低温靭性を向上させる元素として用いられる。しかし、Caを過剰に添加すると、鋼中に含有されている酸素と反応して非金属介在物であるCaOを生成するため、その上限値は50質量ppmであることが好ましい。
Calcium (Ca): 50 mass ppm or less (excluding 0 mass ppm)
Ca is mainly used as an element for suppressing nonmetallic inclusions of MnS and improving low-temperature toughness. However, when Ca is excessively added, it reacts with oxygen contained in steel to generate CaO, which is a nonmetallic inclusion, and therefore the upper limit is preferably 50 mass ppm.

コバルト(Co):10〜500質量ppm
Coは、不動態皮膜を形成して耐食性を確保することができ、高温強度を高める元素である。Co含量が10質量ppm未満であると、上述の効果が不十分となる。但し、Coは高価な元素であり、多量に添加されると、経済性が低下するため、その上限値は500質量ppmであることが好ましい。
Cobalt (Co): 10 to 500 mass ppm
Co is an element that can form a passivation film to secure corrosion resistance and enhance high-temperature strength. When the Co content is less than 10 ppm by mass, the above-mentioned effects become insufficient. However, Co is an expensive element, and if added in a large amount, the economic efficiency is reduced. Therefore, the upper limit is preferably 500 ppm by mass.

本発明の残りの成分は鉄(Fe)である。但し、通常の製造過程では、原料または周囲の環境から意図しない不純物が不可避に混入することがあるため、これを排除することはできない。これら不純物は、通常の製造過程の技術者であれば誰でも分かるものであるため、そのすべての内容を具体的に本明細書に記載しない。   The remaining component of the present invention is iron (Fe). However, in a normal manufacturing process, unintended impurities may be inevitably mixed from the raw material or the surrounding environment, and this cannot be excluded. Since these impurities are known to any person skilled in the art of ordinary manufacturing processes, their contents are not specifically described in the present specification.

上述の本発明の有利な鋼組成を有する鋼材は、上述の含量範囲の合金元素を含むだけでも十分な効果を得ることができるが、Sn:5〜50質量ppm、W:0.01〜0.5質量%及びSb:0.01〜0.05質量%のうち1以上をさらに含むことにより、鋼材の強度、靭性、溶接熱影響部の靭性、溶接性などのような特性をより向上させることができる。   Although the steel material having the above-described advantageous steel composition of the present invention can obtain a sufficient effect only by containing the alloying elements in the above-described content ranges, Sn: 5 to 50 ppm by mass, W: 0.01 to 0 ppm. By further containing one or more of 0.5 mass% and Sb: 0.01 to 0.05 mass%, properties such as strength and toughness of the steel material, toughness of the weld heat affected zone, and weldability are further improved. be able to.

スズ(Sn):5〜50質量ppm
Snは、耐食性を確保するのに有用な元素である。耐食性確保の観点から、Snは5質量ppm以上添加することが好ましい。しかし、Sn含量が50質量ppmを超えると、耐食性向上に寄与する効果よりも、鋼材の表面で水泡のようにスケールが膨れたり割れたりする形態の欠陥が多く発生するという問題点がある。また、Snは、鋼の強度を上昇させることができるが、伸びと低温衝撃靭性を低下させるため、その上限は50質量ppmであることが好ましい。
Tin (Sn): 5 to 50 mass ppm
Sn is an element useful for ensuring corrosion resistance. From the viewpoint of ensuring corrosion resistance, Sn is preferably added at 5 mass ppm or more. However, when the Sn content exceeds 50 mass ppm, there is a problem that more defects such as scale swelling or cracking like a water bubble are generated on the surface of the steel material than the effect of improving the corrosion resistance. Further, Sn can increase the strength of steel, but since it reduces elongation and low-temperature impact toughness, the upper limit is preferably 50 ppm by mass.

タングステン(W):0.01〜0.5質量%
Wは、鋼の硬化能を向上させ、耐食性を確保するのに有用な元素である。耐食性確保の観点から、Wは0.01質量%以上添加することが好ましい。しかし、Wは非常に高価な元素であり、比重が大きくて偏在しやすいため、その上限は0.5質量%であることが好ましい。
Tungsten (W): 0.01 to 0.5% by mass
W is an element useful for improving the hardening ability of steel and ensuring corrosion resistance. From the viewpoint of ensuring corrosion resistance, W is preferably added at 0.01% by mass or more. However, W is a very expensive element, and has a large specific gravity and tends to be unevenly distributed. Therefore, the upper limit is preferably 0.5% by mass.

アンチモン(Sb):0.01〜0.05質量%
アンチモンは、鋼の表面に発生するスケールと母材間の密着性を高めることによって、切断性と共に耐食性を確保するのに有用な元素である。切断性の観点から、Sbは0.01質量%以上添加することが好ましい。しかし、Sbが0.05質量%を超えて添加されると、鋼材の表面に生成されたスケールが剥離され難く、塗装のような後続作業が困難になるため、その上限は0.05質量%であることが好ましい。
Antimony (Sb): 0.01 to 0.05% by mass
Antimony is an element useful for securing the cut resistance and the corrosion resistance by increasing the adhesion between the scale generated on the surface of the steel and the base material. From the viewpoint of severability, Sb is preferably added at 0.01% by mass or more. However, if Sb is added in excess of 0.05% by mass, the scale formed on the surface of the steel material is difficult to peel off, and subsequent operations such as painting become difficult, so the upper limit is 0.05% by mass. It is preferred that

また、本発明の鋼材の微細組織は、ベイニティックフェライトとグラニュラーベイナイトを主相として含み、M−A(島状マルテンサイト)を二次相として含むことができる。   In addition, the microstructure of the steel material of the present invention can include bainitic ferrite and granular bainite as main phases, and MA (island martensite) as a secondary phase.

ベイニティックフェライトは、初期オーステナイト結晶粒界を維持しながら粒内に多くの高傾角粒界を含んでいるため、結晶粒の微細化効果による強度と衝撃靭性の向上に有用である。   Since bainitic ferrite contains many high-angle boundaries in grains while maintaining the initial austenite grain boundaries, it is useful for improving the strength and impact toughness due to the grain refinement effect.

グラニュラーベイナイトは、ベイニティックフェライトと同様に初期オーステナイト結晶粒を維持しているが、粒内または粒界にM−Aのような二次相が存在する。粒内に高傾角粒界が存在していないため、衝撃靭性には多少不利な影響を及ぼすが、粒内転位のような低傾角粒界が多く存在することにより強度は多少上昇する。   Granular bainite maintains initial austenite crystal grains like bainitic ferrite, but has a secondary phase such as M-A within grains or at grain boundaries. Although there is no high-angle grain boundary in the grains, the impact toughness is somewhat disadvantageously affected, but the strength is slightly increased due to the presence of many low-angle grain boundaries such as intragranular dislocations.

ベイニティックフェライトとグラニュラーベイナイトを主相として含むことにより、低降伏比と高強度を確保することができる。   By containing bainitic ferrite and granular bainite as main phases, a low yield ratio and high strength can be ensured.

このとき、面積分率で、前記ベイニティックフェライト(bainitic ferrite)は60〜90%であり、前記グラニュラーベイナイト(granular bainite)は10〜30%であり、前記M−A(Martensite−Austenite)は5%以下(0%を含む)である。   At this time, in terms of area fraction, the bainitic ferrite is 60 to 90%, the granular bainite is 10 to 30%, and the MA (Martensitic-Austenite) is 5% or less (including 0%).

ベイニティックフェライトの面積分率が60%未満であると、高い引張強度を確保し難く、CSL(Coincidence Site Lattice)粒界の分率が低くなって衝撃吸収エネルギー値が低く、腐食特性及び強度に劣り、クラック伝播を抑制し難くなる。一方、ベイニティックフェライトの面積分率が90%を超えると、降伏比が増加するという問題点がある。   If the area fraction of bainitic ferrite is less than 60%, it is difficult to secure a high tensile strength, the fraction of CSL (Coincidence Site Lattice) grain boundaries is reduced, the impact absorption energy value is low, and the corrosion properties and strength are high. And it is difficult to suppress crack propagation. On the other hand, when the area fraction of bainitic ferrite exceeds 90%, there is a problem that the yield ratio increases.

グラニュラーベイナイトの面積分率が10%未満であると、引張強度のみならず、降伏強度も増加して低降伏比を確保することができない。一方、30%を超えると、粗大な初期オーステナイト結晶粒を効果的に微細化させることができず、引張強度に劣り、CSL(Coincidence Site Lattice)粒界の分率が低くなって衝撃吸収エネルギー値が低く、腐食特性及び強度に劣り、クラック伝播を抑制し難しくなる。   If the area fraction of granular bainite is less than 10%, not only the tensile strength but also the yield strength increases, and a low yield ratio cannot be secured. On the other hand, if it exceeds 30%, coarse initial austenite crystal grains cannot be effectively refined, the tensile strength is inferior, the fraction of CSL (coincidence site lattice) grain boundaries decreases, and the impact absorption energy value decreases. And the corrosion properties and strength are poor, and crack propagation is suppressed and difficult.

M−Aのような二次相は、低降伏比の実現に有用な微細組織であり、5%以下の面積分率を有することが好ましい。M−Aの面積分率が5%を超えると、降伏比は減少するが、相対的に外部応力に対するクラック(crack)の起点として作用することもあるため、引張強度を高く確保するのが困難になる。   A secondary phase such as MA is a microstructure useful for realizing a low yield ratio, and preferably has an area fraction of 5% or less. If the area fraction of MA exceeds 5%, the yield ratio decreases, but it may act relatively as a starting point for cracks due to external stress, and it is difficult to ensure a high tensile strength. become.

一方、本発明による鋼材は、上述の微細組織の分率を満たすことにより、粒界方位差角が15°以上でありながらエネルギーが低い粒界であるCSL(Coincidence Site Lattice)粒界の分率を20%以上確保することができる。   On the other hand, the steel material according to the present invention satisfies the above-mentioned fraction of the microstructure, so that the grain boundary azimuth difference angle is 15 ° or more, but the energy of the grain boundary is low, and the fraction of the CSL (Coincidence Site Lattice) grain boundary is obtained. 20% or more can be secured.

CSL粒界とは、図1の細い実線のように、金属原子の配列が特定の面と角度によって反復性を持つ粒界を意味し、特殊粒界(special grain boundary)とも呼ばれる。例えば、双晶粒界(twin)のように特定の方位関係を有する粒界もある。一方、図1の点線及び太い実線は一般粒界を示す。   The CSL grain boundary means a grain boundary in which the arrangement of metal atoms has repetition depending on a specific plane and an angle, as shown by a thin solid line in FIG. 1, and is also called a special grain boundary. For example, some grain boundaries have a specific orientation relationship such as twin grain boundaries (twin). On the other hand, the dotted line and the thick solid line in FIG. 1 indicate general grain boundaries.

同一の成分系を有しても製造条件によってCSL粒界の分率が異なり、最終微細組織と密接な関係にある。CSL粒界の分率は、電子後方散乱回折(Electron Back Scattering Diffraction、EBSD)装置を用いて測定することができる。   Even with the same component system, the fraction of the CSL grain boundary varies depending on the manufacturing conditions, and is closely related to the final microstructure. The fraction of CSL grain boundaries can be measured using an electron backscattering diffraction (EBSD) device.

CSL粒界は、規則的な方位関係を有するため、ランダム(random)な一般粒界(一般に、高傾角粒界とする)と比較してエネルギー値自体が低くて腐食特性が一般粒界に比べて著しく優れる。また、一般粒界と同様に粒界方位差角は15°以上と大きいため、粒子の微細化によって強度が上昇する効果に加えて、クラックの伝播を妨害する役割を果たして靭性を向上させる。   Since the CSL grain boundary has a regular orientation relationship, the energy value itself is lower than that of a random general grain boundary (generally, a high-angle grain boundary), and the corrosion characteristic is lower than that of a general grain boundary. Excellent. Further, since the grain boundary azimuth difference angle is as large as 15 ° or more like a general grain boundary, in addition to the effect of increasing the strength by making the grains finer, it plays a role of obstructing the propagation of cracks and improves the toughness.

このようなCSL粒界は、粒界のエネルギーが低いため、通常の高傾角粒界よりも腐食及び強度の側面で有利である。即ち、ランダムな方位関係を有する高傾角粒界のエネルギーを100としたときに、CSL粒界のエネルギーは20〜80程度であり、双晶粒界の場合は、CSL粒界の中でもエネルギーが特に低い。   Such CSL grain boundaries are more advantageous in corrosion and strength than ordinary high-angle grain boundaries due to the low energy of the grain boundaries. That is, when the energy of a high-angle grain boundary having a random orientation relationship is set to 100, the energy of a CSL grain boundary is about 20 to 80. In the case of a twin grain boundary, the energy is particularly high among the CSL grain boundaries. Low.

CSL粒界の分率が20%未満であると、衝撃吸収エネルギー値が低く、腐食特性及び強度に劣り、クラック伝播を抑制し難くなる。   If the fraction of CSL grain boundaries is less than 20%, the impact absorption energy value is low, the corrosion characteristics and strength are poor, and it is difficult to suppress crack propagation.

また、本発明による鋼材は、降伏比が0.85以下であり、800MPa以上の引張強度を確保することができるため、建設用鋼材などとして好ましく用いることができる。   Further, the steel material according to the present invention has a yield ratio of 0.85 or less and can secure a tensile strength of 800 MPa or more, and thus can be preferably used as a construction steel material.

また、本発明による鋼材は、−5℃での衝撃吸収エネルギーが150J以上である。   Further, the steel material according to the present invention has an impact absorption energy at −5 ° C. of 150 J or more.

一方、本発明による鋼材の厚さは、100mm以下である。   On the other hand, the thickness of the steel material according to the present invention is 100 mm or less.

本発明による鋼材は、高強度及び低降伏比を確保することができるため、切断や穿孔などの機械加工と溶接作業が容易になる。したがって、鋼材の厚さは100mm以下であることが好ましい。より好ましくは80mm以下、さらに好ましくは60mm以下である。下限は特に限定する必要はないが、建設構造用鋼材として用いるためには、15mm以上が必要である。   Since the steel material according to the present invention can ensure high strength and a low yield ratio, machining and welding such as cutting and drilling are facilitated. Therefore, the thickness of the steel material is preferably 100 mm or less. It is more preferably at most 80 mm, even more preferably at most 60 mm. Although the lower limit does not need to be particularly limited, it is necessary to be 15 mm or more in order to use it as a steel material for construction structures.

以下、本発明の低降伏比型超高強度鋼材の製造方法について詳細に説明する。   Hereinafter, the method for producing a low yield ratio type ultra-high strength steel material of the present invention will be described in detail.

本発明の低降伏比型超高強度鋼材の製造方法は、上述の合金組成を有するスラブを1050〜1200℃の温度で加熱する段階と、前記加熱されたスラブを粗圧延してバー(Bar)を得る段階と、前記バー(Bar)を700〜950℃の仕上げ圧延温度で熱間圧延して熱延鋼板を得る段階と、前記熱延鋼板を10〜30℃/sの冷却速度でAr3以下まで冷却する一次冷却段階と、前記一次冷却された熱延鋼板を30〜70℃/sの冷却速度でBs以下まで冷却する二次冷却段階と、を含む。   The method for manufacturing a low-yield-ratio ultra-high-strength steel material according to the present invention includes heating a slab having the above-described alloy composition at a temperature of 1050 to 1200 ° C, and rough-rolling the heated slab to form a bar. And hot-rolling the bar at a finish rolling temperature of 700 to 950 ° C. to obtain a hot-rolled steel sheet, and cooling the hot-rolled steel sheet to Ar 3 or less at a cooling rate of 10 to 30 ° C./s. A primary cooling step of cooling the hot-rolled steel sheet to a temperature of Bs or less at a cooling rate of 30 to 70 ° C./s.

スラブ加熱段階
上述の合金組成を有するスラブを1050〜1200℃の温度で加熱する。
Slab heating step A slab having the above alloy composition is heated at a temperature of 1050 to 1200C.

粗圧延段階
前記加熱されたスラブを粗圧延してバー(Bar)を得る。
Rough rolling step The heated slab is roughly rolled to obtain a bar.

このとき、前記粗圧延は950〜1050℃の温度範囲で行う。前記粗圧延温度が950℃未満であると、スラブの表面温度が相対的に低くて圧延荷重が増加する。その結果、スラブの厚さ方向における中心まで有効変形が起こらず、気孔のような欠陥が除去されないか、または粒子の微細化効果が減少する恐れがある。一方、前記粗圧延温度が1050℃を超えると、再結晶が起こると同時に粒子が成長して、オーステナイト粒子が粗大化する恐れがある。   At this time, the rough rolling is performed in a temperature range of 950 to 1050C. If the rough rolling temperature is lower than 950 ° C., the surface temperature of the slab is relatively low and the rolling load increases. As a result, effective deformation does not occur up to the center in the thickness direction of the slab, and defects such as pores may not be removed, or the effect of miniaturizing particles may be reduced. On the other hand, if the rough rolling temperature exceeds 1050 ° C., recrystallization takes place and grains grow at the same time, and austenite grains may become coarse.

熱間圧延段階
前記バー(Bar)を700〜950℃の仕上げ圧延温度で熱間圧延して熱延鋼板を得る。
Hot rolling step The bar is hot-rolled at a finish rolling temperature of 700 to 950 ° C to obtain a hot-rolled steel sheet.

前記仕上げ圧延温度が700℃未満であると、板材の温度が低くて圧延機に負荷が発生し、最終厚さまで圧延を行うことができない恐れがあり、950℃を超えると、圧延中に再結晶が起こる恐れがある。   If the finish rolling temperature is lower than 700 ° C., the temperature of the sheet material is low and a load is applied to the rolling mill, and it may not be possible to perform rolling to the final thickness. If it exceeds 950 ° C., recrystallization occurs during rolling. May occur.

このとき、前記熱間圧延の圧下率は50〜80%である。   At this time, the rolling reduction of the hot rolling is 50 to 80%.

前記仕上げ圧延圧下率が50%未満であると、圧延中に素材に作用するパス当たりの圧延荷重が増加して設備事故の危険があり、80%を超えると、圧延パス数が増加して圧延終了温度まで最終厚さを確保できない恐れがある。   When the finish rolling reduction is less than 50%, the rolling load per pass acting on the material during rolling increases and there is a risk of equipment accident. When the finishing rolling reduction exceeds 80%, the number of rolling passes increases and the rolling is increased. There is a possibility that the final thickness cannot be secured up to the end temperature.

冷却段階
前記熱延鋼板を2段階に多段冷却する。これは、ベイニティックフェライトとグラニュラーベイナイトを両方とも確保し、CSL粒界の分率を高く確保するためである。
Cooling step The hot rolled steel sheet is multi-stage cooled in two stages. This is to secure both bainitic ferrite and granular bainite and to secure a high fraction of CSL grain boundaries.

一次冷却段階
前記熱延鋼板を10〜30℃/sの冷却速度でAr3以下まで一次冷却する。
Primary cooling step The hot-rolled steel sheet is primarily cooled to Ar3 or less at a cooling rate of 10 to 30C / s.

一次冷却速度が10℃/s未満であると、軟質のフェライトが生成されることによって800MPa以上の引張強度を確保し難く、30℃/sを超えると、オーステナイトからグラニュラーベイナイトに相変態する粒子の量が少なくなって、低降伏比を確保できないという問題点がある。   If the primary cooling rate is less than 10 ° C./s, it is difficult to secure a tensile strength of 800 MPa or more due to generation of soft ferrite. If the primary cooling rate is more than 30 ° C./s, particles of phase transformation from austenite to granular bainite There is a problem that the yield is small and a low yield ratio cannot be secured.

したがって、一次冷却段階の冷却速度は10〜30℃/sであることが好ましく、より好ましくは15〜25℃/sである。   Therefore, the cooling rate in the primary cooling stage is preferably 10 to 30C / s, more preferably 15 to 25C / s.

冷却終了温度がAr3を超えると、微細組織がオーステナイト単相(single phase)としてのみ存在することによってグラニュラーベイナイトへの相変態が起こらない問題がある。即ち、オーステナイト単相として存在する微細組織が2次冷却によってすぐに相変態する場合、最終組織相のグラニュラーベイナイト分率は10%未満と少なすぎて、低降伏比を満たすことができなくなる。一方、冷却終了温度の下限は、下記2次冷却段階を考慮してAr3−50℃である。   When the cooling end temperature exceeds Ar3, there is a problem that a phase transformation to granular bainite does not occur because a fine structure exists only as an austenite single phase. That is, when the microstructure existing as an austenitic single phase undergoes a phase transformation immediately after secondary cooling, the granular bainite fraction of the final microstructure phase is too small, less than 10%, and the low yield ratio cannot be satisfied. On the other hand, the lower limit of the cooling end temperature is Ar3-50 ° C. in consideration of the following secondary cooling stage.

2次冷却段階
前記一次冷却された熱延鋼板を30〜70℃/sの冷却速度でBs以下まで2次冷却する。
Secondary cooling step The primary cooled hot rolled steel sheet is secondarily cooled to Bs or less at a cooling rate of 30 to 70 ° C / s.

2次冷却速度が30℃/s未満であると、主組織であるベイニティックフェライトが冷却中に十分に相変態することができず、800MPa以上の引張強度を満たすことができない問題点がある。一方、2次冷却速度が70℃/sを超えると、低温変態組織であるマルテンサイトが生成される確率が高くなって、引張強度のみならず、降伏強度も増加して0.85以下の降伏比を満たすことが困難である。   If the secondary cooling rate is less than 30 ° C./s, bainitic ferrite, which is the main structure, cannot sufficiently undergo phase transformation during cooling, and there is a problem that the tensile strength of 800 MPa or more cannot be satisfied. . On the other hand, when the secondary cooling rate exceeds 70 ° C./s, the probability that martensite as a low-temperature transformation structure is generated increases, and not only the tensile strength but also the yield strength increases, and the yield strength becomes 0.85 or less. It is difficult to satisfy the ratio.

2次冷却終了温度がBsを超えると、ベイニティックフェライト及びグラニュラーベイナイトが十分に相変態することができず、強度を確保することができない。   If the secondary cooling end temperature exceeds Bs, bainitic ferrite and granular bainite cannot be sufficiently phase transformed, and the strength cannot be secured.

以下、実施例を挙げて本発明をより具体的に説明する。但し、下記の実施例は、本発明を例示してより詳細に説明するためのもので、本発明の権利範囲を限定するためのものではないという点に留意する必要がある。本発明の権利範囲は、特許請求の範囲に記載された事項と、それから合理的に類推される事項によって決定されるものである。   Hereinafter, the present invention will be described more specifically with reference to examples. However, it should be noted that the following examples are for illustrating the present invention in more detail and not for limiting the scope of the present invention. The scope of the present invention is determined by the matters described in the appended claims and matters reasonably inferred therefrom.

表1に示す成分系を満たすスラブを1160℃の温度で加熱し、1000℃の温度で粗圧延した後、表2に示す製造条件に合うように熱間圧延及び冷却を行って鋼材を得た。前記鋼材の微細組織、CSL分率及び機械的物性を測定して表3に示した。   A slab satisfying the component system shown in Table 1 was heated at a temperature of 1160 ° C., rough-rolled at a temperature of 1000 ° C., and then subjected to hot rolling and cooling to meet the production conditions shown in Table 2, thereby obtaining a steel material. . The microstructure, CSL fraction and mechanical properties of the steel material were measured and are shown in Table 3.

降伏強度及び引張強度は、万能引張実験機を用いて測定し、衝撃吸収エネルギー値は、−5℃でシャルピー衝撃試験を行って測定した。   The yield strength and the tensile strength were measured using a universal tensile tester, and the impact absorption energy value was measured by performing a Charpy impact test at −5 ° C.

微細組織は、鋼材を鏡面研磨して化学的に腐食させた後、光学顕微鏡で観察した。   The microstructure was observed with an optical microscope after the steel material was mirror-polished and chemically corroded.

粒界方位差角が15°以上でありながらエネルギーが低い粒界であるCSL(Coincidence Site Lattice)粒界の分率は、電子後方散乱回折(Electron Back Scattering Diffraction、EBSD)装置を用いて測定した。   The fraction of a CSL (Coincidence Site Lattice) grain boundary, which is a grain boundary having a low energy even though the grain boundary misorientation angle is 15 ° or more, was measured using an electron back scattering diffraction (EBSD) apparatus. .

Figure 2020509156
Figure 2020509156

表1において、*を表示したB、N、Ca、Co含量の単位は質量ppmであり、残りの元素含量の単位は質量%である。   In Table 1, the units of B, N, Ca, and Co contents indicated by * are ppm by mass, and the units of the remaining element contents are% by mass.

Figure 2020509156
Figure 2020509156

Figure 2020509156
Figure 2020509156

表3において、BF:ベイニティックフェライト、GB:グラニュラーベイナイト、MA:島状マルテンサイト、AF:アシキュラーフェライト、M:マルテンサイトを意味し、単位は面積%である。   In Table 3, BF: bainitic ferrite, GB: granular bainite, MA: island martensite, AF: acicular ferrite, M: martensite, and the unit is area%.

本発明の合金組成及び製造条件を満たす発明例の微細組織は、ベイニティックフェライトが60〜90%であり、前記グラニュラーベイナイトが10〜30%であり、MAが5%以下(0%を含む)を満たした。   The microstructure of the invention example satisfying the alloy composition and the production conditions of the invention is as follows: bainitic ferrite is 60 to 90%, the granular bainite is 10 to 30%, and MA is 5% or less (including 0%). ) Was satisfied.

これにより、CSL粒界を20%以上確保することができ、0.85以下の低降伏比及び800MPa以上の引張強度を確保できることが分かる。また、−5℃での衝撃吸収エネルギー値は150J以上であった。   This shows that a CSL grain boundary of 20% or more can be secured, and a low yield ratio of 0.85 or less and a tensile strength of 800 MPa or more can be secured. The impact absorption energy value at -5 ° C was 150 J or more.

一方、本発明の合金組成は満たしたが、製造条件を満たしていない比較例である試験番号4、5、6、9、13、14、18、19は、本発明で提示した微細組織を満たさなかった。   On the other hand, Test Nos. 4, 5, 6, 9, 13, 14, 18, and 19, which are comparative examples that satisfied the alloy composition of the present invention but did not satisfy the manufacturing conditions, satisfied the microstructure presented in the present invention. Did not.

これにより、CSL粒界の分率が20%未満、−5℃での衝撃吸収エネルギー値が150J未満であり、降伏比が0.85を超えるか、または引張強度が800MPa未満であることが確認できる。   This confirms that the fraction of the CSL grain boundary is less than 20%, the impact absorption energy value at −5 ° C. is less than 150 J, the yield ratio is more than 0.85, or the tensile strength is less than 800 MPa. it can.

発明例である試験番号7と、比較例である試験番号4の微細組織を電子後方散乱回折(Electron Back Scattering Diffraction、EBSD)装置で撮影した写真である図2及び図3を比較したとき、金属原子の配列が特定の面と角度によって反復性を持つ粒界であるCSL粒界の分率の差が著しいことが確認できた。   When the microstructures of Test No. 7 of the invention example and Test No. 4 of the comparative example were photographed with an electron backscattering diffraction (EBSD) apparatus, and FIGS. It was confirmed that there was a remarkable difference in the fraction of CSL grain boundaries, which are grain boundaries in which the arrangement of atoms has repeatability depending on the specific plane and angle.

また、本発明の合金組成を満たしていない比較鋼の場合は、本発明の製造条件を満たしても、降伏比が0.85を超えるか、引張強度が800MPa未満であることが確認できる。   In addition, in the case of the comparative steel that does not satisfy the alloy composition of the present invention, it can be confirmed that the yield ratio exceeds 0.85 or the tensile strength is less than 800 MPa even when the manufacturing conditions of the present invention are satisfied.

以上、実施例を参照して説明したが、当該技術分野における熟練した当業者は、下記の特許請求の範囲に記載された本発明の思想及び領域から逸脱しない範囲内で、本発明を多様に修正及び変更させることができることを理解することができる。   Although described above with reference to the embodiments, those skilled in the art can make various modifications to the present invention without departing from the spirit and scope of the present invention described in the following claims. It can be understood that modifications and changes can be made.

Claims (12)

炭素(C):0.05〜0.09質量%、シリコン(Si):0.1〜0.4質量%、マンガン(Mn):1.8〜2.5質量%、アルミニウム(Al):0.01〜0.06質量%、ニッケル(Ni):0.1〜0.5質量%、銅(Cu):0.1〜0.5質量%、チタン(Ti):0.01〜0.05質量%、ニオブ(Nb):0.01〜0.07質量%、クロム(Cr):0.1〜0.5質量%、モリブデン(Mo):0.1〜0.6質量%、バナジウム(V):0.01〜0.05質量%、リン(P):0.01質量%以下(0質量%は除く)、硫黄(S):0.01質量%以下(0質量%は除く)、ボロン(B):5〜30質量ppm、窒素(N):20〜60質量ppm、カルシウム(Ca):50質量ppm以下(0質量ppmは除く)、コバルト(Co):10〜500質量ppmを含み、残りが鉄(Fe)及びその他の不可避不純物からなることを特徴とする低降伏比型超高強度鋼材。   Carbon (C): 0.05 to 0.09 mass%, silicon (Si): 0.1 to 0.4 mass%, manganese (Mn): 1.8 to 2.5 mass%, aluminum (Al): 0.01 to 0.06 mass%, nickel (Ni): 0.1 to 0.5 mass%, copper (Cu): 0.1 to 0.5 mass%, titanium (Ti): 0.01 to 0 0.05% by mass, niobium (Nb): 0.01 to 0.07% by mass, chromium (Cr): 0.1 to 0.5% by mass, molybdenum (Mo): 0.1 to 0.6% by mass, Vanadium (V): 0.01 to 0.05% by mass, phosphorus (P): 0.01% by mass or less (excluding 0% by mass), sulfur (S): 0.01% by mass or less (0% by mass Excluding), boron (B): 5 to 30 mass ppm, nitrogen (N): 20 to 60 mass ppm, calcium (Ca): 50 mass ppm or less (0 mass pp Is excluded), cobalt (Co): 10 to 500 comprise a mass ppm, low yield ratio ultrahigh strength steel, characterized in that the balance being iron (Fe) and other unavoidable impurities. 前記鋼材は、Sn:5〜50質量ppm、W:0.01〜0.5質量%及びSb:0.01〜0.05質量%のうち1以上をさらに含むことを特徴とする請求項1に記載の低降伏比型超高強度鋼材。   2. The steel material according to claim 1, further comprising at least one of Sn: 5 to 50% by mass, W: 0.01 to 0.5% by mass, and Sb: 0.01 to 0.05% by mass. 2. A low-yield-ratio ultra-high-strength steel material according to item 1. 前記鋼材の微細組織は、ベイニティックフェライトとグラニュラーベイナイトを主相として含み、M−Aを二次相として含むことを特徴とする請求項1に記載の低降伏比型超高強度鋼材。   The ultra-high-strength steel with a low yield ratio according to claim 1, wherein the microstructure of the steel material includes bainitic ferrite and granular bainite as main phases and MA as a secondary phase. 面積分率で、前記ベイニティックフェライトは60〜90%であり、前記グラニュラーベイナイトは10〜30%であり、前記M−Aは5%以下(0%を含む)であることを特徴とする請求項3に記載の低降伏比型超高強度鋼材。   In terms of area fraction, the bainitic ferrite is 60 to 90%, the granular bainite is 10 to 30%, and the MA is 5% or less (including 0%). The low yield ratio type ultrahigh strength steel material according to claim 3. 前記鋼材は、粒界方位差角が15度以上でありながらエネルギーが低い粒界の分率であるCSLが20面積%以上であることを特徴とする請求項1に記載の低降伏比型超高強度鋼材。   2. The low yield ratio type super according to claim 1, wherein the steel material has a grain boundary misorientation angle of 15 ° or more and a CSL, which is a fraction of grain boundaries having low energy, of 20 area% or more. 3. High strength steel. 前記鋼材は、降伏比が0.85以下であり、引張強度が800MPa以上であることを特徴とする請求項1に記載の低降伏比型超高強度鋼材。   The low yield ratio type ultrahigh strength steel material according to claim 1, wherein the steel material has a yield ratio of 0.85 or less and a tensile strength of 800 MPa or more. 前記鋼材は、−5℃での衝撃吸収エネルギー値が150J以上であることを特徴とする請求項1に記載の低降伏比型超高強度鋼材。   The low yield ratio type ultra-high strength steel material according to claim 1, wherein the steel material has an impact absorption energy value at -5 ° C of 150 J or more. 前記鋼材は、厚さが100mm以下であることを特徴とする請求項1に記載の低降伏比型超高強度鋼材。   The low yield ratio type ultra-high strength steel material according to claim 1, wherein the steel material has a thickness of 100 mm or less. 炭素(C):0.05〜0.09質量%、シリコン(Si):0.1〜0.4質量%、マンガン(Mn):1.8〜2.5質量%、アルミニウム(Al):0.01〜0.06質量%、ニッケル(Ni):0.1〜0.5質量%、銅(Cu):0.1〜0.5質量%、チタン(Ti):0.01〜0.05質量%、ニオブ(Nb):0.01〜0.07質量%、クロム(Cr):0.1〜0.5質量%、モリブデン(Mo):0.1〜0.6質量%、バナジウム(V):0.01〜0.05質量%、リン(P):0.01質量%以下(0質量%は除く)、硫黄(S):0.01質量%以下(0質量%は除く)、ボロン(B):5〜30質量ppm、窒素(N):20〜60質量ppm、カルシウム(Ca):50質量ppm以下(0質量ppmは除く)、コバルト(Co):10〜500質量ppmを含み、残りが鉄(Fe)及びその他の不可避不純物からなるスラブを1050〜1250℃の温度で加熱する段階と、
前記加熱されたスラブを粗圧延してバー(Bar)を得る段階と、
前記バー(Bar)を700〜950℃の仕上げ圧延温度で熱間圧延して熱延鋼板を得る段階と、
前記熱延鋼板を10〜30℃/sの冷却速度でAr3以下まで冷却する一次冷却段階と、
前記一次冷却された熱延鋼板を30〜70℃/sの冷却速度でBs以下まで冷却する二次冷却段階と、を含むことを特徴とする低降伏比型超高強度鋼材の製造方法。
Carbon (C): 0.05 to 0.09 mass%, silicon (Si): 0.1 to 0.4 mass%, manganese (Mn): 1.8 to 2.5 mass%, aluminum (Al): 0.01 to 0.06 mass%, nickel (Ni): 0.1 to 0.5 mass%, copper (Cu): 0.1 to 0.5 mass%, titanium (Ti): 0.01 to 0 0.05% by mass, niobium (Nb): 0.01 to 0.07% by mass, chromium (Cr): 0.1 to 0.5% by mass, molybdenum (Mo): 0.1 to 0.6% by mass, Vanadium (V): 0.01 to 0.05% by mass, phosphorus (P): 0.01% by mass or less (excluding 0% by mass), sulfur (S): 0.01% by mass or less (0% by mass Excluding), boron (B): 5-30 mass ppm, nitrogen (N): 20-60 mass ppm, calcium (Ca): 50 mass ppm or less (0 mass pp Is excluded), cobalt (Co): comprises 10 to 500 mass ppm, and heating the slab balance being iron (Fe) and other unavoidable impurities at a temperature of from 1,050 to 1,250 ° C.,
Rough-rolling the heated slab to obtain a bar;
Hot-rolling the bar at a finish rolling temperature of 700 to 950 ° C. to obtain a hot-rolled steel sheet;
A primary cooling step of cooling the hot-rolled steel sheet to Ar 3 or less at a cooling rate of 10 to 30 ° C./s,
A secondary cooling step of cooling the primary-cooled hot-rolled steel sheet to Bs or less at a cooling rate of 30 to 70 ° C./s, the method comprising the steps of:
前記スラブは、Sn:5〜50質量ppm、W:0.01〜0.5質量%及びSb:0.01〜0.05質量%のうち1以上をさらに含むことを特徴とする請求項9に記載の低降伏比型超高強度鋼材の製造方法。   The slab further comprises at least one of Sn: 5 to 50 mass ppm, W: 0.01 to 0.5 mass%, and Sb: 0.01 to 0.05 mass%. 2. The method for producing a low-yield-ratio ultrahigh-strength steel material according to item 1. 前記熱間圧延は、50〜80%の圧下率で行うことを特徴とする請求項9に記載の低降伏比型超高強度鋼材の製造方法。   The method of claim 9, wherein the hot rolling is performed at a reduction of 50 to 80%. 前記粗圧延は、950〜1050℃の温度範囲で行うことを特徴とする請求項9に記載の低降伏比型超高強度鋼材の製造方法。   The method of claim 9, wherein the rough rolling is performed in a temperature range of 950 to 1050 ° C. 11.
JP2019525987A 2016-12-21 2017-12-11 Low yield ratio type ultra-high strength steel and its manufacturing method Active JP6829765B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020160176131A KR101879082B1 (en) 2016-12-21 2016-12-21 Ultra high strength steel having low yield ratio method for manufacturing the same
KR10-2016-0176131 2016-12-21
PCT/KR2017/014440 WO2018117509A1 (en) 2016-12-21 2017-12-11 Ultra-high strength steel having low yield ratio and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2020509156A true JP2020509156A (en) 2020-03-26
JP6829765B2 JP6829765B2 (en) 2021-02-10

Family

ID=62626736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019525987A Active JP6829765B2 (en) 2016-12-21 2017-12-11 Low yield ratio type ultra-high strength steel and its manufacturing method

Country Status (4)

Country Link
JP (1) JP6829765B2 (en)
KR (1) KR101879082B1 (en)
CN (1) CN109983146B (en)
WO (1) WO2018117509A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101899686B1 (en) 2016-12-22 2018-10-04 주식회사 포스코 Wear resistant steel havinh high hardness and method for manufacturing the same
KR102109277B1 (en) * 2018-10-26 2020-05-11 주식회사 포스코 Steel plate having low yield ratio and excellent heat affected zone toughness and method for manufacturing thereof
KR102307903B1 (en) * 2019-11-04 2021-09-30 주식회사 포스코 Steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
CN111206185B (en) * 2020-02-12 2021-08-17 首钢集团有限公司 High-strength low-yield-ratio steel and preparation method and application thereof
CN113637922A (en) * 2020-04-27 2021-11-12 宝山钢铁股份有限公司 Economical low-yield-ratio high-strength steel and manufacturing method thereof
KR102418039B1 (en) * 2020-08-12 2022-07-07 현대제철 주식회사 Ultra high strength steel deformed bar and manufacturing method thereof
CN112725703B (en) * 2020-12-23 2022-04-22 安阳钢铁股份有限公司 Low-yield-ratio Q550D high-strength steel plate and manufacturing method thereof
CN114875309B (en) * 2022-04-08 2023-07-14 鞍钢股份有限公司 Steel for thick high-strength nuclear reactor containment vessel and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177326A (en) * 2005-11-30 2007-07-12 Jfe Steel Kk High tensile strength thin steel sheet having low yield ratio and its production method
JP2008240151A (en) * 2007-03-01 2008-10-09 Nippon Steel Corp High strength hot rolled steel sheet for line pipe having excellent low-temperature toughness, and its manufacturing method
KR20140023787A (en) * 2012-08-17 2014-02-27 포항공과대학교 산학협력단 Low carbon high strength steel plates with good low temperature toughness and manufacturing method for the same
WO2017111345A1 (en) * 2015-12-24 2017-06-29 주식회사 포스코 Low-yield-ratio type high-strength steel, and manufacturing method therefor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597425A (en) 1979-01-19 1980-07-24 Nippon Kokan Kk <Nkk> Preparation of high-tensile steel with low yield ratio, low carbon and low alloy
DE10117118C1 (en) * 2001-04-06 2002-07-11 Thyssenkrupp Stahl Ag Production of fine sheet metal used in the production of cans comprises casting a steel to slabs or thin slabs, cooling, re-heating, hot rolling in several passes
US7074286B2 (en) * 2002-12-18 2006-07-11 Ut-Battelle, Llc Wrought Cr—W—V bainitic/ferritic steel compositions
JP4279231B2 (en) * 2004-10-22 2009-06-17 株式会社神戸製鋼所 High-strength steel material with excellent toughness in weld heat affected zone
JP4555694B2 (en) * 2005-01-18 2010-10-06 新日本製鐵株式会社 Bake-hardening hot-rolled steel sheet excellent in workability and method for producing the same
CN101265553B (en) * 2007-03-15 2011-01-19 株式会社神户制钢所 High strength hot rolled steel sheet with excellent press workability and method of manufacturing the same
JP5396758B2 (en) * 2007-07-27 2014-01-22 Jfeスチール株式会社 Hot-rolled section steel for ship ballast tank and manufacturing method thereof
JP4502075B1 (en) * 2008-12-24 2010-07-14 Jfeスチール株式会社 Corrosion resistant steel for crude oil tankers
CN101928886A (en) * 2010-07-15 2010-12-29 南京钢铁股份有限公司 Corrosion resistant steel for cargo oil tanks and application thereof
JP6135577B2 (en) * 2014-03-28 2017-05-31 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
CN105239023B (en) * 2015-11-18 2017-06-27 钢铁研究总院 A kind of high temperature resistant acidic chloride ion corrosion steel plate and its manufacture method
KR102021815B1 (en) * 2018-03-16 2019-09-18 닛폰세이테츠 가부시키가이샤 Steel plate for coal and ore carrier hold

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177326A (en) * 2005-11-30 2007-07-12 Jfe Steel Kk High tensile strength thin steel sheet having low yield ratio and its production method
JP2008240151A (en) * 2007-03-01 2008-10-09 Nippon Steel Corp High strength hot rolled steel sheet for line pipe having excellent low-temperature toughness, and its manufacturing method
KR20140023787A (en) * 2012-08-17 2014-02-27 포항공과대학교 산학협력단 Low carbon high strength steel plates with good low temperature toughness and manufacturing method for the same
WO2017111345A1 (en) * 2015-12-24 2017-06-29 주식회사 포스코 Low-yield-ratio type high-strength steel, and manufacturing method therefor

Also Published As

Publication number Publication date
KR20180072500A (en) 2018-06-29
CN109983146B (en) 2021-05-28
CN109983146A (en) 2019-07-05
WO2018117509A1 (en) 2018-06-28
KR101879082B1 (en) 2018-07-16
JP6829765B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
JP6829765B2 (en) Low yield ratio type ultra-high strength steel and its manufacturing method
JP6198937B2 (en) HT550 steel sheet with ultra-high toughness and excellent weldability and method for producing the same
US8647564B2 (en) High-strength steel sheet with excellent low temperature toughness and manufacturing thereof
JP6648270B2 (en) High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same
JP6475837B2 (en) High strength steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP6648271B2 (en) High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP6616002B2 (en) High-strength steel material with excellent low-temperature strain aging impact characteristics and method for producing the same
JP2020509165A (en) Extra-thick steel material excellent in surface portion NRL-DWT physical properties and method for producing the same
CA3121217A1 (en) Steel plate having excellent heat affected zone toughness and method for manufacturing thereof
JP6845855B2 (en) Low yield ratio type high strength steel and its manufacturing method
KR101018055B1 (en) Fire-resistant high-strength rolled steel material and method for production thereof
JP2020503435A (en) Low yield ratio steel sheet excellent in low temperature toughness and method for producing the same
JP2020537047A (en) Thick steel sheet with excellent low-temperature deformation aging impact characteristics and its manufacturing method
JP7372325B2 (en) High-strength steel plate with excellent low-temperature fracture toughness and elongation, and its manufacturing method
JP2020509168A (en) Surface part NRL-Extra-thick steel material excellent in physical properties for drop test and method for producing the same
JP4959402B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JPH0413406B2 (en)
KR100431850B1 (en) High strength steel having low yield ratio and method for manufacturing it
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
KR101289192B1 (en) Steel plate for pipeline with excellent fracture arrestability and inhibitory activity of dwtt inverse fracture and manufacturing metod of the same
KR20060072196A (en) Manufacturing method of wide and thick plate having excellent strength and toughness for making linepipe
JP2005029841A (en) High strength steel for welded structure having excellent low temperature toughness in high heat input weld part haz, and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210122

R150 Certificate of patent or registration of utility model

Ref document number: 6829765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250