KR100431850B1 - High strength steel having low yield ratio and method for manufacturing it - Google Patents

High strength steel having low yield ratio and method for manufacturing it Download PDF

Info

Publication number
KR100431850B1
KR100431850B1 KR10-1999-0063186A KR19990063186A KR100431850B1 KR 100431850 B1 KR100431850 B1 KR 100431850B1 KR 19990063186 A KR19990063186 A KR 19990063186A KR 100431850 B1 KR100431850 B1 KR 100431850B1
Authority
KR
South Korea
Prior art keywords
less
ferrite
steel
high strength
remaining
Prior art date
Application number
KR10-1999-0063186A
Other languages
Korean (ko)
Other versions
KR20010060759A (en
Inventor
서동한
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1999-0063186A priority Critical patent/KR100431850B1/en
Publication of KR20010060759A publication Critical patent/KR20010060759A/en
Application granted granted Critical
Publication of KR100431850B1 publication Critical patent/KR100431850B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 건설, 해양구조물 또는 라인파이프 등에 사용되는 구조용 강재에 관한 것으로, 그 목적은 결정립 미세화를 통한 고강도화와 베이나이트 조직을 이용한 저항복비를 가지는 고강도 강 및 그 제조방법을 제공함에 있다.The present invention relates to a structural steel used in construction, offshore structures, or line pipes, and the object is to provide a high strength steel having a high strength through grain refinement and a resistive ratio using bainite structure and a method of manufacturing the same.

상기 목적을 달성하기 위한 본 발명은, 중량%로, C:0.07∼0.16%, Si:0.5%이하, Mn:1.2-1.6%, Al:0.005-0.1%, Ti:0.005-0.02%, Nb:0.01-0.06%, V:0.03-0.08%, P:0.03%이하, S:0.03%이하, N:0.003∼0.014%, 나머지 Fe와 기타 불가피한 불순물로 조성되고, 그 미세조직이 20∼35%의 상분율을 갖는 베이나이트와 나머지 페라이트이고, 상기 페라이트 입도가 2∼4㎛로 이루어지는 저항복비를 갖는 고강도 강과;The present invention for achieving the above object, in weight%, C: 0.07 to 0.16%, Si: 0.5% or less, Mn: 1.2-1.6%, Al: 0.005-0.1%, Ti: 0.005-0.02%, Nb: 0.01-0.06%, V: 0.03-0.08%, P: 0.03% or less, S: 0.03% or less, N: 0.003 to 0.014%, remaining Fe and other unavoidable impurities, and the microstructure of 20 to 35% High strength steel having bainite having an ordinary fraction and remaining ferrite, and having a resistivity ratio in which the ferrite grain size is 2 to 4 µm;

중량%로, C:0.07∼0.16%, Si:0.5%이하, Mn:1.2-1.6%, Al:0.005-0.1%, Ti:0.005-0.02%, Nb:0.01-0.06%, V:0.03-0.08%, P:0.03%이하, S:0.03%이하, N:0.003∼0.014%, 나머지 Fe와 기타 불가피한 불순물로 조성되는 주괴를 1100∼1250℃의 온도범위에서 가열한 후, 오스테나이트 재결정역에서 50%이상의 총압하율로 1차열간압연한 다음, Ar3±20℃ 온도구간에서 1패스당 20%이상의 압하율로 누적압하율이 90%이상이 되도록 가공발열에 의해 2차 연속다단 열간압연하고, 이어 5∼20℃/s의 냉각속도로 상온까지 가속냉각하여 20∼35%상분율의 베이나이트와 나머지 페라이트이고, 상기 페라이트 입도가 2∼4㎛로 이루어지는 저항복비를 갖는 고강도 열연강판의 제조방법에 관한 것을 그 기술적요지로 한다.By weight%, C: 0.07 to 0.16%, Si: 0.5% or less, Mn: 1.2-1.6%, Al: 0.005-0.1%, Ti: 0.005-0.02%, Nb: 0.01-0.06%, V: 0.03-0.08 %, P: 0.03% or less, S: 0.03% or less, N: 0.003 ~ 0.014%, the ingot composed of the remaining Fe and other unavoidable impurities is heated in the temperature range of 1100-1250 ° C, and then 50 in the austenite recrystallization zone. First hot rolling with a total reduction rate of more than%, then second continuous multi-stage hot rolling by processing heat so that the cumulative reduction rate is more than 90% at a reduction rate of more than 20% per pass in the temperature range of Ar 3 ± 20 ℃. Next, accelerated cooling to room temperature at a cooling rate of 5 ~ 20 ℃ / s to produce a high strength hot rolled steel sheet having a resistivity ratio of 20 to 35% bainite and the remaining ferrite, the ferrite grain size of 2 to 4㎛ It is the technical point of the method.

Description

저항복비를 갖는 고강도 강 및 그 제조방법{High strength steel having low yield ratio and method for manufacturing it}High strength steel having low yield ratio and method for manufacturing the same

본 발명은 건설, 해양구조물 또는 라인파이프 등에 사용되는 구조용 강재에 관한 것으로, 보다 상세하게는 결정립 미세화를 통한 고강도화와 베이나이트 조직을 이용한 저항복비를 가지는 고강도 강과 그 제조방법에 관한 것이다.The present invention relates to structural steels used in construction, offshore structures, line pipes, and the like, and more particularly, to a high strength steel having a high strength through grain refinement and a resistive ratio using bainite structure and a method of manufacturing the same.

일반적으로 구조용 강재는 부재의 절감, 용접 용이성을 위한 저 합금화, 수송의 고효율성의 측면에서 고강도화가 절실히 요청되고 있다. 또한, 지각 변동에 따른 강지진이나 기상이변에 의한 강풍에 견딜 수 있는 강재의 사용이 요구 되어지고 있다. 이러한 의미에서 내지진성이 우수한 구조용 강재는 항복강도가 낮은 저항복비(항복강도/인장강도)의 특성을 가져야 한다.In general, structural steels are urgently required to have high strength in terms of reduction of members, low alloying for ease of welding, and high efficiency of transportation. In addition, the use of steel materials that can withstand strong earthquakes caused by earthquake fluctuations and strong winds caused by extreme weather conditions is required. In this sense, structural steels with excellent anti-intrinsic properties should have low yield strength (yield strength / tensile strength).

저항복비를 가지는 재료의 인장특성은 연속항복이 발생한다. 연속항복은 오스테나이트가 베어나이트로 변태될 때 부피팽창에 의해 이미 생성된 페라이트에 변형을 유발해 내부에 가동전위를 도입시켜서, 인장시 낮은 항복응력에도 가동전위의작용으로 재료가 소성변형 단계로 전이되는 현상이다. 항복비는 오스테나이트가 페라이트로 변태되고 남은 잔류오스테아니트가 냉각속도에 의해 베이나이트로 변태되는 양에 따라 달라지고 그 크기에 의해서도 영향을 받기 때문에 항복비의 조절은 베이나이트 상의 특성을 변화함에 의해 가능해 진다.The tensile properties of materials with a resistive yield ratio produce continuous yielding. Continuous yielding causes deformation of the ferrite already created by volume expansion when austenite is transformed into bare knight, and introduces a moving potential inside. It is a phenomenon of transition. The yield ratio is dependent on the amount of austenite transformed to ferrite and the remaining residual austenite is converted to bainite by the cooling rate and is also affected by its size. Is made possible.

일반적으로, 구조용 강재의 하나인 라인파이프형 강재는 보증강도에 따라 API X52, X60, X65, X70등으로 구분되고 있다. 라인파이프형 강재에는 파이프의 대구경화 및 고도의 안정성 확보의 요구에 따라 고강도-고인성의 강재가 사용되고 있는 추세로, 현재는 항복강도 65ksi급(45.7kgf/mm2)의 X65강재가 가장 많이 사용되고 있다. 또한, 대구경의 라이파이프는 용접시공에 의해 제조되므로, 이들 강재에 있어서 용접성은 매우 중요하다. 따라서, 라인파이프에 사용되는 강재는 용접경화성에 대한 간접적인 척도인 탄소당량 값이 0.45이하로 되어야 한다.In general, line pipe steel, which is one of structural steels, is classified into API X52, X60, X65, X70, etc. according to the guaranteed strength. In line pipe type steel, high-strength and high-toughness steel are used in accordance with the demand for large diameter of pipe and securing high stability. Currently, X65 steel with a yield strength of 65ksi (45.7kgf / mm 2 ) is most used. . In addition, since a large diameter pipe is manufactured by welding, weldability is very important in these steel materials. Therefore, the steel used in the line pipe should have a carbon equivalent value of 0.45 or less, which is an indirect measure of weld hardness.

이와 같이, 라인파이프용 강재는 고강도-고인성 및 고용접성을 겸비해야 하는데, 항복강도 65ksi급의 API X65강은 통상 850-900℃ 부근에서 노말라이징(Normalizing) 열처리에 의해 제조되었다. 그러나, 노말라이징 처리재는 탄소당량이 0.42% 이상으로 용접성이 열악하여 저온균열 발생을 억제하기 위해 예열을 실시해야 하는 등 여러 가지 문제점이 대두되어 왔다.As such, the steel for line pipes should have high strength-toughness and high solidity weldability. The API X65 steel having a yield strength of 65ksi was normally manufactured by normalizing heat treatment at around 850-900 ° C. However, the normalizing material has a number of problems, such as the carbon equivalent is more than 0.42% poor weldability, and preheating should be performed to suppress the occurrence of low temperature cracking.

최근에는 재결정 제어압연을 통하여 오스테나이트를 미세화시키고 압연온도를 높여서 미세한 결정립을 얻어서 인성저하를 방지하는 기술도 있다. 예를 들면, 대한민국 특허공보 99-205536호에는 Ti, Nb, V등을 첨가하여 재가열시 오스테나이트 결정립의 성장을 억제하고 재결정영역에서 압하비를 20%정도로 하여 650-550℃까지 6-50℃/s으로 수냉한 다음, 상온까지 공냉하여 항복강도 65ksi(45.7kgf/mm2)이상의 API X65재를 제조하는 기술이 제안되어 있다.In recent years, recrystallization-controlled rolling has reduced the toughness by miniaturizing austenite and increasing the rolling temperature to obtain fine grains. For example, Korean Patent Publication No. 99-205536 adds Ti, Nb, V, etc. to suppress the growth of austenite grains upon reheating, and the reduction ratio is about 20% in the recrystallization region to 6-50 ° C up to 650-550 ° C. A technique for producing API X65 material having a yield strength of 65 ksi (45.7 kgf / mm 2 ) or more by water cooling to / s and then air cooling to room temperature has been proposed.

또한, 미재결정역 압연을 행하고 이상역에서 굽힘가공을 한 후 공냉을 하여 저항복비의 라인파이프 강재를 얻은 결과도 있다. 예를 들면, 일본특허공보(평)8-283848호 에서는 몰리브덴(Mo) 합금을 0.05~0.25%정도로 첨가하여 미재결정역에서 압연을 행하고 이상역의 온도로 가열하여 굽힘 가공을 하고 난 후 공냉을 하여 항복강도 45.7kgf/mm2, 항복비 70%이하의 라이파이프 강재를 얻었다. 하지만 여기서는 원가상승을 유발하는 몰리브덴이 첨가된 단점이 있다.In addition, unrecrystallized station rolling is carried out, and bending is performed in an ideal area, followed by air cooling to obtain a line pipe steel having a resistance ratio. For example, Japanese Patent Application Laid-Open No. 8-283848 discloses that molybdenum (Mo) alloy is added at about 0.05 to 0.25%, rolled in a non-recrystallized zone, heated to an ideal temperature, and bent, followed by air cooling. The yield strength was 45.7 kgf / mm 2 , and the steel pipe with yield ratio of 70% or less was obtained. However, there is a disadvantage in that molybdenum is added which causes a cost increase.

한편, 라이파이프의 고강도화를 위하여 X70급, X80급과 같이 오스테나이트의 결정립 성장 방지 및 석출강화를 위한 Nb, V, Ti 첨가외에 용접성을 저해하지 않고 고용강화를 야기하는 Ni, Cu, Mo를 첨가하는 경우도 있다. 하지만 이러한 방법은 고가인 합금원소가 첨가되어 원가상승이 유발되는 단점이 있다.On the other hand, in order to increase the strength of the lypipe, such as X70 and X80, Ni, Cu, and Mo are added to prevent the growth of austenite grains and to add Nb, V, Ti for precipitation strengthening, and to increase the solid solution without inhibiting weldability. In some cases. However, this method has a disadvantage in that cost increases due to the addition of expensive alloying elements.

구조용강재에서 결정립을 미세화시키기 위한 종래의 기술로는 제어압연에 의해서 (1) 오스테나이트 미재결정역 또는 (2) 오스테나이트 + 페라이트 이상역에서 압연하는 방법이 있다. 이 방법에 의하면 오스테나이트 립의 연신화 및 입내의 변형대를 생성하여 페라이트의 핵생성 자리를 증가시키거나, 가공된 페라이트의 회복, 재결정에 의해 페라이트립을 미세하는 기술로, 저온인성 및 강도의 향상에 유효하다.Conventional techniques for refining grains in structural steels include a method of rolling in (1) austenite uncrystallized regions or (2) austenite + ferritic ideal regions by controlled rolling. According to this method, it is possible to increase the nucleation site of the ferrite by generating the austenite lip stretching and intragranular deformation zone, or to refine the ferrite lip by the recovery and recrystallization of the processed ferrite. It is effective for improvement.

(1) 상기 오스테나이트 미재결정역 압연에 있어서 페라이트 핵생성 자리를 증대시키는 방법으로, 예를 들면 Proceeding of Microalloying 75(1975), p120에 공지된 것과 같이 고온에서 누적압하량을 증가한 것이다. 하지만 페라이트 결정립이 10㎛로 조대하였다.(1) As a method of increasing the ferrite nucleation site in the above austenite unrecrystallized rolling, for example, as known in Proceeding of Microalloying 75 (1975), p120, the cumulative pressure drop at high temperature is increased. However, ferrite grains were coarse to 10 mu m.

(2) 상기 오스테나이트+페라이트 이상역에서 압연을 하여 페라이트 립을 미세화시킨 경우가 있다. 예를 들면 철과강 65(1979) 9, p1400에 공지된 것과 같이, 가공시킨 페라이트가 압연후 재가열에 의해 회복 및 재결정되어 결정이 미세해진다고 하였다. 하지만 열처리 공정이 부가되어 공정이 복잡하다.(2) Rolling may be performed in the above austenite + ferrite or higher region to refine the ferrite grains. For example, as known from iron and steel 65 (1979) 9, p1400, the processed ferrite was recovered and recrystallized by reheating after rolling, and the crystals became fine. However, the process is complicated by the addition of heat treatment.

한편, 고온에서 누적압연에 의해 조직을 미세화시키는 방법으로는 일본 특허공보 (소) 63-050426호를 예로 들 수 있으며, 여기서는 압연온도영역으로 Ar3~Ar3+150℃와 같이 150℃의 온도범위를 규정하고 있다. 하지만, 온도가 높아 누적효과 많지 않아 결정립 미세화 효과가 크지 않았다. Ar3온도이하에서 오스테나이트와 페라이트가 존재하는 이상역압연에 의한 방안도 제시 되고 있는데 온도가 낮아 페라이트가 재결정되지 않고 연신되는 결과를 초래한다.On the other hand, as a method of refining the structure by cumulative rolling at high temperature, Japanese Patent Publication No. 63-050426 can be exemplified, in this case the rolling temperature range of 150 ℃, such as Ar 3 ~ Ar 3 +150 ℃ It defines the scope. However, due to the high temperature, the cumulative effect was not high, and the grain refinement effect was not large. An alternative reverse rolling method in which austenite and ferrite are present at or below Ar 3 is also proposed. The low temperature causes the ferrite to be stretched without recrystallization.

본 발명에서는 다량의 합금첨가나 열연후 재가열하는 열처리 없이도 미세한 페라이트와 적정한 상분율의 베이나이트조직을 형성하여 항복비가 낮으면서 강도가 높은 강과 이 강의 제조방법을 제공하는데 그 목적이 있다.It is an object of the present invention to provide fine ferrite and a bainite structure having an appropriate phase ratio and high strength while providing a high strength steel and a method for producing the steel without the addition of a large amount of alloy or heat treatment after reheating.

상기 목적을 달성하기 위한 본 발명의 저항복비를 갖는 고강도 강은, 중량%로, C:0.07∼0.16%, Si:0.5%이하, Mn:1.2-1.6%, Al:0.005-0.1%, Ti:0.005-0.02%, Nb:0.01-0.06%, V:0.03-0.08%, P:0.03%이하, S:0.03%이하, N:0.003∼0.014%, 나머지 Fe와 기타 불가피한 불순물로 조성되고, 그 미세조직이 20∼35%의 상분율을 갖는 베이나이트와 나머지 페라이트로 이루어지고, 그리고 상기 페라이트는 2∼4㎛의 입도를 갖는다.High-strength steel having a resistive ratio of the present invention for achieving the above object, in weight%, C: 0.07 to 0.16%, Si: 0.5% or less, Mn: 1.2-1.6%, Al: 0.005-0.1%, Ti: 0.005-0.02%, Nb: 0.01-0.06%, V: 0.03-0.08%, P: 0.03% or less, S: 0.03% or less, N: 0.003-0.014%, remaining Fe and other unavoidable impurities. The structure consists of bainite and the remaining ferrite having an phase fraction of 20 to 35%, and the ferrite has a particle size of 2 to 4 mu m.

나아가, 본 발명의 저항복비를 갖는 고강도 강의 제조방법은, 중량%로, C:0.07∼0.16%, Si:0.5%이하, Mn:1.2-1.6%, Al:0.005-0.1%, Ti:0.005-0.02%, Nb:0.01-0.06%, V:0.03-0.08%, P:0.03%이하, S:0.03%이하, N:0.003∼0.014%, 나머지 Fe와 기타 불가피한 불순물로 조성되는 주괴를 1100∼1250℃의 온도범위에서 가열한 후, 오스테나이트 재결정역에서 50%이상의 누적압하율로 1차열간압연하고, 이어 Ar3±20℃ 온도구간에서 1패스당 20%이상의 압하율로 누적압하율이 90%이상이 되도록 2차 연속다단열간압연하고 5∼20℃/s의 냉각속도로 상온까지 가속냉각하여 20∼35%상분율의 베이나이트와 나머지 페라이트의 페라이트이고, 상기 페라이트 입도가 2∼4㎛로 이루어지는 것을 포함하여 구성된다.Furthermore, the manufacturing method of the high strength steel which has the resistivity ratio of this invention is C by 0.07 to 0.16%, Si: 0.5% or less, Mn: 1.2-1.6%, Al: 0.005-0.1%, Ti: 0.005- 0.02%, Nb: 0.01-0.06%, V: 0.03-0.08%, P: 0.03% or less, S: 0.03% or less, N: 0.003-0.014%, ingots composed of the remaining Fe and other unavoidable impurities are 1100-1250 After heating in the temperature range of ℃, the first hot rolling in the austenite recrystallization zone with a cumulative reduction rate of more than 50%, and then the cumulative reduction ratio of 90% or more per pass in the Ar 3 ± 20 ℃ temperature range is 90 Secondary continuous multi-stage hot rolling to be more than% and accelerated cooling to room temperature at a cooling rate of 5 to 20 ℃ / s 20% to 35% of the percentage of bainite and the remaining ferrite ferrite, the ferrite grain size is 2 ~ 4㎛ It consists of what consists of.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 합금이 미량 첨가되어 있는 API X65급 강의 미세조직이 20-35%의 상분율을 갖는 베이나이트와 나머지 페라이트의 복합조직으로 하고, 페라이트 입도가 2∼4㎛되도록 하여 고강도와 저항복비를 달성하는데, 그 일차적인 특징이 있다.The present invention is a microstructure of the API X65 grade steel with a small amount of alloy is added to the composite structure of bainite and the remaining ferrite having a phase ratio of 20-35%, the ferrite grain size is 2 ~ 4㎛ to increase the high strength and resistance ratio There is a primary characteristic of this.

이와 같이 고강도 저항복비의 미세조직을 갖도록 하기 위하여 본 발명에서는, 첫째, 재가열 온도를 낮추어 오스테나이트의 결정립 크기를 작게하면서 재결정역 압연에 의해 오스테나이트의 결정립 크기를 미세하게 하여 페라이트의 핵생성될 수 있는 유효입계면적을 증대시키는 것과 함께, Ar3근처에서 1회의 가공량을 증대하여 가공발열에 의해 압연후 온도가 하강되는 것을 막아 페라이트를 회복 및 재결정함으로써 페라이트의 결정립을 미세회시키고; 둘째, 열간압연후의 냉각속도를 조절하여 남은 오스테나이트를 적정한 상분율의 베이나이트로 변태시켜 저항복비를 달성한다. 이러한 특성에 기초하는 본 발명의 강과 그 제조방법을 구분하여 설명한다.In order to have a high-strength resistive microstructure as described above, first, in the present invention, ferrite can be nucleated by recrystallization rolling to make the grain size of austenite fine by reducing the reheating temperature to decrease the grain size of the austenite. Increasing the effective grain area, and increasing the amount of processing once near Ar 3 to prevent the temperature from dropping after rolling due to the exothermic heat to recover and recrystallize the ferrite, thereby finely refining the grains of the ferrite; Second, by controlling the cooling rate after hot rolling, the remaining austenite is transformed into bainite of an appropriate phase ratio to achieve a resistance ratio. The steel of this invention based on such a characteristic, and its manufacturing method are demonstrated separately.

[강 성분][Steel Ingredients]

상기 탄소(C)는 함량이 적을 경우 제2상 조직의 분율이 저하하여 강도가 저하되고, 많을 경우에는 강도는 증가하나 연신율을 해치고 용접성에도 나쁘므로 0.07∼0.16% 범위로 한정하는 것이 바람직하다.When the content of carbon (C) is small, the fraction of the second phase structure is lowered, and the strength is lowered. When the carbon (C) is high, the strength is increased but the elongation is deteriorated and the weldability is bad. Therefore, the carbon (C) is preferably limited to 0.07 to 0.16%.

상기 규소(Si)는 제강시 탈산제로 첨가되며 고용강화역할을 하는 원소로 0.5%를 초과하면 인성과 용접성이 저하되며 강판표면에 산화피막이 심하게 형성되므로, 0.5%이하로 제한하는 것이 바람직하다.The silicon (Si) is added as a deoxidizer during steelmaking, and when the content exceeds 0.5%, toughness and weldability are deteriorated and the oxide film is severely formed on the surface of the steel sheet, so it is preferably limited to 0.5% or less.

상기 망간(Mn)은 강의 강도와 인성의 향상에 유효한 강의 기본 원소로, 1.2%미만 함유되면 그 효과가 적고 강의 경화능을 저하시켜 압연후 가속냉각시 제 2상조직인 베이나이트 형성이 어려워 강도 확보가 어렵고, 1.6%초과하면 용접성이 저하하므로 그 함량은 1.2∼1.6%로 제한하는 것이 바람직하다.The manganese (Mn) is a basic element of steel effective for improving the strength and toughness of the steel, and if less than 1.2% is contained, its effect is low and the hardenability of the steel is lowered. Thus, bainite, which is a second phase structure during accelerated cooling after rolling, is difficult to secure. Is difficult, and if it exceeds 1.6%, the weldability is lowered, so the content thereof is preferably limited to 1.2 to 1.6%.

상기 인(P)은 충격인성에 특히 나쁜 원소로서 함량이 낮으면 낮을수록 좋으나 제강과정에서 피할 수 없는 원소이므로 물성에 해로운 영향을 끼치지 않도록 그 함량은 0.03% 이하로 제한하는 것이 바람직하다.The phosphorus (P) is an element particularly bad for impact toughness, the lower the content is better, but it is inevitable in the steelmaking process, so the content is preferably limited to 0.03% or less so as not to adversely affect the physical properties.

상기 황(S)은 Mn의 비금속 개재물로 존재하고 열간압연에 의하여 길게 연신되어 강판 물성의 이방성을 조장하기 때문에 그 함량은 0.03% 이하로 제한하는 것이 바람직하다.Since the sulfur (S) is present as a non-metallic inclusion of Mn and is elongated by hot rolling to promote anisotropy of the steel sheet, the content thereof is preferably limited to 0.03% or less.

상기 알루미늄(sol-Al)은 강의 탈산을 위해 첨가하는 원소로, 0.005% 미만에서는 충분한 효과를 얻지 못하나 0.1%를 초과하면 그 효과가 포화된다. 따라서 Al은 0.005~0.1%로 하는 것이 바람직하다.The aluminum (sol-Al) is an element added for deoxidation of the steel, and when less than 0.005%, a sufficient effect is not obtained, but when it exceeds 0.1%, the effect is saturated. Therefore, Al is preferably made 0.005 to 0.1%.

상기 티타늄(Ti)은 강의 응고과정에서 TiN석출물을 형성하여 주괴를 가열하는 동안에 성장을 억제하고, 열간압연 과정에서 재결정립의 성장을 억제함으로써 강의 결정립 미세화에 큰 역할을 하는 주요원소이다. Ti의 적정 첨가량은 N의 함량에 따라 결정되는데, Ti/N 비가 TiN 석출물의 화학양론비인 약 3.42 이상일때 주조시 조대한 탄질화물이 형성되고, 고용 Ti 함량이 많아 가열중 TiN이 조대해져서 재가열입성장을 억제하지 못하게 된다. 따라서, 본 발명에서는 질소의 첨가량과 함께 Ti/N비를 3.42 이하로 유지하기 위한 측면을 고려하여 Ti 첨가량은 0.005-0.02%로 제한하는 것이 바람직하다.The titanium (Ti) is a major element that forms a TiN precipitate during the solidification process of steel to inhibit growth during heating of the ingot, and inhibits the growth of recrystallized grains during hot rolling, thereby playing a major role in refining grains of steel. The appropriate amount of Ti is determined according to the content of N. Coarse carbonitride is formed during casting when the Ti / N ratio is about 3.42 or more, which is the stoichiometric ratio of the TiN precipitate. It will not inhibit growth. Therefore, in the present invention, the amount of Ti is preferably limited to 0.005-0.02% in consideration of aspects for maintaining the Ti / N ratio at 3.42 or less together with the amount of nitrogen.

상기 질소(N)는 Ti과 함께 TiN석출물을 형성하여 강의 결정립 미세화에 큰 역할을 하는 주요원소로 적절한 TiN석출을 위해 0.003%이상 함유되도록 하며, Ti을 완전히 석출하기 위해서는 질소의 첨가량이 많을 수록 좋으나 이는 제강공정에서 작업부하를 초래하고 또한, TiN석출물이 조대해져서 결정립미세화하지 못하고 N가 오스테나이트 안정화 원소로서 인성을 떨어뜨릴 수 있으므로 0.014%이하로 한다. 상기한 측면을 고려할 때 0.003-0.01%로 하는 것이 보다 바람직하다.The nitrogen (N) is a major element that forms a TiN precipitate with Ti to play a major role in the grain refinement of the steel to be contained more than 0.003% for proper TiN precipitation, the more the amount of nitrogen is better to precipitate Ti completely This causes a work load in the steelmaking process, and also makes the TiN precipitate coarse so that the grain cannot be finely refined, and N can degrade toughness as an austenite stabilizing element. In view of the above aspects, the content is more preferably 0.003-0.01%.

상기 니오븀(Nb)은 오스테나이트에 고용되어 경화능을 증대시킴으로써 페라이트 변태온도를 주조시와 재가열시 (Ti,Nb)(C,N)의 형태로 미세하게 석출하여 오스테나이트와 페라이트 입도를 동시에 미세화시킴으로써 강도 및 인성 증가에 크게 기여한다. 그러나 첨가량이 지나치게 많을 시에는 용접성을 저하시키고, 주조시 NbC가 고온에서 기석출된 Ti, Nb, C, N에 합체함으로써 탄질화물의 조대화로 오스테나이트 입도의 조대화를 초래하며, 변태 후 얻어지는 조직이 조대해질 수 있으므로 그 함량을 0.01∼0.06%로 제한한다.The niobium (Nb) is dissolved in austenite to increase the hardenability, thereby finely depositing the ferrite transformation temperature in the form of (Ti, Nb) (C, N) during casting and reheating, thereby simultaneously minimizing austenite and ferrite grain sizes. Thereby greatly increasing the strength and toughness. However, when the addition amount is too large, the weldability is lowered, and when casting, NbC coalesces with Ti, Nb, C, and N deposited at high temperature, resulting in coarsening of carbonitrides, resulting in coarsening of austenite grain size, which is obtained after transformation. Since the tissue may become coarse, the content is limited to 0.01 to 0.06%.

상기 바나듐(V)은 냉각 중에 VC를 형성하여 석출강화 및 페라이트 입도 성장 억제에 의해 강도 증가에 기여하는 원소로 0.03% 이상 함유시키는 것이 바람직하나, 0.08% 이상 함유되면 조대한 VC가 형성되어 취성이 유발되고, 용접성이 저하되므로 그 함량은 0.03-0.08%로 제한하는 것이 바람직하다.The vanadium (V) is an element that contributes to strength increase by forming VC during cooling to increase the strength by strengthening precipitation and suppressing ferrite grain growth, but when it contains 0.08% or more, coarse VC is formed and brittle. It is preferable to limit the content to 0.03-0.08% since it is caused and the weldability is lowered.

상기와 같이 조성되는 강은 베이나이트+페라이트의 복합조직으로, 베이나이트의 상분율은 인장강도와 연신율과 연관성이 있는데, 그 상분율이 클수록 인장강도는 높고 연신율은 감소한다. 따라서, 이를 고려하여 베이나이트의 상분율은 20∼35%로 하는 것이 바람직하다.한편, 페라이트의 입도는 항복강도와 상관성이 있으며, 이를 고려할때 그 입도는 2∼4㎛로 이루어지는 것이 바람직하다.즉, 상기 페라이트의 입도가 2㎛미만인 경우에는 항복강도 너무 커져 76%이하의 저항복비를 얻기 곤란하고, 4㎛를 초과하는 경우에는 충분한 항복강도를 확보하기 곤란하기 때문이다.공지된 바와 같이, 건축구조물등의 설계강도는 강의 항복강도에 기하여 설정되므로, 가능한 한 높은 항복강도를 갖는 강이 유리하며, 한편, 항복비가 낮을수록 지진등과 같은 외부 충격을 흡수할 수 있는 능력이 커지게 되는데, 높은 항복강도 및 낮은 항복비를 동시에 갖은 강종을 제공하는 것은 어려운 일이다.따라서, 본 발명에서는 상기한 점을 고려하여 항복강도가 56kgf/mm2이상이고 항복비(항복강도/인장강도)가 76%이하인 저항복비를 갖는 고강도 강을 제공하는 것이다.Steel formed as described above is a composite structure of bainite + ferrite, the phase fraction of bainite is associated with the tensile strength and elongation, the higher the percentage is higher the tensile strength and the elongation is decreased. Therefore, in consideration of this, it is preferable that the phase fraction of bainite is 20 to 35%. On the other hand, the particle size of ferrite correlates with the yield strength, and in consideration of this, the particle size is preferably 2 to 4 m. That is, when the particle size of the ferrite is less than 2 µm, the yield strength is too large to obtain a resistance yield ratio of 76% or less, and when it exceeds 4 µm, it is difficult to secure sufficient yield strength. Since the design strength of building structures is set based on the yield strength of the steel, the steel with the highest yield strength is advantageous. On the other hand, the lower the yield ratio, the greater the ability to absorb external shocks such as earthquakes. It is difficult to provide a steel grade having both a high yield strength and a low yield ratio. Accordingly, in the present invention, the yield strength is considered to be 56 kgf / It is to provide a high strength steel having a resistivity ratio of at least mm 2 and a yield ratio (yield strength / tensile strength) of 76% or less.

[제조방법][Manufacturing method]

상기와 같이 화학조성으로 제조된 주괴(슬라브 또는 분괴재)를 1100∼1250℃ 온도범위로 가열하는 것이 바람직하다. 그 이유는, 본 발명에서는 고강도와 고인성을 미세한 탄질화 석출물과 고용 Nb에 의한 페라이트 입도 미세화 및 전위 강화기구에 의해 얻고 있으므로, 압연 전에 주괴를 1100℃이상으로 가열하여 NbC가 용해되어 Nb원자 상태로 존재하도록 해야 하며, 가열온도가 1250℃를 초과할 경우에는재가열시 조대한 TiN 석출이 일어나기 때문이다.It is preferable to heat the ingot (slab or powder) produced in the chemical composition in the temperature range of 1100 ~ 1250 ℃. The reason is that in the present invention, high strength and high toughness are obtained by fine carbonitride precipitate and ferrite grain size refinement and dislocation reinforcement mechanism by solid solution Nb. This is because coarse TiN precipitation occurs during reheating if the heating temperature exceeds 1250 ℃.

상기 온도 범위로 가열된 주괴는 재결정역압연에서 총압하량이 50% 이상이 되도록 1차 열간압연한다. 이는 오스테나이트의 결정립 크기를 충분히 작게 하고자 하는 것으로, 오스테나이트의 결정립 크기가 작으면 변형대 생성이 용이하고 이후 압연에 의해 페라이트의 핵생성 촉진되기 때문이다. 1차열간압연은 1패스를 50%이상으로 압연하여도 되고, 누적압하율이 50%이상이 되도록 다단압연하여도 무방하다. 또한, 본 발명에서 재결정역압연은 1000∼900℃로 하는 것이 보다 바람직하다. 1000℃이상에서는 오스테나이트가 재결정된다고 하더라도 결정립크기가 조대하여 다음에 이루어지는 압연에 의한 페라이트 미세화 효과가 적고, 900℃이하에서는 미재결정역이므로 조대한 오스테나이트의 변형에 의해 다음 공정이 이루어지게 되는데 그 때의 페라이트 미세화 효과는 작다.The ingot heated to the above temperature range is first hot rolled so that the total reduction in recrystallization reverse rolling is 50% or more. This is to make the grain size of austenite sufficiently small, because if the grain size of austenite is small, the generation of strain bands is easy and nucleation of ferrite is promoted by rolling. Primary hot rolling may be carried out by rolling one pass at 50% or more, or may be multistage rolling so that the cumulative reduction ratio is 50% or more. In the present invention, the recrystallized reverse rolling is more preferably set to 1000 to 900 占 폚. Even if the austenite is recrystallized above 1000 ° C, the grain size is coarse, so that the ferrite refining effect is small due to the subsequent rolling. Since the recrystallization area is below 900 ° C, the next process is performed by the coarse austenite deformation. The ferrite refinement effect at the time is small.

이어 Ar3±20℃의 미재결정역에서 가공발열에 의해 연속다단압연을 하는데, 이는 오스테나이트에서 페라이트로 변태가 일어나기 직전에 변형대 생성을 극대화 시키고자 하는 것이다. 이때 1패스당 압하량이 20%이상을 가하여 가공발열에 의해 동일온도에서 압연이 진행되어 페라이트 상변태가 촉진되도록 하고, 또한, 누적압하량(총압하량)이 90%이상으로 되도록 연속다단압연하여 생성된 페라이트가 회복 및 재결정에 의해 결정립이 미세화되도록 한다.Subsequently, continuous multi-stage rolling is performed in the unrecrystallized region of Ar 3 ± 20 ℃ by exothermic heat. This is to maximize the generation of the strain band just before the transformation from austenite to ferrite. At this time, the reduction amount per pass is added more than 20%, the rolling is progressed at the same temperature by processing heat, so that the ferrite phase transformation is promoted, and it is produced by continuous multi-stage rolling so that the cumulative reduction amount (total reduction amount) becomes 90% or more. The ferrite is recovered and recrystallized so that the grains are refined.

상기와 같이 열간압연한 후에 냉각속도는 너무 느리면 생성되는 페라이트의 입도가 조대해지고 너무 빠르면 마르텐사이트가 생성되어 연성이 저하되므로 냉각속도는 5-20℃/s로 한정하는 것이 바람직하다.After the hot rolling as described above, if the cooling rate is too slow, the grain size of the ferrite produced is coarse, and if it is too fast, martensite is generated and the ductility is lowered, so the cooling rate is preferably limited to 5-20 ° C / s.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

표 1의 강성분을 갖는 주괴를 표 2의 제조조건으로 열연강판을 제조하였다.A hot rolled steel sheet was manufactured using the ingot having a steel component of Table 1 under the manufacturing conditions of Table 2.

성분ingredient CC SiSi MnMn PP SS AlAl NbNb VV TiTi NN CeqCeq AA 0.100.10 0.2510.251 1.431.43 0.0150.015 0.0040.004 0.0280.028 -- 0.0750.075 0.0110.011 0.0040.004 0.3530.353 BB 0.090.09 0.2480.248 1.541.54 0.0170.017 0.0030.003 0.0300.030 0.0250.025 0.030.03 0.0130.013 0.0060.006 0.3530.353 CC 0.100.10 0.2500.250 1.501.50 0.0180.018 0.0040.004 0.0290.029 0.0460.046 0.0530.053 0.0160.016 0.0050.005 0.3610.361 DD 0.040.04 0.300.30 1.631.63 0.0150.015 0.0030.003 0.0310.031 0.040.04 0.080.08 0.0190.019 0.0050.005 0.320.32 EE 0.060.06 0.300.30 1.911.91 0.0150.015 0.0030.003 0.030.03 0.050.05 0.080.08 -- 0.0050.005 0.430.43 D강은 12ppm 보론 첨가강.E강은 Ni+Cu:0.61%Ceq,%=C + Mn/6 + (Cr+Mo+V)/5 + (Ni+Cu)/15D steel is 12ppm boron-added steel.E steel is Ni + Cu: 0.61% Ceq,% = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15

표 2에서 발명재(1-6)은 API X65 재와 비슷한 성분계인 A,B,C강을 사용하여 재결정역 온도범위에서 압하량 50%로 1차압연을 행하고 공냉 하였다. 이어 Ar3직상에서 1패스당 20%이상의 압하율로 압연하여 가공발열에 의해 동일온도 또는 Ar3∼20℃까지 연속다단압연하였으며, 이때의 누적압하량은 90%이상으로 행하였다.In Table 2, Inventive Materials (1-6) were air-cooled by primary rolling with 50% reduction in recrystallization temperature range using A, B, and C steels similar to API X65 ash. Subsequently, rolling was carried out at a reduction ratio of 20% or more per pass on Ar 3 directly, and continuous multi-stage rolling was carried out at the same temperature or Ar 3 to 20 ° C. by heat of processing.

구분division River 성분ingredient 압연종류Rolling Type Ar3(℃)Ar3 (℃) 압연개시온도(℃)Rolling Start Temperature (℃) 압연종료온도(℃)Rolling end temperature (℃) 1회압하량(%)Single pressure drop (%) 총압하량(%)Total pressure drop (%) 압연후냉각조건(℃/s)Cooling condition after rolling (℃ / s) 발명재Invention 1One AA 연속다단Continuous multi-stage 770770 790790 750750 2020 9090 -10-10 22 BB 연속다단Continuous multi-stage 770770 780780 750750 3030 9090 -8-8 33 BB 연속다단Continuous multi-stage 770770 780780 760760 4040 9090 -15-15 44 CC 연속다단Continuous multi-stage 765765 790790 750750 2020 9090 -7-7 55 CC 연속다단Continuous multi-stage 765765 780780 750750 3030 9090 -5-5 66 CC 연속다단Continuous multi-stage 765765 780780 760760 4040 9090 -20-20 비교재Comparative material 77 AA 제어압연Control rolling 765765 11001100 950950 2020 7575 -12-12 88 AA 제어압연Control rolling -- 11001100 900900 2020 8080 -9-9 99 BB 제어압연Control rolling -- 11001100 850850 2020 8585 -10-10 1010 BB 제어압연Control rolling -- 11001100 900900 2020 8080 -5-5 1111 CC 제어압연Control rolling -- 11501150 800800 1515 9090 -5-5 1212 CC 제어압연Control rolling -- 11501150 850850 1212 8585 공냉Air cooling 1313 DD 제어압연Control rolling 750750 10701070 720720 1515 8787 -4-4 1414 EE 제어압연Control rolling 720720 10701070 690690 1515 8787 -2-2

상기와 같이 제조된 소재들에 대한 인장특성을 조사하기 위하여 인장시험편은 KS규격 (KS B 0801) 4호 시험편을 이용하였으며 인장시험은 크로스헤드 스피드(cross head speed) 5mm/min에서 실험하였다. 발명재와 비교재에 대하여 인장 성질을 측정하고 그 결과를 표 3에 나타내었다.In order to investigate the tensile properties of the materials prepared as described above, the tensile test piece was used as the KS standard (KS B 0801) No. 4 test piece and the tensile test was carried out at a crosshead speed of 5mm / min. Tensile properties of the inventive and comparative materials were measured and the results are shown in Table 3.

구분division 항복강도(kgf/mm2)Yield strength (kgf / mm 2 ) 인장강도(kgf/mm2)Tensile strength (kgf / mm 2 ) 연신율(%)Elongation (%) 페라이트입도(㎛)Ferrite Particle Size (㎛) 베이나이트분율(%)Bainite fraction (%) 항복비Yield fee 발명재Invention 1One 56.156.1 74.874.8 3131 3.73.7 2727 7575 22 54.954.9 75.275.2 2929 33 3333 7373 33 56.556.5 76.376.3 2828 3.53.5 3232 7474 44 59.459.4 78.178.1 3030 2.52.5 2525 7676 55 58.858.8 78.578.5 2727 33 2626 7575 66 56.056.0 8080 2525 3.53.5 3535 7070 비교재Comparative material 77 49.649.6 62.062.0 3232 1010 1515 7676 88 49.549.5 61.061.0 3333 99 1212 8181 99 51.651.6 64.064.0 2828 88 1818 8181 1010 54.154.1 66.166.1 2727 77 2020 8282 1111 47.847.8 58.158.1 3333 1010 1010 8383 1212 46.146.1 54.554.5 3838 1212 00 8585 1313 53.353.3 63.263.2 4949 1111 2020 8484 1414 59.459.4 73.073.0 3838 88 3030 8181

상기 표 3에서 나타난 바와 같이, 발명재(1-6)은 항복강도와 인장강도가 비교재 14에서와 같이 API X80 급 강재에 준하는 고강도를 나타내었으며, 항복비도 비교강에 비하여 76% 이하의 수준을 나타내었다. 더욱이, 비교재(14)는 Ceq가 높아 용접성이 나쁜 단점이 있다. Ni이나 Cu의 첨가 없이 고강도에 도달한 것은 경제적인 잇점이 있다고 할 수 있다. 동일한 합금의 경우에서 발명재(4-6)과 비교재(11-12)를 비교하면 발명재의 경우가 비교재 보다 페라이트 결정립 크기가 미세하여 항복강도가 증가하였으며, 페라이트보다 경한 조직상인 베이나이트의 분율이 많기 때문에 인장강도가 높았다.As shown in Table 3, the inventive material (1-6) has a high yield strength and tensile strength corresponding to API X80 grade steel as in Comparative Material 14, the yield ratio is 76% or less than the comparative steel Indicated. Moreover, the comparative material 14 has a disadvantage in that the weldability is poor because of high Ceq. Achieving high strength without adding Ni or Cu can be said to have economic advantages. In the case of the same alloy, the inventive material (4-6) and the comparative material (11-12) were compared with the comparative material (11-12), the ferrite grain size was finer than that of the comparative material and the yield strength was increased. The tensile strength was high because of the large fraction.

상술한 바와 같이, 본 발명은 다량의 합금첨가나 열처리 없이 Ar3온도 위에서 가공발열에 의한 연속 다단압연을 통하여 페라이트 결정립을 미세화하고 가속냉각에 의해 일정 분율의 베이나이트를 생성시키는 제조조건을 제시함으로써 저항복비와 고강도화를 확보함에 따라 용접성도 우수한 강재를 제공할 수 있는 유용한 효과가 있는 것이다.As described above, the present invention provides a manufacturing condition for miniaturizing ferrite grains by continuous multi-stage rolling by processing exotherm at a temperature of Ar 3 without adding a large amount of alloying or heat treatment and generating a fraction of bainite by accelerated cooling. As the resistance ratio and high strength are secured, there is a useful effect of providing a steel with excellent weldability.

Claims (7)

중량%로, C:0.07∼0.16%, Si:0.5%이하, Mn:1.2-1.6%, Al:0.005-0.1%, Ti:0.005-0.02%, V:0.03-0.08%, P:0.03%이하, S:0.03%이하, N:0.003∼0.014%, 나머지 Fe와 기타 불가피한 불순물로 조성되고, 그 미세조직이 20∼35%의 상분율을 갖는 베이나이트와 나머지 페라이트이고, 상기 페라이트 입도는 2∼4㎛이고, 그리고 항복강도가 56kgf/mm2이상이고 항복비(항복강도/인장강도)가 76%이하인 것을 특징으로 하는 저항복비를 갖는 고강도 강.By weight%, C: 0.07 to 0.16%, Si: 0.5% or less, Mn: 1.2-1.6%, Al: 0.005-0.1%, Ti: 0.005-0.02%, V: 0.03-0.08%, P: 0.03% or less , S: 0.03% or less, N: 0.003 to 0.014%, remaining Fe and other unavoidable impurities, the microstructure of which is bainite and the remaining ferrite having an phase ratio of 20 to 35%, and the ferrite particle size is 2 to A high strength steel having a resistivity ratio of 4 ㎛, yield strength of 56kgf / mm 2 or more and yield ratio (yield strength / tensile strength) of less than 76%. 제 1항에 있어서, 상기 N는 0.003∼0.01%임을 특징으로 하는 저항복비를 갖는 고강도 강.The high strength steel having a resistivity ratio according to claim 1, wherein N is 0.003 to 0.01%. 제 1항에 있어서, 상기 강에는 0.01-0.06%의 Nb이 추가로 함유됨을 특징으로 하는 저항복비를 갖는 고강도 강.The high strength steel of claim 1, wherein the steel further contains 0.01-0.06% of Nb. 삭제delete 중량%로, C:0.07∼0.16%, Si:0.5%이하, Mn:1.2-1.6%, Al:0.005-0.1%, Ti:0.005-0.02%, V:0.03-0.08%, P:0.03%이하, S:0.03%이하, N:0.003∼0.014%, 나머지 Fe와 기타 불가피한 불순물로 조성되는 주괴를 1100∼1250℃의 온도범위에서 가열한 후, 오스테나이트 재결정역에서 50%이상의 총압하율로 1차열간압연한 다음, Ar3±20℃ 온도구간에서 1패스당 20%이상의 압하율로 누적압하율이 90%이상이 되도록 2차 연속다단 열간압연하고, 이어 5∼20℃/s의 냉각속도로 상온까지 가속냉각하여 20∼35%상분율의 베이나이트와 나머지 페라이트이고, 상기 페라이트 입도가 2∼4㎛로 이루어지는 저항복비를 갖는 고강도 강의 제조방법.By weight%, C: 0.07 to 0.16%, Si: 0.5% or less, Mn: 1.2-1.6%, Al: 0.005-0.1%, Ti: 0.005-0.02%, V: 0.03-0.08%, P: 0.03% or less , S: 0.03% or less, N: 0.003 ~ 0.014%, ingot composed of the remaining Fe and other unavoidable impurities is heated in the temperature range of 1100 ~ 1250 ℃, and then at a total pressure drop of 50% or more in the austenite recrystallization zone. After hot rolling, secondary continuous multi-stage hot rolling is carried out so that the cumulative reduction rate is 90% or more at a reduction rate of 20% or more per pass at a temperature range of Ar 3 ± 20 ° C, followed by a cooling rate of 5 to 20 ° C / s. A method of producing high strength steel having a resistivity ratio of 20 to 35% by weight of bainite and the remaining ferrite, and the ferrite grain size of 2 to 4 µm. 제 5항에 있어서, 상기 1차열간압연은 900∼1000℃에서 행함을 특징으로 하는 저항복비를 갖는 고강도 강의 제조방법.The method of claim 5, wherein the primary hot rolling is carried out at 900 to 1000 ° C. 제 5항에 있어서, 상기 강에는 0.01-0.06%의 Nb이 추가로 함유됨을 특징으로 하는 저항복비를 갖는 고강도 강의 제조방법.6. The method of claim 5, wherein the steel further contains 0.01-0.06% of Nb.
KR10-1999-0063186A 1999-12-28 1999-12-28 High strength steel having low yield ratio and method for manufacturing it KR100431850B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063186A KR100431850B1 (en) 1999-12-28 1999-12-28 High strength steel having low yield ratio and method for manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063186A KR100431850B1 (en) 1999-12-28 1999-12-28 High strength steel having low yield ratio and method for manufacturing it

Publications (2)

Publication Number Publication Date
KR20010060759A KR20010060759A (en) 2001-07-07
KR100431850B1 true KR100431850B1 (en) 2004-05-20

Family

ID=19630559

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0063186A KR100431850B1 (en) 1999-12-28 1999-12-28 High strength steel having low yield ratio and method for manufacturing it

Country Status (1)

Country Link
KR (1) KR100431850B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130013B1 (en) * 2009-03-26 2012-03-26 현대제철 주식회사 High strenth hot rolled steel sheet, and method for manufacturing the same
KR101185296B1 (en) 2010-07-28 2012-09-21 현대제철 주식회사 High strength structural steel and method of manufacturing the high strength structural steel using controlled rolling

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431851B1 (en) * 1999-12-28 2004-05-20 주식회사 포스코 structural steel having High strength and method for menufactreing it
KR100554756B1 (en) * 2001-12-27 2006-02-24 주식회사 포스코 A Method of Manufacturing the Fine-Grained Ferrite High-Strength Steel
KR100946047B1 (en) * 2002-12-27 2010-03-09 주식회사 포스코 Manufacturing of high-strength ultrafine grained steels with high toughness using Strain Induced Dynamic Transformations
KR100946050B1 (en) * 2002-12-27 2010-03-09 주식회사 포스코 Method for manufacturing the ultra-fine ferrite by dynamic transformation
KR100946046B1 (en) * 2002-12-27 2010-03-09 주식회사 포스코 Manufacturing of fine-grained low-carbon ferritic steels

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940009345A (en) * 1992-10-28 1994-05-20 정명식 Manufacturing method of 50kgf / mm2 grade shipbuilding steel with tensile strength
JPH06172921A (en) * 1992-12-09 1994-06-21 Nippon Steel Corp Steel sheet small in welding distortion
JPH0813083A (en) * 1994-06-29 1996-01-16 Kobe Steel Ltd Refractory steel plate for architectural use, reduced in yield ratio and excellent in weldability, and production thereof
JPH0995731A (en) * 1995-10-02 1997-04-08 Nkk Corp Production of building steel for low temperature use
KR0157540B1 (en) * 1993-08-04 1998-11-16 미노루 다나까 High tensile strength steel having superior fatigue strength and weldability at welds and method for manufacturing the same
KR100205536B1 (en) * 1996-12-09 1999-07-01 이구택 Method of line-pipe type steel with tensile strength 65kg
KR100256350B1 (en) * 1995-09-25 2000-05-15 이구택 The manufacturing method for yield strength 50kgf/mm2 steel with excellent anti hydrogen cracking and stress corrosion cracking property
KR20010060760A (en) * 1999-12-28 2001-07-07 이구택 structural steel having High strength and method for menufactreing it

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940009345A (en) * 1992-10-28 1994-05-20 정명식 Manufacturing method of 50kgf / mm2 grade shipbuilding steel with tensile strength
KR950003290B1 (en) * 1992-10-28 1995-04-10 포항종합제철 주식회사 Making method of tensile-strenth 50kg/mm2 steel plate
JPH06172921A (en) * 1992-12-09 1994-06-21 Nippon Steel Corp Steel sheet small in welding distortion
KR0157540B1 (en) * 1993-08-04 1998-11-16 미노루 다나까 High tensile strength steel having superior fatigue strength and weldability at welds and method for manufacturing the same
JPH0813083A (en) * 1994-06-29 1996-01-16 Kobe Steel Ltd Refractory steel plate for architectural use, reduced in yield ratio and excellent in weldability, and production thereof
KR100256350B1 (en) * 1995-09-25 2000-05-15 이구택 The manufacturing method for yield strength 50kgf/mm2 steel with excellent anti hydrogen cracking and stress corrosion cracking property
JPH0995731A (en) * 1995-10-02 1997-04-08 Nkk Corp Production of building steel for low temperature use
KR100205536B1 (en) * 1996-12-09 1999-07-01 이구택 Method of line-pipe type steel with tensile strength 65kg
KR20010060760A (en) * 1999-12-28 2001-07-07 이구택 structural steel having High strength and method for menufactreing it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101130013B1 (en) * 2009-03-26 2012-03-26 현대제철 주식회사 High strenth hot rolled steel sheet, and method for manufacturing the same
KR101185296B1 (en) 2010-07-28 2012-09-21 현대제철 주식회사 High strength structural steel and method of manufacturing the high strength structural steel using controlled rolling

Also Published As

Publication number Publication date
KR20010060759A (en) 2001-07-07

Similar Documents

Publication Publication Date Title
US20080240969A1 (en) High Strength Hot Rolled Steel Sheet Containing High Mn Content with Excellent Workability and Method for Manufacturing the Same
EP2217735A1 (en) High strength and low yield ratio steel for structure having excellent low temperature toughness
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
CN110088346B (en) Steel material for welded steel pipe having excellent longitudinal uniform elongation, method for producing same, and steel pipe using same
JP2020509156A (en) Low yield ratio type ultra-high strength steel material and its manufacturing method
JP7244718B2 (en) Steel material for thick high-strength line pipe with excellent low-temperature toughness, elongation and small yield ratio, and method for producing the same
KR20160079166A (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
US11396689B2 (en) Steel material for low yield ratio, high-strength steel pipe having excellent low-temperature toughness, and manufacturing method therefor
KR101070132B1 (en) Steel with Excellent Low-Temperature Toughness for Construction and Manufacturing Method Thereof
KR100431850B1 (en) High strength steel having low yield ratio and method for manufacturing it
KR20010060760A (en) structural steel having High strength and method for menufactreing it
KR101359082B1 (en) Thick steel sheet with excellent low temperature dwtt property and method for producing same
KR101143029B1 (en) High strength, toughness and deformability steel plate for pipeline and manufacturing metod of the same
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP2007191785A (en) Method for manufacturing high-tensile steel material superior in weld cracking resistance
KR100946052B1 (en) Method for manufacturing linepipe steel strips to minimize the deviation of yield strength through the longitudinal direction
KR20030054700A (en) The method of manufacturing hot rolled steels with less anisotropic properties for linepipes
KR101289192B1 (en) Steel plate for pipeline with excellent fracture arrestability and inhibitory activity of dwtt inverse fracture and manufacturing metod of the same
KR101069995B1 (en) High Strength Steel Sheet for Line-pipe and Manufacturing Method Thereof
KR101572317B1 (en) Shape steel and method of manufacturing the same
KR102559764B1 (en) High-strength h section steel and method of manufacturing the same
JPH0768601B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
JP2005029841A (en) High strength steel for welded structure having excellent low temperature toughness in high heat input weld part haz, and its production method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130430

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140502

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150429

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170427

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180508

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee