WO2005052205A1 - High tensile steel excellent in toughness of welded zone and offshore structure - Google Patents

High tensile steel excellent in toughness of welded zone and offshore structure Download PDF

Info

Publication number
WO2005052205A1
WO2005052205A1 PCT/JP2004/017575 JP2004017575W WO2005052205A1 WO 2005052205 A1 WO2005052205 A1 WO 2005052205A1 JP 2004017575 W JP2004017575 W JP 2004017575W WO 2005052205 A1 WO2005052205 A1 WO 2005052205A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
toughness
strength
temperature
less
Prior art date
Application number
PCT/JP2004/017575
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiro Kamo
Takeshi Urabe
Hirofumi Nakamura
Kazushi Ohnishi
Masahiko Hamada
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to JP2005515812A priority Critical patent/JP4432905B2/en
Publication of WO2005052205A1 publication Critical patent/WO2005052205A1/en
Priority to US11/443,849 priority patent/US20070051433A1/en
Priority to US12/557,892 priority patent/US20100226813A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a high-strength steel and an offshore structure, particularly to a high-strength steel for welding and an offshore structure having excellent weld toughness.
  • the present invention is applied to high-strength steel for welding used as a welding structure in buildings, civil engineering structures, construction machines, ships, pipes, tanks, marine structures, etc., and particularly to marine structures.
  • high-strength steel for welding and offshore structures for example
  • the present invention relates to a high-strength steel plate having a yield strength of 420 N / mm 2 or more and a plate thickness of 50 mm or more, and an offshore structure using the same.
  • high-strength steel with a high strength of 460-70 OMPa class and a plate thickness exceeding 100 mm may be used.
  • the steel materials used in these offshore structures are required to have toughness in a very severe low-temperature range of, for example, 40 ° C or less, and also to have weldability.
  • the CTOD value at the lowest operating temperature is also specified to evaluate toughness. It is becoming. In other words, even if a micro test piece cut and sampled to a size of 10 mm X 10 mm obtains stable characteristics in the Charpy test, which is an evaluation test for all, In many cases, the required characteristics cannot be satisfied with the CTOD characteristics evaluated using a test piece with the actual thickness of the structure, and even more severe CTOD characteristics are required today.
  • Japanese Patent Publication No. Hei 7-81164 Japanese Patent Laid-Open No. 5-186820, Japanese Patent Laid-Open No. 5-17934
  • No. 4 proposes a Cu-precipitated steel having excellent toughness of a weld.
  • Japanese Patent Publication No. 7-81164 only evaluated the Charpy characteristics of a welded joint obtained with a plate thickness of 30 mm and a welding heat input of 40 kjZcm, and is unlikely to be a material compatible with large heat input welding.
  • Japanese Patent Application Laid-Open No. 5-186820 proposes a high-strength steel having a tensile strength of 686 MPa or more obtained by adding 0.5 to 4.0% Cu and adding copper. Since the transition temperature of the Charpy test is even 30 ° C, it is thought that low-temperature CTOD characteristics of extra-thick steel plates can be secured. hard.
  • Japanese Patent Application Laid-Open No. 5-179344 proposes a Cu-precipitated steel excellent in the Charpy toughness of a weld, but only evaluates the Charpy characteristics of a welded joint obtained at a welding heat input of 5 kJ, mm. Therefore, it is difficult to imagine that it is a technology that can sufficiently satisfy the safety of structures during adult thermal welding.
  • an object of the present invention is to provide a high-strength steel for welding which generally improves the low-temperature toughness of a weld, especially the HAZ low-temperature toughness.
  • the present inventors have conducted various experiments on steel components and a method for producing the same in order to develop a thick high-strength steel sheet having excellent weld toughness, and have obtained the following findings.
  • the strength and toughness balance can be controlled by arranging the distribution state of the Cu particles by the average value of the equivalent circle diameter obtained from the TEM photograph and the area equivalent area ratio.
  • Cu particles are easily generated on crystal defects (mainly dislocations) in steel. If the dislocation density is high, the precipitation of Cu particles is promoted. Also, Cu particles on dislocations hinder dislocation movement and increase the yield strength.
  • the dislocation density in the steel must be controllable under rolling and water cooling conditions.
  • reduction of rolling temperature increase of total reduction, increase of water cooling start temperature, increase of cooling rate, decrease of water cooling stop temperature, all of which must increase dislocation density.
  • the HAZ toughness can be improved by lowering the weld crack susceptibility index Pcm value with high Cu component materials, and it was a component that low C and low Mn-Dani were effective for that purpose.
  • Pcm weld crack susceptibility index
  • it was necessary to supplement with other elements, and by controlling the amount of added Mo, it was also a component that the strength can be stabilized.
  • the present invention has been constituted based on such knowledge, and the gist thereof is as follows.
  • Pcm C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + ( ⁇ / 10) + 5 ⁇ ⁇ ⁇ ( ⁇ )
  • a yield stress excellent in weldability which enables welding with a welding heat input of 300 KJ / cm or more by a welding method such as, but not limited to, gas arc welding at an electoral port, is excellent in weldability.
  • a welding method such as, but not limited to, gas arc welding at an electoral port.
  • Production of two or more high-strength steels became possible. As a result, the efficiency and safety of on-site welding were significantly improved.
  • C is added to secure the strength of the steel and to produce the effect of refining the structure when adding Nb, V, and the like. Below 0.01%, these effects are not sufficient. If too much force is applied, a hardened structure called martensite-austenite constituent (M-A) will be formed in the welded area, deteriorating the HAZ toughness and reducing the toughness and weldability of the base metal. Also have an adverse effect. Therefore, C should be 0.10% or less. Preferably 0.02-0.08. More preferably ⁇ or 0. 02-0. 05 0/0.
  • Si does not form a solid solution in force cementite, which is an effective element for pre-deoxidation of molten steel, so if added in a large amount, untransformed austenite grain force inhibits decomposition into S ferrite grains and cementite, Promotes the formation of island martensite.
  • the content of Si in the steel is 0.5% or less.
  • Mn is an element necessary for ensuring strength, and is also an effective element as a deoxidizing agent. Therefore, the content of Mn must be 0.8% or more. Excessive addition of Mn excessively increases the hardenability and degrades the weldability and HAZ toughness.
  • Mn is considered as an element that promotes central segregation, its content in terms of suppressing central segregation should not exceed 1.8%. Therefore, the content of Mn should be 0.8-1.8% or less. Preferably it is 0.9-1.5%.
  • P is an impurity element inevitably contained in steel, and is a grain boundary segregation element, which causes grain boundary cracking in HAZ.
  • the P content is set to 0.0020% or less. Preferably it is 0.015% or less, more preferably 0.01% or less.
  • the content of S should be 0.01% or less. It is preferably 0.008% or less, more preferably 0.005%.
  • Cu has the effect of increasing the strength and toughness of the steel material, but has little adverse effect on the HAZ toughness. In particular, 0.8% or more is required in order to expect the effect of increasing strength by ⁇ -Cu precipitation during aging treatment.
  • the Cu content was set to 1.5% or less. Preferably, it is 0.9-1.1%.
  • Ni is an effective element for increasing the strength and toughness of the steel material and for further increasing the HAZ toughness. However, if the content is less than 0.2%, these effects will be lost.If the content exceeds 1.5%, it is not possible to obtain an effect worth the cost increase. It was decided. Preferably it is 0.4-1.2%.
  • A1 is an essential element for deoxidation. However, as the content increases, the toughness tends to deteriorate, especially in HAZ. This is presumably because coarse cluster-like alumina-based inclusion particles are easily formed. Therefore, the content of A1 is set to 0.001-0.05%. Preferably ⁇ or 0. 001 0.03 0/0. In addition there is preferably ⁇ or 0. 001 0.015 0/0
  • contributes to fine graining of the structure by forming a nitride, but when excessively added, In addition, the toughness is deteriorated through the aggregation of nitride. Therefore, the content of N is set to 0.003-0.008%. Preferably it is 0.0035-0.0065%.
  • CTOD characteristics can be improved.
  • O oxygen
  • the content of O is set to 0.0005 to 0.0035%.
  • is 0.0008-0.0018%.
  • Ti has an action of generating nitrides to suppress the coarsening of crystal grains and to refine the transformed structure.
  • the addition of less than the specified amount does not exert the above-mentioned effects, and the addition of a large amount adversely affects the toughness of the base metal and the toughness of the welded portion. Therefore, the content of Ti is set to 0.005 to 0.03%. Preferably, it is 0.007-0.015%.
  • Nb improves the strength and toughness of the base material by grain refinement and carbide precipitation. On the other hand, if it is added excessively, the effect of improving the performance of the base material saturates and the toughness of HAZ is significantly impaired.
  • the Nb content is set to 0.003—0.03%. Preferably, it is 0.003% to 0.015%.
  • Mo has the effect of securing quenchability and improving HAZ toughness. Mo, when added excessively, causes significant hardening in HAZ and deteriorates toughness. Therefore, the content of Mo is set to 0.1 to 0.8%. Preferably it is 0.1-0.5%.
  • Cr enhances the hardenability of steel materials and is effective in ensuring strength. However, when added in a small amount, Cr does not show an improvement effect. When added excessively, it prevents the hardening of the weld metal and HAZ and prevents low-temperature cracking of the weld. Tends to increase sensitivity. Therefore, when Cr is added, the Cr content is set to 0.03-0.80%. Preferably it is 0.05-0.60%.
  • B has the effect of improving hardenability and increasing strength. On the other hand, if it is added excessively, the effect of increasing the strength is saturated, and the tendency of toughness deterioration of both the base material and HAZ becomes remarkable. Therefore, when adding B, the content of B shall be 0.0002-0.002%. Preferably it is 0.003-0.0015%.
  • V has a function of generating carbonitrides to suppress the coarsening of the crystal grains and to refine the transformed structure.
  • the addition of less than the specified amount does not exert the above-mentioned effects, and the addition of a large amount adversely affects the toughness of the base metal and the toughness of the welded portion. Therefore, when adding V, the content of V should be 0.001-0.05%. Preferably it is 0.005-0.04%.
  • Ca, Mg, and REM are elements that generate oxides and sulfides that serve as precipitation nuclei for intragranular ferrite. In addition, it controls the form of the sulphide and improves the low-temperature toughness.
  • the content of Ca must be 0.0005% or more, and in the case of Mg or REM, the content must be 0.001% or more.
  • the steel of the present invention has a Pcm represented by the following formula (I) of 0.25 or less, and the average force of the circle-equivalent diameter of Cu particles dispersed in the steel and having a major axis of 1 nm or more is not less than 1 nm. It is preferable that the thickness is 25 nm and the distribution amount in terms of plane ratio is 3 to 20%.
  • Pcm C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + ( ⁇ / 10) + 5 ⁇ ⁇ ⁇ ( ⁇ )
  • Pcm is an index that indicates the susceptibility to weld cracking. If its value is 0.25 or less, weld cracks will not occur under normal welding conditions. Therefore, Pcm should be 0.25 or less. Preheating during welding can be omitted by reducing Pcm. Preferably it is 0.22 or less, more preferably 0.20 or less.
  • the reason for targeting Cu particles with a diameter of 1 mm or more is that particles smaller than 1 mm contribute to increasing strength. This is because the force S is small.
  • the upper limit of the major axis of the Cu particles is not particularly defined, but no particles exceeding 100 nm will appear if the average value is in the range of 425 nm.
  • the precipitation form of the Cu particles is approximately spherical, it is not easy to measure the three-dimensional shape, so the projected shape is measured.
  • the equivalent circle diameter is the diameter of a circle having the same area as the projected area of the particle, and specifically,
  • d ⁇ (4a / pai) a: Projected area (nm 2 ), d: Circle equivalent diameter (nm pai: 3.14
  • a steel material is processed into a thin film, and a portion having a thickness of about 0.2 micrometer is observed with a TEM, and is distributed three-dimensionally in the thin film test piece. It is calculated by measuring the area ratio when the Cu particles are planarly projected on a TEM photograph with a magnification of 100,000.
  • the average diameter / distribution amount of the Cu precipitated particles is specified as described above in order to balance the increase in strength due to Cu precipitation and the decrease in CTOD value.
  • the reason why the equivalent circle diameter is set to 425 is to balance strength and toughness, and the reason why the flatness equivalent distribution is set to 3 to 20% is to balance strength and toughness.
  • the following factors can be considered as factors for controlling the Cu particle diameter and the distribution amount.
  • the distribution amount increases as the Cu addition amount increases.
  • the average particle size is determined mainly by the structure before the aging treatment, the temperature and the time of the aging treatment. If the amount is less than the proper amount, the precipitation of Cu particles is insufficient and the particle size is small. If the amount is large, the particle size tends to be large.
  • the structure before aging is preferably a fine structure mainly composed of ferrite and bainite.
  • the aging temperature and time are important factors.
  • the target particle dispersion state is controlled by strictly adjusting the Cu diffusion rate and the particle growth rate according to the aging treatment conditions.
  • the present invention is not particularly limited as long as it is performed by a conventional method up to the steel making process.
  • slabs are obtained following the steelmaking process, slabs (slabs) are preferably manufactured by a continuous sintering method from the viewpoint of cost reduction.
  • the caloric heat temperature of Maokagata was set to 900-1120 ° C.
  • the total reduction at 900 ° C or less is desirably 50% or more.
  • start water cooling at a temperature above the Ar point and stop at a temperature of 600 ° C or less.
  • the rolling finish temperature is 700 ° C or more
  • the cooling start temperature is 680 ° C to 750 ° C
  • the cooling rate to the cooling stop temperature is 1 to 50 ° C / s. If the water cooling stop temperature exceeds 600 ° C, the precipitation strengthening effect in the tempering treatment will be insufficient.
  • the Ar point is determined by a method of measuring a change in volume of the minute test piece.
  • the water-cooled steel is heated, if necessary, subjected to an aging treatment at a temperature of 540 or more and an Ac point or less, and then cooled.
  • the average heating rate up to the aging temperature of 100 ° C. and the average cooling rate up to 500 ° C. are controlled.
  • This aging treatment is to sufficiently precipitate and harden the precipitates of Cu, and the control of the heating Z cooling rate is performed to make the dispersion of the Cu particles uniform. Therefore, the heating rate is 5-50 ° CZ for the average heating rate up to the target temperature of 100 ° C, the holding time is 1 hour or more, and the cooling rate is 5-60 ° CZ for the cooling rate up to 500 ° C. It is preferable to do so.
  • the heating temperature in the present specification is the furnace atmosphere temperature
  • the holding time after heating is the holding temperature at the furnace atmosphere temperature
  • the rolling end temperature and the water cooling start / stop temperature are the surface layer temperature of the steel material
  • the average heating / cooling rate during reheating shall be calculated from the temperature calculation at the steel material thickness l / 2t position.
  • the offshore structure includes a platform laid on the sea floor, a semi-sub rig (a semi-submersible oil digging ij rig) that is not only a jack-up rig, etc. There are no particular restrictions on the offshore structure required.
  • “large” means that the thickness of the steel used for it is 50 mm or more.
  • a 300 mm-thick steel slab having the chemical components shown in Tables 1 and 2 was produced by a continuous casting method.
  • the temperature of the molten steel is not excessively increased, and the difference between the solidification temperature determined by the composition force of the molten steel and the solidification temperature is set within 50 ° C. Under the control, electromagnetic stirring immediately before coagulation and reduction during coagulation were performed.
  • Tables 3 and 4 show the processing conditions for the billets having the chemical components shown in Tables 1 and 2.
  • the processing conditions shown in Tables 3 and 4 are the processing conditions for steel slabs having the chemical components shown in Tables 1 and 2, respectively.
  • the slab having a thickness of 300 mm was heated at each heating temperature and each heating time, and then subjected to hot rolling, and then cooled to a water cooling start temperature at an average cooling rate of 5 ° C / s to a water cooling stop temperature.
  • the steel plate was 77 mm thick. (These conditions are shown in Tables 3 and 4 as initial heating and rolling conditions.)
  • the heating rate is controlled so that the average heating rate up to the aging temperature-100 ° C is 10 ° C / min, and the cooling rate is 10 ° C / min up to 500 ° C.
  • the heating rate is controlled so that the average heating rate up to the aging temperature-100 ° C is 10 ° C / min, and the cooling rate is 10 ° C / min up to 500 ° C.
  • the tensile test of the steel obtained in this manner was performed by taking a tensile test specimen having a diameter of 12.5 mm in the parallel part from the center of the thickness in the direction perpendicular to the rolling direction in accordance with the ASTM standard.
  • the welded joints were obtained by performing FCAW welding (Flux Cored Arc Welding) of 10. Okj / cm on the butt joints of the K-grooves in accordance with BS7448 standard.
  • FCAW welding Fluor Cored Arc Welding
  • the joint obtained in this way was processed at 40 ° C on a specimen obtained by processing the CTOD specimen so that the fatigue notch of the specimen became the weld line on the straight part side of the V-shaped groove.
  • a CTOD test was performed.
  • the same steel was subjected to 20 ° V groove processing, then butt-joined, and welded joints were produced by electorifice gas arc welding (EGW) with a heat input of 350kjZcm. did.
  • EGW electorifice gas arc welding
  • the welded joints produced at this time were subjected to a CTOD test according to ASTM E1290.
  • the CTOD test piece was applied so that the fatigue notch became the weld line, and the critical CTOD value was measured at a test temperature of -10 ° C.
  • the average value of the circle equivalent diameter of the Cu particles was determined using a transmission electron microscope with a magnification of 100,000.
  • TEM TEM
  • 10 fields of view one field of view is a rectangle of 900 X 700 nm
  • the average value was used.
  • Table 1 shows test materials satisfying the chemical components specified in the present invention. As shown in Table 5, when the test steels were manufactured and processed under the processing conditions shown in Table 3, the deviations also satisfied the dispersion state of the Cu particles within the specified range. Therefore, the base metal strength, base metal CTOD characteristics, and joint CTOD characteristics (-40 ° C and -10 ° C) of all test steels were high.o

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A high tensile steel, characterized in that it has a chemical composition, in mass %, that C: 0.01 to 0.10 %, Si: 0.5 % or less, Mn: 0.8 to 1.8 %, P: 0.020 % or less, S: 0.01 % or less, Cu: 0.8 to 1.5 %, Ni: 0.2 to 1.5 %, Al: 0.001 to 0.05 %, N: 0.0030 to 0.0080 %, O: 0.0005 to 0.0035 %, optionally one or two of Ti: 0.005 to 0.03 %, Nb: 0.003 to 0.03 % and Mo: 0.1 to 0.8 %, and the balance: Fe or impurities, with the proviso that N/Al is 0.3 to 3.0. The high tensile steel can be welded at a high heat input and also is excellent in the toughness at a low temperature.

Description

明 細 書  Specification
溶接部靱性に優れた高張力鋼および海洋構造物  High strength steel and offshore structures with excellent weld toughness
技術分野  Technical field
[0001] 本発明は、高張力鋼および海洋構造物、特に溶接部靱性に優れた溶接用高張力 鋼および海洋構造物に関する。  The present invention relates to a high-strength steel and an offshore structure, particularly to a high-strength steel for welding and an offshore structure having excellent weld toughness.
より具体的には、本発明は、建築物、土木構造物、建設機械、船舶、パイプ、タンク 、海洋構造物等において溶接構造物として使用される溶接用高張力鋼、特に海洋 構造物に用いられる溶接用高張力鋼および海洋構造物に関するものであり、例えば More specifically, the present invention is applied to high-strength steel for welding used as a welding structure in buildings, civil engineering structures, construction machines, ships, pipes, tanks, marine structures, etc., and particularly to marine structures. Related to high-strength steel for welding and offshore structures, for example
、降伏強度 420N/mm2以上、板厚 50mm以上の厚肉高強度鋼板およびそれを用いた 海洋構造物に関するものである。 The present invention relates to a high-strength steel plate having a yield strength of 420 N / mm 2 or more and a plate thickness of 50 mm or more, and an offshore structure using the same.
背景技術  Background art
[0002] 近年、エネルギー需要が益々増加の傾向にあり、海底石油資源の探索が活発化し ている。これらに使用される海洋構造物は、例えば、プラットフォーム、ジャッキアップ リグは大型化しており、これに伴い鋼板などの使用鋼材が厚肉化し、より安全性の確 保が重要な課題となって ヽる。  [0002] In recent years, energy demand has been increasing more and more, and the search for offshore petroleum resources has been activated. In the offshore structures used for these, for example, platforms and jack-up rigs are becoming larger, and with this, steel materials such as steel plates are being made thicker, and ensuring more safety has become an important issue. You.
[0003] 通常の海洋構造物には、降伏応力が 300— 360MPa級の中強度鋼材が用いられる[0003] For ordinary marine structures, medium strength steel materials with a yield stress of 300-360MPa class are used.
1S 前記のような大型構造物では 460— 70OMPa級の高強度で、板厚も 100mmを超 える極厚高張力鋼材が用いられることがある。 1S For large structures such as those mentioned above, high-strength steel with a high strength of 460-70 OMPa class and a plate thickness exceeding 100 mm may be used.
[0004] また、海底石油資源の探索地域が近年寒冷地や大水深域へと移っており、それら の地域あるいは海域で稼動する海洋構造物は極めて厳しい気象'海洋条件に晒さ れる。 [0004] In recent years, the search area for offshore petroleum resources has shifted to cold regions and deep water areas, and offshore structures operating in those areas or in the sea area are exposed to extremely severe weather and ocean conditions.
このため、これらの海洋構造物に用いられる鋼材には、例えば 40°C以下という非 常に厳しい低温域での靱性が要求されると共に、溶接性も当然要求される。  For this reason, the steel materials used in these offshore structures are required to have toughness in a very severe low-temperature range of, for example, 40 ° C or less, and also to have weldability.
[0005] さらに、安全性の面からもユーザの検査基準は厳しぐ母材、溶接部ともに従来の シャルピー衝撃値の規定に加え、最低使用温度での CTOD値も規定して靭性を評価 するようになってきている。すなわち、 10mm X 10mmの大きさに切断採取する微小試 験片につ 、ての評価試験であるシャルピー試験で安定した特性を得た場合にも、構 造物の実厚の試験片にて評価する CTOD特性では所要特性を満足できない場合が 多く発生しており、また今日ではさらに厳しい CTOD特性が求められるようになつてい る。 [0005] Further, from the viewpoint of safety, the user's inspection standards are strict. For both base metal and welded parts, in addition to the conventional Charpy impact value specification, the CTOD value at the lowest operating temperature is also specified to evaluate toughness. It is becoming. In other words, even if a micro test piece cut and sampled to a size of 10 mm X 10 mm obtains stable characteristics in the Charpy test, which is an evaluation test for all, In many cases, the required characteristics cannot be satisfied with the CTOD characteristics evaluated using a test piece with the actual thickness of the structure, and even more severe CTOD characteristics are required today.
[0006] このように、氷海域に設置される海洋構造物に使用される鋼材に限らず、これよりも マイルドな環境下で使用される寒冷地向けのラインパイプ、または船舶や LNGタンク 等の大型溶接構造物に使用される鋼材に対しても、溶接熱影響部 (以下、 HAZとい う)の低温靱性を向上させる要望が強い。  [0006] As described above, not only steel materials used for offshore structures installed in icy waters, but also line pipes for cold regions used in milder environments, or ships and LNG tanks, etc. There is a strong demand for steel materials used in large-scale welded structures to improve the low-temperature toughness of the heat affected zone (HAZ).
[0007] 一方で、 -40°C以下と!/ヽぅ低温域で高!ヽ靭性を得るためには、溶接効率の悪!、低入 熱量の溶接条件で溶接をせざるを得ない。海洋構造物の建造コストに占める溶接施 ェコストは大きい。溶接施工コストを低下させる最も直接的な方法は、大入熱溶接が 可能な高能率溶接法を採用して、溶接層数を減らすことである。  [0007] On the other hand, to obtain a toughness of -40 ° C or lower! / ヽ ぅ low temperature range! ヽ Welding must be performed under poor welding efficiency and low heat input welding conditions. Welding costs are a large part of offshore structure construction costs. The most direct way to reduce welding work costs is to use a high-efficiency welding method capable of high heat input welding and reduce the number of weld layers.
[0008] したがって、今日では、低温靱性の要求が厳しい寒冷地向けの構造物は、 HAZの 靭性を考慮して溶接施工コストの可及的に低い溶接を行うことが重要である。  [0008] Therefore, today, it is important to perform welding for a structure for a cold region where low temperature toughness is strictly required, in consideration of the toughness of the HAZ, with welding work cost being as low as possible.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 従来力 鋼材の HAZの靱性を劇的に向上させるには低 C化が有効であることが知 られており、低 C化による強度低下を補うため、種々の合金添カ卩による高強度化や、 時効析出硬化作用を利用した高強度化が図られている。例えば、 ASTM A710で は、 Cuの時効析出硬化作用を利用した鋼が開示されており、このような考え方に基 づ 、た報告が!/、くつかなされて!、る。 [0009] It is known that lowering the C content is effective in dramatically improving the toughness of HAZ in conventional steel materials. Strengthening and high strength utilizing the aging precipitation hardening effect are being attempted. For example, ASTM A710 discloses a steel utilizing the aging precipitation hardening effect of Cu, and based on such a concept, some reports have been made! /.
[0010] 例えば、特公平 7-81164号公報、特開平 5— 186820号公報、特開平 5— 17934[0010] For example, Japanese Patent Publication No. Hei 7-81164, Japanese Patent Laid-Open No. 5-186820, Japanese Patent Laid-Open No. 5-17934
4号公報では、溶接部の靱性に優れた Cu析出型鋼が提案されて 、る。 No. 4 proposes a Cu-precipitated steel having excellent toughness of a weld.
しかしながら、特公平 7— 81164号公報では、板厚 30mm、溶接入熱量 40kjZcm で得た溶接継手のシャルピー特性を評価したに過ぎず、大入熱溶接に対応した材 料とは考え難い。  However, Japanese Patent Publication No. 7-81164 only evaluated the Charpy characteristics of a welded joint obtained with a plate thickness of 30 mm and a welding heat input of 40 kjZcm, and is unlikely to be a material compatible with large heat input welding.
[0011] 特開平 5— 186820号公報では、 Cuを 0. 5-4. 0%添カ卩した引張り強さ 686MPa以 上の高張力鋼が提案されて 、るが、低温靱性にっ 、てはシャルピー試験の遷移温 度でさえ 30°Cであることから、極厚鋼板での低温 CTOD特性が確保できるとは考え 難い。 Japanese Patent Application Laid-Open No. 5-186820 proposes a high-strength steel having a tensile strength of 686 MPa or more obtained by adding 0.5 to 4.0% Cu and adding copper. Since the transition temperature of the Charpy test is even 30 ° C, it is thought that low-temperature CTOD characteristics of extra-thick steel plates can be secured. hard.
[0012] 特開平 5— 179344号公報では、溶接部のシャルピー靱性に優れた Cu析出型鋼が 提案されて ヽるものの、溶接入熱量 5kJ,mmで得た溶接継手のシャルピー特性を 評価したに過ぎず、大人熱溶接時の構造物の安全性を充分満足できる技術とは考 え難い。  [0012] Japanese Patent Application Laid-Open No. 5-179344 proposes a Cu-precipitated steel excellent in the Charpy toughness of a weld, but only evaluates the Charpy characteristics of a welded joint obtained at a welding heat input of 5 kJ, mm. Therefore, it is difficult to imagine that it is a technology that can sufficiently satisfy the safety of structures during adult thermal welding.
[0013] ここに、本発明の課題は、一般的には溶接部低温靱性、特に HAZ低温靱性を改 善した溶接用高張力鋼を提供することである。  [0013] Here, an object of the present invention is to provide a high-strength steel for welding which generally improves the low-temperature toughness of a weld, especially the HAZ low-temperature toughness.
課題を解決するための手段  Means for solving the problem
[0014] 本発明者らは、溶接部靱性に優れた厚肉高強度鋼板を開発することを目的に、鋼 成分およびその製造方法について種々の実験を行った結果、以下の知見を得た。 [0014] The present inventors have conducted various experiments on steel components and a method for producing the same in order to develop a thick high-strength steel sheet having excellent weld toughness, and have obtained the following findings.
(i)Cu添加鋼をベースとして、 N、 A1含有量の調整に加え、 NZA1比をコントロール すること。  (i) Control the NZA1 ratio in addition to adjusting the N and A1 contents based on the Cu-added steel.
[0015] 高 Cu成分材にお!/、て、大入熱 HAZ靱性を改善するには、 TiN、 Ti(C, N)、 A1Nな どの炭窒化物の微細分散が有効である。そこで、高 Cu— Ti添加材を用いて検討した ところ、 N、 A1含有量の調整に加え、 NZA1比をコントロールすることの有効性を見出 した。これは、 NZA1比が過小な場合は、粗大 A1Nが析出し、これ自体が靱性に悪 影響を及ぼすのに加え、 TiNの微細/多量な分散が阻害されるためと考えられる。一 方、 NZA1比が過大な場合は、固溶 Nが増加するのにカ卩え、 A1N、 TiNの分散密度 が疎になるためと考えられる。  [0015] To improve the high heat input HAZ toughness of high Cu component materials, fine dispersion of carbonitrides such as TiN, Ti (C, N) and A1N is effective. Therefore, when we investigated using high Cu-Ti additives, we found that controlling the NZA1 ratio in addition to adjusting the N and A1 contents was effective. This is thought to be because if the NZA1 ratio is too small, coarse A1N precipitates, which itself has an adverse effect on toughness and, at the same time, disperses fine / large amounts of TiN. On the other hand, when the NZA1 ratio is excessive, it is considered that the solid solution N increases, but the dispersion density of A1N and TiN decreases.
[0016] GO降伏強度の上昇のためには、微細 Cu粒子をできるだけ多く分散させる必要があ ること。  [0016] In order to increase the GO yield strength, it is necessary to disperse as many fine Cu particles as possible.
(m)靱性、特に低温 CTOD特性を確保するためには、 Cu粒子をある程度粗大化させ 、かつ分散量を抑制する必要があること。  (m) In order to ensure toughness, especially low temperature CTOD characteristics, it is necessary to coarsen Cu particles to some extent and to suppress the amount of dispersion.
[0017] (iv)Cu粒子の分散状態を均一化するために、時効処理前段階での Cu粒子の生成 をできるだけ抑制し、かつ時効処理の条件制御により Cu粒子の分散状態を制御する こと。  (Iv) In order to make the dispersion state of the Cu particles uniform, generation of Cu particles before the aging treatment is suppressed as much as possible, and the dispersion state of the Cu particles is controlled by controlling the conditions of the aging treatment.
(v)Cu粒子の分布状態について、 TEM写真より求まる円相当径の平均値および平 面換算面積率で整理することにより、強度靱性バランスが制御可能であること。 [0018] (vi)Cu粒子は、鋼中の結晶欠陥 (主に転位)上に生成し易ぐ転位密度が高いと Cu 粒子の析出が促進されること。また、転位上の Cu粒子は転位の移動を阻害し、降伏 強度を上昇させること。 (v) The strength and toughness balance can be controlled by arranging the distribution state of the Cu particles by the average value of the equivalent circle diameter obtained from the TEM photograph and the area equivalent area ratio. (Vi) Cu particles are easily generated on crystal defects (mainly dislocations) in steel. If the dislocation density is high, the precipitation of Cu particles is promoted. Also, Cu particles on dislocations hinder dislocation movement and increase the yield strength.
[0019] (vii)鋼中の転位密度は、圧延、および水冷条件で制御可能なこと。また、圧延温度 の低下、総圧下量の増加、水冷開始温度の上昇、冷却速度の増加、水冷停止温度 の低下、これらはいずれも転位密度を増加させること。  (Vii) The dislocation density in the steel must be controllable under rolling and water cooling conditions. In addition, reduction of rolling temperature, increase of total reduction, increase of water cooling start temperature, increase of cooling rate, decrease of water cooling stop temperature, all of which must increase dislocation density.
[0020] (viii)高 Cu成分をベースとして、 C、 Mn、 Mo量の調整による焼入れ性制御により大 入熱溶接 HAZ靱性の安定ィ匕が可能である。  (Viii) Large heat input welding HAZ toughness can be stabilized by controlling the hardenability by adjusting the amounts of C, Mn and Mo based on the high Cu component.
つまり、高 Cu成分材では、溶接割れ感受性指数 Pcm値を低減するほど HAZ靱性 改善が可能であり、そのためには低 C、低 Mnィ匕が有効であることが分力つた。ただし 、高強度を確保するためには、他元素による補填が必要であり、 Moの添加量をコン トロールすることで、強度 性の安定ィ匕が可能であることも分力つた。  In other words, the HAZ toughness can be improved by lowering the weld crack susceptibility index Pcm value with high Cu component materials, and it was a component that low C and low Mn-Dani were effective for that purpose. However, in order to ensure high strength, it is necessary to supplement with other elements, and by controlling the amount of added Mo, it was also a component that the strength can be stabilized.
[0021] 本発明は、このような知見に基づいて構成したもので、その要旨は、次の通りである  [0021] The present invention has been constituted based on such knowledge, and the gist thereof is as follows.
(1)質量0 /oで、 C:0.01—0.10%、 Si:0.5%以下、 Mn:0.8—1.8%, P:0.020 %以下、 S:0.01%以下、 Cu:0.8—1.5%、 Ni:0.2—1.5%、 A1:0.001—0. 05%、 N:0.0030—0.0080%、 0:0.0005—0.0035%を含有し、残部力Feお よび不純物であって、かつ NZA1が 0.3-3.0であることを特徴とする高張力鋼。(1) At mass 0 / o, C: 0.01-0.10%, Si: 0.5% or less, Mn: 0.8-1.8%, P: 0.020% or less, S: 0.01% or less, Cu: 0.8-1.5%, Ni: 0.2-1.5%, A1: 0.001-0.05%, N: 0.0030-0.0080%, 0: 0.0005-0.0035%, Fe and impurity balance, and NZA1 of 0.3-3.0 Characterized by high strength steel.
(2)質量%で、 Ti:0.005—0.03%を含有することを特徴とする上記 (1)記載の高張 力鋼。 (2) The high tensile strength steel according to the above (1), wherein the steel contains 0.005 to 0.03% by mass%.
(3)質量%で、 Nb:0.003—0.03%を含有する上記 (1)または (2)記載の高張力鋼。 (3) The high-strength steel according to the above (1) or (2), containing 0.003 to 0.03% by mass of Nb.
(4)質量%で、 Mo:0.1-0.8%を含有する上記 (1)一 (3)のいずれかに記載の高張 力鋼。 (4) The high tensile strength steel according to any one of (1) to (3) above, which contains 0.1 to 0.8% of Mo by mass%.
(5)質量0 /0で、 Cr:0.03—0.80%, V:0.001—0.05%, B:0.0002—0.0020 の一種以上を含有することを特徴とする上記 (1)一 (4)のいずれかに記載の高張力鋼 (5) the mass 0/0, Cr: 0.03-0.80% , V: 0.001-0.05%, B: 0.0002-0.0020 above, characterized by containing one or more (1) any one (4) High strength steel described in
(6)質量0 /0で、 Ca:0.0005—0.005%, Mg:0.0001—0.005%, REM :0.000 1-0.01%の一種以上を含有することを特徴とする、上記 (1)一 (5)のいずれかに記 載の高張力鋼。 (6) Weight 0/0, Ca: 0.0005-0.005% , Mg: 0.0001-0.005%, REM: characterized in that it contains 0.000 1-0.01% one or more, the (1) i (5) Written in one of High strength steel.
(7)下記 (I)式で示す Pcmが 0. 25以下であり、鋼中に分散した長径が lnm以上の Cu粒 子について、円相当径の平均値が 4一 25nmであり、かつ平面率換算分布量が 3— 2 0%であることを特徴とする、上記 (1)一 (6)のいずれかに記載の高張力鋼。  (7) For Cu particles having a Pcm of 0.25 or less as shown in the following formula (I) and a long diameter dispersed in steel of lnm or more, the average value of the equivalent circle diameters is 425 nm and the plane ratio The high-tensile steel according to any one of the above (1) to (6), wherein the converted distribution amount is 3 to 20%.
[0022] Pcm=C+ (Si/30) + (Mn/20) + (Cu/20) + (Ni/60) + (Cr/20) + (Mo/ 15) + ( ν/10) + 5Β· · ·(Ι)  [0022] Pcm = C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (ν / 10) + 5Β · · (Ι)
(8)上記 (1)一 (7)のいずれかに記載の高張力鋼を用いた海洋構造物。  (8) An offshore structure using the high-tensile steel according to any one of (1) to (7).
発明の効果  The invention's effect
[0023] 本発明により、特にそれだけに制限されるのではないが、エレクト口ガスアーク溶接 などの溶接方法により、溶接入熱量 300KJ/cm以上での溶接が可能な、溶接性に優 れた降伏応力 420NZmm2以上の高張力鋼の製造が可能となった。その結果、現 場溶接施工能率や安全性が著しく向上した。また、海洋構造物のような極めて厳しい 環境下でも使用できる高張力鋼の提供が可能となった。 [0023] According to the present invention, a yield stress excellent in weldability, which enables welding with a welding heat input of 300 KJ / cm or more by a welding method such as, but not limited to, gas arc welding at an electoral port, is excellent in weldability. Production of two or more high-strength steels became possible. As a result, the efficiency and safety of on-site welding were significantly improved. In addition, it has become possible to provide high-strength steel that can be used in extremely harsh environments such as offshore structures.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 本発明につ 、て詳細に説明する。まず、本発明を上記のような鋼組成に限定した 理由を述べる。なお、本明細書において鋼組成を示す「%」はいずれも「質量%」で 示す。 [0024] The present invention will be described in detail. First, the reason why the present invention is limited to the above steel composition will be described. In this specification, "%" indicating the steel composition is indicated by "mass%".
Cは、鋼の強度確保のため、および Nb、 V等の添カ卩時に組織微細化の効果を生じ させるために添加される。 0. 01%未満ではこれらの効果が十分でない。し力し、じが 多過ぎると溶接部に島状マルテンサイト(M— A:martensite- austenite constituent)と 呼ばれる硬化組織を生成して HAZ靱性を悪ィ匕させるとともに母材の靱性および溶接 性にも悪影響を及ぼす。従って、 Cは 0. 10%以下とする。好ましくは 0. 02-0. 08 。に更に好ましく ίま 0. 02-0. 050/0である。 C is added to secure the strength of the steel and to produce the effect of refining the structure when adding Nb, V, and the like. Below 0.01%, these effects are not sufficient. If too much force is applied, a hardened structure called martensite-austenite constituent (M-A) will be formed in the welded area, deteriorating the HAZ toughness and reducing the toughness and weldability of the base metal. Also have an adverse effect. Therefore, C should be 0.10% or less. Preferably 0.02-0.08. More preferably ί or 0. 02-0. 05 0/0.
[0025] Siは溶鋼の予備脱酸に有効な元素である力 セメンタイト中に固溶しないため、多 量に添加されると未変態オーステナイト粒力 Sフェライト粒とセメンタイトに分解するのを 阻害し、島状マルテンサイトの生成を助長する。これらの理由から、 Siの添カ卩は、鋼 中含有量が 0. 5%以下とする。好ましくは 0. 2%以下、更に好ましくは 0. 15%以下 である。 [0026] Mnは強度確保に必要な元素であるとともに、脱酸剤としても有効な元素である。こ のため、 Mnの含有量は 0. 8%以上とする必要がある。し力し、 Mnの過剰な添加は、 焼入れ性を過剰に増加させ溶接性および HAZ靱性を劣化させる。さらに、 Mnは中 心偏析を助長する元素としてしられているので、中心偏析抑制の観点力もは、その含 有量は 1. 8%を超えるべきではない。したがって、 Mnの含有量は 0. 8-1. 8%以 下とする。好ましくは 0. 9-1. 5%である。 [0025] Si does not form a solid solution in force cementite, which is an effective element for pre-deoxidation of molten steel, so if added in a large amount, untransformed austenite grain force inhibits decomposition into S ferrite grains and cementite, Promotes the formation of island martensite. For these reasons, the content of Si in the steel is 0.5% or less. Preferably it is 0.2% or less, more preferably 0.15% or less. [0026] Mn is an element necessary for ensuring strength, and is also an effective element as a deoxidizing agent. Therefore, the content of Mn must be 0.8% or more. Excessive addition of Mn excessively increases the hardenability and degrades the weldability and HAZ toughness. Furthermore, since Mn is considered as an element that promotes central segregation, its content in terms of suppressing central segregation should not exceed 1.8%. Therefore, the content of Mn should be 0.8-1.8% or less. Preferably it is 0.9-1.5%.
[0027] Pは鋼に不可避的に含有される不純物元素であり、粒界偏析元素であるために HA Zにおける粒界割れの原因となる。さらに母材靱性、溶接金属部と HAZの靱性を向 上させ、スラブ中心偏析も低減させるためには、 Pの含有量は 0. 020%以下とする。 好ましくは 0. 015%以下、更に好ましくは 0. 01%以下である。  [0027] P is an impurity element inevitably contained in steel, and is a grain boundary segregation element, which causes grain boundary cracking in HAZ. In order to further improve the toughness of the base metal, the toughness of the weld metal and the HAZ, and reduce the segregation at the center of the slab, the P content is set to 0.0020% or less. Preferably it is 0.015% or less, more preferably 0.01% or less.
[0028] Sは多量に存在する場合、溶接割れ起点となる MnS単体の析出物を生成する。そ のため、 Sの含有量は 0. 01%以下とする。好ましくは 0. 008%以下、更に好ましくは 0. 005%である。  [0028] When S is present in a large amount, it forms a precipitate of MnS alone serving as a welding crack initiation point. Therefore, the content of S should be 0.01% or less. It is preferably 0.008% or less, more preferably 0.005%.
[0029] Cuは鋼材の強度および靱性を高める効果があるが、 HAZ靱性に対する悪影響も 少ない。特に、時効処理時の ε - Cu析出による強度上昇効果を期待する上で 0. 8 %以上必要である。しかし、 Cu含有量が高くなると溶接高温割れ感受性が高くなり、 予熱などの溶接施工が複雑になるため、 Cuの含有量は 1. 5%以下とした。好ましく は 0. 9—1. 1%である。  [0029] Cu has the effect of increasing the strength and toughness of the steel material, but has little adverse effect on the HAZ toughness. In particular, 0.8% or more is required in order to expect the effect of increasing strength by ε-Cu precipitation during aging treatment. However, the higher the Cu content, the higher the susceptibility to welding hot cracking, which complicates welding work such as preheating. Therefore, the Cu content was set to 1.5% or less. Preferably, it is 0.9-1.1%.
[0030] Niは鋼材の強度および靱性を高め、さらに HAZ靱性を高めるための有効な元素 である。しかし、 0. 2%以下ではそれらの効果がなぐまた、 1. 5%を超えるとコストア ップに見合うだけの効果を得ることができないため、 Niの含有量を 0. 2-1. 5%とし た。好ましくは 0. 4-1. 2%である。  [0030] Ni is an effective element for increasing the strength and toughness of the steel material and for further increasing the HAZ toughness. However, if the content is less than 0.2%, these effects will be lost.If the content exceeds 1.5%, it is not possible to obtain an effect worth the cost increase. It was decided. Preferably it is 0.4-1.2%.
[0031] A1は脱酸のために必須の元素である。しかし含有量が多くなると、特に HAZにお いて靱性が劣化しやすくなる。これは、粗大なクラスター状のアルミナ系介在物粒子 が形成されやすくなるためと考えられる。このため A1の含有量を 0. 001— 0. 05%と する。好ましく ίま 0. 001— 0. 030/0である。更に好ましく ίま 0. 001— 0. 0150/0である [0031] A1 is an essential element for deoxidation. However, as the content increases, the toughness tends to deteriorate, especially in HAZ. This is presumably because coarse cluster-like alumina-based inclusion particles are easily formed. Therefore, the content of A1 is set to 0.001-0.05%. Preferably ί or 0. 001 0.03 0/0. In addition there is preferably ί or 0. 001 0.015 0/0
[0032] Νは、窒化物を形成することで組織の細粒ィ匕に寄与するが、過剰に添加した場合 には窒化物の凝集を通じて靱性を劣化させる。したがって、 Nの含有量を 0. 003— 0 . 008%とする。好ましくは 0. 0035—0. 0065%である。 [0032] Ν contributes to fine graining of the structure by forming a nitride, but when excessively added, In addition, the toughness is deteriorated through the aggregation of nitride. Therefore, the content of N is set to 0.003-0.008%. Preferably it is 0.0035-0.0065%.
[0033] NZA1比を 0. 3-3. 0にコントロールすることで、大入熱 HAZ靱性、特に継手  [0033] By controlling the NZA1 ratio to 0.3-3.0, large heat input HAZ toughness, especially for joints
CTOD特性の改善が可能である。  CTOD characteristics can be improved.
これは、 NZA1比が 0. 3より小さい場合は、粗大 A1Nが析出し、これ自体が靱性に 悪影響を及ぼすのに加え、 TiNの微細/多量な分散が阻害されるためと考えられる。 一方 NZA1比が 3. 0を超える場合は、固溶 Nが増大し、 HAZ靱性が劣化するのに 加え、 A1N、 TiNの分散密度が疎疎になるためと考えられる。効果をより発揮させるた めの、好ましい範囲は 0. 4-2. 5である。  This is presumably because when the NZA1 ratio is smaller than 0.3, coarse A1N precipitates, which itself has an adverse effect on toughness and, in addition, disperses fine / large amounts of TiN. On the other hand, if the NZA1 ratio exceeds 3.0, it is considered that the solute N increases and the HAZ toughness is deteriorated, and the dispersion density of A1N and TiN becomes sparse. The preferred range for making the effect more effective is 0.4-2.5.
[0034] O (酸素)はフェライト生成核となる酸ィ匕物生成に有効である。一方、多量に存在す ると清浄度の劣化が著しくなるため、母材、溶接金属部および HAZともに実用的な 靱性確保が困難となる。したがって、 Oの含有量を 0. 0005— 0. 0035%とする。好 まし <は 0. 0008—0. 0018%である。  [0034] O (oxygen) is effective for forming an oxidized product serving as a ferrite generation nucleus. On the other hand, if present in a large amount, the cleanliness deteriorates significantly, and it is difficult to secure practical toughness for the base metal, weld metal and HAZ. Therefore, the content of O is set to 0.0005 to 0.0035%. Preferably <is 0.0008-0.0018%.
[0035] Tiは、窒化物を生成して結晶粒の粗大化を抑制するとともに、変態組織を微細化 する作用を有する。しかし、特定量未満の添加では前記作用を発揮せず、また多量 に添加した場合には母材靱性および溶接部靱性に悪影響を及ぼす。したがって、 Ti の含有量を 0. 005— 0. 03%とする。好ましくは 0. 007— 0. 015%である。  [0035] Ti has an action of generating nitrides to suppress the coarsening of crystal grains and to refine the transformed structure. However, the addition of less than the specified amount does not exert the above-mentioned effects, and the addition of a large amount adversely affects the toughness of the base metal and the toughness of the welded portion. Therefore, the content of Ti is set to 0.005 to 0.03%. Preferably, it is 0.007-0.015%.
[0036] Nbは細粒化と炭化物析出により母材の強度および靱性を向上させる。一方で過剰 に添加すると母材の性能向上効果が飽和するとともに HAZの靱性を著しく損なう。し た力 Sつて、 Nbの含有量 0. 003— 0. 03%とする。好ましくは 0. 003— 0. 015%であ る。  [0036] Nb improves the strength and toughness of the base material by grain refinement and carbide precipitation. On the other hand, if it is added excessively, the effect of improving the performance of the base material saturates and the toughness of HAZ is significantly impaired. The Nb content is set to 0.003—0.03%. Preferably, it is 0.003% to 0.015%.
[0037] Moは焼入れ性を確保し、 HAZ靱性を向上させる効果がある力 過剰に添加すると HAZでの著しい硬化を招き靱性を劣化させる。したがって、 Moの含有量は 0.1— 0 . 8%とする。好ましくは 0. 1-0. 5%である。  [0037] Mo has the effect of securing quenchability and improving HAZ toughness. Mo, when added excessively, causes significant hardening in HAZ and deteriorates toughness. Therefore, the content of Mo is set to 0.1 to 0.8%. Preferably it is 0.1-0.5%.
[0038] Crは、鋼材の焼入れ性を増し、強度確保に有効であるが、微量添加では向上効果 が発揮できず、過剰に添加した場合には溶接金属部および HAZの硬化防止および 溶接低温割れ感受性を増大させる傾向にある。したがって、 Crを添加する場合は、 C rの含有量を 0. 03-0. 80%とする。好ましくは 0. 05-0. 60%である。 [0039] Bは、焼入れ性を向上させて強度を高める作用がある。一方で過剰に添加すると、 強度を高める効果が飽和するし、母材、 HAZともに靱性劣化の傾向が著しくなる。し たがって、 Bを添加する場合は、 Bの含有量を 0. 0002-0. 002%とする。好ましく は 0. 003—0. 0015%である。 [0038] Cr enhances the hardenability of steel materials and is effective in ensuring strength. However, when added in a small amount, Cr does not show an improvement effect. When added excessively, it prevents the hardening of the weld metal and HAZ and prevents low-temperature cracking of the weld. Tends to increase sensitivity. Therefore, when Cr is added, the Cr content is set to 0.03-0.80%. Preferably it is 0.05-0.60%. [0039] B has the effect of improving hardenability and increasing strength. On the other hand, if it is added excessively, the effect of increasing the strength is saturated, and the tendency of toughness deterioration of both the base material and HAZ becomes remarkable. Therefore, when adding B, the content of B shall be 0.0002-0.002%. Preferably it is 0.003-0.0015%.
[0040] Vは、炭窒化物を生成して結晶粒の粗大化を抑制するとともに、変態組織を微細化 する作用を有する。しかし、特定量未満の添加では前記作用を発揮せず、また多量 に添加した場合には母材靱性および溶接部靱性に悪影響を及ぼす。したがって、 V を添加する場合は Vの含有量を 0. 001—0. 05%の含有量とする。好ましくは 0. 0 05—0. 04%である。  [0040] V has a function of generating carbonitrides to suppress the coarsening of the crystal grains and to refine the transformed structure. However, the addition of less than the specified amount does not exert the above-mentioned effects, and the addition of a large amount adversely affects the toughness of the base metal and the toughness of the welded portion. Therefore, when adding V, the content of V should be 0.001-0.05%. Preferably it is 0.005-0.04%.
[0041] Ca、 Mg、 REMは粒内フェライトの析出核となる酸ィ匕物、硫化物を生成する元素で ある。また、硫ィ匕物の形態を制御し、低温靱性を向上させる。このような Ca、 Mg、 RE Mの効果を得るためには、 Caの場合、 0. 0005%以上、 Mg、 REMの場合、 0. 000 1%以上の含有が必要となる。一方、 Caの場合、 0. 005%を超えると、 Mg、 REMの 場合、 0. 01%を超えると、 Ca、 Mg系の大型介在物やクラスターを生成して鋼の清 浄度を劣化させる。したがって、 Caを添加する場合は、 Caの含有量を 0. 0005—0. 005%、 Mg、 REMを添加する場合は、 Mg、 REMの含有量を 0. 0001—0. 01%と する。  [0041] Ca, Mg, and REM are elements that generate oxides and sulfides that serve as precipitation nuclei for intragranular ferrite. In addition, it controls the form of the sulphide and improves the low-temperature toughness. In order to obtain such an effect of Ca, Mg, and REM, the content of Ca must be 0.0005% or more, and in the case of Mg or REM, the content must be 0.001% or more. On the other hand, if Ca exceeds 0.005%, Mg and REM exceed 0.01%, Ca and Mg-based large inclusions and clusters are formed, deteriorating the purity of steel. . Therefore, when Ca is added, the Ca content is 0.0005-0.005%, and when Mg and REM are added, the Mg and REM contents are 0.0001-0.01%.
[0042] また、本発明の鋼は、下記 (I)式で示す Pcmが 0. 25以下であり、鋼中に分散した長 径が lnm以上の Cu粒子について、円相当径の平均値力 一 25nmであり、かつ平面 率換算分布量が 3— 20%であることが好ましい。  [0042] The steel of the present invention has a Pcm represented by the following formula (I) of 0.25 or less, and the average force of the circle-equivalent diameter of Cu particles dispersed in the steel and having a major axis of 1 nm or more is not less than 1 nm. It is preferable that the thickness is 25 nm and the distribution amount in terms of plane ratio is 3 to 20%.
[0043] Pcm=C+ (Si/30) + (Mn/20) + (Cu/20) + (Ni/60) + (Cr/20) + (Mo/ 15) + ( ν/10) + 5Β· · ·(Ι)  [0043] Pcm = C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (ν / 10) + 5Β · · (Ι)
Pcmは溶接割れ感受性を表す指数であり、その値が 0.25以下であれば、通常の溶 接施工条件で溶接割れが生じない。したがって Pcmは 0.25以下とする。 Pcmを低くす ると溶接時の予熱を省略することができる。好ましくは 0.22以下、さらに好ましくは 0.20 以下である。  Pcm is an index that indicates the susceptibility to weld cracking. If its value is 0.25 or less, weld cracks will not occur under normal welding conditions. Therefore, Pcm should be 0.25 or less. Preheating during welding can be omitted by reducing Pcm. Preferably it is 0.22 or less, more preferably 0.20 or less.
[0044] 次に、 Cu析出物の円相当径平均値および平面率換算分布量について述べる。長 径 1應以上の Cu粒子を対象とする理由は、 1應より小さい粒子は強度を高める寄与 力 S小さいためである。 Cu粒子の長径の上限については、特に定めないが平均値が 4 一 25nmの範囲では lOOnmを超える粒子は出現しない。なお、 Cu粒子の析出形態は およそ球状であるが、立体形状を計測するのは容易ではないので、投影された形状 を計測する。 Next, the average value of the equivalent circle diameter of the Cu precipitate and the distribution amount in terms of flatness will be described. The reason for targeting Cu particles with a diameter of 1 mm or more is that particles smaller than 1 mm contribute to increasing strength. This is because the force S is small. The upper limit of the major axis of the Cu particles is not particularly defined, but no particles exceeding 100 nm will appear if the average value is in the range of 425 nm. Although the precipitation form of the Cu particles is approximately spherical, it is not easy to measure the three-dimensional shape, so the projected shape is measured.
[0045] ここで、円相当径とは、粒子の投影面積と同じ面積を持つ円の直径であり、具体的 には  Here, the equivalent circle diameter is the diameter of a circle having the same area as the projected area of the particle, and specifically,
d=^(4a/pai) a:投影面積 (nm2)、 d :円相当径 (nm pai: 3. 14 d = ^ (4a / pai) a: Projected area (nm 2 ), d: Circle equivalent diameter (nm pai: 3.14
によって求める。  Ask by.
[0046] 平面率換算分布量につ!ヽては、鋼材を薄膜状に加工し、約 0.2マイクロメートルの 厚みを有する部分について TEM観察を実施し、薄膜状試験片中に立体的に分布し た Cu粒子を平面投影した場合の面積率を倍率 100000倍の TEM写真につ 、て測定 することで算出する。  [0046] Regarding the distribution in terms of flatness, a steel material is processed into a thin film, and a portion having a thickness of about 0.2 micrometer is observed with a TEM, and is distributed three-dimensionally in the thin film test piece. It is calculated by measuring the area ratio when the Cu particles are planarly projected on a TEM photograph with a magnification of 100,000.
[0047] ここに、円相当径、平面率換算分布量を上記のように規定した理由につき、さらに 詳しく述べる。  Here, the reason why the equivalent circle diameter and the distribution amount in terms of flatness are defined as described above will be described in more detail.
海洋構造物に用いられる鋼の特徴としては、嵐の波浪による外力に耐えるため、最 大板厚 100mm近くの極厚高張力鋼になる場合が多ぐまた今後、厳しい状況で使用 されることから、さらに厳しい CTOD値を満たすことが要求される。  One of the characteristics of steel used in offshore structures is that, in order to withstand the external forces of storm waves, extremely high-strength steel with a maximum plate thickness of nearly 100 mm is often used, and because it will be used in severe conditions in the future. It is required to meet even more stringent CTOD values.
[0048] Cu析出で強度が高くなりすぎると、 CTOD値が低くなり、 Cu析出が不足すると [0048] If the strength is too high due to Cu precipitation, the CTOD value will be low, and if the Cu precipitation is insufficient,
CTOD値は高くても強度が不足することになる。  Even if the CTOD value is high, the strength will be insufficient.
従来の Cu添加鋼においては、海洋構造物用への適用例がほとんどなぐ厳しい CTOD値要求がな力つたので、このような Cu析出粒子の平均径ゃ分布量を厳密に制 御する必要がな力つた。  In conventional Cu-added steel, the demand for strict CTOD values has hardly been met, as there are almost no applications for offshore structures.Therefore, it is not necessary to strictly control the average diameter / distribution amount of such Cu precipitate particles. Helped.
[0049] そこで、本発明の好適態様にあっては、 Cu析出による強度アップと CTOD値の低下 とのバランスをとるために Cu析出粒子の平均径ゃ分布量を以上のように規定した。 円相当径を 4一 25 にするのは強度と靱性のバランスのためであり、平面率換算 分布量を 3— 20%とするのも強度と靱性のバランスのためである。 [0049] Therefore, in a preferred embodiment of the present invention, the average diameter / distribution amount of the Cu precipitated particles is specified as described above in order to balance the increase in strength due to Cu precipitation and the decrease in CTOD value. The reason why the equivalent circle diameter is set to 425 is to balance strength and toughness, and the reason why the flatness equivalent distribution is set to 3 to 20% is to balance strength and toughness.
[0050] Cu粒子径、分布量を制御する因子としては次のものが考えられる。 The following factors can be considered as factors for controlling the Cu particle diameter and the distribution amount.
(1) Cu添加量は多いほど分布量は多くなる。粒子径に与える影響については適正 添加範囲であれば主に時効処理前の組織、時効処理の温度および時間で平均粒 径が決まる。適正添加量より少なければ Cu粒子の析出が不十分で粒子径は小さぐ 多ければ粒子径は大きくなる傾向にある。 (1) The distribution amount increases as the Cu addition amount increases. Appropriate effect on particle size Within the addition range, the average particle size is determined mainly by the structure before the aging treatment, the temperature and the time of the aging treatment. If the amount is less than the proper amount, the precipitation of Cu particles is insufficient and the particle size is small. If the amount is large, the particle size tends to be large.
[0051] (2)時効前組織の影響は大きぐ時効前組織としてはフェライトおよびべイナイト主 体の微細な組織とするのが好まし 、。 (2) The influence of the structure before aging is so great that the structure before aging is preferably a fine structure mainly composed of ferrite and bainite.
転位あるいは結晶粒界などが Cu粒子の析出サイトになるので、このような析出サイト を多く含む組織とすることが、 Cu粒子径を細力べし分布量を多くする。このためには鋼 の成分を適切に制御するとともに圧延条件を適切にし、その後の水冷条件もフェライ ト ·ベイナイト主体の微細組織となるように選ぶ必要がある。  Since dislocations or crystal grain boundaries serve as Cu particle precipitation sites, a structure containing a large number of such precipitation sites increases the distribution of Cu particles by reducing the particle diameter. For this purpose, it is necessary to appropriately control the steel composition and rolling conditions, and then select the water cooling conditions so that the ferrite-bainite-based microstructure is obtained.
[0052] (3)時効処理温度、時間は重要な因子である。 Cuの拡散速度、粒子の成長速度を 時効処理条件により厳密に調整することで目的の粒子分散状態に制御する。 (3) The aging temperature and time are important factors. The target particle dispersion state is controlled by strictly adjusting the Cu diffusion rate and the particle growth rate according to the aging treatment conditions.
上述の 3つの因子を適宜調整して、本発明鋼を製造すればよぐ以上の開示から すれば当業者には本発明の実施は困難ではない。  It is not difficult for those skilled in the art to implement the present invention based on the above disclosure if the above three factors are appropriately adjusted to produce the steel of the present invention.
[0053] 次に、本発明にかかる高張力鋼の製造方法について説明する。 Next, a method for producing a high-tensile steel according to the present invention will be described.
上記のような鋼成分組成であっても Cuの析出硬化を十分に発揮させ、更に厚さ 50 mm以上の厚肉材の板厚方向各位置の強度および靱性を均一に高靱ィ匕させ、且つ 降伏強度を向上させるためには、製造方法が適切でなければならない。  Even with the steel composition as described above, the precipitation hardening of Cu is sufficiently exhibited, and the strength and toughness of each position in the thickness direction of the thick material having a thickness of 50 mm or more are uniformly and highly tough. Moreover, in order to improve the yield strength, a manufacturing method must be appropriate.
[0054] 製鋼工程までは慣用の方法で行えばよぐ本発明において特に制限ない。製鋼ェ 程に続いて鋼片を得るが、コスト低減の観点より、連続铸造法にてスラブ (鋼片)を作 製するのが好ましい。 [0054] The present invention is not particularly limited as long as it is performed by a conventional method up to the steel making process. Although slabs are obtained following the steelmaking process, slabs (slabs) are preferably manufactured by a continuous sintering method from the viewpoint of cost reduction.
[0055] ここで、鋼片の加熱、熱間圧延、冷却および焼戻し条件にっ 、て説明する。まず上 記成分組成の鋼片を、 900— 1120°Cに加熱し熱間圧延を行う。本発明においては 、高靱性を得るためには、厚肉材の板厚中心部において、上部べイナイト組織が生 成しても十分なほどオーステナイト粒を細粒ィヒする必要があり、加熱段階で鋼片厚肉 内のオーステナイト粒の細粒化が重要である。 900°C未満の低い温度ではこの固溶 化作用が十分でなぐ焼戻し処理において十分な析出硬化が期待できない。しかし、 1120°Cを超える加熱温度では、圧延前のオーステナイト粒を細粒かつ整粒に保つ ことができなくなり、その後の圧延においてもオーステナイト粒が均一細粒ィ匕されない 。従って、ま岡片のカロ熱温度を 900— 1120°Cとした。好ましくは 900— 1050°C、更に 好ましくは 900— 1000。Cである。 [0055] Here, the heating, hot rolling, cooling and tempering conditions of the slab will be described. First, a steel slab having the above composition is heated to 900-1120 ° C and hot rolled. In the present invention, in order to obtain high toughness, it is necessary to sufficiently reduce austenite grains in the center of the thickness of a thick-walled material even if an upper bainite structure is generated. Therefore, it is important to refine the austenite grains in the thick slab. At a low temperature of less than 900 ° C, sufficient precipitation hardening cannot be expected in the tempering treatment in which this solution action is not sufficient. However, at a heating temperature exceeding 1120 ° C, austenite grains before rolling cannot be kept fine and sized, and even after rolling, austenite grains are not uniformly fine-grained. . Therefore, the caloric heat temperature of Maokagata was set to 900-1120 ° C. Preferably 900-1050 ° C, more preferably 900-1000. C.
[0056] 圧延においては、 900 °C以下における総圧下量を 50%以上とすることが望ましい。 [0056] In rolling, the total reduction at 900 ° C or less is desirably 50% or more.
熱間圧延後、 Ar点以上の温度力 水冷を開始し、 600 °C以下の温度で停止する焼  After hot rolling, start water cooling at a temperature above the Ar point and stop at a temperature of 600 ° C or less.
1  1
入れ処理を行なう。これは、組織微細化を図り、および時効処理前段階における Cu 粒子析出をできる限り抑制するためである。 Ar点未満の温度からの水冷では、ある  Perform the insertion process. This is for the purpose of miniaturizing the structure and suppressing the precipitation of Cu particles before the aging treatment as much as possible. Water cooling from temperatures below the Ar point is
1  1
いは冷却が空冷では加工歪みの消失が起こり、強度 *靱性低下の原因となる。  Otherwise, if the cooling is air cooling, the processing strain disappears, which causes a decrease in strength * toughness.
[0057] 圧延仕上げ温度は 700 °C以上、冷却開始温度は 680 °C— 750 °C、冷却停止温度 までの冷却速度は 1一 50°C/sとするのが好ましい。水冷停止温度が 600 °Cを超えると 焼戻し処理における析出強化作用が不十分となる。  [0057] It is preferable that the rolling finish temperature is 700 ° C or more, the cooling start temperature is 680 ° C to 750 ° C, and the cooling rate to the cooling stop temperature is 1 to 50 ° C / s. If the water cooling stop temperature exceeds 600 ° C, the precipitation strengthening effect in the tempering treatment will be insufficient.
[0058] なお、 Ar点は微小試験片の体積変化を測定する方法で求められる。  [0058] The Ar point is determined by a method of measuring a change in volume of the minute test piece.
1  1
次に、熱間圧延後、水冷された鋼は、その後、必要により加熱を行って、 540で以 上 Ac点以下の温度で時効処理を行い、次いで冷却する。  Next, after hot rolling, the water-cooled steel is heated, if necessary, subjected to an aging treatment at a temperature of 540 or more and an Ac point or less, and then cooled.
1  1
[0059] ここで、時効温度にまで加熱を行う場合、時効温度 100 °Cまでの平均加熱速度、 および 500 °Cまでの平均冷却速度については制御を行う。この時効処理は Cuの析 出物を十分に析出硬化させるためであり、加熱 Z冷却速度の制御は、 Cu粒子の分 散を均一化させるために実施するからである。したがって、加熱速度は目標温度 100 °Cまでの平均加熱速度が 5— 50°CZ分、保持時間は 1時間以上、冷却速度は 500 °Cまでの平均冷却速度が 5— 60°CZ分以上としたほうが好ましい。  Here, when heating to the aging temperature, the average heating rate up to the aging temperature of 100 ° C. and the average cooling rate up to 500 ° C. are controlled. This aging treatment is to sufficiently precipitate and harden the precipitates of Cu, and the control of the heating Z cooling rate is performed to make the dispersion of the Cu particles uniform. Therefore, the heating rate is 5-50 ° CZ for the average heating rate up to the target temperature of 100 ° C, the holding time is 1 hour or more, and the cooling rate is 5-60 ° CZ for the cooling rate up to 500 ° C. It is preferable to do so.
[0060] ここで、本明細書における加熱温度は炉内雰囲気温度とし、加熱後保持時間は炉 内雰囲気温度での保持温度とし、圧延終了温度および水冷開始/停止温度は鋼材 の表層温度とし、再加熱時の加熱/冷却平均速度については鋼材の厚さ l/2t位置で の温度計算より算出するものとする。  [0060] Here, the heating temperature in the present specification is the furnace atmosphere temperature, the holding time after heating is the holding temperature at the furnace atmosphere temperature, the rolling end temperature and the water cooling start / stop temperature are the surface layer temperature of the steel material, The average heating / cooling rate during reheating shall be calculated from the temperature calculation at the steel material thickness l / 2t position.
[0061] 本発明にかかる高張力鋼から大型海洋構造物を構成するには、板材、管材、さら には形材などの鋼材を溶接により組み立てる力 一般には鋼板として使用される。 本明細書で「溶接性」に優れたと言った場合、通常は、溶接入熱量 300 kj/cm以上 のアーク溶接が可能であることを意味する力 溶接法としてはその他、サブマージァ ーク溶接、被覆アーク溶接などであってもよい。 [0062] ここに、海洋構造物としては、海底に敷設されるプラットフォームや、ジャッキアップ リグばかりでなぐセミサブリグ (半潜水式石油掘肖 ijリグ)なども包含され、溶接性と低 温靱性とが要求される海洋構造物であれば、とくに制限はない。なお、「大型」という 場合、それに使用される鋼材の厚さが 50mm以上のそれを意味する。 [0061] In order to construct a large offshore structure from the high-tensile steel according to the present invention, a force to assemble steel materials such as plates, pipes, and furthermore, shapes and the like by welding is generally used as a steel plate. In this specification, the term “excellent in weldability” usually means that arc welding with a welding heat input of 300 kj / cm or more is possible.Other welding methods include submerged arc welding and coating. Arc welding or the like may be used. [0062] Here, the offshore structure includes a platform laid on the sea floor, a semi-sub rig (a semi-submersible oil digging ij rig) that is not only a jack-up rig, etc. There are no particular restrictions on the offshore structure required. In addition, “large” means that the thickness of the steel used for it is 50 mm or more.
実施例  Example
[0063] 本例では、表 1および表 2の化学成分を有する 300mm厚の鋼片を連続铸造法にて 作製した。ここで板厚中心位置の介在物制御の観点より、連続铸造過程においては 、溶鋼の温度を過度に高くせず、溶鋼組成力 決まる凝固温度に対し、その差が 50 °C以内になるように管理し、さらに凝固直前の電磁攪拌、凝固時の圧下を行った。  [0063] In this example, a 300 mm-thick steel slab having the chemical components shown in Tables 1 and 2 was produced by a continuous casting method. Here, from the viewpoint of controlling inclusions at the center of the sheet thickness, in the continuous forming process, the temperature of the molten steel is not excessively increased, and the difference between the solidification temperature determined by the composition force of the molten steel and the solidification temperature is set within 50 ° C. Under the control, electromagnetic stirring immediately before coagulation and reduction during coagulation were performed.
[0064] 表 3および表 4に表 1および表 2に示した化学成分を有する鋼片の加工条件を示す 。ここで、表 3、表 4に示した加工条件は、それぞれ表 1、表 2に示した化学成分を有 する鋼片の加工条件である。  Tables 3 and 4 show the processing conditions for the billets having the chemical components shown in Tables 1 and 2. Here, the processing conditions shown in Tables 3 and 4 are the processing conditions for steel slabs having the chemical components shown in Tables 1 and 2, respectively.
[0065] 300mm厚のスラブは各加熱温度、各加熱時間で加熱後、熱間圧延を行ったのち、 水冷開始温度力 水冷停止温度まで平均の冷却速度を 5°C/sで冷却し、板厚 77mm の鋼板とした。(これらの条件については、表 3および表 4に初期加熱'圧延条件と表 記)  [0065] The slab having a thickness of 300 mm was heated at each heating temperature and each heating time, and then subjected to hot rolling, and then cooled to a water cooling start temperature at an average cooling rate of 5 ° C / s to a water cooling stop temperature. The steel plate was 77 mm thick. (These conditions are shown in Tables 3 and 4 as initial heating and rolling conditions.)
その後、各時効温度まで再加熱し、各保持時間保持した。ここで加熱速度は、時効 温度- 100°Cまでの平均加熱速度を 10°C/分となるように制御し、冷却速度は、 500 °Cまでの平均冷却速度が 10°C/分となるよう制御した。(これらの条件については、表 3および表 4に時効処理条件と表記)  Then, it was heated again to each aging temperature and held for each holding time. Here, the heating rate is controlled so that the average heating rate up to the aging temperature-100 ° C is 10 ° C / min, and the cooling rate is 10 ° C / min up to 500 ° C. Was controlled as follows. (These conditions are referred to as aging conditions in Tables 3 and 4.)
このようにして得られた鋼の引張試験は、 ASTM規格に準拠し、平行部 12. 5mm直 径の引張試験片を圧延方向に対し直角方向の板厚中央より採取し、実施した。  The tensile test of the steel obtained in this manner was performed by taking a tensile test specimen having a diameter of 12.5 mm in the parallel part from the center of the thickness in the direction perpendicular to the rolling direction in accordance with the ASTM standard.
[0066] 同じぐ得られた鋼の CTOD試験は、 BS7448規格に準拠し、全厚の 3点曲げ試験 片を圧延方向に直角の方向から採取し、 40°Cで実施した。 [0066] The CTOD test of the steel obtained in the same manner was conducted at 40 ° C by taking a three-point bending test piece of full thickness from a direction perpendicular to the rolling direction in accordance with the BS7448 standard.
溶接継手部は、 BS7448規格に準拠し、 K開先加工した鋼板突き合わせ部に 10. Okj/cmの FCAW溶接 (Flux Cored Arc Welding)を実施して得た。このようにして得ら れた継手にっ 、て、 CTOD試験片の疲労ノッチが V型開先のストレート部側の溶接 線となるように加工を行って得た試験片に、 40°Cにて CTOD試験を実施した。 [0067] また、大入熱溶接に対する対応性を確認するために、同じ鋼について、 20° V開 先加工した後に、つき合わせ、入熱量 350kjZcmのエレクト口ガスアーク溶接 (EGW )により溶接継手を作製した。このとき作製した溶接継手については、 ASTM E129 0に準じた CTOD試験を実施した。 CTOD試験片は疲労ノッチが溶接線となるよう加 ェし、試験温度 - 10°Cで限界 CTOD値を測定した。 The welded joints were obtained by performing FCAW welding (Flux Cored Arc Welding) of 10. Okj / cm on the butt joints of the K-grooves in accordance with BS7448 standard. The joint obtained in this way was processed at 40 ° C on a specimen obtained by processing the CTOD specimen so that the fatigue notch of the specimen became the weld line on the straight part side of the V-shaped groove. A CTOD test was performed. [0067] In addition, in order to confirm compatibility with large heat input welding, the same steel was subjected to 20 ° V groove processing, then butt-joined, and welded joints were produced by electorifice gas arc welding (EGW) with a heat input of 350kjZcm. did. The welded joints produced at this time were subjected to a CTOD test according to ASTM E1290. The CTOD test piece was applied so that the fatigue notch became the weld line, and the critical CTOD value was measured at a test temperature of -10 ° C.
[0068] さらに、 Cu粒子の円相当径の平均値は、倍率 100000倍の透過型電子顕微鏡  [0068] Furthermore, the average value of the circle equivalent diameter of the Cu particles was determined using a transmission electron microscope with a magnification of 100,000.
(TEM)写真において観察される、長径が 1應以上の各析出物について円相当径を 測定し、その直径について写真 1視野毎の平均値を求めることで算出した。なお、測 定のばらつきを少なくするため、測定は鋼材元厚の 1/4の位置について、 TEM写真 の 10視野(1視野は 900 X 700nmの長方形)を観察し、その平均値を用いた。  (TEM) The equivalent circle diameter was measured for each precipitate having a major axis of 1 mm or more observed in the photograph, and the diameter was calculated by obtaining an average value for each visual field of the photograph. In addition, in order to reduce the dispersion of the measurement, 10 fields of view (one field of view is a rectangle of 900 X 700 nm) of the TEM photograph were observed at a position 1/4 of the original steel thickness, and the average value was used.
[0069] 表 1は、本発明で規定する化学成分を満足する供試材を示したものである。これら の供試鋼を表 3に示す加工条件で製造処理したものは、表 5に示すように 、ずれも Cu粒子の分散状態が規定範囲を満足するものとなった。そのため、いずれの供試鋼 も母材強度、母材 CTOD特性、継手 CTOD特性 (-40°Cおよび- 10°C)が高い値とな つた o  Table 1 shows test materials satisfying the chemical components specified in the present invention. As shown in Table 5, when the test steels were manufactured and processed under the processing conditions shown in Table 3, the deviations also satisfied the dispersion state of the Cu particles within the specified range. Therefore, the base metal strength, base metal CTOD characteristics, and joint CTOD characteristics (-40 ° C and -10 ° C) of all test steels were high.o
[0070] 表 2のうち、 No.40は、本発明で規定する化学成分を満足する供試材を示したもの であり、 No.41— No.60は、化学成分範囲のいずれかが本発明で規定する範囲外で ある供試材を示したものである。これらの供試鋼を表 4に示す加工条件で製造処理し たものは、表 6に示すような Cu粒子の分散状態となった。  [0070] In Table 2, No. 40 shows the test materials satisfying the chemical components specified in the present invention, and No. 41 to No. 60 show that any one of the chemical components ranges The test materials outside the range specified in the invention are shown. When these test steels were manufactured and processed under the processing conditions shown in Table 4, the dispersed state of Cu particles as shown in Table 6 was obtained.
[0071] No.40については、本発明で規定する化学組成は満足するが、 Cu粒子の分散状態 が規定範囲を満足するものとはならな力 たため、母材強度が低い値となった。した がって、大入熱溶接特性と母材強度を両立させるためには、本発明で規定する Cu粒 子の分散状態を満足することが望まし 、。  [0071] For No. 40, the chemical composition defined by the present invention was satisfied, but the dispersed state of the Cu particles did not satisfy the specified range, so that the base material strength was low. Therefore, in order to achieve both high heat input welding characteristics and base metal strength, it is desirable to satisfy the dispersed state of Cu particles specified in the present invention.
[0072] また、 No.41— No.60については、本発明で規定する化学組成を満足しないため、 母材強度、母材 CTOD特性、継手 CTOD特性 (-40°Cおよび- 10°C)を同時に満足 することができな力つた。  [0072] Since No. 41 to No. 60 do not satisfy the chemical composition defined in the present invention, the base metal strength, base metal CTOD characteristics, and joint CTOD characteristics (-40 ° C and -10 ° C) Was not able to satisfy at the same time.
[0073] [表 1]
Figure imgf000015_0001
/vu/ O/J0さ oifcld sossosooiAV ¾u0
[0073] [Table 1]
Figure imgf000015_0001
/ vu / O / J0sa oifcld sossosooiAV ¾u0
成分 C Si n P S Cu Ni Nb Mo AI N Ti 0 N/AI Cr V B Ca Ms REM PcmComponent C Si n P S Cu Ni Nb Mo AI N Ti 0 N / AI Cr V B Ca Ms REM Pcm
40 0.023 0.12 1.09 0.004 0.004 0.95 0.95 0.003 0.42 0.003 0.0052 0.015 0.0013 1.7333 0.31 一 一 一 一 0.18840 0.023 0.12 1.09 0.004 0.004 0.95 0.95 0.003 0.42 0.003 0.0052 0.015 0.0013 1.7333 0.31 one one one one 0.188
41 0.1 10 0.15 1.01 0.007 0.005 0.97 0.89 一 0.30 0.012 0.0049 0.010 0.0015 0.4083 一 一 - 一 ― - 0.24941 0.1 10 0.15 1.01 0.007 0.005 0.97 0.89 one 0.30 0.012 0.0049 0.010 0.0015 0.4083 one one-one--0.249
42 0.061 0.05 1.94 0.005 0.003 0.94 0.95 一 0.20 0.003 0.0052 - 0.0013 1.7333 0.15 一 ― 一 一 一 0.24342 0.061 0.05 1.94 0.005 0.003 0.94 0.95 one 0.20 0.003 0.0052-0.0013 1.7333 0.15 one-one one one 0.243
43 0.052 0.08 1.21 0.008 0.002 0.98 1.21 - - 0.019 0.0006 ― 0.0015 0.0316 0.2 0.01 一 一 一 - 0.19543 0.052 0.08 1.21 0.008 0.002 0.98 1.21--0.019 0.0006-0.0015 0.0316 0.2 0.01 1 1-0.195
44 0.041 0.16 1.05 0.009 0.003 0.95 1.03 0.019 0.26 0.005 0.0055 0.017 0.0051 1.1000 - - - ― - - 0.18144 0.041 0.16 1.05 0.009 0.003 0.95 1.03 0.019 0.26 0.005 0.0055 0.017 0.0051 1.1000------0.181
45 0.029 0.21 1.24 0.021 0.006 0.47 0.52 0.012 一 0.031 0.0071 0.015 0.0071 0.2290 ― - 一 ― - 一 0.13045 0.029 0.21 1.24 0.021 0.006 0.47 0.52 0.012 one 0.031 0.0071 0.015 0.0071 0.2290--one--one 0.130
46 0.042 0.35 1.02 0.009 0.006 0.87 0.86 一 0.30 0.112 0.0065 一 0.0065 0.0580 0.2 一 一 一 - 一 0.19346 0.042 0.35 1.02 0.009 0.006 0.87 0.86 one 0.30 0.112 0.0065 one 0.0065 0.0580 0.2 one one one-one 0.193
47 0.1 10 0.06 1.28 0.010 0.002 0.93 0.88 0.008 0.50 0.006 0.0041 0.013 0.0016 0.6833 一 0.035 - - 0.0021 - 0.27447 0.1 10 0.06 1.28 0.010 0.002 0.93 0.88 0.008 0.50 0.006 0.0041 0.013 0.0016 0.6833 one 0.035--0.0021-0.274
48 0.033 0.04 1.39 0.008 0.002 1.94 0.64 0.013 0.42 0.009 0.0052 0.012 0.0017 0.5778 0.22 一 0.0009 一 一 - 0.25548 0.033 0.04 1.39 0.008 0.002 1.94 0.64 0.013 0.42 0.009 0.0052 0.012 0.0017 0.5778 0.22 one 0.0009 one one-0.255
49 0.043 0.09 1.39 0.010 0.002 0.98 0.10 0.005 0.42 0.003 0.0063 0.008 0.0017 2.1000 0.40 ― ― - - 一 0.21449 0.043 0.09 1.39 0.010 0.002 0.98 0.10 0.005 0.42 0.003 0.0063 0.008 0.0017 2.1000 0.40----One 0.214
50 0.030 0.11 1.39 0.009 0.003 0.90 1.00 0.005 0.34 0.003 0.0041 0.011 0.0014 1.3667 0.85 0.008 0.0012 一 0.0025 - 0.23750 0.030 0.11 1.39 0.009 0.003 0.90 1.00 0.005 0.34 0.003 0.0041 0.011 0.0014 1.3667 0.85 0.008 0.0012 one 0.0025-0.237
51 0.041 0.14 1.06 0.005 0.003 0.93 0.88 0.015 0.85 0.004 0.0046 0.008 0.0017 1.1500 一 0.035 ― 0.0007 - 一 0.22051 0.041 0.14 1.06 0.005 0.003 0.93 0.88 0.015 0.85 0.004 0.0046 0.008 0.0017 1.1500 one 0.035 ― 0.0007-one 0.220
52 0.030 0.06 1.39 0.010 0.002 0.90 0.88 0.013 0.18 0.009 0.0057 0.009 0.0016 0.6333 - 0.061 0.0010 一 一 一 0.18452 0.030 0.06 1.39 0.010 0.002 0.90 0.88 0.013 0.18 0.009 0.0057 0.009 0.0016 0.6333-0.061 0.0010 one-one-one 0.184
53 0.030 0.06 1 .50 0.008 0.003 0.90 0.64 0.052 0.42 0.003 0.0063 0.009 0.0017 2.1000 - 一 - 0.0012 - - 0.19153 0.030 0.06 1.50 0.008 0.003 0.90 0.64 0.052 0.42 0.003 0.0063 0.009 0.0017 2.1000-one-0.0012--0.191
54 0.040 0.14 1 ,06 0.005 0.003 1.00 0.76 0.005 0.42 0.007 0.0041 0.034 0.0016 0.5857 - 0.035 0.0021 一 一 一 0.20254 0.040 0.14 1, 06 0.005 0.003 1.00 0.76 0.005 0.42 0.007 0.0041 0.034 0.0016 0.5857-0.035 0.0021 One-one-one 0.202
55 0.030 0.09 1.17 0.009 0.002 0.90 0.52 0.015 0.26 0.003 0.0052 0.008 0.0014 1.7333 0.16 一 0.0045 - - 0.0021 0.19355 0.030 0.09 1.17 0.009 0.002 0.90 0.52 0.015 0.26 0.003 0.0052 0.008 0.0014 1.7333 0.16 one 0.0045--0.0021 0.193
56 0.047 0.04 1.17 0.008 0.002 0.90 0.52 0.013 0.18 0.062 0.0032 0.012 0.0018 0.0516 - - 0.0026 一 - 一 0.18656 0.047 0.04 1.17 0.008 0.002 0.90 0.52 0.013 0.18 0.062 0.0032 0.012 0.0018 0.0516--0.0026 One-One 0.186
57 0.040 0.04 1.39 0.009 0.002 0.90 0.64 0.008 0.50 0.007 0.01 10 0.013 0.0017 1.5714 - 一 0.0012 - 0.0007 一 0.20657 0.040 0.04 1.39 0.009 0.002 0.90 0.64 0.008 0.50 0.007 0.01 10 0.013 0.0017 1.5714-one 0.0012-0.0007 one 0.206
58 0.035 0.1 1 1.06 0.008 0.002 0.90 0,52 0.013 0.26 0.006 0.0046 0.008 0.0041 0.7667 一 0.015 0.0023 - 一 一 0.17658 0.035 0.1 1 1.06 0.008 0.002 0.90 0,52 0.013 0.26 0.006 0.0046 0.008 0.0041 0.7667 one 0.015 0.0023-one 0.176
59 0.051 0,04 1.17 0.005 0.002 0.90 0.52 0.005 0.26 0.034 0.0031 0.012 0.0014 0.0912 - - - - - ― 0.18259 0.051 0,04 1.17 0.005 0.002 0.90 0.52 0.005 0.26 0.034 0.0031 0.012 0.0014 0.0912------0.182
60 0.033 0.06 1.39 0.009 0.003 0.95 0.52 0.005 0.42 0.002 0.0078 0.008 0.0013 3.9000 一 0.015 - 一 一 一 0.190 60 0.033 0.06 1.39 0.009 0.003 0.95 0.52 0.005 0.42 0.002 0.0078 0.008 0.0013 3.9000 one 0.015-one one 0.190
[0075] [表 3] [Table 3]
Figure imgf000018_0001
Figure imgf000018_0001
[0076] [表 4] 初期加熱 ·圧延条件 時効処理条件 加熱温度 加熱時間 仕上温度 水冷開始 水冷停止 時効温度 保持時間 成分 (°C) (hour) (°C) 温度 (°C) 温度 (°c) (。C) (hour)[Table 4] Initial heating and rolling conditions Aging treatment conditions Heating temperature Heating time Finishing temperature Water cooling start Water cooling stop Aging temperature Holding time Component (° C) (hour) (° C) Temperature (° C) Temperature (° c) (.C) (hour )
40 950 10 730 720 350 720 540 950 10 730 720 350 720 5
41 950 10 750 705 350 600 541 950 10 750 705 350 600 5
42 950 10 740 710 350 580 542 950 10 740 710 350 580 5
43 950 10 715 710 350 550 543 950 10 715 710 350 550 5
44 950 10 720 720 350 620 544 950 10 720 720 350 620 5
45 950 10 725 710 350 550 545 950 10 725 710 350 550 5
46 950 10 730 715 350 590 546 950 10 730 715 350 590 5
47 1000 5 730 720 250 600 547 1000 5 730 720 250 600 5
48 950 5 730 710 250 580 548 950 5 730 710 250 580 5
49 1000 5 730 720 250 600 549 1000 5 730 720 250 600 5
50 1000 5 720 700 250 600 550 1000 5 720 700 250 600 5
51 950 5 730 710 250 600 551 950 5 730 710 250 600 5
52 950 5 730 720 250 590 552 950 5 730 720 250 590 5
53 950 5 730 700 250 590 553 950 5 730 700 250 590 5
54 1000 5 730 700 250 600 554 1000 5 730 700 250 600 5
55 1000 5 720 700 250 600 555 1000 5 720 700 250 600 5
56 1000 5 730 700 250 600 556 1000 5 730 700 250 600 5
57 950 5 730 700 250 600 557 950 5 730 700 250 600 5
58 1000 5 730 710 250 600 558 1000 5 730 710 250 600 5
59 950 5 730 700 250 600 559 950 5 730 700 250 600 5
60 950 5 730 700 250 600 5 ] 60 950 5 730 700 250 600 5]
I 小入熱溶接 大入熱溶接 平面率 母材 CTO[ 継手 CTOD 継手 CTOD 成分 (nm) (%) (N/mm2) (N/mm2) (mm) (mm) (mm)I Small heat input welding Large heat input welding Flatness Base material CTO [Joint CTOD Joint CTOD component (nm) (%) (N / mm2) (N / mm2) (mm) (mm) (mm)
1 16 5 510 571 >1.3 0.61 0.311 16 5 510 571> 1.3 0.61 0.31
2 14 16 580 627 >1.3 0.98 0.412 14 16 580 627> 1.3 0.98 0.41
3 15 17 589 640 1.10 0.79 0.323 15 17 589 640 1.10 0.79 0.32
4 15 14 563 637 1.09 0.61 0.404 15 14 563 637 1.09 0.61 0.40
5 15 15 571 641 >1.3 1.10 0.425 15 15 571 641> 1.3 1.10 0.42
6 16 10 512 572 0.89 0.62 0.296 16 10 512 572 0.89 0.62 0.29
7 14 16 592 646 >1.3 0.83 0.317 14 16 592 646> 1.3 0.83 0.31
8 17 17 509 578 >1.3 1.12 0.288 17 17 509 578> 1.3 1.12 0.28
9 16 15 506 564 1.20 0.62 0.299 16 15 506 564 1.20 0.62 0.29
10 15 16 499 552 1.00 0.70 0.3110 15 16 499 552 1.00 0.70 0.31
1 1 16 15 520 579 >1.3 0.56 0.301 1 16 15 520 579> 1.3 0.56 0.30
12 14 14 497 552 >1.3 0.80 0.4212 14 14 497 552> 1.3 0.80 0.42
13 14 16 521 578 >1.3 0.72 0.4213 14 16 521 578> 1.3 0.72 0.42
14 15 16 493 572 1.10 0.37 0.4114 15 16 493 572 1.10 0.37 0.41
15 13 14 523 589 >1.3 0.46 0.3115 13 14 523 589> 1.3 0.46 0.31
16 14 15 512 584 >1.3 0.53 0.3716 14 15 512 584> 1.3 0.53 0.37
17 12 13 530 600 >1.3 0.26 0.2717 12 13 530 600> 1.3 0.26 0.27
18 14 14 524 591 >1.3 0.53 0.3218 14 14 524 591> 1.3 0.53 0.32
19 15 17 519 587 1.20 0.41 0.3319 15 17 519 587 1.20 0.41 0.33
20 13 16 541 612 1.30 0.63 0.4120 13 16 541 612 1.30 0.63 0.41
21 17 9 497 558 1.10 0.35 0.2921 17 9 497 558 1.10 0.35 0.29
22 18 δ 489 553 >1.3 0.31 0.4122 18 δ 489 553> 1.3 0.31 0.41
23 13 14 531 603 1.10 0.56 0.3623 13 14 531 603 1.10 0.56 0.36
24 14 13 528 600 1.20 0.71 0.3124 14 13 528 600 1.20 0.71 0.31
25 16 15 512 574 >1.3 0.38 0.2925 16 15 512 574> 1.3 0.38 0.29
26 14 16 510 581 >1.3 0.42 0.3126 14 16 510 581> 1.3 0.42 0.31
27 15 14 507 572 >1.3 0.61 0.3627 15 14 507 572> 1.3 0.61 0.36
28 13 13 482 551 >1.3 0.31 0.2928 13 13 482 551> 1.3 0.31 0.29
29 12 14 500 571 >1.3 0.42 0.3129 12 14 500 571> 1.3 0.42 0.31
30 13 16 510 581 >1.3 0.35 0.3130 13 16 510 581> 1.3 0.35 0.31
31 12 15 502 573 >1.3 0.32 0.3631 12 15 502 573> 1.3 0.32 0.36
32 14 14 501 569 >1.3 0.31 0.3432 14 14 501 569> 1.3 0.31 0.34
33 14 16 580 627 1.10 0.94 0.4033 14 16 580 627 1.10 0.94 0.40
34 15 17 584 642 0.94 0.79 0.3534 15 17 584 642 0.94 0.79 0.35
35 15 14 560 637 1.09 0.54 0.4135 15 14 560 637 1.09 0.54 0.41
36 15 15 569 640 1.10 0.63 0.42 36 15 15 569 640 1.10 0.63 0.42
6] 6]
小入熱溶接 大入熱溶接 平面率 母材 CTO[ 継手 CTOD 継手 CTODSmall heat input welding Large heat input welding Flatness Base material CTO [Joint CTOD Joint CTOD
Cu粒径 換算分布置 Ys Ts -40°C -40°C - 10°C 成分 (nm) (%) (N/mm2) (N/mm2) (mm) (mm) (mm)Cu particle size conversion distribution Ys Ts -40 ° C -40 ° C-10 ° C Component (nm) (%) (N / mm2) (N / mm2) (mm) (mm) (mm)
40 28 2 417 472 >1.3 0.67 0.3040 28 2 417 472> 1.3 0.67 0.30
42 1 7 16 626 71 1 0.12 0.09 0.00642 1 7 16 626 71 1 0.12 0.09 0.006
43 14 14 642 720 0.19 0.12 0.00643 14 14 642 720 0.19 0.12 0.006
44 14 13 632 691 0.41 0.06 0.00744 14 13 632 691 0.41 0.06 0.007
45 17 17 578 632 0.08 0.09 0.00745 17 17 578 632 0.08 0.09 0.007
46 10 15 384 420 0.84 0.71 0.00646 10 15 384 420 0.84 0.71 0.006
47 17 15 574 623 0.12 0.04 0.00647 17 15 574 623 0.12 0.04 0.006
48 16 15 621 716 0.10 0.03 0.00748 16 15 621 716 0.10 0.03 0.007
49 18 23 619 701 0.08 0.02 0.00749 18 23 619 701 0.08 0.02 0.007
50 14 16 512 589 0.08 0.03 0.00650 14 16 512 589 0.08 0.03 0.006
51 15 15 623 712 0.08 0.04 0.00751 15 15 623 712 0.08 0.04 0.007
52 14 16 621 700 0.09 0.01 0.00852 14 16 621 700 0.09 0.01 0.008
53 13 14 552 636 0.08 0.02 0.00853 13 14 552 636 0.08 0.02 0.008
54 13 15 541 617 0.09 0.01 0.00654 13 15 541 617 0.09 0.01 0.006
55 17 13 543 675 0.09 0.03 0.00855 17 13 543 675 0.09 0.03 0.008
56 14 17 567 648 0.08 0.04 0.00956 14 17 567 648 0.08 0.04 0.009
57 14 13 51 1 652 0.04 0.03 0.00857 14 13 51 1 652 0.04 0.03 0.008
58 14 14 498 612 0.06 0.02 0.00858 14 14 498 612 0.06 0.02 0.008
59 16 15 470 530 0.06 0.03 0.00959 16 15 470 530 0.06 0.03 0.009
60 16 16 502 580 0.21 0.16 0.01860 16 16 502 580 0.21 0.16 0.018
61 15 15 491 565 0.22 0.17 0.019 61 15 15 491 565 0.22 0.17 0.019

Claims

請求の範囲 The scope of the claims
[1] 質量0 /0で、 C:0.01—0. 10%、 Si:0.5%以下、 Mn:0.8— 1.8%、 P:0.020 %以下、 S:0.01%以下、 Cu:0.8—1.5%、 Ni:0.2—1.5%、 A1:0.001—0. 05%、 N:0.003—0.008%、 0:0.0005—0.0035%を含有し、残部力Feおよ び不純物であって、かつ NZA1が 0.3-3.0であることを特徴とする高張力鋼。 [1] in a weight 0/0, C:. 0.01-0 10%, Si: 0.5% or less, Mn: 0.8- 1.8%, P : 0.020% or less, S: 0.01% or less, Cu: 0.8-1.5%, Ni: 0.2-1.5%, A1: 0.001-0.05%, N: 0.003-0.008%, 0: 0.0005-0.0035%, Fe and impurities remaining, and NZA1 0.3-3.0 A high-tensile steel characterized by the following.
[2] 質量%で、 Ti:0.005— 0.03%を含有することを特徴とする請求項 1記載の高張 力鋼。  [2] The high tensile strength steel according to claim 1, wherein the steel contains 0.005 to 0.03% by mass%.
[3] 質量%で、 Nb: 0.003—0.03%を含有することを特徴とする請求項 1または 2記載 の高張力鋼。  [3] The high-strength steel according to claim 1 or 2, wherein the steel contains 0.003 to 0.03% by mass of Nb.
[4] 質量%で、 Mo:0.1— 0.8%を含有することを特徴とする請求項 1ないし 3のいず れかに記載の高張力鋼。  [4] The high-strength steel according to any one of claims 1 to 3, wherein the high-strength steel contains 0.1 to 0.8% by mass of Mo.
[5] 質量0 /0で、 Cr:0.03—0.80%、 B:0.0002—0.002の 1種以上を含有すること を特徴とする請求項 1な!、し 4の ヽずれかに記載の高張力鋼。 In [5] Mass 0/0, Cr: 0.03-0.80% , B: claim of 1, characterized in that it contains 0.0002-0.002 one or more! High-strength steel according to any one of 4 above.
[6] 質量%で、 V:0.001—0.05%を含有することを特徴とする請求項 1ないし 5のい ずれかに記載の高張力鋼。 [6] The high-tensile steel according to any one of claims 1 to 5, wherein the steel contains V: 0.001 to 0.05% by mass%.
[7] 質量0 /0で、 Ca:0.0005—0.005%, Mg:0.0001—0.005%, REM:0.000In [7] Mass 0/0, Ca: 0.0005-0.005% , Mg: 0.0001-0.005%, REM: 0.000
1-0.01%の 1種以上を含有することを特徴とする請求項 1ないし 6のいずれかに記 載の高張力鋼。 The high-strength steel according to any one of claims 1 to 6, comprising one or more of 1 to 0.01%.
[8] 下記 (I)式で示す Pcmが 0.25以下であり、鋼中に分散した長径が lnm以上の Cu粒 子について、円相当径の平均値が 4一 25nmであり、かつ平面率換算分布量が 3— 2 0%であることを特徴とする請求項 1な 、し 7の 、ずれかに記載の高張力鋼。  [8] For Cu particles with a Pcm of 0.25 or less and a long diameter of lnm or more dispersed in steel, the average value of the equivalent circle diameters is 425 nm and the distribution in terms of flatness is as follows. The high-tensile steel according to any one of claims 1 to 7, wherein the amount is 3 to 20%.
Pcm=C+ (Si/30) + (Mn/20) + (Cu/20) + (Ni/60) + (Cr/20) + (Mo/ 15) + ( V/10 )+5Β···(Ι)  Pcm = C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (V / 10) + 5Β Ι)
[9] 請求項 1一 8のいずれかに記載の高張力鋼を用いた海洋構造物。  [9] An offshore structure using the high-tensile steel according to any one of claims 18 to 18.
PCT/JP2004/017575 2003-11-27 2004-11-26 High tensile steel excellent in toughness of welded zone and offshore structure WO2005052205A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005515812A JP4432905B2 (en) 2003-11-27 2004-11-26 High-strength steel and offshore structures with excellent weld toughness
US11/443,849 US20070051433A1 (en) 2003-11-27 2006-05-26 High tensile strength steel and marine structure having excellent weld toughness
US12/557,892 US20100226813A1 (en) 2003-11-27 2009-09-11 High tensile strength steel and marine structure having excellent weld toughness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003397531 2003-11-27
JP2003-397531 2003-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/443,849 Continuation US20070051433A1 (en) 2003-11-27 2006-05-26 High tensile strength steel and marine structure having excellent weld toughness

Publications (1)

Publication Number Publication Date
WO2005052205A1 true WO2005052205A1 (en) 2005-06-09

Family

ID=34631540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017575 WO2005052205A1 (en) 2003-11-27 2004-11-26 High tensile steel excellent in toughness of welded zone and offshore structure

Country Status (5)

Country Link
US (2) US20070051433A1 (en)
JP (1) JP4432905B2 (en)
KR (1) KR100776470B1 (en)
CN (1) CN100422370C (en)
WO (1) WO2005052205A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163446A (en) * 2006-12-06 2008-07-17 Jfe Steel Kk Steel member for high heat input welding
JP2009209401A (en) * 2008-03-03 2009-09-17 Kobe Steel Ltd Steel sheet superior in toughness of weld heat-affected zone and uniform elongation
WO2011081349A3 (en) * 2009-12-28 2011-11-10 주식회사 포스코 High strength steel sheet having excellent brittle crack resistance and method for manufacturing same
CN103741079A (en) * 2014-01-09 2014-04-23 鞍钢股份有限公司 Super-strength steel plate for oceanographic engineering and production method thereof
CN105296845A (en) * 2015-10-21 2016-02-03 苏州雷格姆海洋石油设备科技有限公司 Manufacturing method for ultra-low-temperature corrosion-resistant high-strength forge piece blank
WO2017183719A1 (en) * 2016-04-21 2017-10-26 新日鐵住金株式会社 High tensile steel and marine structure

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045348B1 (en) * 2006-07-13 2013-03-13 Nippon Steel & Sumitomo Metal Corporation Bend pipe and process for producing the same
KR101142185B1 (en) * 2007-12-07 2012-05-04 신닛뽄세이테쯔 카부시키카이샤 Steel being excellent in ctod characteristic in welding heat affected zone and a method of producing the same
KR101318227B1 (en) 2008-05-23 2013-10-15 한국기계연구원 Cu-added complex bainitic steel and manufacturing method thereof
RU2458174C1 (en) 2009-05-19 2012-08-10 Ниппон Стил Корпорейшн Steel for welded structures and method for its obtaining
DE102010019563A1 (en) * 2010-05-05 2011-11-10 Kme Germany Ag & Co. Kg Corrosion protection arrangement for offshore steel structures and a method for its application
JP5846311B2 (en) 2012-09-06 2016-01-20 Jfeスチール株式会社 Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
CN103014498A (en) * 2012-12-21 2013-04-03 首钢总公司 355MPa low-welding-crack-sensitivity steel plate and producing method
CN103225044B (en) * 2013-04-24 2015-06-17 马钢(集团)控股有限公司 Steel for vanadium micro alloying low temperature steel bar and process for rolling steel
KR101542709B1 (en) 2013-08-13 2015-08-12 신닛테츠스미킨 카부시키카이샤 Steel plate
CN103451536B (en) * 2013-09-30 2015-06-24 济钢集团有限公司 Low-cost thick subsea pipeline steel plate and manufacturing method of low-cost thick subsea pipeline steel plate
KR101846759B1 (en) 2013-12-12 2018-04-06 제이에프이 스틸 가부시키가이샤 Steel plate and method for manufacturing same
CN103882312B (en) * 2014-03-04 2016-04-27 南京钢铁股份有限公司 The manufacture method of low-cost high-toughness-140 DEG C of Steel Plates For Low Temperature Service
DE102014205392A1 (en) * 2014-03-24 2015-09-24 Comtes Fht A. S. Components made of a steel alloy and method for producing high-strength components
KR20160127808A (en) 2014-03-31 2016-11-04 제이에프이 스틸 가부시키가이샤 High-tensile-strength steel plate and process for producing same
BR112020011210B1 (en) * 2017-12-07 2023-04-25 Jfe Steel Corporation STEEL WITH HIGH MANGANESE CONTENT (MN) AND METHOD FOR MANUFACTURING THE SAME

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220577A (en) * 1993-01-26 1994-08-09 Kawasaki Steel Corp High tensile strength steel excellent in hic resistance and its production
JPH08144008A (en) * 1994-11-28 1996-06-04 Sumitomo Metal Ind Ltd High tensile strength steel and its production
JPH108132A (en) * 1996-06-14 1998-01-13 Sumitomo Metal Ind Ltd Production of thick steel plate excellent in toughness
JP2001089825A (en) * 1999-07-22 2001-04-03 Nippon Steel Corp Steel product excellent in toughness in heat affected zone by welding, and its manufacture
JP3267170B2 (en) * 1996-09-25 2002-03-18 日本鋼管株式会社 780MPa class high tensile steel with excellent hot-dip galvanizing crack resistance
JP2002285279A (en) * 2001-03-23 2002-10-03 Sumitomo Metal Ind Ltd Steel having excellent superhigh heat input welding characteristic
JP3399125B2 (en) * 1994-12-19 2003-04-21 住友金属工業株式会社 Steel material with excellent toughness of weld heat affected zone

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060021682A1 (en) * 2003-11-12 2006-02-02 Northwestern University Ultratough high-strength weldable plate steel
US8118949B2 (en) * 2006-02-24 2012-02-21 GM Global Technology Operations LLC Copper precipitate carburized steels and related method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220577A (en) * 1993-01-26 1994-08-09 Kawasaki Steel Corp High tensile strength steel excellent in hic resistance and its production
JPH08144008A (en) * 1994-11-28 1996-06-04 Sumitomo Metal Ind Ltd High tensile strength steel and its production
JP3399125B2 (en) * 1994-12-19 2003-04-21 住友金属工業株式会社 Steel material with excellent toughness of weld heat affected zone
JPH108132A (en) * 1996-06-14 1998-01-13 Sumitomo Metal Ind Ltd Production of thick steel plate excellent in toughness
JP3267170B2 (en) * 1996-09-25 2002-03-18 日本鋼管株式会社 780MPa class high tensile steel with excellent hot-dip galvanizing crack resistance
JP2001089825A (en) * 1999-07-22 2001-04-03 Nippon Steel Corp Steel product excellent in toughness in heat affected zone by welding, and its manufacture
JP2002285279A (en) * 2001-03-23 2002-10-03 Sumitomo Metal Ind Ltd Steel having excellent superhigh heat input welding characteristic

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163446A (en) * 2006-12-06 2008-07-17 Jfe Steel Kk Steel member for high heat input welding
JP2009209401A (en) * 2008-03-03 2009-09-17 Kobe Steel Ltd Steel sheet superior in toughness of weld heat-affected zone and uniform elongation
WO2011081349A3 (en) * 2009-12-28 2011-11-10 주식회사 포스코 High strength steel sheet having excellent brittle crack resistance and method for manufacturing same
CN102753719A (en) * 2009-12-28 2012-10-24 Posco公司 High strength steel sheet having excellent brittle crack resistance and method for manufacturing same
CN102753719B (en) * 2009-12-28 2015-08-19 Posco公司 There is high tensile steel plate and the manufacture method thereof of excellent resistance to brittle fracture
CN103741079A (en) * 2014-01-09 2014-04-23 鞍钢股份有限公司 Super-strength steel plate for oceanographic engineering and production method thereof
CN105296845A (en) * 2015-10-21 2016-02-03 苏州雷格姆海洋石油设备科技有限公司 Manufacturing method for ultra-low-temperature corrosion-resistant high-strength forge piece blank
WO2017183719A1 (en) * 2016-04-21 2017-10-26 新日鐵住金株式会社 High tensile steel and marine structure

Also Published As

Publication number Publication date
CN1886530A (en) 2006-12-27
JPWO2005052205A1 (en) 2007-06-21
US20100226813A1 (en) 2010-09-09
KR20060090287A (en) 2006-08-10
US20070051433A1 (en) 2007-03-08
JP4432905B2 (en) 2010-03-17
CN100422370C (en) 2008-10-01
KR100776470B1 (en) 2007-11-16

Similar Documents

Publication Publication Date Title
WO2005052205A1 (en) High tensile steel excellent in toughness of welded zone and offshore structure
KR101608719B1 (en) High-tensile steel plate giving welding heat-affected zone with excellent low-temperature toughness, and process for producing same
KR101635008B1 (en) Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
US20070193666A1 (en) High Strength Dual Phase Steel With Low Yield Ratio, High Toughness and Superior Weldability
CN109072382B (en) High-tension steel and marine structure
EP3012341B1 (en) Zinc-induced-crack resistant steel plate and manufacturing method therefor
JP2009019244A (en) Thick steel plate for high heat input welding having excellent brittle fracture propagation stop characteristic
JP2004515653A (en) Steel plate having deposited TiN + ZrN for welded structure, method for producing the same, and welded structure using the same
JP2008045174A (en) High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method
JP4833611B2 (en) 490 MPa class thick high-strength refractory steel for welded structures excellent in weldability and gas-cutting property, and method for producing the same
JP2008214653A (en) High strength thick steel plate for structural purpose having excellent brittle crack arrest property, and method for producing the same
JP2008111165A (en) High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method
JP5233867B2 (en) High strength steel and offshore structures with excellent corrosion resistance and weld toughness
JP5034392B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP3981615B2 (en) Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same
JP2009132995A (en) High strength thick steel plate for structural use having excellent brittle crack propagation arrest property, and method for producing the same
JP2008214654A (en) THICK STEEL PLATE OF &gt;=50 mm THICKNESS HAVING EXCELLENT BRITTLE CRACK ARREST PROPERTY
JP2653594B2 (en) Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2001192773A (en) Steel for line pipe
JP2004339549A (en) 490 MPa CLASS HIGH-TENSILE STRENGTH FIRE RESISTANT STEEL FOR STRUCTURAL USE HAVING EXCELLENT WELDABILITY AND GAS CUTTABILITY, AND ITS PRODUCTION METHOD
CN112813340B (en) Steel plate with excellent impact fracture resistance and manufacturing method thereof
JP2005281807A (en) High strength steel plate having low temperature toughness and weld heat affected zone toughness and method for producing the same
WO2007125571A1 (en) Steel sheet with less weld buckling deformation, and process for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480034996.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515812

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067009997

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11443849

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11443849

Country of ref document: US