JPH03264614A - Manufacture of steel for high heat input welding having superior toughness at low temperature - Google Patents
Manufacture of steel for high heat input welding having superior toughness at low temperatureInfo
- Publication number
- JPH03264614A JPH03264614A JP6107690A JP6107690A JPH03264614A JP H03264614 A JPH03264614 A JP H03264614A JP 6107690 A JP6107690 A JP 6107690A JP 6107690 A JP6107690 A JP 6107690A JP H03264614 A JPH03264614 A JP H03264614A
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- steel
- heat input
- haz
- precipitates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 32
- 239000010959 steel Substances 0.000 title claims abstract description 32
- 238000003466 welding Methods 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000001816 cooling Methods 0.000 claims abstract description 19
- 238000005096 rolling process Methods 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 7
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 7
- 229910052802 copper Inorganic materials 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 238000005266 casting Methods 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims 1
- 238000009749 continuous casting Methods 0.000 abstract description 5
- 239000002244 precipitate Substances 0.000 description 24
- 239000000463 material Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 11
- 229910000859 α-Fe Inorganic materials 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000009863 impact test Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
Landscapes
- Continuous Casting (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、低温靭性の優れた大入熱用鋼材の製造法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a steel material for high heat input with excellent low-temperature toughness.
(従来の技術)
近年、エネルギー需要の増大から、海洋における石油、
天然ガス等の開発が精力的に行われてきている。特に最
近では、より豊富な石油資源を求めて、北海、北極海等
の寒冷地で巨大な海洋構造物が建設されている。(Conventional technology) In recent years, due to increasing energy demand, oil in the ocean,
The development of natural gas, etc. is being carried out vigorously. Particularly recently, huge offshore structures have been constructed in cold regions such as the North Sea and the Arctic Ocean in search of richer oil resources.
このような、海洋構造物は、−30℃以下の低温にさら
されるとともに、波浪の影響等による複雑な負荷応力条
件のもとて操業されるために、それに使用される鋼材に
対しては、優れた脆性破壊特性が要求される。Such offshore structures are exposed to low temperatures of -30°C or lower and are operated under complex load stress conditions due to the influence of waves, etc., so the steel materials used therein are Excellent brittle fracture properties are required.
特に、母材よりも靭性が低下する溶接熱影響部の靭性は
、構造物の安全性に直接影響してくるため、衝撃試験な
どに評価され、例えば、−60℃で3.5kgf−m以
上の衝撃値が要求される場合がある。In particular, the toughness of the weld heat-affected zone, which has a lower toughness than the base metal, directly affects the safety of the structure, so it is evaluated by impact tests, etc. Impact values may be required.
また、構造物の巨大化は、建設コストの増加を招くため
に、使用鋼材の高張力鋼化、例えば、降伏点が36kg
f/mnt以上の鋼材を用いることによB、上部構造物
の軽量化や大入熱溶接法の採用による溶接コストの削減
が図られている。In addition, increasing the size of structures increases construction costs, so it is necessary to use high-strength steel materials, such as those with a yield point of 36 kg.
By using steel materials with f/mnt or higher, it is possible to reduce the weight of the superstructure and to reduce welding costs by adopting a high heat input welding method.
この鋼材を製造する方法として、例えば特開昭83−1
03021号公報で開示されているように、成分元素を
限定した制御圧延、加速冷却法による製造がある。この
ような従来技術は、通常の溶接入熱(50kJ/cm以
下)では、確かに溶接熱影響部の靭性が優れた鋼材を提
供するものであるが、大入熱溶接においてはその効果を
期待できない。As a method for manufacturing this steel material, for example, JP-A-83-1
As disclosed in Japanese Patent No. 03021, there is production by controlled rolling with limited component elements and accelerated cooling method. Such conventional technology certainly provides steel materials with excellent toughness in the weld heat affected zone under normal welding heat input (50 kJ/cm or less), but the effect is not expected in high heat input welding. Can not.
溶接熱影響部の靭性を改善する技術としては、例えば、
特開昭60−245788号公報および特開昭80−1
521328号公報に記載されているように、酸化物を
フェライト変態核として粒内フェライトを生成させるこ
とによB、溶接熱影響部の靭性を向上せしめる技術など
が提案されている。Examples of techniques to improve the toughness of the weld heat affected zone include:
JP-A-60-245788 and JP-A-80-1
As described in Japanese Patent No. 521328, a technique has been proposed in which the toughness of the weld heat affected zone is improved by generating intragranular ferrite using oxides as ferrite transformation nuclei.
しかしながら、これらの鋼では、鋳造工程で酸化物を均
一に分散させるのが難しく、安定した溶接熱影響部の靭
性を確保できない欠点があった。However, these steels have the drawback that it is difficult to uniformly disperse oxides during the casting process, and stable toughness of the weld heat affected zone cannot be ensured.
(発明が解決しようとする課rIrJ)本発明の目的は
、寒冷地、極地で使用される高強度で優れた溶接熱影響
部の靭性を有する海洋構造物用鋼板の製造方法を提供す
るものである。(Issues to be Solved by the Invention) An object of the present invention is to provide a method for manufacturing a steel plate for marine structures that is used in cold regions and polar regions and has high strength and excellent weld heat affected zone toughness. be.
(課題を解決するための手段)
本発明は、以上の問題点を解決するためになされたもの
であって、その要旨は、重量%として、C: 0.02
〜0.15%、Si:0.3%以下、Mn:0.5〜2
.0%、N i:o、2〜1.5%、Cu:0.2〜1
.5%、但し、Mn 、Nf 、CuはMn /6+(
Cu 十N +)/ 15−0.28〜0,40%とし
、N : 0.0020〜0.010%、B X 10
000+ N l)x toooなる式の値が4〜10
になるようなB、Nbの1種または2種、TIとNの比
(TJ /N)が2.0〜4.0になるT i、An)
:0.005〜0.1%、s :0.003〜0.00
8%、残部がFeおよび不可避的不純物よりなる鋼を連
続鋳造し、その後の冷却速度が、1000℃〜600℃
までの範囲で平均冷却速度が5.0℃/min以下の冷
却を施した後、圧延前に1150℃以下に加熱すること
を特徴とする低温靭性の優れた大入熱溶接用鋼の製造方
法に関するものである。(Means for Solving the Problems) The present invention has been made to solve the above problems, and the gist thereof is as follows: C: 0.02 as weight %
~0.15%, Si: 0.3% or less, Mn: 0.5-2
.. 0%, Ni: o, 2-1.5%, Cu: 0.2-1
.. 5%, however, Mn, Nf, and Cu are Mn/6+(
Cu 10N+)/15-0.28~0.40%, N: 0.0020~0.010%, BX10
The value of the formula 000+Nl)xtooo is 4 to 10
One or two types of B, Nb such that the ratio of TI and N (TJ/N) is 2.0 to 4.0, Ti, An)
:0.005~0.1%, s:0.003~0.00
8%, the balance being Fe and unavoidable impurities, is continuously cast, and the subsequent cooling rate is 1000°C to 600°C.
A method for producing a high heat input welding steel with excellent low-temperature toughness, characterized in that the steel is cooled at an average cooling rate of 5.0°C/min or less in the range up to 5.0°C, and then heated to 1150°C or less before rolling. It is related to.
(作 用)
本発明者は溶接熱影響部(以下、HAZと呼ぶ)の靭性
改善にかかる多くの実験事実に基づき、■溶接時の冷却
過程で生成する粒内フェライトは、TiNとMnSの複
合析出物(以下、TiNMn5析出物と呼ぶ)から生成
し、HAZの靭性を向上させる。■HAZの靭性向上に
寄与するTiN−Mn5析出物の大きさは、0.4庫以
上の大きさであることを知見した。そして、それを達成
するための、高温でMnSを凝集させる方法を見出した
。(Function) Based on many experimental facts related to improving the toughness of the weld heat-affected zone (hereinafter referred to as HAZ), the present inventor found that: ■ Intragranular ferrite generated during the cooling process during welding is a composite of TiN and MnS. It is generated from precipitates (hereinafter referred to as TiNMn5 precipitates) and improves the toughness of the HAZ. (2) It was found that the size of TiN-Mn5 precipitates that contribute to improving the toughness of HAZ is 0.4 or more. In order to accomplish this, they discovered a method of coagulating MnS at high temperatures.
以下、上記の知見に基づき、発明の詳細な説明する。Hereinafter, the invention will be described in detail based on the above findings.
第1図は200kJ/am相当の溶接熱サイクルを付与
した後の靭性におよぼすTiN−Mn5析出物の数を示
す。FIG. 1 shows the effect of the number of TiN-Mn5 precipitates on the toughness after applying a welding thermal cycle equivalent to 200 kJ/am.
この時の実験に用いた試料の化学成分は第1表に示す通
りである。The chemical components of the samples used in this experiment are shown in Table 1.
第 1 表
(νt%)
この図からT i N −M n S析出物の個数の増
加と共に、HAZの靭性が向上しておB、TiNMn5
析出物がHAZ靭性の向上に著しく効果があることがわ
かる。Table 1 (νt%) This figure shows that as the number of TiN-MnS precipitates increases, the toughness of the HAZ improves.
It can be seen that the precipitates are significantly effective in improving HAZ toughness.
さらに、第2図は同じ供試材を用いて実験した時の凝固
後の1000〜600℃の温度範囲での平均冷却速度と
TiN−Mn5析出物個数の関係を示すが、平均冷却速
度を5,0℃/min以下にすることで、析出物の個数
を著しく増加させることができるのが分かる。Furthermore, Figure 2 shows the relationship between the average cooling rate and the number of TiN-Mn5 precipitates in the temperature range of 1000 to 600°C after solidification when the same test material was used in an experiment. , 0° C./min or less, the number of precipitates can be significantly increased.
以上の実験事実から、凝固後の冷却速度を制御すること
によB、粒内フェライトの変態核となるTiN−Mn5
析出物を増加させ、HAZの靭性を向上できることが明
らかになった。From the above experimental facts, by controlling the cooling rate after solidification, B, TiN-Mn5, which becomes the transformation nucleus of intragranular ferrite,
It has become clear that the toughness of HAZ can be improved by increasing precipitates.
なお、このようにして析出したTiN−Mn5析出物は
1300℃以上の温度で加熱されると容易に溶解してし
まうため、その後の熱間圧延前のスラブ加熱温度は低い
方が好ましく、望ましくは1150℃以下に加熱される
べきである。In addition, since the TiN-Mn5 precipitates thus precipitated will easily melt when heated at a temperature of 1300°C or higher, it is preferable that the slab heating temperature before subsequent hot rolling is low, and desirably It should be heated to below 1150°C.
次に、本発明における成分の限定理由について述べる。Next, the reasons for limiting the components in the present invention will be described.
Cは、強度を確保するために、必要な元素であB、強度
確保のために、0.02%以上の添加か必要であるか、
多量の添加はHAZの靭性低下を招くために、その上限
を0.15%とする。C is a necessary element to ensure strength.Is it necessary to add 0.02% or more to ensure strength?
Addition of a large amount leads to a decrease in the toughness of the HAZ, so the upper limit is set to 0.15%.
Stは多量に添加するとHAZ靭性を低下させる元素で
あB、0.3%を上限とする。St is an element that reduces HAZ toughness when added in a large amount, and the upper limit of B is 0.3%.
Mlは強度確保のためと後で述べるHAZ部のミクロ組
織制御の観点から、0.5%以上添加が必要であるが、
多量に添加すると、HAZ靭性が低下するために、その
上限を2.0%とする。It is necessary to add 0.5% or more of Ml from the viewpoint of ensuring strength and controlling the microstructure of the HAZ part, which will be described later.
If added in a large amount, HAZ toughness decreases, so the upper limit is set at 2.0%.
Niは母材の強度、靭性の向上に有効であると同時に、
Mnと同じように、HAZのミクロ組織制御によりHA
Z靭性を向上させる元素であB、0.2%以上の添加が
必要であるが、1.5%を超えて添加されるとHAZ靭
性の低下を招くため、その範囲を0.2〜1.5%と限
定する。Ni is effective in improving the strength and toughness of the base metal, and at the same time
Similar to Mn, HA can be produced by controlling the HAZ microstructure.
B is an element that improves Z toughness, and it is necessary to add it in an amount of 0.2% or more, but if it is added in an amount exceeding 1.5%, it will cause a decrease in HAZ toughness, so the range should be adjusted to 0.2 to 1. Limited to .5%.
Cuは母料強度の向上に有効であると同時に、本発明に
あってはMn、Niと共に、HAZのミクロ組織を制御
し、靭性を向上させる元素であB、0.2%未満の添加
ではその効果がなく、1.5%を超えるとかえってHA
Z靭性を低下せしめるため、0.2〜1.5%の範囲限
定する。Cu is an element that is effective in improving the strength of the base material, and at the same time, in the present invention, together with Mn and Ni, it is an element that controls the microstructure of the HAZ and improves the toughness. It has no effect, and if it exceeds 1.5%, it will actually cause HA.
In order to reduce Z toughness, the range is limited to 0.2 to 1.5%.
NはTIと化合して窒化物を形成する重要な元素である
が、0.0020%以上の添加が必要であるが、鋼中で
フリーに存在するとHAZ靭性の低下を招くため、その
上限を0.010%とする。N is an important element that combines with TI to form nitrides, but it needs to be added in an amount of 0.0020% or more, but if it exists freely in steel, it will lead to a decrease in HAZ toughness, so the upper limit must be set. It shall be 0.010%.
BおよびNbは本発明において、微量の添加でHAZ靭
性を低下させる旧オーステナイト粒界からの粗大なフェ
ライトの生成を抑制し、靭性の向上をもたらす元素とし
て添加される。In the present invention, B and Nb are added as elements that suppress the formation of coarse ferrite from prior austenite grain boundaries that reduce HAZ toughness when added in small amounts, and improve toughness.
第3図は入熱200kJ/am相当の再現熱サイクルを
与えた後、−60℃で衝撃試験を行った時の衝撃値にお
よぼすB、Nbff1の影響を示したものである。FIG. 3 shows the influence of B and Nbff1 on the impact value when an impact test was conducted at -60° C. after a simulated thermal cycle equivalent to a heat input of 200 kJ/am was applied.
実験に用いた成分系を第2表に示す。Table 2 shows the component system used in the experiment.
第3図から分かるように、○で示した衝撃値が6kgf
−m以上の高い値を得るためには、BおよびNbの1種
または2種を、重量%で、B×10000+ NbX
1000なる式の値が4〜10の範囲内にあるように添
加する必要がある。As can be seen from Figure 3, the impact value indicated by ○ is 6 kgf.
In order to obtain a high value of −m or higher, one or both of B and Nb should be added in weight% of B×10000+NbX
It is necessary to add so that the value of the formula 1000 is within the range of 4 to 10.
Tiは本発明にとって必須の元素であB、Nと化合して
TiNを析出し、MnSの析出核として働く。したがっ
て、最適なTiNを得るためには、TiとNの量を制御
する必要かある。すなわち、T1とNの重量比で2,0
未満になるとN過剰になB、HAZ靭性の低下を招き、
4,0を超えると逆に、Tj過剰になりTiCが析出し
、母材の靭性が著しく低下する。Ti is an essential element for the present invention, and combines with B and N to precipitate TiN, and serves as a precipitation nucleus for MnS. Therefore, in order to obtain optimal TiN, it is necessary to control the amounts of Ti and N. In other words, the weight ratio of T1 and N is 2.0
If it is less than this, excessive N will result in B and a decrease in HAZ toughness.
Conversely, when it exceeds 4.0, Tj becomes excessive, TiC precipitates, and the toughness of the base material decreases significantly.
SはMnの析出に必要な元素である。第4図は第2表に
示す成分範囲内にある板厚32m+nの鋼を、実際に入
熱200kJ/amの3電極潜弧溶接した時の一60℃
の衝撃値におよぼすS量の影響を示す。この図表から分
かるように、0.003%未満の添加ではその析出量が
不十分になB、期待される靭性の向上が得られず、0.
008%を超えて添加すると、MnSが多量に析出し、
かえって靭性を阻害するために、0.003〜0.00
8%の範囲に限定するが、好ましくは0.003〜0.
005%の範囲に添加されるべきである。S is an element necessary for precipitation of Mn. Figure 4 shows a steel sheet with a thickness of 32m+n within the composition range shown in Table 2, which was actually 3-electrode latent arc welding with a heat input of 200kJ/am at -60°C.
The influence of the amount of S on the impact value of is shown. As can be seen from this chart, if less than 0.003% is added, the amount of precipitation is insufficient (B), the expected improvement in toughness cannot be obtained, and 0.003% is added.
When added in excess of 0.008%, a large amount of MnS precipitates,
0.003 to 0.00 to actually inhibit toughness.
It is limited to a range of 8%, preferably 0.003 to 0.00%.
It should be added in the range of 0.005%.
AΩは脱酸のために必要な元素であって、0.005%
以上の添加が必要であるが多量に添加すると靭性を阻害
するために、0,1%を上限とする。AΩ is an element necessary for deoxidation, and is 0.005%
Although it is necessary to add more than 0.1%, the upper limit is set at 0.1% since adding a large amount impairs toughness.
以上の成分範囲の中で、さらに大入熱溶接時のHAZ靭
件の向上を目的として実験を重ねた結果、本発明者らは
TiN−Mn5析出物を鋼中に分散させた状態で、Ml
、Cu、Nj等の焼入れ性の高い元素を有効に利用する
と、HAZのミクロ組織の中で、靭性低下の主要因とな
る旧オーステナイト粒界から生成する粗大なフェライト
および上部ベイナイトの生成を抑制でき、HAZ靭性を
飛躍的に増大できることを知見した。As a result of repeated experiments with the aim of further improving the HAZ toughness during high heat input welding within the above component range, the present inventors found that Ml
By effectively using elements with high hardenability such as , Cu, and Nj, it is possible to suppress the formation of coarse ferrite and upper bainite that are generated from prior austenite grain boundaries in the HAZ microstructure, which are the main causes of toughness reduction. It was discovered that HAZ toughness can be dramatically increased.
第5図は、第2表中に示した成分範囲を有する鋼を板厚
32mm供試材として、入熱200kJ/cmの片面潜
弧溶接で溶接し、その後、−60℃でHAZ部の衝撃試
験を行った時の衝撃値の平均値を縦軸1
に示し、横軸に、重量%で、Mn /6+ (Cu +
Ni)/15なる式の値を示した図表である。Figure 5 shows that steel having the composition range shown in Table 2 is used as a test material with a thickness of 32 mm, and is welded by single-sided latent arc welding with a heat input of 200 kJ/cm. The vertical axis 1 shows the average value of the impact value when the test was conducted, and the horizontal axis shows Mn /6+ (Cu +
2 is a chart showing values of the formula Ni)/15.
なお、○で示した結果は、S量か重量%で0.003%
および(1,004%含有し、T i N −M n
S析出物が微細に分散している場合のもの、・はSが0
.001%以下しか含有せず、T i N −M n
S析出物がほとんど生成していない場合の結果を示す。In addition, the results shown with ○ are the amount of S or 0.003% by weight.
and (containing 1,004%, T i N −M n
When S precipitates are finely dispersed, ・ means S is 0
.. 001% or less, T i N −M n
The results are shown when almost no S precipitates are generated.
この図表から分かるように、T i N −M n S
析出物が分散している鋼(○)では上式の値が0.25
から0.33に増加するに伴い、衝撃値が著しく向上し
、0,33を超えると、逆に靭性は低下する傾向がある
。As you can see from this diagram, T i N −M n S
For steel with dispersed precipitates (○), the value of the above formula is 0.25
As the impact value increases from 0.33 to 0.33, the impact value significantly improves, and when it exceeds 0.33, the toughness tends to decrease.
この靭性の向上は、ミクロ組織の観察から、Mn 、C
u 、NI添加により鋼の焼入れ性が増加するに伴い、
大入熱溶接時の遅い冷却速度でも粒界から生成する粗大
なフェライトを抑制すると同時に、粒内にTiN−Mn
5析出物を核として微細な粒内フェライトが生成し、H
AZのミクロ組織が著しく微細化することによるもので
あると考えられる。This improvement in toughness is due to the observation of the microstructure of Mn, C
u, As the hardenability of steel increases with the addition of NI,
Coarse ferrite generated from grain boundaries can be suppressed even at slow cooling rates during high heat input welding, and at the same time, TiN-Mn can be added to the grains.
5. Fine intragranular ferrite is generated with the precipitates as nuclei, and H
This is thought to be due to the fact that the microstructure of AZ becomes significantly finer.
2
しかしながら、上式の値が、0.33を超えると、かえ
って焼入れ性が増大しすぎるために、冷却途中で旧オー
ステナイト粒内に靭性を阻害する上部ベイナイトや島状
マルテンサイト#I織が生成するため、靭性が低下する
。2 However, if the value of the above formula exceeds 0.33, the hardenability increases too much, and upper bainite and island-like martensite #I textures that inhibit toughness are generated in the prior austenite grains during cooling. As a result, toughness decreases.
一方、TiN−Mn5析出物の分散がなされていない鋼
(・)では、上式の値によらず、低い靭性を示しておB
、本発明鋼との差は明らかである。On the other hand, steel (・) in which TiN-Mn5 precipitates are not dispersed exhibits low toughness regardless of the value of the above equation.
, the difference from the steel of the present invention is obvious.
以上の知見から、TiN−Mn5析出物を本発明により
微細分散させ、かつMn / 6 + (Cu 十Ni
)/15なる式の値を制限することで、大入熱溶接時の
HAZ靭性を改善できる。なお、その範囲は、工業的に
通常要求されている衝撃値が3,5kgf−m程度であ
ることを考えて、0.28〜0.40とする。From the above findings, it is possible to finely disperse TiN-Mn5 precipitates according to the present invention, and to disperse Mn/6 + (Cu + Ni
)/15, HAZ toughness during high heat input welding can be improved. Note that the range is set to 0.28 to 0.40, considering that the industrially required impact value is approximately 3.5 kgf-m.
以上述べた成分を有する鋼を電気炉、転炉で溶製した後
、連続鋳造機により鋳造する。この時の凝固時の冷却速
度カ月000〜600℃の温度範囲で5.09C/mi
n以下であるような冷却を行う。Steel having the above-mentioned components is melted in an electric furnace or a converter, and then cast in a continuous casting machine. Cooling rate during solidification at this time: 5.09C/mi in the temperature range of 000 to 600℃
Cooling is performed such that the temperature is below n.
HAZ靭性を向上させるためには、TiN−3
4
MnS析出物の個数密度を一定量確保する必要があるが
、そのためにはMnSの析出核となるTiNを微細分散
させる必要がある。In order to improve HAZ toughness, it is necessary to ensure a certain number density of TiN-3 4 MnS precipitates, and for this purpose it is necessary to finely disperse TiN, which serves as precipitation nuclei of MnS.
すなわち、従来の知見から、凝固時の冷却速度が速いほ
どTiNが微細に分散することが知られておB、造塊分
塊法で鋳造する場合よりも凝固時の冷却速度が速い連続
鋳造法を採用する。In other words, from conventional knowledge, it is known that the faster the cooling rate during solidification, the finer the TiN will be dispersed, and the continuous casting method, which has a faster cooling rate during solidification than casting by the agglomeration/blowing method. Adopt.
このようにして析出したTiNの上に1000℃以下の
温度範囲でMnSが析出する。しかしながら、HAZ靭
性の改善に効果のあるTiN−Mn5析出物の生成には
制約条件冷却速度が5.0℃/l1ljnを超えるとM
nSの析出が不十分であB、溶接時の冷却途中に生成す
る粒内フェライトの変態核として作用せず、HAZ靭性
の向上は期待できない。MnS is precipitated on the TiN thus precipitated in a temperature range of 1000° C. or less. However, for the formation of TiN-Mn5 precipitates that are effective in improving HAZ toughness, M
Since nS is insufficiently precipitated, it does not act as transformation nuclei for intragranular ferrite generated during cooling during welding, and no improvement in HAZ toughness can be expected.
なお、冷却速度は遅ければ遅いほど良いが、その上限は
連続鋳造機の性能により制約される。Note that the slower the cooling rate, the better, but its upper limit is limited by the performance of the continuous casting machine.
その後、熱間圧延のために再加熱を施すが、その時の温
度は母材の強度、靭性を確保するためと、前記した熱処
理により生成させたT i N −M n S析出物の
形態を変化させないために、1150℃以下の温度にす
る必要がある。After that, reheating is performed for hot rolling, but the temperature at that time is to ensure the strength and toughness of the base material and to change the morphology of the TiN-MnS precipitates generated by the heat treatment described above. In order to prevent this, it is necessary to keep the temperature below 1150°C.
なお、加熱後の圧延については、母Hの強度、靭性の向
上を図るために、制御圧延を施したB、制御圧延後、水
冷しても同等TiN−Mn5析出物に変化を与えること
がないため、現在公知である製造方法を適宜選択して採
用できる。Regarding rolling after heating, B was subjected to controlled rolling in order to improve the strength and toughness of mother H, and after controlled rolling, no change was caused to the equivalent TiN-Mn5 precipitates even when water-cooled. Therefore, currently known manufacturing methods can be selected and employed as appropriate.
(実 施 例) 供試材の化学成分を第3表に示す。(Example) The chemical components of the test materials are shown in Table 3.
ここで、鋼A〜鋼Cは本発明に該当する成分系であB、
鋼D−Gは本発明から逸脱している鋼である。Here, steel A to steel C are component systems that correspond to the present invention B,
Steel D-G is a steel that deviates from the invention.
また、第4表には供試材の製造条件および母材、HAZ
の靭性値を合わせて示している。In addition, Table 4 shows the manufacturing conditions of the sample materials, the base material, and the HAZ
The toughness values are also shown.
これらの鋼板は転炉で溶製、連続鋳造機により厚み24
0〜250mm、幅1300〜1600mmに鋳造され
た後、前処理および圧延のための加熱圧延を経て、板厚
32mmの鋼板として製造された。なお、HAZ靭性は
、片面1層の潜弧溶接(入熱:200kJ/c+n)後
、板厚の1/4 を部から衝撃試験片を採取し、シャル
ピー衝撃試験により評価した。These steel plates are melted in a converter and cast into a continuous casting machine to a thickness of 24 mm.
After being cast to a size of 0 to 250 mm and a width of 1,300 to 1,600 mm, a steel plate with a thickness of 32 mm was manufactured through pretreatment and hot rolling for rolling. The HAZ toughness was evaluated by taking an impact test piece from 1/4 of the plate thickness after one-sided single-layer latent arc welding (heat input: 200 kJ/c+n) and performing a Charpy impact test.
第4表から、本発明法により製造された鋼板(板書:A
1.Bl、CI)は母材、HAZ共に優れた靭性を示し
ている。From Table 4, the steel plate manufactured by the method of the present invention (board: A
1. Bl, CI) exhibits excellent toughness in both the base metal and HAZ.
これに対し、板書A2は鋳造時の1000〜600°C
の範囲の平均冷却速度が大きく、HAZ靭性が低下して
おB、板書A3は圧延前のスラブ加熱温度が高く、母材
の靭性およびHAZ靭性が低下している。On the other hand, board A2 is heated at 1000 to 600°C during casting.
The average cooling rate in the range of B is high, and the HAZ toughness is decreased. In A3, the slab heating temperature before rolling is high, and the toughness of the base material and HAZ toughness are decreased.
また、板書B2は板書A2と同様に、1000〜600
℃の範囲の平均冷却速度が本発明の範囲を大きく逸脱し
ておB、そのためHAZ靭性が低い。Also, like board A2, board B2 has a value of 1000 to 600.
The average cooling rate in the range of .degree. C. is significantly outside the range of the present invention, and therefore the HAZ toughness is low.
さらに、DI、El、Fl、Glは成分範囲が本発明か
ら逸脱しているものである。すなわち、板書D1はB
x 1oooo十Nbx 1000なる式で与えられる
値が本発明の範囲を逸脱しておB、HAZ靭性が低下し
ておB、板書E1はMn/6+(Cu +Ni)/15
なる式で与えられる値が本発明の範囲を超えておB、や
はりHAZ靭性が低い。Furthermore, the component ranges of DI, El, Fl, and Gl deviate from the present invention. In other words, the board D1 is B
The value given by the formula x 1oooo ten Nbx 1000 is outside the scope of the present invention, B, the HAZ toughness is decreased, and the board E1 is Mn/6 + (Cu + Ni)/15
If the value given by the formula B exceeds the range of the present invention, the HAZ toughness is still low.
また、板書F1はTi/Nが本発明の範囲から逸脱して
いるため、HAZ靭性が低下しておB、板書G1はS量
が高いために、やはB、HAZ靭性が低い。In addition, since the Ti/N ratio of the board F1 is outside the range of the present invention, the HAZ toughness is low, and the board G1 has a high S content, so the HAZ toughness is low.
(発明の効果)
以上述べたように、本発明によれば、大入熱溶接によっ
てもHAZの低温靭性が安定して高水準の鋼材が得られ
るため、産業上極めて有用なものである。(Effects of the Invention) As described above, according to the present invention, the low-temperature toughness of the HAZ is stabilized even by high heat input welding, and a high-level steel material can be obtained, so that the present invention is extremely useful industrially.
第1図は鋼中に含まれるTiN−Mn5析出物の個数と
溶接熱サイクル後の靭性の変化を示す図表、第2図は凝
固時の1000〜600℃の温度範囲における平均冷却
速度とTiN−Mn5析出物の個数との関係を表した図
表、第3図は溶接熱サイク0
ル後の靭性に対するBとNbの添加量の影響を表した図
表、第4図は入熱200kJ/(Jlの片面潜弧溶接後
のHAZの衝撃値におよぼすS量の影響を示す図表、第
5図は入熱200kJ/amの片面潜弧溶接後のHAZ
の衝撃値におよぼすMn/6+(Cu +N+)/15
なる式で表したMn、Cu。
Niの影響を示す図表である。
1Figure 1 is a chart showing the number of TiN-Mn5 precipitates contained in steel and changes in toughness after welding heat cycles, and Figure 2 is a graph showing the average cooling rate in the temperature range of 1000 to 600°C during solidification and TiN- Figure 3 is a diagram showing the relationship between the number of Mn5 precipitates, Figure 3 is a diagram showing the influence of the amount of B and Nb added on the toughness after 0 welding thermal cycles, and Figure 4 is a diagram showing the effect of the amount of B and Nb added on the toughness after a heat input of 200 kJ/(Jl). A chart showing the influence of the amount of S on the impact value of the HAZ after single-sided latent arc welding. Figure 5 shows the HAZ after single-sided latent arc welding with a heat input of 200 kJ/am.
Mn/6+(Cu +N+)/15 on the impact value of
Mn and Cu expressed by the formula. It is a chart showing the influence of Ni. 1
Claims (1)
%N:0.0020〜0.010% 重量%で、B×10000+Nb×1000なる式の値
が4〜10になるようなB、Nbの1種または2種、重
量%で、TiとNの比(Ti/N)が2.0〜4.0に
なるTi、 Al:0.005〜0.1% S:0.003〜0.008% 残部がFeおよび不可避的不純物よりなる鋼を連続鋳造
し、その後の冷却速度が、1000℃〜600℃までの
範囲で平均冷却速度が5.0℃/min以下の冷却を施
した後、圧延前に1150℃以下に加熱することを特徴
とする低温靭性の優れた大入熱溶接用鋼の製造方法。[Claims] As weight percent, C: 0.02-0.15% Si: 0.3% or less Mn: 0.5-2.0% Ni: 0.2-1.5% Cu: 0. 2 to 1.5% However, Mn, Ni, and Cu are Mn/6+(Cu+Ni)/15=0.28 to 0.40
%N: 0.0020 to 0.010% One or two of B and Nb such that the value of the formula B x 10000 + Nb x 1000 is 4 to 10 in weight %, Ti and N in weight % Steel with a ratio (Ti/N) of 2.0 to 4.0 of Ti, Al: 0.005 to 0.1%, S: 0.003 to 0.008%, and the balance consisting of Fe and unavoidable impurities is continuously produced. It is characterized by casting, followed by cooling at an average cooling rate of 5.0°C/min or less in the range of 1000°C to 600°C, and then heating to 1150°C or less before rolling. A method for producing high heat input welding steel with excellent low-temperature toughness.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6107690A JP2837732B2 (en) | 1990-03-14 | 1990-03-14 | Manufacturing method of large heat input welding steel with excellent low temperature toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6107690A JP2837732B2 (en) | 1990-03-14 | 1990-03-14 | Manufacturing method of large heat input welding steel with excellent low temperature toughness |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03264614A true JPH03264614A (en) | 1991-11-25 |
JP2837732B2 JP2837732B2 (en) | 1998-12-16 |
Family
ID=13160681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6107690A Expired - Lifetime JP2837732B2 (en) | 1990-03-14 | 1990-03-14 | Manufacturing method of large heat input welding steel with excellent low temperature toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2837732B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003064412A (en) * | 2001-08-21 | 2003-03-05 | Daido Steel Co Ltd | Refining method for steel with fined inclusion |
KR100470057B1 (en) * | 2000-12-04 | 2005-02-04 | 주식회사 포스코 | High strength steel plate to be precipitating TiN+MnS for welded structures, method for manufacturing the same |
KR100470055B1 (en) * | 2000-11-24 | 2005-02-04 | 주식회사 포스코 | Method for manufacturing steel plate to be precipitating TiN and complex oxide of Mg-Ti by nitriding treatment for welded structure |
KR100470672B1 (en) * | 2000-11-02 | 2005-03-07 | 주식회사 포스코 | Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone |
KR100470667B1 (en) * | 2000-07-24 | 2005-03-07 | 주식회사 포스코 | Method for manufacturing High strength steel plate having superior toughness in weld heat-affected zone |
KR100482194B1 (en) * | 2000-12-05 | 2005-04-21 | 주식회사 포스코 | Method for manufacturing high strength steel plate to be precipitating TiN+MnS by nitriding treatment for welded structures |
KR100482216B1 (en) * | 2000-12-04 | 2005-04-21 | 주식회사 포스코 | Method for manufacturing steel plate to be precipitating TiN+MnS by nitriding treatment for welded structures |
KR100568361B1 (en) * | 2001-12-26 | 2006-04-05 | 주식회사 포스코 | Method for manufacturing steel plate having superior toughness in weld heat-affected zone by nitriding |
JP2006118034A (en) * | 2004-09-27 | 2006-05-11 | Kobe Steel Ltd | Steel plate with excellent welded joint toughness, and its manufacturing method |
US7857917B2 (en) | 2004-07-21 | 2010-12-28 | Nippon Steel Corporation | Method of production of steel for welded structures excellent in low temperature toughness of weld heat affected zone |
WO2014201877A1 (en) | 2013-06-19 | 2014-12-24 | 宝山钢铁股份有限公司 | Zinc-induced-crack resistant steel plate and manufacturing method therefor |
WO2015022729A1 (en) | 2013-08-13 | 2015-02-19 | 新日鐵住金株式会社 | Steel plate |
-
1990
- 1990-03-14 JP JP6107690A patent/JP2837732B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100470667B1 (en) * | 2000-07-24 | 2005-03-07 | 주식회사 포스코 | Method for manufacturing High strength steel plate having superior toughness in weld heat-affected zone |
KR100470672B1 (en) * | 2000-11-02 | 2005-03-07 | 주식회사 포스코 | Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone |
KR100470055B1 (en) * | 2000-11-24 | 2005-02-04 | 주식회사 포스코 | Method for manufacturing steel plate to be precipitating TiN and complex oxide of Mg-Ti by nitriding treatment for welded structure |
KR100470057B1 (en) * | 2000-12-04 | 2005-02-04 | 주식회사 포스코 | High strength steel plate to be precipitating TiN+MnS for welded structures, method for manufacturing the same |
KR100482216B1 (en) * | 2000-12-04 | 2005-04-21 | 주식회사 포스코 | Method for manufacturing steel plate to be precipitating TiN+MnS by nitriding treatment for welded structures |
KR100482194B1 (en) * | 2000-12-05 | 2005-04-21 | 주식회사 포스코 | Method for manufacturing high strength steel plate to be precipitating TiN+MnS by nitriding treatment for welded structures |
JP2003064412A (en) * | 2001-08-21 | 2003-03-05 | Daido Steel Co Ltd | Refining method for steel with fined inclusion |
KR100568361B1 (en) * | 2001-12-26 | 2006-04-05 | 주식회사 포스코 | Method for manufacturing steel plate having superior toughness in weld heat-affected zone by nitriding |
US7857917B2 (en) | 2004-07-21 | 2010-12-28 | Nippon Steel Corporation | Method of production of steel for welded structures excellent in low temperature toughness of weld heat affected zone |
JP2006118034A (en) * | 2004-09-27 | 2006-05-11 | Kobe Steel Ltd | Steel plate with excellent welded joint toughness, and its manufacturing method |
WO2014201877A1 (en) | 2013-06-19 | 2014-12-24 | 宝山钢铁股份有限公司 | Zinc-induced-crack resistant steel plate and manufacturing method therefor |
WO2015022729A1 (en) | 2013-08-13 | 2015-02-19 | 新日鐵住金株式会社 | Steel plate |
Also Published As
Publication number | Publication date |
---|---|
JP2837732B2 (en) | 1998-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3990724B2 (en) | High strength secondary hardened steel with excellent toughness and weldability | |
KR100386767B1 (en) | Method for producing ultra-high strength, weldable steels with superior toughness | |
WO2016095720A1 (en) | High-strength steel with yield strength of 800 mpa and production method therefor | |
US4946516A (en) | Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking | |
WO2009125820A1 (en) | PROCESS FOR PRODUCTION OF 780MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATES EXCELLENT IN LOW-TEMPERATURE TOUGHNESS | |
WO2006011257A1 (en) | High tensile steel sheet of low acoustical anisotropy excelling in weldability, and process for producing the same | |
CN109266967A (en) | Ultralow compression ratio and ultra-thick quenched and tempered hydroelectric steel plate and production method thereof | |
CN105473753B (en) | Steel plate and its manufacture method | |
WO2004022807A1 (en) | Steel product for high heat input welding and method for production thereof | |
JP2004514792A5 (en) | ||
JPH03264614A (en) | Manufacture of steel for high heat input welding having superior toughness at low temperature | |
JPS63241114A (en) | Manufacture of high toughness and high tension steel having superior resistance to stress corrosion cracking | |
JPS5814848B2 (en) | Manufacturing method of non-tempered high-strength, high-toughness steel | |
JPH0541683B2 (en) | ||
JPH01159356A (en) | High tension steel having superior tougeness at weld heat-affected zone | |
JP4133175B2 (en) | Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same | |
JP4038166B2 (en) | Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof | |
JPH0757886B2 (en) | Process for producing Cu-added steel with excellent weld heat-affected zone toughness | |
JPH0225968B2 (en) | ||
JPH11131177A (en) | Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production | |
JPH04157117A (en) | Production of rolled shape steel having excellent toughness of base metal and weld zone | |
JPH10158778A (en) | High tensile strength steel plate excellent in toughness and weldability, and its production | |
JP2006241508A (en) | HT490MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD | |
JPH02254118A (en) | Production of steel for highly heated welding having excellent low temperature toughness | |
JPS6256518A (en) | Production of high strength steel sheet for high heat input welding |