JPH0757886B2 - Process for producing Cu-added steel with excellent weld heat-affected zone toughness - Google Patents

Process for producing Cu-added steel with excellent weld heat-affected zone toughness

Info

Publication number
JPH0757886B2
JPH0757886B2 JP1180839A JP18083989A JPH0757886B2 JP H0757886 B2 JPH0757886 B2 JP H0757886B2 JP 1180839 A JP1180839 A JP 1180839A JP 18083989 A JP18083989 A JP 18083989A JP H0757886 B2 JPH0757886 B2 JP H0757886B2
Authority
JP
Japan
Prior art keywords
less
steel
toughness
haz
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1180839A
Other languages
Japanese (ja)
Other versions
JPH02125812A (en
Inventor
好男 寺田
力雄 千々岩
博 為広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1180839A priority Critical patent/JPH0757886B2/en
Publication of JPH02125812A publication Critical patent/JPH02125812A/en
Publication of JPH0757886B2 publication Critical patent/JPH0757886B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は小入熱溶接から大入熱溶接に至るまで熱影響部
(HAZ)の低温靭性が優れた高張力鋼の製造法に関する
もので、鉄鋼業においては厚板ミルに適用することが最
も好ましいが、ホットコイル、形鋼などにも適用可能で
ある。また、この方法で製造した厚鋼板は圧力容器、海
洋構造物、ラインパイプなど厳しい環境下で使用される
溶接鋼構造物に用いることができる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a method for producing a high-strength steel excellent in low temperature toughness of a heat affected zone (HAZ) from small heat input welding to large heat input welding. In the steel industry, it is most preferable to apply it to thick plate mills, but it is also applicable to hot coils, shaped steels, and the like. Further, the thick steel plate manufactured by this method can be used for a welded steel structure used in a severe environment such as a pressure vessel, an offshore structure, and a line pipe.

(従来の技術) 低合金鋼のHZA靭性は、(1)結晶粒のサイズ、(2)
高炭素島状マルテンサイト(M*)、上部ベイナイト
(Bu)など硬化相の分散状態、(3)粒界脆化の有無、
(4)元素のミクロ偏析など種々の冶金学的要因に支配
される。なかでもHAZの結晶粒のサイズは低温靭性に大
きく影響を与えることが知られており、HAZ組織を微細
化するために数多くの技術が開発実用化されている。
(Prior art) HZA toughness of low alloy steel is (1) grain size, (2)
High carbon island martensite (M *), dispersed state of hardened phase such as upper bainite (Bu), (3) Presence or absence of grain boundary embrittlement,
(4) Controlled by various metallurgical factors such as elemental microsegregation. In particular, it is known that the size of HAZ crystal grains greatly affects low temperature toughness, and many technologies have been developed and put to practical use for refining the HAZ structure.

最近、微細なTi酸化物(主としてTi2O3)を鋼中に分散
させ、溶接後の冷却中にTi酸化物を核として放射状にア
シキュラーフェライト(AF)を生成させ、HAZ組織を微
細化する方法が開発された(特開昭61−79745号、特願
昭62−168577号など)。
Recently, fine Ti oxides (mainly Ti 2 O 3 ) have been dispersed in steel, and during cooling after welding, radial formation of acicular ferrite (AF) with Ti oxides as nuclei has made the HAZ structure finer. A method for doing so has been developed (Japanese Patent Application Laid-Open No. 61-79745, Japanese Patent Application No. 62-168577, etc.).

この技術では、Ti酸化物が1400℃以上の高温で安定なた
め、溶融線近傍までHAZ組織を制御することができ、TiN
鋼などに比較して優れた低温靭性が得られる。しかし、
Ti酸化物を分散させた鋼においても、当然ながらHAZ靭
性は基本となる成分に大きく影響される。
With this technology, since the Ti oxide is stable at high temperatures of 1400 ° C or higher, it is possible to control the HAZ structure up to near the melting line.
Excellent low temperature toughness compared to steel. But,
HAZ toughness is, of course, greatly affected by the basic constituents even in the steel in which Ti oxide is dispersed.

すなわち従来のTi酸化物含有鋼では、引張強さ55kgf/mm
2以上の高強度鋼や大入熱溶接、かつ低温において安定
したHAZ靭性を得ることは困難であった。
In other words, the conventional Ti oxide-containing steel has a tensile strength of 55 kgf / mm.
It was difficult to obtain high strength steel of 2 or more, high heat input welding, and stable HAZ toughness at low temperatures.

(発明が解決しようとする課題) 本発明は、Ti酸化物含有鋼に最適の基本成分を見出し、
その強度、低温靭性を画期的に向上させることに成功し
たもので、小〜大入熱溶接において、HAZ靭性の極めて
優れた高張力鋼を安価に製造する技術を提供するもので
ある。本発明法で製造した鋼は溶接部(接合部、HAZ)
の組織が微細化し、全域で優れた低温靭性を示す。
(Problems to be solved by the invention) The present invention finds an optimal basic component for a Ti oxide-containing steel,
It has succeeded in remarkably improving its strength and low temperature toughness, and provides a technique for inexpensively producing high-strength steel excellent in HAZ toughness in small to large heat input welding. The steel manufactured by the method of the present invention is a welded part (joint part, HAZ).
Has a finer structure and exhibits excellent low temperature toughness over the entire area.

(課題を解決するための手段) 本発明の要旨は、重量%で、C:0.03〜0.12%、Si:0.6%
以下、Mn:0.8〜2.0%、P:0.025%以下、S:0.005%以
下、Cu:0.8〜1.5%、Al:0.003%以下、Ti:0.005〜0.025
%、N:0.001〜0.0065%、O:0.001〜0.006%に、粒子径
0.05〜10μmのTiを主成分とする酸化物を5×103〜1
×106個/mm3、を含有し、残部が鉄および不可避的不純
物からなる鋼あるいはこの鋼に、さらにNi:0.05〜1.0
%、Nb:0.005〜0.05%、Cr:0.05〜0.30%、Mo:0.05〜0.
30%、Ca:0.001〜0.005%の1種またはNi:0.05〜1.0
%、Nb:0.005〜0.05%、Mo:0.05〜0.30%、Ca:0.001〜
0.005%のうちいずれか2種を含有させた鋼を連続鋳造
法によって鋳片とし、これを900〜1100℃の温度範囲で
再加熱後、900℃以下の累積圧下量30〜90%、圧延終了
温度700〜850℃で圧延を行ない、放冷または水冷後、50
0℃〜Ac1点の温度で時効処理することである。
(Means for Solving the Problems) The gist of the present invention is C: 0.03 to 0.12% and Si: 0.6% by weight.
Below, Mn: 0.8-2.0%, P: 0.025% or less, S: 0.005% or less, Cu: 0.8-1.5%, Al: 0.003% or less, Ti: 0.005-0.025
%, N: 0.001 to 0.0065%, O: 0.001 to 0.006%, particle size
An oxide containing 0.05 to 10 μm of Ti as the main component is added to 5 × 10 3 to 1
× 10 6 pieces / mm 3 , containing the balance of iron and unavoidable impurities, or Ni, 0.05 to 1.0
%, Nb: 0.005 to 0.05%, Cr: 0.05 to 0.30%, Mo: 0.05 to 0.
30%, 1 type of Ca: 0.001 to 0.005% or Ni: 0.05 to 1.0
%, Nb: 0.005 to 0.05%, Mo: 0.05 to 0.30%, Ca: 0.001 to
Steel containing 2 kinds of 0.005% is made into a slab by continuous casting method, reheated in the temperature range of 900 to 1100 ° C, and cumulative rolling reduction of 900 ° C or less 30 to 90%, rolling is completed. Roll at a temperature of 700 to 850 ℃, let cool or water cool, then 50
The aging treatment is performed at a temperature of 0 ° C to 1 point of Ac.

(作用) 以下、本発明について説明する。(Operation) Hereinafter, the present invention will be described.

発明者らの研究によれば、HAZ靭性は、1)鋼の化学成
分、2)組織(結晶粒の大きさと硬化相の分布状態)に
大きく依存し、鋼成分の適正化と結果粒の微細化が高靭
性化に不可欠であると考えられた。
According to the research conducted by the inventors, the HAZ toughness largely depends on 1) chemical composition of steel, 2) structure (size of crystal grains and distribution state of hardening phase), and optimization of steel components and fine graining of resulting grains Was considered to be essential for high toughness.

HAZ組織を微細化する方法としては、鋼中にTi酸化物
(主としてTi2O3)を微細に分散させる技術がすでに開
発されている(特願昭59−203099号、特願昭62−168577
号など)。
As a method of refining the HAZ structure, a technique of finely dispersing Ti oxide (mainly Ti 2 O 3 ) in steel has already been developed (Japanese Patent Application No. 59-203099 and Japanese Patent Application No. 62-168577).
No.).

この方法では、HAZのγ−α変態時にγ粒内に再析出し
たTi2O3を核として放射状に微細なアシキュラーフェラ
イト(AF)が生成し、HAZ組織は著しく微細化する。
According to this method, finely acicular ferrite (AF) is radially generated with Ti 2 O 3 reprecipitated in the γ grains during the γ-α transformation of HAZ as a nucleus, and the HAZ structure becomes extremely fine.

またTi2O3は溶融線近傍の高温に加熱させる領域(粗粒
域HAZ)でも溶解せずに安定であり、この領域でも組織
が微細化する。さらにTi,O,Nのバランスが適正であると
微細なTiNも生成し、これは1350℃以下に加熱されたHAZ
(亜粗粒域)γ粒の粗大化を抑制してHAZ組織を微細化
する。その結果、溶接部は全域にわたって微細化し、優
れた低温靭性が得られる。
Further, Ti 2 O 3 is stable without melting even in a region (coarse grain region HAZ) heated to a high temperature near the melting line, and the structure becomes fine in this region as well. Furthermore, if Ti, O, and N are properly balanced, fine TiN is also produced, which is generated by HAZ heated to 1350 ° C or lower.
(Sub-coarse grain region) The HAZ structure is refined by suppressing the coarsening of γ grains. As a result, the welded part is refined over the entire area, and excellent low temperature toughness is obtained.

以上のようなTi酸化物によるHAZ組織の微細化効果を得
るためには、鋼中に適当な大きさの酸化物を均一に分散
させなければならない。Ti酸化物の粒子径は0.05〜10μ
mが適当である。径が0.05μm以下になるとAF生成能力
が弱くなり、また径が10μm以上になるとTi酸化物自体
が脆性き裂の発生起点となり、HAZ靭性を劣化させる。
In order to obtain the effect of refining the HAZ structure by the Ti oxide as described above, it is necessary to uniformly disperse the oxide of appropriate size in the steel. Particle size of Ti oxide is 0.05-10μ
m is suitable. If the diameter is 0.05 μm or less, the AF generation ability becomes weak, and if the diameter is 10 μm or more, the Ti oxide itself becomes the starting point of brittle cracking and deteriorates the HAZ toughness.

一方HAZ組織を均一に微細化するには、Ti酸化物の個数
として5×103〜1×106個/mm3が必要である。粒子数が
少ないと均一で微細なHAZ組織が得られない、また粒子
数が多過ぎると鋼の清浄度が劣化してHAZだけでなく、
母材の低温靭性も劣化する。
On the other hand, in order to uniformly refine the HAZ structure, the number of Ti oxides needs to be 5 × 10 3 to 1 × 10 6 / mm 3 . If the number of particles is small, a uniform and fine HAZ structure cannot be obtained, and if the number of particles is too large, the cleanliness of the steel deteriorates and not only the HAZ,
The low temperature toughness of the base material also deteriorates.

通常の製鋼法において鋼中にTi2O3,TiNを微細分散させ
るには、とくにTi,O,N量の適正化が必須である。このた
めTi,O,N量をそれぞれTi:0.005〜0.025%、N:0.001〜0.
0065%、O:0.001〜0.006%に限定する必要がある。
In order to finely disperse Ti 2 O 3 and TiN in steel in the ordinary steelmaking method, it is essential to optimize the amounts of Ti, O, and N in particular. Therefore, the Ti, O, and N contents are Ti: 0.005 to 0.025% and N: 0.001 to 0.
0065%, O: 0.001 to 0.006% must be limited.

Ti,O,N量の下限はTi2O3,TiNを生成するための必要最小
量である。Ti量の上限たTiCの生成によるHAZ靭性の劣化
を防止するためであり、N量の上限は固溶NによるHAZ
靭性の劣化を防ぐためである。またO量の上限は非金属
介在物の生成による鋼の清浄度、靭性の劣化を防止する
ためである。
The lower limit of the amount of Ti, O, N is the minimum amount necessary for producing Ti 2 O 3 , TiN. This is to prevent the HAZ toughness from deteriorating due to the formation of TiC with the upper limit of Ti amount, and the upper limit of the N amount is HAZ due to the solid solution N.
This is to prevent deterioration of toughness. The upper limit of the amount of O is to prevent the cleanliness and toughness of steel from being deteriorated due to the formation of non-metallic inclusions.

しかし、たとえTi2O3,TiNが鋼中に微細分散していても
基本成分が適当でないと優れた靭性は得られない。以下
この点について説明する。
However, even if Ti 2 O 3 and TiN are finely dispersed in the steel, excellent toughness cannot be obtained if the basic components are not appropriate. This point will be described below.

発明者らの研究の結果、とくに高強度鋼(引張強さ55kg
f/mm2以上)や入熱50kJ/cm以上の大入熱溶接において、
−60℃以上の極低温域で優れたHAZ靭性を得るには、基
本成分の厳密かつ適切な選定が必須であることがわかっ
た。
As a result of the inventors' research, especially high strength steel (tensile strength 55 kg
f / mm 2 or more) and large heat input welding with heat input of 50 kJ / cm or more,
It was found that in order to obtain excellent HAZ toughness in the cryogenic temperature range of -60 ° C or higher, strict and proper selection of basic components is essential.

すなわち基本成分が適切でないと、たとえTi2O3を核と
して微細なAFが生成しても優れたHAZ靭性は得られな
い。またTi2O3を核にAFが生成しにくくなることがわか
った。
That is, if the basic components are not appropriate, excellent HAZ toughness cannot be obtained even if fine AF is formed with Ti 2 O 3 as the nucleus. It was also found that AF is difficult to generate with Ti 2 O 3 as a nucleus.

そこで本発明者らは高強度鋼や大入熱溶接部HAZの極低
温靭性を画期的に改善可能な新しい鋼の開発に着手し、
これらの問題を完全に解決できる方法としてCu析出硬化
の利用が有効であることを見出した。
Therefore, the present inventors set out to develop a new steel capable of dramatically improving the cryogenic toughness of the high-strength steel and the high heat input welded HAZ,
We found that the use of Cu precipitation hardening is effective as a method that can completely solve these problems.

Cu析出硬化を利用することによって、基本成分の焼入性
を大幅に低減できるの、Ti2O3からの微細なAFの発生が
極めて容易となる。またCuは1%程度の添加であれば、
鋼の焼入性をわずかに高めるだけで、HAZ靭性に有害な
硬化組織を生成しないことが明らかになった。
By utilizing Cu precipitation hardening, the hardenability of the basic components can be greatly reduced, but it becomes extremely easy to generate fine AF from Ti 2 O 3 . Also, if Cu is added at about 1%,
It was clarified that even if the hardenability of steel is slightly increased, it does not produce a hardened structure detrimental to HAZ toughness.

このようなCu添加の優れた効果を得るには、その添加量
を0.8〜1.5%とする必要がある。Cu量の上限はCu析出物
の粗大化や焼入性の増大などによるHAZ靭性の劣化を防
止するためである。また下限は十分な析出硬化を得るた
めの最小量である。
In order to obtain such an excellent effect of Cu addition, it is necessary to add 0.8 to 1.5%. The upper limit of Cu content is to prevent deterioration of HAZ toughness due to coarsening of Cu precipitates and increase in hardenability. The lower limit is the minimum amount for obtaining sufficient precipitation hardening.

以下にそのほかの基本成分の限定理由について説明す
る。
The reasons for limiting the other basic components will be described below.

C量は下限0.03%は、母材および溶接部の強度の確保な
らびにNb添加時に、これらの効果を発揮させるための最
小量である。しかしC量が多過ぎると、HAZの低温靭性
に悪影響をおよぼすだけでなく、母材靭性、溶接性をも
劣化させるので、上限を0.12%とした。C量が多いと溶
接部にM*、擬似パーライト(P′)が生成して低温靭
性を著しく劣化させる。
The lower limit of the C content is 0.03%, which is the minimum amount for ensuring the strength of the base material and the welded portion and exerting these effects when Nb is added. However, if the amount of C is too large, not only the low temperature toughness of HAZ is adversely affected but also the base metal toughness and weldability are deteriorated, so the upper limit was made 0.12%. When the amount of C is large, M * and pseudo pearlite (P ') are generated in the welded portion, and the low temperature toughness is significantly deteriorated.

Siは脱酸上、鋼に含まれる元素であるが、多く添加する
と溶接性、溶接部の靭性が劣化するため、上限を0.6%
に限定した。鋼の脱酸はTiのみでも十分可能であり、M
*の生成を防止して靭性を改善する観点から0.15%以下
が望ましい。
Si is an element contained in steel for deoxidation, but if added in a large amount, the weldability and toughness of the weld will deteriorate, so the upper limit is 0.6%.
Limited to. Deoxidation of steel is sufficiently possible with Ti alone.
From the viewpoint of preventing the formation of * and improving toughness, 0.15% or less is desirable.

Mnは強度、靭性を確保する上で不可欠な元素であり、そ
の下限は0.8%である。HAZ靭性を改善するには、γ粒界
に生成する粗大な初析フェライトを防止する必要がある
が、Mn添加は、これを抑制する効果がある。しかしMn量
が多過ぎると焼入性が増加して溶接性、HAZ靭性を劣化
させるだけでなく、スラブの中心偏析を助長するので上
限を2.0%とした。
Mn is an essential element for ensuring strength and toughness, and its lower limit is 0.8%. In order to improve the HAZ toughness, it is necessary to prevent the coarse proeutectoid ferrite generated at the γ grain boundary, but the addition of Mn has the effect of suppressing this. However, if the Mn content is too large, not only the hardenability increases, the weldability and HAZ toughness deteriorate, but also the center segregation of the slab is promoted, so the upper limit was made 2.0%.

本発明鋼において不純物であるP,Sをそれぞれ0.025%以
下、0.005%以下とした理由は、母材、HAZの低温靭性を
より一層向上させるためである。P量の低減は、HAZに
おける粒界破壊傾向を減少させ、S量の低減は、粒界フ
ェライトの生成を抑制する傾向がある。最も好ましいP,
S量は、それぞれ0.010%、0.0020%以下である。
The reason that the impurities P and S in the steel of the present invention are 0.025% or less and 0.005% or less, respectively, is to further improve the low temperature toughness of the base material and HAZ. A decrease in the amount of P tends to reduce the grain boundary fracture tendency in the HAZ, and a decrease in the amount of S tends to suppress the production of grain boundary ferrite. Most preferred P,
The S content is 0.010% and 0.0020% or less, respectively.

Alは、一般に脱酸上鋼に含まれる元素であるが、本発明
鋼では好ましくない元素であり、その上限を0.003%と
した。これはAlが鋼中に含まれているとOと結合してTi
2O3ができないためである。脱酸はTiだけでも可能であ
り、本発明においてAl量は少ないほど良く、0.002%以
下が望ましい。
Al is an element generally contained in the deoxidized upper steel, but it is an unfavorable element in the steel of the present invention, and its upper limit was set to 0.003%. This is because when Al is contained in the steel, it combines with O to form Ti
This is because 2 O 3 cannot be done. Deoxidation is also possible with Ti alone. In the present invention, the smaller the Al content, the better, and 0.002% or less is desirable.

つぎにNi,Nb,Cr,Mo,Caのいずれか1種、Ni,Nb,Mo,Caの
うちいずれか2種または3種を添加する理由について説
明する。基本となる成分にさらに、これらの元素を添加
する主たる目的は、本発明鋼の優れた特徴を損なうこと
なく、強度、靭性など特性の向上をはかるためである。
したがって、その添加量は自ら制限されるべき性質のも
のである。
Next, the reason for adding any one of Ni, Nb, Cr, Mo and Ca and any two or three of Ni, Nb, Mo and Ca will be described. The main purpose of adding these elements to the basic composition is to improve the properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention.
Therefore, the amount added is of a nature that should be limited by itself.

Niは溶接性、HAZ靭性に悪影響をおよぼすことなく、母
材の強度、靭性を向上させる重要な元素であり、またCu
による熱間圧延時のクラック防止にも効果がある。然
し、添加量が1.0%を超えると溶接性に好ましくないた
め上限を1.0%とした。
Ni is an important element that improves the strength and toughness of the base metal without adversely affecting the weldability and HAZ toughness.
Is also effective in preventing cracks during hot rolling. However, if the addition amount exceeds 1.0%, the weldability is not preferable, so the upper limit was made 1.0%.

Nbは本発明において重要な元素であり、高強度鋼におい
てはNbを添加することなく優れた接合部の靭性を得るこ
とは困難である。Nbはγ粒界に生成するフェライトを抑
制し、Ti2O3を核とする微細なAFの生成を促進する働き
がある。この効果を得るためには最低0.005%のNb量が
必要である。しかしながらNb量が多過ぎると、逆に微細
なAFの生成を妨げるので、その上限は0.05%である。
Nb is an important element in the present invention, and it is difficult to obtain excellent joint toughness in high strength steel without adding Nb. Nb has a function of suppressing ferrite generated at the γ grain boundary and promoting generation of fine AF having Ti 2 O 3 as a nucleus. To obtain this effect, a minimum Nb content of 0.005% is required. However, if the amount of Nb is too large, the formation of fine AF is adversely affected, so the upper limit is 0.05%.

Crは母材、溶接部の強度を高めるが、多過ぎると溶接性
や溶接部靭性を劣化させる。その上限は0.30%である。
Cr increases the strength of the base material and the weld, but if it is too much, it deteriorates the weldability and the toughness of the weld. The upper limit is 0.30%.

Moは母材の強度、靭性をもとに向上させる元素である
が、多過ぎるとCrと同様に母材、溶接部の靭性、溶接性
の劣化を招き好ましくない。その上限は0.30%である。
Mo is an element that improves the strength and toughness of the base metal, but if it is too large, it causes deterioration of the toughness and weldability of the base metal and welded portion like Cr, which is not preferable. The upper limit is 0.30%.

なおNi,Nb,Cr,Moの添加量の下限は、材質上での効果が
得られるための最小量とすべきで、Ni,Cr,Moは0.05%、
Nbは0.005%である。
The lower limit of the addition amount of Ni, Nb, Cr, Mo should be the minimum amount to obtain the effect on the material, Ni, Cr, Mo is 0.05%,
Nb is 0.005%.

Caは硫化物(MnS)の形態を制御し、低温靭性を向上
(シャルピー吸収エネルギーを増加)させるほか、耐水
素誘起割れ性の改善にも効果を発揮する。しかしCa量0.
001%以下では実用上効果がなく、また0.005%を超えて
添加するとCaO,CaSが多量に生成して大型介在物とな
り、鋼の靭性のみならず清浄度も害し、また溶接性にも
悪影響を与える。このため添加量の範囲を0.001〜0.005
%に制限した。
Ca controls the morphology of sulfide (MnS), improves low temperature toughness (increases Charpy absorbed energy), and is also effective in improving hydrogen-induced cracking resistance. However, the amount of Ca is 0.
If it is less than 001%, it has no practical effect, and if it is added in excess of 0.005%, a large amount of CaO and CaS are generated and become large inclusions, which not only impairs the toughness of steel but also the cleanliness, and also adversely affects weldability give. Therefore, the range of addition amount is 0.001 to 0.005.
Limited to%.

鋼の成分を上記のように限定しても、製造法が適切でな
ければ溶接前の鋼中に微細なTi2O3,TiNを分散させるこ
とはできないし、HAZの特性に見合った母材特性が得ら
れない。このため製造条件についても限定する必要があ
る。
Even if the components of steel are limited as described above, fine Ti 2 O 3 and TiN cannot be dispersed in the steel before welding unless the manufacturing method is appropriate, and the base metal suitable for HAZ properties is used. The characteristics cannot be obtained. Therefore, it is necessary to limit the manufacturing conditions.

まず、この鋼は工業的には連続鋳造法で製造することが
必須である。この理由は、連続鋳造法では溶鋼の凝固冷
却速度が速くスラブ中に微細なTi2O3,TiNが多量に得ら
れるためである。大型鋼塊による造塊−分塊法では、Ti
2O3,TiNをスラブ中に微細分散させることは難しい。
First, it is essential that this steel be industrially manufactured by a continuous casting method. The reason for this is that in the continuous casting method, the solidification cooling rate of molten steel is fast and a large amount of fine Ti 2 O 3 and TiN is obtained in the slab. In the ingot-segmentation method using a large steel ingot, Ti
It is difficult to finely disperse 2 O 3 and TiN in a slab.

連続鋳造法の場合、スラブ厚によって冷却速度が異なる
が、溶接部靭性の観点からその厚みは350mm以下が望ま
しい。さらにスラブの再加熱温度を900〜1100℃以下と
する必要がある。これ以上の温度で再加熱するとTiNが
粗大化して、溶接前の鋼中に微細なTiNがなくなり、溶
接部の境界やHAZにおける組織の微細化が不可能にな
り、また極低温域において優れた母材靭性も得られな
い。
In the case of the continuous casting method, the cooling rate differs depending on the slab thickness, but the thickness is preferably 350 mm or less from the viewpoint of weld zone toughness. Furthermore, the reheating temperature of the slab must be 900 to 1100 ° C or lower. When reheated at a temperature higher than this, TiN becomes coarse, and fine TiN disappears in the steel before welding, making it impossible to refine the structure at the weld boundary and HAZ. Base metal toughness cannot be obtained either.

なお本発明においては、ホットチャージ圧延やダイレク
ト圧延を行なっても全く問題はない。
In the present invention, there is no problem even if hot charge rolling or direct rolling is performed.

つぎに圧延法であるが、強度、靭性の観点から適度の制
御圧延が必須である。このために900℃以下の累積圧下
量30〜90%、圧延終了温度700〜850℃で圧延する。累積
圧下量が30%以下ではγ組織の微細化が不十分で優れた
低温靭性が得られない。一般に低温靭性は累積圧下量が
大きいほど向上するが、実際に90%を超えて圧延するこ
とは不可能である。これは累積圧下量が90%以上になる
と圧延時間の延長にともなって温度低下が著しくなり、
適切な圧延終了温度が確保できないためである。
Next is a rolling method, but proper controlled rolling is essential from the viewpoint of strength and toughness. For this purpose, rolling is performed at a rolling reduction of 900 to ℃ 30 to 90% and a rolling finish temperature of 700 to 850 ℃. If the cumulative rolling reduction is 30% or less, the refinement of the γ structure is insufficient and excellent low temperature toughness cannot be obtained. Generally, the low temperature toughness is improved as the cumulative rolling reduction is increased, but it is impossible to actually roll the rolling over 90%. This is because when the rolling reduction reaches 90% or more, the temperature decrease becomes remarkable with the extension of rolling time.
This is because an appropriate rolling end temperature cannot be secured.

圧延終了温度700℃以上としたのは、過度の(γ−α)
域圧延による低温靭性の劣化や材質の異方性を防止する
ためである。しかし圧延終了温度が高過ぎると十分な強
度、靭性が得られないので、その上限を850℃とした。
The rolling end temperature of 700 ° C or higher is due to excessive (γ-α)
This is to prevent deterioration of low temperature toughness and anisotropy of material due to zone rolling. However, if the rolling end temperature is too high, sufficient strength and toughness cannot be obtained, so the upper limit was made 850 ° C.

本発明では、とくに圧延後の冷却法は限定しない。これ
は本発明鋼の特性に大きな影響を与えないからである。
放冷のほか圧延後の加速冷却や焼入も可能である。
In the present invention, the cooling method after rolling is not particularly limited. This is because it does not significantly affect the properties of the steel of the present invention.
In addition to standing cooling, accelerated cooling and quenching after rolling are also possible.

つぎに本発明ではCu析出効果を得るため、500℃〜Ac1
の温度範囲で時効処理する必要がある。このように温度
を限定したのは、500℃以下では十分なCu析出硬化が得
られないためであり、Ac1点以上では変態が開始して本
発明鋼の特徴が失われるからである(時効温度での保持
時間としては0〜60分が適当である)。
Next, in the present invention, in order to obtain the Cu precipitation effect, it is necessary to perform aging treatment in the temperature range of 500 ° C. to Ac 1 point. The reason for limiting the temperature in this way is that sufficient Cu precipitation hardening cannot be obtained at 500 ° C. or lower, and at the Ac 1 point or higher, transformation starts and the characteristics of the steel of the present invention are lost (age aging). A suitable holding time at temperature is 0 to 60 minutes).

なお時効処理は、たとえば鋼板を圧延後加工して鋼管と
し、鋼管状態で行っても差支えない。また、鋼を圧延
後、焼入などの熱処理をし、時効処理するとしても本発
明の特徴を損なうものではない。
Note that the aging treatment may be performed, for example, by rolling a steel sheet and then working it into a steel pipe, and performing it in a steel pipe state. Further, even if the steel is subjected to heat treatment such as quenching after rolling and aging treatment, the characteristics of the present invention are not impaired.

(実 施 例) 転炉−連続鋳造−厚板工程で種々の鋼成分の鋼板(厚み
15〜60mm)を製造し、各種の条件で潜弧溶接してHAZ靭
性を2mmVノッチシャルピー試験によって調査した。
(Example) Steel plates of various steel components (thickness in the converter-continuous casting-thick plate process
15-60 mm) was manufactured, and the HAZ toughness was investigated by a 2 mm V notch Charpy test after performing latent arc welding under various conditions.

試験片は1/4t位置から採取し、ノッチ位置は溶融線近傍
のHAZとした。
The test piece was taken from the 1 / 4t position, and the notch position was HAZ near the fusion line.

表1,表2に実施例を示す。Examples are shown in Table 1 and Table 2.

本発明法で製造した鋼板(本発明鋼)は全て良好な母材
特性および接合部靭性を有するのに対して、本発明法に
よらない比較鋼は母材特性あるいはHAZ靭性が劣り、厳
しい環境下で使用される鋼板として適切でない。
The steel sheets produced by the method of the present invention (invention steel) all have good base material properties and joint toughness, whereas the comparative steels not produced by the method of the present invention are inferior in base material properties or HAZ toughness and have a severe environment. Not suitable as a steel plate used below.

(発明の効果) 本発明により、高強度鋼、大入熱溶接においてもHAZ全
域において優れた極低温靭性を有する鋼を大量、且つ安
価に製造することが可能になった。その結果、溶接構造
物の施工能率が著しく向上するとともにその安全性を大
きく向上させることができた。
(Effects of the Invention) According to the present invention, it is possible to manufacture a high-strength steel and a steel having excellent cryogenic toughness throughout the HAZ even in high heat input welding in a large amount at low cost. As a result, the construction efficiency of the welded structure was remarkably improved and its safety was greatly improved.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%で、 C:0.03〜0.12%、 Si:0.6%以下、 Mn:0.8〜2.0%、 P:0.025%以下、 S:0.005%以下、 Cu:0.8〜1.5%、 Al:0.003%以下、 Ti:0.005〜0.025%、 N:0.001〜0.0065%、 O:0.001〜0.006%、 粒子径0.05〜10μmのTiを主成分とする酸化物を5×10
3〜1×106個/mm3、 残部が鉄および不可避的不純物からなる鋼を連続鋳造法
によって鋳片とし、これを900〜1100℃の温度範囲で再
加熱後、900℃以下の累積圧下量30〜90%、圧延終了温
度700〜850℃で圧延を行ない、放冷または水冷後、500
℃〜Ac1点の温度で時効処理することを特徴とする溶接
熱影響部靭性の優れたCu添加鋼の製造法。
1. By weight%, C: 0.03 to 0.12%, Si: 0.6% or less, Mn: 0.8 to 2.0%, P: 0.025% or less, S: 0.005% or less, Cu: 0.8 to 1.5%, Al: 0.003% or less, Ti: 0.005 to 0.025%, N: 0.001 to 0.0065%, O: 0.001 to 0.006%, 5x10 oxides containing Ti with a particle size of 0.05 to 10 μm as the main component
3 to 1 × 10 6 pieces / mm 3 , steel with balance of iron and unavoidable impurities is made into a slab by continuous casting method, reheated in the temperature range of 900 to 1100 ℃, and then cumulative reduction of 900 ℃ or less Amount of 30 to 90%, rolling at the finishing temperature of 700 to 850 ℃, and after leaving to cool or water cooling, 500
A method for producing a Cu-added steel having excellent weld heat-affected zone toughness, which is characterized by performing aging treatment at a temperature of ℃ to Ac 1 point.
【請求項2】重量%で、 C:0.03〜0.12%、 Si:0.6%以下、 Mn:0.8〜2.0%、 P:0.025%以下、 S:0.005%以下、 Cu:0.8〜1.5%、 Al:0.003%以下、 Ti:0.005〜0.025%、 N:0.001〜0.0065%、 O:0.001〜0.006%、 粒子径0.05〜10μmのTiを主成分とする酸化物を5×10
3〜1×106個/mm3、 さらに Ni:0.05〜1.0%、 Nb:0.005〜0.05%、 Cr:0.05〜0.30%、 Mo:0.05〜0.30%、 Ca:0.001〜0.005%、 のうちいずれか1種、 残部が鉄および不可避的不純物からなる鋼を用いる請求
項1記載の溶接熱影響部靭性の優れたCu添加鋼の製造
法。
2. By weight%, C: 0.03 to 0.12%, Si: 0.6% or less, Mn: 0.8 to 2.0%, P: 0.025% or less, S: 0.005% or less, Cu: 0.8 to 1.5%, Al: 0.003% or less, Ti: 0.005 to 0.025%, N: 0.001 to 0.0065%, O: 0.001 to 0.006%, 5x10 oxides containing Ti with a particle size of 0.05 to 10 μm as the main component
3 to 1 × 10 6 pieces / mm 3 , Ni: 0.05 to 1.0%, Nb: 0.005 to 0.05%, Cr: 0.05 to 0.30%, Mo: 0.05 to 0.30%, Ca: 0.001 to 0.005% The method for producing a Cu-added steel excellent in weld heat-affected zone toughness according to claim 1, wherein one type of steel, the balance of which is iron and inevitable impurities, is used.
【請求項3】重量%で、 C:0.03〜0.12%、 Si:0.6%以下、 Mn:0.8〜2.0%、 P:0.025%以下、 S:0.005%以下、 Cu:0.8〜1.5%、 Al:0.003%以下、 Ti:0.005〜0.025%、 N:0.001〜0.0065%、 O:0.001〜0.006%、 粒子径0.05〜10μmのTiを主成分とする酸化物を5×10
3〜1×106個/mm3、 さらに Ni:0.05〜1.0%、 Nb:0.005〜0.05%、 Mo:0.05〜0.30%、 Ca:0.001〜0.005%、 のうちいずれか2種、 残部が鉄および不可避的不純物からなる鋼を用いる請求
項1記載の溶接熱影響部靭性の優れたCu添加鋼の製造
法。
3. In weight%, C: 0.03 to 0.12%, Si: 0.6% or less, Mn: 0.8 to 2.0%, P: 0.025% or less, S: 0.005% or less, Cu: 0.8 to 1.5%, Al: 0.003% or less, Ti: 0.005 to 0.025%, N: 0.001 to 0.0065%, O: 0.001 to 0.006%, 5x10 oxides containing Ti with a particle size of 0.05 to 10 μm as the main component
3 to 1 × 10 6 pieces / mm 3 , Ni: 0.05 to 1.0%, Nb: 0.005 to 0.05%, Mo: 0.05 to 0.30%, Ca: 0.001 to 0.005%, any two types, the balance is iron The method for producing a Cu-added steel having excellent weld heat-affected zone toughness according to claim 1, wherein steel consisting of unavoidable impurities is used.
【請求項4】重量%で、 C:0.03〜0.12%、 Si:0.6%以下、 Mn:0.8〜2.0%、 P:0.025%以下、 S:0.005%以下、 Cu:0.8〜1.5%、 Al:0.003%以下、 Ti:0.005〜0.025%、 N:0.001〜0.0065%、 O:0.001〜0.006%、 粒子径0.05〜10μmのTiを主成分とする酸化物を5×10
3〜1×106個/mm3、 さらに Ni:0.05〜1.0%、 Nb:0.005〜0.05%、 Mo:0.05〜0.30%、 Ca:0.001〜0.005%、 のうちいずれか3種、 残部が鉄および不可避的不純物からなる鋼を用いる請求
項1記載の溶接熱影響部靭性の優れたCu添加鋼の製造
法。
4. By weight%, C: 0.03 to 0.12%, Si: 0.6% or less, Mn: 0.8 to 2.0%, P: 0.025% or less, S: 0.005% or less, Cu: 0.8 to 1.5%, Al: 0.003% or less, Ti: 0.005 to 0.025%, N: 0.001 to 0.0065%, O: 0.001 to 0.006%, 5x10 oxides containing Ti with a particle size of 0.05 to 10 μm as the main component
3 to 1 × 10 6 pieces / mm 3 , Ni: 0.05 to 1.0%, Nb: 0.005 to 0.05%, Mo: 0.05 to 0.30%, Ca: 0.001 to 0.005%, any three types, and the balance is iron. The method for producing a Cu-added steel having excellent weld heat-affected zone toughness according to claim 1, wherein steel consisting of unavoidable impurities is used.
JP1180839A 1988-07-14 1989-07-13 Process for producing Cu-added steel with excellent weld heat-affected zone toughness Expired - Lifetime JPH0757886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1180839A JPH0757886B2 (en) 1988-07-14 1989-07-13 Process for producing Cu-added steel with excellent weld heat-affected zone toughness

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-175876 1988-07-14
JP17587688 1988-07-14
JP1180839A JPH0757886B2 (en) 1988-07-14 1989-07-13 Process for producing Cu-added steel with excellent weld heat-affected zone toughness

Publications (2)

Publication Number Publication Date
JPH02125812A JPH02125812A (en) 1990-05-14
JPH0757886B2 true JPH0757886B2 (en) 1995-06-21

Family

ID=26496992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1180839A Expired - Lifetime JPH0757886B2 (en) 1988-07-14 1989-07-13 Process for producing Cu-added steel with excellent weld heat-affected zone toughness

Country Status (1)

Country Link
JP (1) JPH0757886B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453679C (en) * 2006-01-18 2009-01-21 株式会社神户制钢所 Low yield ratio fire-resistant steel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2587564B2 (en) * 1992-03-06 1997-03-05 新日本製鐵株式会社 Manufacturing method of steel with excellent low-temperature toughness of weld heat affected zone
JP2760713B2 (en) * 1992-09-24 1998-06-04 新日本製鐵株式会社 Method for producing controlled rolled steel with excellent fire resistance and toughness
FR2757542B1 (en) * 1996-12-19 1999-01-15 Der Dillinger Huttenwerke Ag LOW ALLOYED STRUCTURAL STEEL WITH ACTIVE PARTICLES
JP2000319750A (en) * 1999-05-10 2000-11-21 Kawasaki Steel Corp High tensile strength steel for large heat input welding excellent in toughness of heat-affected zone
CN1147613C (en) * 2000-04-12 2004-04-28 Posco公司 Steel plate to be precipitating TiN+MnS for welded structures, method for manufacturing the same and welded structure using the same
KR100482208B1 (en) 2000-11-17 2005-04-21 주식회사 포스코 Method for manufacturing steel plate having superior toughness in weld heat-affected zone by nitriding treatment
US6966955B2 (en) 2000-12-14 2005-11-22 Posco Steel plate having TiN+ZrN precipitates for welded structures, method for manufacturing same and welded structure made therefrom
JP4736374B2 (en) * 2004-08-06 2011-07-27 住友金属工業株式会社 Steel material with super large heat input welding characteristics

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149722A (en) * 1984-01-14 1985-08-07 Nippon Steel Corp Manufacture of cu added steel having superior toughness at low temperature in weld zone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453679C (en) * 2006-01-18 2009-01-21 株式会社神户制钢所 Low yield ratio fire-resistant steel

Also Published As

Publication number Publication date
JPH02125812A (en) 1990-05-14

Similar Documents

Publication Publication Date Title
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JPH0757886B2 (en) Process for producing Cu-added steel with excellent weld heat-affected zone toughness
JP2653594B2 (en) Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JPH0541683B2 (en)
JPH0527703B2 (en)
JP3879607B2 (en) Welded structural steel with excellent low temperature toughness
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPH0694569B2 (en) Manufacturing method of steel with excellent low temperature toughness in the heat affected zone
JP7207199B2 (en) Steel material and its manufacturing method
JPH09194990A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP2022514019A (en) Extra-thick structural steel with excellent brittle crack initiation resistance and its manufacturing method
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
JP3882701B2 (en) Method for producing welded structural steel with excellent low temperature toughness
JPH0525580B2 (en)
JP2688067B2 (en) Tensile strength for electron beam welding 60 ▲ kg ▼ f / ▲ mm2 ▼ class Mo-added steel manufacturing method
KR102508128B1 (en) Steel plate having excellent low temperature impact toughness of heat affeected zone and manufacturing mehtod for the same
JPH07278653A (en) Production of steel excellent in cold toughness on welding heat affected zone
JP5659949B2 (en) Thick steel plate excellent in toughness of weld heat affected zone and method for producing the same
JPH0578740A (en) Manufacture of steel excellent in low temperature toughness in weld heat affected zone
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JP3569499B2 (en) High strength steel excellent in weldability and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 15