JPH05179344A - Production of high tensile steel having excellent low-temperature toughness of multilayer weld zone - Google Patents

Production of high tensile steel having excellent low-temperature toughness of multilayer weld zone

Info

Publication number
JPH05179344A
JPH05179344A JP1841192A JP1841192A JPH05179344A JP H05179344 A JPH05179344 A JP H05179344A JP 1841192 A JP1841192 A JP 1841192A JP 1841192 A JP1841192 A JP 1841192A JP H05179344 A JPH05179344 A JP H05179344A
Authority
JP
Japan
Prior art keywords
less
steel
toughness
temperature
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1841192A
Other languages
Japanese (ja)
Inventor
Fumimaru Kawabata
文丸 川端
Kenichi Amano
虔一 天野
Noritsugu Itakura
教次 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1841192A priority Critical patent/JPH05179344A/en
Publication of JPH05179344A publication Critical patent/JPH05179344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To easily produce the high tensile steel having the low-temp. toughness of a multilayer weld zone by subjecting a continuously cast slab contg. specific ratios of C, Si, Mn, S, Cu, Ni, Al and Ca to a specific heat treatment and hot rolling. CONSTITUTION:The continuously cast slab contg. 0.01 to 0.15wt.% C, <=0.15% Si, 0.5 to 2.0% Mn, <=0.005% S, 0.5 to 2.0% Cu, 0.1 to 1.5% Ni, 0.005 to 0.1% Al, 0.005 to 0.005% Ca and contg. further >=1 kinds of <=0.07% Nb, <=0.1% V, <=0.2% Mo and <=0.02% Ti is heated to 1050 to 1250 deg.C. This slab is thereafter subjected to the hot rolling to attain >=25% cumulative draft at Ar3 to 900 deg.C and if necessary, to attain 10 to 45% cumulating draft at (Ar3-500 deg.C) to Ar3. The steel product is then subjected to air cooling or force cooling then further to reheating to 400 to 650 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、海洋構築物やラインパ
イプ等に用いられる高張力鋼で、とくにその多層溶接部
の低温靱性に優れたCu析出硬化型高張力鋼板の製造法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength steel used for marine structures, line pipes, etc. .

【0002】[0002]

【従来の技術】近年の海洋構築物やパイプラインは大型
化し、用いられる鋼板の板厚も厚肉化の傾向があるとと
もに、その溶接部には極めて高水準の低温靱性が要求さ
れている。Cuの析出硬化機構を利用した高張力鋼板
は、溶接熱影響部(HAZ)における硬化性が低く、そ
の溶接性とくに低温割れ感受性が優れていることが特徴
であり、このことはすでに米国特許第3692514号
に開示されている。しかし、Cuの析出硬化機構を利用
して高強度化を図ると、低温靱性が損なわれることが指
摘されている。このような、Cu析出硬化型鋼板の欠点
を改良すべく、たとえば特開昭60−59018号公
報、特開昭61−149430号公報、特開昭62−1
49845号公報に開示されているように多くの製造方
法が提案されている。
2. Description of the Related Art In recent years, marine structures and pipelines have become large in size, and the thickness of steel sheets used has tended to become thicker, and extremely high levels of low temperature toughness are required at the welded portions. The high-strength steel sheet utilizing the precipitation hardening mechanism of Cu is characterized by low hardenability in the weld heat affected zone (HAZ) and excellent weldability, especially cold cracking susceptibility. No. 3692514. However, it has been pointed out that the low temperature toughness is impaired if the strength is increased by utilizing the precipitation hardening mechanism of Cu. In order to improve such a defect of the Cu precipitation hardening type steel sheet, for example, JP-A-60-59018, JP-A-61-149430, and JP-A-62-1.
Many manufacturing methods have been proposed as disclosed in Japanese Patent Publication No. 49845.

【0003】しかし、従来の低温靱性の評価法としては
主としてシャルピ−衝撃試験が用いられてきたが、近年
は英国規格BS5762(1979)に規定されている
CTOD試験が要求されることが多い。この試験は、疲
労予き裂を評価部に発生させることにより、極めて微小
部分の脆性破壊発生抵抗性を評価する。−方、厚肉鋼板
の溶接は、極めて多くの多層溶接で現地施工されるが、
このような施工では、溶接熱影響部(HAZ)には複雑
な熱履歴を受けた局所脆化域が発生する。特に1350
℃以上の高温に加熱された結晶粒の粗粒域(以下CGH
AZと略す)は最も靱性が劣化する部分である。
However, although the Charpy impact test has been mainly used as a conventional evaluation method of low temperature toughness, in recent years, the CTOD test prescribed in British Standard BS5762 (1979) is often required. This test evaluates the brittle fracture initiation resistance of an extremely small portion by causing a fatigue pre-crack in the evaluation portion. -Although welding of thick steel plates is performed on-site with a large number of multi-layer welding,
In such a construction, a local embrittlement zone that has undergone a complicated heat history is generated in the welding heat affected zone (HAZ). Especially 1350
Coarse grain region of crystal grains heated to a high temperature of ℃ or more (hereinafter CGH
(Abbreviated as AZ) is the part where the toughness deteriorates most.

【0004】米国石油協会では、APIRP 2Z(1
987)において、CGHAZが予き裂の先端に一定の
割合以上存在するように加工の詳細な規定がもりこまれ
ている。このように、厳格な脆性破壊発生特性の評価が
なされた場合、前述の先行技術によってシャルピ−衝撃
試験で高い靱性が得られた場合でも必要な脆性破壊発生
抵抗性が得られない場合がある。この点に関して特開平
2−25517号公報には、CTOD試験に対応した溶
接性および低温靱性の優れたCu析出硬化型高張力鋼の
製造方法が開示されている。しかし、近年、CTOD値
は、さらに高値が要求されるようになり、脆性破壊発生
抵抗性の向上に関する要望は一段と強くなってきた。
In the American Petroleum Institute, APIPI 2Z (1
987), detailed rules for processing are incorporated so that CGHAZ exists at a certain ratio or more at the tip of the precrack. In this way, when the strict evaluation of brittle fracture initiation characteristics is made, the required brittle fracture initiation resistance may not be obtained even if high toughness is obtained in the Charpy impact test by the above-mentioned prior art. In this regard, Japanese Patent Laid-Open No. 25517/1990 discloses a method for producing a Cu precipitation hardening type high-strength steel excellent in weldability and low temperature toughness corresponding to the CTOD test. However, in recent years, the CTOD value has been required to be even higher, and the demand for improving the resistance to brittle fracture occurrence has become even stronger.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前述のよう
な技術の現状にかんがみてなされたものであって、特に
多層溶接部の低温靱性に優れたCu析出硬化型高張力鋼
の新しい製造方法を提供することを課題とするものであ
る。
The present invention has been made in view of the current state of the art as described above, and in particular, new production of Cu precipitation hardening type high strength steel excellent in low temperature toughness of multi-layer welds. The challenge is to provide a method.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を効果的に解決するために鋭意研究、実験を進めた結
果、およそ次のような知見を得ることができた。すなわ
ち、 a)連続鋳造鋼片の加熱温度を1050℃以上、125
0℃以下とすることによって鋼板内部の化学組成の均一
化を図り、異常組織の生成を防止する。 b)Siの添加量を0.15重量%(以下化学組成は全
て%と略す)以下とすることによってICCGHAZに
生成する島状マルテンサイトの生成を抑制する。 c)Sを0.005%以下とし、Caを0.0005〜
0.005%の範囲で添加することによって、鋼中のM
nSの生成を防止する。 d)以上のような化学組成上の特徴をもつ鋼にたいして
制御圧延を行った後、空冷または強制冷却することによ
って、微細粒組織を形成する。 e)さらに、得られた高靱性の鋼板に対してCu析出硬
化処理を施すことによって、靱性の劣化を招くことな
く、高強度化を図る。 以上の全てを満足して初めて、CTOD試験での脆性破
壊抵抗評価に対応しうる低温靱性に優れた多層溶接HA
Zを形成する鋼板の製造が可能となることを見い出して
本発明を完成したものである。
Means for Solving the Problems The inventors of the present invention have made extensive studies and experiments in order to effectively solve the above problems, and as a result, have obtained the following findings. That is, a) The heating temperature of the continuously cast steel billet is 1050 ° C. or higher, 125
By setting the temperature to 0 ° C. or less, the chemical composition inside the steel sheet is made uniform, and the generation of an abnormal structure is prevented. b) The addition amount of Si is set to 0.15% by weight (hereinafter, all chemical compositions are abbreviated as%) or less to suppress the formation of island martensite formed in ICCGHAZ. c) S is 0.005% or less and Ca is 0.0005 to
M in steel by adding in the range of 0.005%
Prevent the generation of nS. d) A fine grain structure is formed by performing controlled rolling on steel having the above-described chemical composition characteristics and then air cooling or forced cooling. e) Further, by subjecting the obtained steel sheet having high toughness to Cu precipitation hardening treatment, high strength is achieved without causing deterioration of toughness. Only when all of the above are satisfied, a multi-layer weld HA with excellent low temperature toughness that can support brittle fracture resistance evaluation in CTOD test.
The present invention has been completed by finding that it becomes possible to manufacture a steel sheet for forming Z.

【0007】すなわち、本発明は、、重量比で、
C:0.01〜0.15%、 Si:0.15%以下、
Mn:0.5〜2.0%、 S:0.005%以下、
Cu:0.5〜2.0%、 Ni:0.1〜1.5
%、 Al:0.005〜0.1%、 Ca:0.00
05〜0.005%を含有する連続鋳造鋼片を、105
0〜1250℃の温度に加熱し、その後、Ar3〜900
℃の温度範囲で累積圧下率が25%以上となる熱間圧延
を行い、空冷または強制冷却した後、さらに400〜6
50℃に再加熱することを特徴とする多層溶接部の低温
靱性に優れた高張力鋼の製造方法であり、
That is, the present invention is, in terms of weight ratio,
C: 0.01 to 0.15%, Si: 0.15% or less,
Mn: 0.5 to 2.0%, S: 0.005% or less,
Cu: 0.5-2.0%, Ni: 0.1-1.5
%, Al: 0.005-0.1%, Ca: 0.00
A continuously cast steel slab containing 05-0.005% was
Heating to a temperature of 0 to 1250 ° C., then Ar 3 to 900
After hot rolling with a cumulative reduction of 25% or more in the temperature range of ° C, air cooling or forced cooling, 400 to 6
A method for producing a high-strength steel excellent in low-temperature toughness of a multi-layer weld, characterized by reheating to 50 ° C.,

【0008】また、、重量比で、 C:0.01〜
0.15%、 Si:0.15%以下、 Mn:0.5
〜2.0%、 S:0.005%以下、 Cu:0.5
〜2.0%、 Ni:0.1〜1.5%、 Al:0.
005〜0.1%、 Ca:0.0005〜0.005
%を含有する連続鋳造鋼片を、1050〜1250℃の
温度に加熱し、その後、Ar3〜900℃の温度範囲で圧
下率が25%以上、(Ar3−50℃)〜Ar3の温度範囲
で累積圧下率が10〜45%となる熱間圧延を行い、空
冷または強制冷却した後、さらに400〜650℃に再
加熱することを特徴とする多層溶接部の低温靱性に優れ
た高張力鋼の製造方法であり、また、、前記連続鋳造
鋼片が重量比で、 C:0.01〜0.15%、 S
i:0.15%以下、 Mn:0.5〜2.0%、
S:0.005%以下、Cu:0.5〜2.0%、 N
i:0.1〜1.5%、 Al:0.005〜0.1
%、 Ca:0.0005〜0.005%を含有し、さ
らに、Nb:0.07%以下、 V:0.1%以下、
Mo:0.2%以下、 Ti:0.02%以下のうちの
1種または2種以上を含有する連続鋳造鋼片であること
を特徴とする多層溶接部の低温靱性に優れた高張力鋼の
製造方法である。
Also, in a weight ratio, C: 0.01-
0.15%, Si: 0.15% or less, Mn: 0.5
~ 2.0%, S: 0.005% or less, Cu: 0.5
.About.2.0%, Ni: 0.1 to 1.5%, Al: 0.
005-0.1%, Ca: 0.0005-0.005
% Of the continuous cast steel billet is heated to a temperature of 1050 to 1250 ° C., and thereafter, a rolling reduction is 25% or more in a temperature range of Ar 3 to 900 ° C., and a temperature of (Ar 3 −50 ° C.) to Ar 3 . High tensile strength excellent in low-temperature toughness of a multi-layer welded portion, which is characterized by performing hot rolling with a cumulative rolling reduction of 10 to 45% in the range, air-cooling or forced cooling, and then reheating to 400 to 650 ° C. A method for producing steel, wherein the weight ratio of the continuously cast steel slab is C: 0.01 to 0.15%, S
i: 0.15% or less, Mn: 0.5 to 2.0%,
S: 0.005% or less, Cu: 0.5 to 2.0%, N
i: 0.1 to 1.5%, Al: 0.005 to 0.1
%, Ca: 0.0005 to 0.005%, Nb: 0.07% or less, V: 0.1% or less,
Mo: 0.2% or less, Ti: 0.02% or less, a high-strength steel excellent in low-temperature toughness in a multi-layer weld, which is a continuously cast steel slab containing one or more kinds. Is a manufacturing method.

【0009】[0009]

【作用】化学組成、圧延等の製造条件の限定理由につい
て、以下にその作用とともに詳細にのべる。 C:Cは溶接性および多層溶接のHAZ靱性の改善のた
めに0.01〜0.15%に限定する。一般に小入熱溶
接部は硬化しやすく各種の割れが発生しやすい。これら
の障害を防止するには、鋼の硬化性を低くおさえること
が有効であり、かつ必要である。 また、多層溶接部の
HAZに生成する島状マルテンサイトの生成を抑制する
には、Cは低いことが望ましい。このような理由でC含
有量の上限を0.15%とした。この値をこえると、次
項で述べる低Si化の効果が発揮されなくなる。また、
一方でCは鋼の重要な強化元素の一つであり、極端な低
減は強度の点で不利になるので、その下限を0.01%
とした。本発明の特徴は上記の化学組成の範囲で充分に
発揮されるが、特に好ましい範囲は0.02〜0.08
%である。
The reason for limiting the chemical composition and manufacturing conditions such as rolling will be described in detail below together with its function. C: C is limited to 0.01 to 0.15% in order to improve the weldability and HAZ toughness of multilayer welding. Generally, small heat input welds are easily hardened and various cracks are likely to occur. In order to prevent these obstacles, it is effective and necessary to keep the hardness of steel low. Further, in order to suppress the formation of island martensite formed in the HAZ of the multi-layer weld, it is desirable that C be low. For this reason, the upper limit of the C content is set to 0.15%. If this value is exceeded, the effect of lowering Si as described in the next section will not be exhibited. Also,
On the other hand, C is one of the important strengthening elements of steel, and extreme reduction is disadvantageous in terms of strength, so its lower limit is 0.01%.
And The characteristics of the present invention are sufficiently exhibited in the above chemical composition range, but a particularly preferable range is 0.02 to 0.08.
%.

【0010】Si:Siは、本発明の特徴を発揮する上
で最も重要な元素の一つである。Siは製鋼工程の脱酸
元素として必然的に含有される元素であるが、一般には
強化元素としても用いられている。しかし、溶接部の靱
性に対しては悪影響があるといわれており、この影響は
とくにCTOD試験においては、低Si域とされている
0.2%のレベルにおいても認められる。したがって本
発明では、Siは0.15%以下に厳しく限定する。S
iが0.15%を超えると、島状マルテンサイトの生成
を抑制する効果が低減するのみならず、多層溶接特有の
積層パスによる焼戻し効果が得られず、溶接部のHAZ
の局所脆化域の靱性向上が期待できなくなる。多層溶接
HAZに生成される局所脆化域の島状マルテンサイト
は、その量や形態が再熱前の組織に依存する。このた
め、Siを低減しても、前組織が粗く焼入れ性が高い場
合にはその効果を十分に享受できない。また、もちろん
MnS等の介在物があれば、それによる靱性劣化により
Si低減の効果は現れない。したがって、本発明の低S
i化の効果を最大限に引き出すには、前組織の制御と介
在物の制御を併用することが必要である。Ca添加鋼に
よれば、後述のMnSの形態制御効果に加え、前組織を
細かくし焼入れ性を抑制する効果が働くために相乗効果
が得られる。
Si: Si is one of the most important elements for exerting the characteristics of the present invention. Si is an element that is inevitably contained as a deoxidizing element in the steelmaking process, but is also generally used as a strengthening element. However, it is said that there is an adverse effect on the toughness of the welded portion, and this effect is also observed particularly in the CTOD test even at the 0.2% level which is considered to be the low Si region. Therefore, in the present invention, Si is strictly limited to 0.15% or less. S
When i exceeds 0.15%, not only the effect of suppressing the formation of island martensite is reduced, but also the tempering effect due to the laminating pass peculiar to multilayer welding is not obtained, and the HAZ of the welded part is not obtained.
It cannot be expected to improve the toughness of the locally embrittled region. The amount and morphology of the island-like martensite in the locally embrittled region produced in the multi-layer weld HAZ depend on the structure before reheating. Therefore, even if Si is reduced, the effect cannot be fully enjoyed when the preceding structure is rough and the hardenability is high. In addition, of course, if there is an inclusion such as MnS, the effect of reducing Si does not appear due to deterioration in toughness. Therefore, the low S of the present invention
In order to maximize the effect of i-conversion, it is necessary to combine the control of the anterior tissue and the control of inclusions. According to the Ca-added steel, in addition to the effect of controlling the morphology of MnS, which will be described later, a synergistic effect is obtained because the effect of refining the pre-structure and suppressing the hardenability works.

【0011】Mn:Mnは0.5%以下では鋼の充分な
焼入れ性を確保できず、かえって母材靱性を低下するこ
とになり、一方2.0%を超えると溶接部のHAZが硬
化して低温割れ感受性が増大し、現地での溶接施工性を
害する。したがってMnは0.5〜2.0%の範囲に限
定する。 S:Sは有害な不純物であり、できるだけ低減するべき
であるが前述の低Siの効果と後述のCaの効果によっ
て、0.005%以下にすれば本発明の効果を害するこ
とはない。 Cu:Cuは析出硬化によって鋼の強度を飛躍的に向上
させる元素であり、本発明では重要な元素である。Cu
による析出硬化を効果的に実施するには少なくとも0.
5%以上の添加が必要である。一方2.0%をこえると
HAZの硬化性を上昇して溶接割れ感受性を増大する。
したがってCuは0.5〜2.0%の範囲に限定する。 Ni:Niは溶接性を害することなく母材の強度、靱性
を向上させる元素である。また、熱間圧延中のCu割れ
を防止するためにCuの約50%の添加が有効である。
しかし、0.1%にみたない添加ではNiによる強化、
高靱性化効果が得られない。一方1.5%をこえるとH
AZの焼入性を高めて硬化性を増大し、溶接割れ感受性
を増大する。したがってNiは0.1〜1.5%の範囲
に限定する。
Mn: If Mn is less than 0.5%, sufficient hardenability of the steel cannot be secured, and the toughness of the base metal is deteriorated. On the other hand, if it exceeds 2.0%, the HAZ of the weld zone is hardened. As a result, the cold cracking susceptibility increases, which impairs the local welding workability. Therefore, Mn is limited to the range of 0.5 to 2.0%. S: S is a harmful impurity and should be reduced as much as possible, but due to the effect of low Si and the effect of Ca described later, if it is 0.005% or less, the effect of the present invention is not impaired. Cu: Cu is an element that dramatically improves the strength of steel by precipitation hardening, and is an important element in the present invention. Cu
In order to effectively carry out precipitation hardening by means of at least 0.
It is necessary to add 5% or more. On the other hand, if it exceeds 2.0%, the HAZ hardenability is increased and the weld crack susceptibility is increased.
Therefore, Cu is limited to the range of 0.5 to 2.0%. Ni: Ni is an element that improves the strength and toughness of the base material without impairing the weldability. Further, addition of about 50% of Cu is effective in order to prevent Cu cracking during hot rolling.
However, if not added at 0.1%, strengthening by Ni,
The toughening effect cannot be obtained. On the other hand, if it exceeds 1.5%, H
It enhances the hardenability of AZ to increase the hardenability and the weld crack susceptibility. Therefore, Ni is limited to the range of 0.1 to 1.5%.

【0012】Al:AlはSiと同様脱酸元素としてこ
の種のAlキルド鋼に必然的に含有される元素である。
酸可溶Alが0.1%をこえるとAl2 3 系介在物が
増加し、靱性を損なう。一方、0.005%を下回ると
充分な脱酸ができず母材の靱性が劣化する。したがって
Alは0.005〜0.1%の範囲に限定する。 Ca:Caは本発明のような厳しい靱性要求のある鋼に
たいしては必須成分であり、特に低Siとした本発明の
鋼では溶接部の靱性を著しく向上させるのに有効であ
る。また、その添加量は0.0005%を下回るとMn
Sの形態制御効果がなく、また、0.005%をこえて
添加すると鋼中に酸化物として残留して靱性を劣化す
る。したがってCaは0.0005〜0.005%の範
囲に限定する。 Nb:Nbは圧延時にオ−ステナイト域では、Nb
(C、N)として析出し、オ−ステナイト粒界をピンニ
ングする効果があるので、再結晶粒の粗大化防止に有効
な元素であり、最終的に微細組織をえるために効果的な
元素である。また、固溶による変態強化とフェライト中
での析出による強化機能とをあわせもっている有用な元
素である。ただし、添加量が多すぎるとHAZの焼入れ
性をあげ、溶接割れ感受性を劣化させるのでNb含有量
の上限を0.07%とした。 V:Vはフェライト中への固溶によって鋼を強化する元
素であり、鋼の強度および靱性の向上に有効な元素であ
るが、0.1%をこえて添加するとHAZの多層熱サイ
クルを受ける個所が析出によって脆化する。したがって
Vの含有量は0.1%以下とする。
Al: Al is an element that is inevitably contained in this type of Al-killed steel as a deoxidizing element like Si.
Acid soluble Al is increased Al 2 0 3 based inclusions exceeds 0.1%, impair toughness. On the other hand, if it is less than 0.005%, sufficient deoxidation cannot be performed and the toughness of the base material deteriorates. Therefore, Al is limited to the range of 0.005 to 0.1%. Ca: Ca is an essential component for a steel having severe demands for toughness as in the present invention, and particularly in the steel of the present invention having low Si, it is effective in significantly improving the toughness of a welded portion. If the amount added is less than 0.0005%, Mn
There is no morphology control effect of S, and if added in excess of 0.005%, it remains as an oxide in steel and deteriorates toughness. Therefore, Ca is limited to the range of 0.0005 to 0.005%. Nb: Nb is Nb in the austenite region during rolling.
Since it is precipitated as (C, N) and has the effect of pinning the austenite grain boundaries, it is an element effective in preventing coarsening of recrystallized grains, and an element effective in finally obtaining a fine structure. is there. In addition, it is a useful element that has both a transformation strengthening by solid solution and a strengthening function by precipitation in ferrite. However, if the addition amount is too large, the hardenability of the HAZ is increased and the weld crack susceptibility is deteriorated, so the upper limit of the Nb content was set to 0.07%. V: V is an element that strengthens steel by solid solution in ferrite, and is an element effective in improving the strength and toughness of steel. The points become brittle due to precipitation. Therefore, the V content is 0.1% or less.

【0013】Mo:Moはベイナイトの生成を促進する
が、同時にマルテンサイトの生成も助長するのでHAZ
の硬化性を高め、靱性も劣化させる。特に多層溶接では
再熱部にMoの炭化物が析出して靱性を劣化させる。し
たがってMoの含有量はこのような悪影響の見られない
0.2%以下とする。 Ti:Tiは炭化物によって析出強化する元素であると
同時に窒化物によってCGHAZの粗大化を抑制して靱
性の劣化を抑制する効果のある元素である。しかし、
0.02%をこえると析出が過多となって著しい靱性の
劣化をおこす。したがってTiの含有量は0.02%以
下とする。
Mo: Mo accelerates the formation of bainite, but at the same time promotes the formation of martensite, so HAZ
Enhances the hardenability and deteriorates the toughness. In particular, in multi-layer welding, carbide of Mo precipitates in the reheated portion and deteriorates toughness. Therefore, the content of Mo is set to 0.2% or less where such adverse effects are not observed. Ti: Ti is an element that is precipitation strengthened by carbides, and at the same time is an element that has an effect of suppressing coarsening of CGHAZ by nitrides and suppressing deterioration of toughness. But,
If it exceeds 0.02%, the precipitation is excessive and the toughness is significantly deteriorated. Therefore, the Ti content is 0.02% or less.

【0014】以上のNb、V、Mo、Tiは選択成分で
あり、この中の1種または2種以上を含有することが必
要である。 REM:REMはそれ自体容易に酸化物を生成し、溶融
線近傍の高温(1350℃以上)加熱域でのγ粒の粗大
化を防止するために添加してもよいが、本発明のように
Caが共存すると、Caと結合して粗大介在物を生成す
るとともに、添加したCaの効果を低減する結果とな
る。したがって、添加するとしても0.0003%以下
に限定した方がよい。
The above Nb, V, Mo and Ti are optional components, and it is necessary to contain one or more of them. REM: REM itself may easily form an oxide and may be added to prevent coarsening of γ grains in a high temperature (1350 ° C. or higher) heating region near the melting line, but as in the present invention, The coexistence of Ca results in binding with Ca to form coarse inclusions and reducing the effect of added Ca. Therefore, even if added, it should be limited to 0.0003% or less.

【0015】以上、主として化学組成について述べた
が、本発明の作用、効果は化学組成の限定だけでは充分
にえられない。本発明の目的とする高CTOD値要求に
も対応できるような多層溶接HAZの低温靱性の向上に
は、その母材の靱性も高く維持する必要がある。そのた
めには以下に述べるような圧延条件等の製造条件の限定
が必須である。すなわち、本発明では効率的な生産が可
能な連続鋳造鋼片を母材として使用するが、連続鋳造鋼
片では板厚中央部に偏析を生ずるため、圧延終了後はこ
の部分が硬く脆い異常組織となり、靱性を著しく害す
る。この異常組織の発生を防止するには鋼中の成分の均
一化を図る必要がある。そのためには1050℃以上の
加熱温度が必要である。しかし、加熱温度が1250℃
をこえるとオ−ステナイト粒が粗大化して、その後の圧
延による微細化効果を充分に発揮できなくなり、靱性が
劣化する。また、Nbを添加する場合は、その効果をえ
るにはある程度のNbの固溶化が必要であり、このため
にも1050℃以上の加熱温度が必要である。しかし、
1250℃をこえて加熱すると全てのNbが固溶してし
まい、前述のオ−ステナイト粒界のピンニング効果が失
われ粗大粒化する。したがって加熱温度は1050〜1
250℃の範囲に限定する。
Although the chemical composition has been mainly described above, the action and effect of the present invention cannot be sufficiently obtained only by limiting the chemical composition. In order to improve the low temperature toughness of the multi-layer welded HAZ that can meet the high CTOD value requirement, which is the object of the present invention, it is necessary to maintain high toughness of the base metal. For that purpose, it is essential to limit manufacturing conditions such as rolling conditions as described below. That is, in the present invention, a continuously cast steel piece that can be efficiently produced is used as a base material, but in the continuously cast steel piece, segregation occurs in the center part of the plate thickness, so after rolling, this portion is hard and brittle and has an abnormal structure. And significantly impairs toughness. In order to prevent the occurrence of this abnormal structure, it is necessary to make the components in the steel uniform. For that purpose, a heating temperature of 1050 ° C. or higher is necessary. However, the heating temperature is 1250 ° C
If it exceeds, the austenite grains are coarsened, and the effect of refining by the subsequent rolling cannot be sufficiently exerted, and the toughness deteriorates. In addition, when Nb is added, it is necessary to form a solid solution of Nb to some extent in order to obtain its effect, and for this purpose, a heating temperature of 1050 ° C. or higher is necessary. But,
When heated above 1250 ° C., all Nb is solid-dissolved, the pinning effect of the austenite grain boundaries described above is lost, and coarse grains are formed. Therefore, the heating temperature is 1050-1
Limit to the range of 250 ° C.

【0016】本発明では上記の温度範囲に加熱した鋼片
を用いて圧延をおこなうが、Ar3以上、900℃以下の
温度範囲での圧下率を25%以上とする。特に好ましい
効果的な圧下率の範囲は25〜60%である。ここで、
Ar3温度は次式によって算出する。 Ar3(℃)=910−273C(%)−74Mn(%)
−56Ni(%)−16Cr(%)−9Mo(%)−5
Cu(%) この温度範囲での圧下率が25%を下廻ると未再結晶域
での圧下が少なく、充分なオ−ステナイトの微細化とそ
の後のフェライトの細粒化が得られない。したがって靱
性を高位に維持することができない。また、この圧延の
温度範囲がAr3温度を下回るか、あるいは900℃をこ
えると有効な未再結晶域での圧下率が低下する。さら
に、この圧延の後、Ar3−50℃以上、Ar3以下の温度
範囲で累積圧下率が10%以上、45%以下の範囲で圧
延をおこなってもよい。この圧延によって、さらにフェ
ライトを微細化することができるが、45%をこえる圧
延をおこなうと圧延歪の蓄積が多くなりすぎるため、加
工硬化によって靱性は反対に著しく劣化する。
In the present invention, rolling is performed using a steel slab heated to the above temperature range, and the rolling reduction is 25% or more in the temperature range of Ar 3 or more and 900 ° C. or less. A particularly preferable range of effective rolling reduction is 25 to 60%. here,
The Ar 3 temperature is calculated by the following formula. Ar 3 (℃) = 910-273C ( %) - 74Mn (%)
-56Ni (%)-16Cr (%)-9Mo (%)-5
Cu (%) If the rolling reduction in this temperature range is less than 25%, the rolling reduction in the non-recrystallized region is small, and sufficient austenite refining and subsequent ferrite grain refinement cannot be obtained. Therefore, the toughness cannot be maintained at a high level. Further, if the rolling temperature range is below the Ar 3 temperature or exceeds 900 ° C., the rolling reduction in the effective unrecrystallized region decreases. Further, after this rolling, rolling may be carried out within a temperature range of Ar 3 to 50 ° C. or higher and Ar 3 or lower and a cumulative rolling reduction of 10% or more and 45% or less. By this rolling, the ferrite can be further refined, but if rolling exceeding 45% is performed, the accumulation of rolling strain becomes too large, so that the work hardening conversely significantly deteriorates the toughness.

【0017】上記の圧延方法によると圧延後の冷却は空
冷または強制冷却のいずれの方法でおこなっても本発明
の効果は充分にえられる。冷却方法は目的とする鋼板の
強度に応じて選択すればよい。冷却後、400℃以上、
650℃以下の温度範囲で再加熱してCuの析出硬化を
利用して強度の上昇を図る。特に好ましい再加熱の温度
範囲は450℃から550℃の間である。400℃以下
の再加熱温度では析出が少なく充分な析出硬化がえられ
ない。一方650℃以上では析出が多すぎるか、もしく
は凝集して析出硬化の効果が充分に発揮されないばかり
でなく、析出物による靱性の低下を招く。最も適正な温
度範囲は450℃以上、550℃以下である。
According to the above rolling method, the effect of the present invention can be sufficiently obtained regardless of whether the cooling after rolling is performed by air cooling or forced cooling. The cooling method may be selected according to the intended strength of the steel sheet. After cooling, 400 ℃ or more,
Reheating is performed in a temperature range of 650 ° C. or lower to increase the strength by utilizing the precipitation hardening of Cu. A particularly preferred reheating temperature range is between 450 ° C and 550 ° C. At a reheating temperature of 400 ° C or less, precipitation is insufficient and sufficient precipitation hardening cannot be obtained. On the other hand, if the temperature is 650 ° C. or higher, not only will the precipitation be excessive, or the particles will aggregate and the effect of precipitation hardening will not be sufficiently exerted, but also the toughness will be lowered by the precipitates. The most appropriate temperature range is 450 ° C or higher and 550 ° C or lower.

【0018】[0018]

【実施例】表1に本発明の実施例の鋼と比較例の鋼の化
学組成を示した。化学組成は全てスラブの取鍋分析値で
ある。また前述の計算式によるAr3温度の計算値および
加熱温度も併記した。表2に圧下率、再加熱温度等の圧
延条件と母材の引張特性、衝撃特性および溶接部の靱性
値等の試験結果とを併記して示した。引張試験について
JISに準拠し、平行部10mmφの引張試験片につい
ておこなった。溶接部の靱性評価では、5kJ/mmの
入力によるサブマ−ジア−ク溶接によりK型開先の継手
を作成し、板厚方向に生成したほぼ直線的な溶融線近傍
を評価対象とした。なお、溶接時の予熱は行わなかっ
た。図1はCTOD試験片の採取位置を示すものであ
る。CTOD試験は英国規格BS5762(1979)
に準拠して、板厚方向全厚にノッチ加工し、圧延方向を
ノッチ方向として−10℃でおこなった。なお、図1の
各部の寸法は下記の通りである。 L=250mm W=50mm B=25mm
a=25mm
EXAMPLES Table 1 shows the chemical compositions of the steels of Examples of the present invention and the steels of Comparative Examples. All chemical compositions are slab ladle analysis values. Further, the calculated value of the Ar 3 temperature and the heating temperature according to the above-mentioned calculation formula are also shown. Table 2 also shows the rolling conditions such as the rolling reduction and the reheating temperature, and the test results such as the tensile properties and impact properties of the base material and the toughness values of the welded parts. Tensile test was performed on a tensile test piece having a parallel portion of 10 mmφ according to JIS. In the toughness evaluation of the welded portion, a K-shaped groove joint was prepared by sub-marque welding with an input of 5 kJ / mm, and the vicinity of the substantially linear fusion line generated in the plate thickness direction was evaluated. No preheating was performed during welding. FIG. 1 shows a sampling position of a CTOD test piece. CTOD test is British standard BS5762 (1979)
In accordance with the above, notch processing was performed on the entire thickness in the plate thickness direction, and the rolling direction was performed at -10 ° C with the notch direction. The dimensions of each part in FIG. 1 are as follows. L = 250 mm W = 50 mm B = 25 mm
a = 25 mm

【0019】表1には本発明の実施例と比較例の化学組
成と計算によって求めたAr3 温度を、また、表2には
鋼種番号1〜30の鋼板の圧延条件、機械的特性および
継手靱性を示す。鋼種番号1〜15の鋼板は本発明の化
学組成と圧延条件ともに満足している実施例の鋼板であ
る。一方、鋼種番号16、17、23の鋼板は、圧延条
件は満足しているが化学組成が満足しない場合である。
例えば、鋼種番号16、17の鋼板はSi量が多く、鋼
種番号23の鋼板はNbが高すぎる。また、鋼種番号1
8〜22および24、25の鋼板は化学組成条件と圧延
条件ともに満足していない。さらに鋼種番号26〜30
の鋼板は、化学組成は満足するものの圧延条件が満足し
ていない。例えば、鋼種番号27、28の鋼板はそれぞ
れ加熱温度が低すぎる場合と高すぎる場合である。ま
た、鋼種番号26、30の鋼板は再加熱条件がそれぞれ
本発明の条件より低すぎるか、高すぎる場合である。鋼
種番号29の鋼板はAr3 〜900°の圧下率が本発明
の必要とする条件よりも小さい。継手靱性をCTOD値
で評価すると、鋼種番号1〜15の本発明の実施例の鋼
板は極めて優れた特性が得られているにもかかわらず、
化学組成と圧延条件の両方が本発明の条件を満足しない
鋼種番号16〜30の本発明の比較例の鋼板では卓越し
た靱性が得られていないことは明らかである。
Table 1 shows the chemical compositions of Examples and Comparative Examples of the present invention and the Ar 3 temperature determined by calculation, and Table 2 shows the rolling conditions, mechanical properties and joints of steel sheets of steel types 1 to 30. Shows toughness. Steel sheets of steel type numbers 1 to 15 are steel sheets of Examples satisfying both the chemical composition of the present invention and rolling conditions. On the other hand, the steel sheets of steel type numbers 16, 17, and 23 are cases where the rolling conditions are satisfied but the chemical compositions are not satisfied.
For example, the steel plates of steel type numbers 16 and 17 have a large amount of Si, and the steel plates of steel type number 23 have too high Nb. Also, steel type number 1
The steel sheets of 8 to 22 and 24 and 25 do not satisfy both the chemical composition condition and the rolling condition. Further steel type number 26-30
The steel sheet of No. 1 satisfies the chemical composition but does not satisfy the rolling conditions. For example, the steel plates of steel types Nos. 27 and 28 have heating temperatures that are too low and too high, respectively. Further, the steel sheets of steel type Nos. 26 and 30 have reheating conditions that are either too low or too high, respectively, compared to the conditions of the present invention. The steel plate of steel type number 29 has a reduction ratio of Ar 3 to 900 ° smaller than the condition required by the present invention. When the joint toughness is evaluated by the CTOD value, the steel sheets of the examples of the present invention having steel type numbers 1 to 15 have extremely excellent properties,
It is clear that excellent toughness is not obtained in the steel sheets of Comparative Examples of the present invention of Steel Grade Nos. 16 to 30 in which both the chemical composition and the rolling conditions do not satisfy the conditions of the present invention.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】以上のように本発明によると、多層溶接
部で、従来の鋼に比較してCTOD値が高く、極めて優
れた低温靱性を有する高張力鋼板を容易に製造すること
ができる。
As described above, according to the present invention, it is possible to easily manufacture a high-strength steel sheet having a high CTOD value in a multi-layer weld portion as compared with conventional steel and having extremely excellent low temperature toughness.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のCTOD試験の試験片採取方法を示し
た説明図である。
FIG. 1 is an explanatory view showing a method for collecting a test piece in a CTOD test of an example.

【符号の説明】[Explanation of symbols]

t 板厚 t plate thickness

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、 C:0.01〜0.15
%、 Si:0.15%以下、 Mn:0.5〜2.0
%、 S:0.005%以下、 Cu:0.5〜2.0
%、 Ni:0.1〜1.5%、 Al:0.005〜
0.1%、 Ca:0.0005〜0.005%を含有
する連続鋳造鋼片を、 1050〜1250℃の温度に加熱し、その後、Ar3
900℃の温度範囲で累積圧下率が25%以上となる熱
間圧延を行い、空冷または強制冷却した後、さらに40
0〜650℃に再加熱することを特徴とする多層溶接部
の低温靱性に優れた高張力鋼の製造方法。
1. A weight ratio of C: 0.01 to 0.15.
%, Si: 0.15% or less, Mn: 0.5 to 2.0
%, S: 0.005% or less, Cu: 0.5 to 2.0
%, Ni: 0.1-1.5%, Al: 0.005-
A continuously cast steel slab containing 0.1% and Ca: 0.0005 to 0.005% is heated to a temperature of 1050 to 1250 ° C., and then Ar 3 to.
In the temperature range of 900 ° C., hot rolling with a cumulative reduction of 25% or more is performed, and after air cooling or forced cooling, further 40
A method for producing a high-strength steel excellent in low-temperature toughness of a multi-layer weld, characterized by reheating to 0 to 650 ° C.
【請求項2】 重量比で、 C:0.01〜0.15
%、 Si:0.15%以下、 Mn:0.5〜2.0
%、 S:0.005%以下、 Cu:0.5〜2.0
%、 Ni:0.1〜1.5%、 Al:0.005〜
0.1%、 Ca:0.0005〜0.005%を含有
する連続鋳造鋼片を、 1050〜1250℃の温度に加熱し、その後、Ar3
900℃の温度範囲で圧下率が25%以上、(Ar3−5
0℃)〜Ar3の温度範囲で累積圧下率が10〜45%と
なる熱間圧延を行い、空冷または強制冷却した後、さら
に400〜650℃に再加熱することを特徴とする多層
溶接部の低温靱性に優れた高張力鋼の製造方法。
2. A weight ratio of C: 0.01 to 0.15.
%, Si: 0.15% or less, Mn: 0.5 to 2.0
%, S: 0.005% or less, Cu: 0.5 to 2.0
%, Ni: 0.1-1.5%, Al: 0.005-
A continuously cast steel slab containing 0.1% and Ca: 0.0005 to 0.005% is heated to a temperature of 1050 to 1250 ° C., and then Ar 3 to.
Rolling reduction of 25% or more in a temperature range of 900 ℃, (Ar 3 -5
(0 ° C.) to Ar 3 hot rolling with a cumulative rolling reduction of 10 to 45%, air cooling or forced cooling, and then reheating to 400 to 650 ° C. Method for producing high strength steel excellent in low temperature toughness.
【請求項3】 連続鋳造鋼片が重量比で、 C:0.0
1〜0.15%、Si:0.15%以下、 Mn:0.
5〜2.0%、 S:0.005%以下、Cu:0.5
〜2.0%、 Ni:0.1〜1.5%、 Al:0.
005〜0.1%、 Ca:0.0005〜0.005
%を含有し、 さらに、Nb:0.07%以下、 V:0.1%以下、
Mo:0.2%以下、 Ti:0.02%以下のうち
の1種または2種以上を含有する連続鋳造鋼片であるこ
とを特徴とする請求項1または請求項2記載の多層溶接
部の低温靱性に優れた高張力鋼の製造方法。
3. The continuously cast steel billets have a weight ratio of C: 0.0.
1 to 0.15%, Si: 0.15% or less, Mn: 0.
5 to 2.0%, S: 0.005% or less, Cu: 0.5
.About.2.0%, Ni: 0.1 to 1.5%, Al: 0.
005-0.1%, Ca: 0.0005-0.005
%, Nb: 0.07% or less, V: 0.1% or less,
The multi-layer welded part according to claim 1 or 2, which is a continuously cast steel slab containing one or more of Mo: 0.2% or less and Ti: 0.02% or less. Method for producing high strength steel excellent in low temperature toughness.
JP1841192A 1992-01-08 1992-01-08 Production of high tensile steel having excellent low-temperature toughness of multilayer weld zone Pending JPH05179344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1841192A JPH05179344A (en) 1992-01-08 1992-01-08 Production of high tensile steel having excellent low-temperature toughness of multilayer weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1841192A JPH05179344A (en) 1992-01-08 1992-01-08 Production of high tensile steel having excellent low-temperature toughness of multilayer weld zone

Publications (1)

Publication Number Publication Date
JPH05179344A true JPH05179344A (en) 1993-07-20

Family

ID=11970917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1841192A Pending JPH05179344A (en) 1992-01-08 1992-01-08 Production of high tensile steel having excellent low-temperature toughness of multilayer weld zone

Country Status (1)

Country Link
JP (1) JPH05179344A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447925B1 (en) * 1999-12-30 2004-09-08 주식회사 포스코 Method of manufacturing high strength steel with high toughness
KR100643360B1 (en) * 2005-06-23 2006-11-10 주식회사 포스코 Method for producing high-strength thick steel plate having excellent weldability and low temperature toughness
KR100723201B1 (en) * 2005-12-16 2007-05-29 주식회사 포스코 High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same
WO2015022729A1 (en) 2013-08-13 2015-02-19 新日鐵住金株式会社 Steel plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447925B1 (en) * 1999-12-30 2004-09-08 주식회사 포스코 Method of manufacturing high strength steel with high toughness
KR100643360B1 (en) * 2005-06-23 2006-11-10 주식회사 포스코 Method for producing high-strength thick steel plate having excellent weldability and low temperature toughness
KR100723201B1 (en) * 2005-12-16 2007-05-29 주식회사 포스코 High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same
WO2015022729A1 (en) 2013-08-13 2015-02-19 新日鐵住金株式会社 Steel plate

Similar Documents

Publication Publication Date Title
KR101846759B1 (en) Steel plate and method for manufacturing same
EP2305850B1 (en) High-strength thick steel products excellent in toughness and weldability, high-strength ultra-thick h shape steel and processes for manufacturing both
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
US10081042B2 (en) Electric resistance welded steel pipe excellent in weld zone and method of production of same
JP4696570B2 (en) Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP5151693B2 (en) Manufacturing method of high-strength steel
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
KR100723201B1 (en) High strength and toughness steel having superior toughness in multi-pass welded region and method for manufacturing the same
JP5157030B2 (en) Manufacturing method of high strength line pipe steel with excellent HIC resistance
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2004162085A (en) Steel plate with excellent fatigue crack propagation resistance, and its manufacturing method
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP4276341B2 (en) Thick steel plate having a tensile strength of 570 to 720 N / mm2 and a small hardness difference between the weld heat-affected zone and the base material, and a method for producing the same
JP2007217772A (en) Method for producing high strength/high toughness steel
JP4311226B2 (en) Manufacturing method of high-tensile steel sheet
JPH05179344A (en) Production of high tensile steel having excellent low-temperature toughness of multilayer weld zone
CN115989327A (en) Thick steel plate and method for producing same
JP3244981B2 (en) Weldable high-strength steel with excellent low-temperature toughness
JP3736209B2 (en) High tensile steel with excellent weld toughness and manufacturing method thereof
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JPH06240406A (en) Steel plate with high strength and high toughness