JPH0366383B2 - - Google Patents

Info

Publication number
JPH0366383B2
JPH0366383B2 JP59138276A JP13827684A JPH0366383B2 JP H0366383 B2 JPH0366383 B2 JP H0366383B2 JP 59138276 A JP59138276 A JP 59138276A JP 13827684 A JP13827684 A JP 13827684A JP H0366383 B2 JPH0366383 B2 JP H0366383B2
Authority
JP
Japan
Prior art keywords
parts
toughness
steel
tensile strength
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59138276A
Other languages
Japanese (ja)
Other versions
JPS6119761A (en
Inventor
Yoshiro Koyasu
Yutaka Tsuchida
Shinichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13827684A priority Critical patent/JPS6119761A/en
Priority to GB08516910A priority patent/GB2163454B/en
Publication of JPS6119761A publication Critical patent/JPS6119761A/en
Priority to US06/942,960 priority patent/US4806178A/en
Publication of JPH0366383B2 publication Critical patent/JPH0366383B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、機械部品等の製造において、熱間鍛
造で成形後の焼入・焼戻処理を行うことなく、す
なわち非調質で高い靭性の得られる熱間鍛造非調
質部品の製造方法に関するものである。 (従来の技術) 自動車部品等の機械部品は、棒鋼から熱間鍛造
で成形後焼入・焼戻処理(調質処理)し、切削加
工して製造されるものが多い。このような部品製
造において、省エネルギー、部品製造コスト低減
を目的に、熱間鍛造後の余熱を利用した鍛造直接
焼入あるいはV、Nb等の析出硬化を利用した非
調質鋼等が熱処理の簡省略技術として広く知られ
ている(例えば、自動車技術37巻 No.3 242頁
1983年あるいは特開昭55−82749号公報)。しか
し、これらのV、Nb等を添加したいわゆるマイ
クロアロイイング技術を利用した非調質鋼は、基
地の金属組織がフエライト・パーライト組織であ
り、又使用法の性格上熱間鍛造後放冷のままで使
用されるため結晶粒が粗大で靭性が低く、その実
部品への適用範囲は限定されており、重要保安部
品である足廻り部品等には使用されていないのが
現状である。これらの従来の非調質鋼の靭性はそ
の部品の大きさ、目標強度レベル、鍛造方法、条
件等により異なるが、JIS 3号衝撃試験片による
25℃での衝撃値は5Kg・m/cm2以下と低いのが実
状である。靭性を高めるため、鍛造の際の加熱温
度、仕上温度等を下げることにより結晶粒を細か
くして高い靭性を得ることが可能であるが、そう
することにより鍛造型の寿命、型への充満度等の
別の問題が生じてくる。 (発明が解決しようとする問題点) 本発明は、このような上記問題点を解消し、高
い靭性の得られる熱間鍛造非調質部品の製造方法
を提供するものである。 (問題点を解決するための手段) 本発明の要旨は、重量%でC:0.05〜0.18%、
Si:0.10〜1.00%、Mn:0.60〜3.00%、Cr:0.50
〜3.60%、但しCr+Mn:2.50〜4.20%、Ti:
0.010〜0.030%、B:0.0005〜0.0030%、Al:0.01
〜0.05%、N:0.0060%以下を含み残りは実質的
にFeよりなる鋼を熱間鍛造後、800〜400℃の温
度区間を120〜12℃/minの冷却速度で冷却する
ことを特徴とする70〜100Kg/mm2の引張強さ、25
℃で5Kg・m/cm2以上の衝撃値を有する熱間鍛造
非調質部品の製造方法である。 (作用) 本発明者らは、従来の熱間鍛造用非調質鋼と比
較して飛躍的に高い靭性が得られる熱間鍛造非調
質部品の製造方法を開発すべく次のような実験を
行つた。即ち、供試材として重量%でC:0.05〜
0.20%、Si:0.10〜1.00%、Mn:0.60〜3.00%、
Cr:0.50〜4.00%、Ti:0.010〜0.030%、B:
0.0005〜0.0030%、Al:0.01〜0.05%、N:0.0060
%以下、残りは実質的にFeである鋼を150Kg真空
溶解炉で溶製し、鍛造で30〜50mmの棒鋼とした。
この棒鋼を1250℃に加熱後800〜400℃の温度区間
を120〜12℃/minの冷却速度で冷却し、非調質
熱間鍛造部品の製造方法のシミユレーシヨン試験
を行つた。 この試験により鋼中C量と引張強さの関係につ
いて第1図に示すような結果を得た。本発明の対
象となる機械部品は引張強さで70〜100Kg/mm2
あるので、C量は0.05〜0.18%必要であることが
わかつた。 さらに引張強さに及ぼすCr、Mn量の影響につ
いて重回帰分析により解析した結果、Cr+Mn≧
1.50%の範囲で引張強さに対し式のような回帰
式を得た。 σB(Kg/mm2)=400×(%C)+33 ×[(%Mn)+(%Cr)]−56 … 第2図に、回帰式による計算結果と実測した
引張強さの関係を示す。実際の引張強さと成分に
よる計算結果がよく一致していることが判る。 式と、C量が0.05〜0.18%の範囲で引張強さ
70〜100Kg/mm2を得るためとより、Cr+Mnの量
は2.50〜4.20%にする必要があることを見だし
た。 以上の知見をもとに、Si:0.10〜1.00%、Ti:
0.010〜0.030%、B:0.0005〜0.0030%、Al:0.01
〜0.05%、N:0.0060%以下を含む鋼において、
C:0.05〜0.18%、Mn:0.60〜3.00%、Cr:0.50
〜3.60%、但しCr+Mn:2.50〜4.20%、残部は実
質的にFeであれば、熱間鍛造後800〜400℃の温
度範囲を120〜12℃/minの冷却速度で冷却する
ことにより引張強さ70〜100Kg/mm2、25℃の衝撃
値5Kg・m/cm2以上が得られることを見出し、本
発明を完成した。 以下、本発明を詳細に説明する。 Cは製品の強度を決める重要な元素の一つであ
り、0.05未満では必要な強度を得るための合金元
素の量が多くなり過ぎ不経済であるので0.05%以
上とした。一方、0.18%を超えると強度が高くな
り過ぎ、靭性、被削性が低下するので上限を0.18
%とした。 Siは脱酸に必要な元素で、0.10%以上必要であ
る。又、1.00%以上添加しても必要以上に強度が
高くなり過ぎるので、1.00%を上限とした。 Mnは脱酸、およびC、Crと共に製品の強度、
靭性を支配する元素であり、かつ鋼中Sと結びつ
いて鋼の熱間加工時の脆化を防止するために必要
であり、そのため0.60%以上必要である。又、
3.00%を超すと被削性の低下および製造上の困難
さが増すので、3.00%を上限とする。 Crは上述の如くC、Mnと共に製品の強度、靭
性を調節するため0.5%以上必要であるが、しか
し必要以上に添加するとむしろ悪化するので3.60
%以下とし、但しCr+Mnの量で2.50〜4.20%に
なるよう添加する必要がある。Cr+Mnの量が
2.50%未満では靭性が低下する。又、Cr+Mnの
量が4.20%を超えると強度が高くなり過ぎるた
め、上限を4.20%とした。 Tiは後述するBを有効に働かすためNを固定
するために必要であり、0.010%未満ではNを固
定するに十分ではなく、又0.030%を超えて添加
しても効果が飽和するため下限を0.010%、上限
を0.030%とした。 Bは鋼の焼入性を改善するために0.0005〜
0.0030%必要である。0.0005%未満ではその効果
が小さく、又0.0030%を超して添加しても効果が
飽和するため、下限を0.0005%、上限を0.0030%
とした。 Alは脱酸剤として、又結晶粒コントロールの
ため0.01〜0.05%必要である。0.01%未満では脱
酸、結晶粒をコントロールするための量としては
不十分であり、一方0.05%を超えて添加してもそ
れに見合う効果が得られず不経済であるので上限
を0.05%とした。 N量は0.0060%を超すとNを固定させるために
必要なTiの量が多くなり過ぎ、TiNの存在によ
り靭性が低下するため、上限を0.0060%とした。 なお、上記成分の他に被削性の向上を図るた
め、0.07%までのSあるいは0.30%までのpbを添
加することは有効である。 次に鍛造後の冷却速度であるが、800〜400℃の
変態温度区間の冷却速度が120℃/minより速い
場合、得られる非調質部品の強度が高くなり過ぎ
靭性が損なわれるので避けなければならない。一
方12℃/minより遅い場合、非調質部品の強度が
低過ぎるのでこれまた避けなければならない。 (実施例) 以下に実施例を挙げて本発明の効果をさらに具
体的に説明する。 実施例 1 第1表に示す化学成分を有する鋼を500Kg真空
溶解炉にて溶製し、鋼塊とした後、90mm角の棒鋼
に鍛造した。この棒鋼を自動車の前車軸に熱間鍛
造にて成形し、800〜400℃の温度域を25℃/min
の冷却速度で冷却した。この前車軸より引張試験
片、衝撃試験片を採取し、機械的性質を調査し、
第2表の結果を得た。第2表からわかる如く、本
発明法によるNo.1〜No.5の例は70〜100Kg/mm2
引張強さと高い靭性を有している。 なお、比較例No.6は引張強さが100Kg/mm2を超
えた例であり、比較例No.7はTi、Bが添加され
ておらず強度が低い場合の例である。
(Industrial Application Field) The present invention is a method for producing machine parts, etc. by hot forging without quenching or tempering after forming, that is, without heat-refining and achieving high toughness. The present invention relates to a method for manufacturing heat-treated parts. (Prior Art) Many mechanical parts such as automobile parts are manufactured by hot forging from steel bars, forming them, quenching and tempering them (refining treatment), and cutting them. In the manufacture of such parts, for the purpose of energy saving and reduction of parts manufacturing costs, forging direct quenching using the residual heat after hot forging or non-thermal treatment steel using precipitation hardening of V, Nb, etc. are used to simplify heat treatment. It is widely known as an abbreviation technique (for example, Automobile Technology Vol. 37 No. 3, p. 242)
(1983 or Japanese Patent Application Laid-open No. 55-82749). However, these non-tempered steels made using the so-called microalloying technology with additions of V, Nb, etc. have a base metal structure of ferrite/pearlite structure, and due to the nature of their usage, they cannot be allowed to cool after hot forging. Since it is used as is, its crystal grains are coarse and its toughness is low, and its applicability to actual parts is limited, and currently it is not used in suspension parts, etc., which are important safety parts. The toughness of these conventional non-tempered steels varies depending on the size of the part, target strength level, forging method, conditions, etc., but the toughness is determined by JIS No. 3 impact test pieces.
The reality is that the impact value at 25°C is as low as 5 kg·m/cm 2 or less. In order to increase toughness, it is possible to make the crystal grains finer and obtain higher toughness by lowering the heating temperature and finishing temperature during forging, but this will reduce the life of the forging die and the degree of filling in the die Another problem arises. (Problems to be Solved by the Invention) The present invention solves the above-mentioned problems and provides a method for manufacturing hot-forged non-thermal refined parts that can obtain high toughness. (Means for Solving the Problems) The gist of the present invention is that C: 0.05 to 0.18% by weight,
Si: 0.10~1.00%, Mn: 0.60~3.00%, Cr: 0.50
~3.60%, however, Cr+Mn: 2.50~4.20%, Ti:
0.010~0.030%, B: 0.0005~0.0030%, Al: 0.01
~0.05%, N: 0.0060% or less, and the rest is essentially Fe, after hot forging, the steel is cooled at a cooling rate of 120-12°C/min in a temperature range of 800-400°C. Tensile strength of 70~100Kg/ mm2 , 25
This is a method for producing hot-forged non-temperature parts having an impact value of 5 kg·m/cm 2 or more at ℃. (Function) The present inventors conducted the following experiments in order to develop a method for manufacturing hot-forged non-heat-treated parts that can obtain significantly higher toughness than conventional hot-forged non-heat-treated steel. I went to That is, as a sample material, C: 0.05 ~
0.20%, Si: 0.10~1.00%, Mn: 0.60~3.00%,
Cr: 0.50-4.00%, Ti: 0.010-0.030%, B:
0.0005~0.0030%, Al: 0.01~0.05%, N: 0.0060
% or less, the remainder being essentially Fe, was melted in a 150Kg vacuum melting furnace and forged into a 30-50mm steel bar.
After heating this steel bar to 1250°C, it was cooled at a cooling rate of 120 to 12°C/min in the temperature range of 800 to 400°C, and a simulation test of a method for manufacturing non-thermal hot forged parts was conducted. Through this test, results as shown in FIG. 1 were obtained regarding the relationship between C content in steel and tensile strength. Since the mechanical parts targeted by the present invention have a tensile strength of 70 to 100 Kg/mm 2 , it was found that the amount of C was required to be 0.05 to 0.18%. Furthermore, as a result of analyzing the influence of Cr and Mn contents on tensile strength by multiple regression analysis, it was found that Cr+Mn≧
A regression equation was obtained for the tensile strength in the range of 1.50%. σ B (Kg/mm 2 ) = 400 x (%C) + 33 x [(%Mn) + (%Cr)] - 56... Figure 2 shows the relationship between the calculation results using the regression equation and the actually measured tensile strength. show. It can be seen that the actual tensile strength and the calculated results based on the components are in good agreement. formula and tensile strength in the range of C content from 0.05 to 0.18%
It has been found that in order to obtain 70 to 100 Kg/ mm2 , the amount of Cr+Mn needs to be 2.50 to 4.20%. Based on the above knowledge, Si: 0.10-1.00%, Ti:
0.010~0.030%, B: 0.0005~0.0030%, Al: 0.01
~0.05%, N: In steel containing 0.0060% or less,
C: 0.05-0.18%, Mn: 0.60-3.00%, Cr: 0.50
~3.60%, however, Cr+Mn: 2.50~4.20%, and the remainder is substantially Fe. After hot forging, tensile strength can be improved by cooling in the temperature range of 800~400℃ at a cooling rate of 120~12℃/min. It was discovered that an impact value of 70 to 100 Kg/mm 2 and an impact value of 5 Kg·m/cm 2 or more at 25° C. could be obtained, and the present invention was completed. The present invention will be explained in detail below. C is one of the important elements that determines the strength of products, and if it is less than 0.05, the amount of alloying elements required to obtain the required strength will be too large and uneconomical, so it is set at 0.05% or more. On the other hand, if it exceeds 0.18%, the strength will become too high and the toughness and machinability will decrease, so the upper limit should be set at 0.18%.
%. Si is an element necessary for deoxidation, and 0.10% or more is required. Furthermore, even if 1.00% or more is added, the strength becomes too high than necessary, so 1.00% is set as the upper limit. Mn deoxidizes, and together with C and Cr, strengthens the product.
It is an element that controls toughness, and is necessary to combine with S in steel to prevent embrittlement during hot working of steel, and therefore requires a content of 0.60% or more. or,
If it exceeds 3.00%, machinability decreases and manufacturing difficulties increase, so the upper limit is set at 3.00%. As mentioned above, Cr is necessary to adjust the strength and toughness of the product along with C and Mn in an amount of 0.5% or more.
% or less, however, it is necessary to add so that the amount of Cr + Mn is 2.50 to 4.20%. The amount of Cr+Mn
If it is less than 2.50%, toughness decreases. Furthermore, if the amount of Cr+Mn exceeds 4.20%, the strength becomes too high, so the upper limit was set at 4.20%. Ti is necessary to fix N in order to effectively work B, which will be described later. If it is less than 0.010%, it is not sufficient to fix N, and if it is added in excess of 0.030%, the effect will be saturated, so the lower limit should be set. 0.010%, with an upper limit of 0.030%. B is 0.0005 to improve the hardenability of steel.
0.0030% is required. The effect is small if it is less than 0.0005%, and the effect is saturated even if it exceeds 0.0030%, so the lower limit is 0.0005% and the upper limit is 0.0030%.
And so. Al is required in an amount of 0.01 to 0.05% as a deoxidizing agent and for grain control. Less than 0.01% is insufficient for deoxidizing and controlling crystal grains, while adding more than 0.05% does not produce commensurate effects and is uneconomical, so the upper limit was set at 0.05%. . If the amount of N exceeds 0.0060%, the amount of Ti required to fix N becomes too large, and the presence of TiN reduces toughness, so the upper limit was set at 0.0060%. In addition to the above components, it is effective to add up to 0.07% S or up to 0.30% Pb in order to improve machinability. Next, regarding the cooling rate after forging, if the cooling rate in the transformation temperature range of 800 to 400°C is faster than 120°C/min, the strength of the resulting non-thermal parts will become too high and the toughness will be impaired, so this must be avoided. Must be. On the other hand, if it is slower than 12°C/min, the strength of the non-tempered parts will be too low, so this should also be avoided. (Example) The effects of the present invention will be explained in more detail with reference to Examples below. Example 1 Steel having the chemical composition shown in Table 1 was melted in a 500 kg vacuum melting furnace to form a steel ingot, which was then forged into a 90 mm square steel bar. This steel bar is formed into the front axle of a car by hot forging, and is heated at a temperature range of 800 to 400°C at 25°C/min.
It was cooled at a cooling rate of . A tensile test piece and an impact test piece were taken from this front axle, and the mechanical properties were investigated.
The results shown in Table 2 were obtained. As can be seen from Table 2, Examples No. 1 to No. 5 produced by the method of the present invention have a tensile strength of 70 to 100 Kg/mm 2 and high toughness. Note that Comparative Example No. 6 is an example in which the tensile strength exceeds 100 Kg/mm 2 , and Comparative Example No. 7 is an example in which Ti and B are not added and the strength is low.

【表】【table】

【表】【table】

【表】 実施例 2 第3表に示す化学成分を有する鋼を溶製し、通
常の方法で直径75mmの棒鋼に圧延した。 この棒鋼を加熱温度1200℃、仕上温度1050℃の
通常の熱間鍛造の条件下で乗用車のナツクルに加
工し、800〜400℃の区間を種々の条件で冷却し
た。 第4表から判る如く本発明例では高い強度と高
い靭性が得られた。
[Table] Example 2 Steel having the chemical composition shown in Table 3 was melted and rolled into a steel bar with a diameter of 75 mm using a conventional method. This steel bar was processed into a nut for a passenger car under normal hot forging conditions of a heating temperature of 1200°C and a finishing temperature of 1050°C, and then cooled in the range of 800 to 400°C under various conditions. As can be seen from Table 4, high strength and high toughness were obtained in the examples of the present invention.

【表】【table】

【表】 (発明の効果) 以上述べたように、本発明法により熱間鍛造後
熱処理を施すことなく、すなわち非調質で70〜
100Kg/mm2の引張強さと高い靭性を有する機械部
品が得られ、自動車の足廻り部品等の重要保安部
品とすることができる。
[Table] (Effects of the invention) As described above, the method of the present invention can be used without heat treatment after hot forging, that is, without heat refining.
Machine parts with a tensile strength of 100 kg/mm 2 and high toughness can be obtained, and can be used as important safety parts such as automobile suspension parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法のC含有量と引張強さの関係
を示す図である。第2図は回帰式による計算結
果と実測した引張強さの関係を示す図である。
FIG. 1 is a diagram showing the relationship between C content and tensile strength in the method of the present invention. FIG. 2 is a diagram showing the relationship between the calculation results using the regression equation and the actually measured tensile strength.

Claims (1)

【特許請求の範囲】 1 重量%で C :0.05〜0.18%、 Si:0.10〜1.00%、 Mn:0.60〜3.00%、 Cr:0.50〜3.60%、 但しCr+Mn:2.50〜4.20%、 Ti:0.010〜0.030%、 B :0.0005〜0.0030%、 Al:0.01〜0.05%、 N: 0.0060%以下 を含み残りは実質的にFeよりなる鋼を熱間鍛造
後、800〜400℃の温度区間を120〜12℃/minの
冷却速度で冷却することを特徴とする70〜100
Kg/mm2の引張強さ、25℃で5Kg・m/cm2以上の衝
撃値を有する熱間鍛造非調質部品の製造方法。
[Claims] 1% by weight: C: 0.05-0.18%, Si: 0.10-1.00%, Mn: 0.60-3.00%, Cr: 0.50-3.60%, provided that Cr+Mn: 2.50-4.20%, Ti: 0.010- After hot forging steel containing 0.030%, B: 0.0005 to 0.0030%, Al: 0.01 to 0.05%, N: 0.0060% or less and the remainder substantially consisting of Fe, the steel was heated in a temperature range of 800 to 400℃ for 120 to 12 70 to 100, characterized by cooling at a cooling rate of ℃/min
A method for producing a hot-forged non-tempered part having a tensile strength of Kg/mm 2 and an impact value of 5 Kg/cm 2 or more at 25°C.
JP13827684A 1984-07-04 1984-07-04 High toughness hot forged non-refining steel bar Granted JPS6119761A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13827684A JPS6119761A (en) 1984-07-04 1984-07-04 High toughness hot forged non-refining steel bar
GB08516910A GB2163454B (en) 1984-07-04 1985-07-04 Process for manufacturing parts from non-heat refined steel having improved toughness
US06/942,960 US4806178A (en) 1984-07-04 1986-12-16 Non-heat refined steel bar having improved toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13827684A JPS6119761A (en) 1984-07-04 1984-07-04 High toughness hot forged non-refining steel bar

Publications (2)

Publication Number Publication Date
JPS6119761A JPS6119761A (en) 1986-01-28
JPH0366383B2 true JPH0366383B2 (en) 1991-10-17

Family

ID=15218128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13827684A Granted JPS6119761A (en) 1984-07-04 1984-07-04 High toughness hot forged non-refining steel bar

Country Status (1)

Country Link
JP (1) JPS6119761A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111160A (en) * 1986-10-30 1988-05-16 Nkk Corp High toughness non-heattreated steel for hot forging
JPH0696742B2 (en) * 1987-10-29 1994-11-30 日本鋼管株式会社 High strength / high toughness non-heat treated steel manufacturing method
JP2581442B2 (en) * 1994-05-20 1997-02-12 日本鋼管株式会社 Manufacturing method of high-strength, high-toughness non-heat treated steel
FR2757877B1 (en) * 1996-12-31 1999-02-05 Ascometal Sa STEEL AND PROCESS FOR THE MANUFACTURE OF A SHAPED STEEL PART BY COLD PLASTIC DEFORMATION

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986211A (en) * 1972-12-23 1974-08-19
JPS5051921A (en) * 1973-09-10 1975-05-09
JPS5479119A (en) * 1977-12-08 1979-06-23 Kobe Steel Ltd Manufacture of high strength, high toughness steel wire rod
JPS5839737A (en) * 1981-09-02 1983-03-08 Sumitomo Metal Ind Ltd Manufacture of high tensile wire rod
JPS5839738A (en) * 1981-09-02 1983-03-08 Sumitomo Metal Ind Ltd Manufacture of high tensile wire rod

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986211A (en) * 1972-12-23 1974-08-19
JPS5051921A (en) * 1973-09-10 1975-05-09
JPS5479119A (en) * 1977-12-08 1979-06-23 Kobe Steel Ltd Manufacture of high strength, high toughness steel wire rod
JPS5839737A (en) * 1981-09-02 1983-03-08 Sumitomo Metal Ind Ltd Manufacture of high tensile wire rod
JPS5839738A (en) * 1981-09-02 1983-03-08 Sumitomo Metal Ind Ltd Manufacture of high tensile wire rod

Also Published As

Publication number Publication date
JPS6119761A (en) 1986-01-28

Similar Documents

Publication Publication Date Title
JPH06306543A (en) High strength pc wire rod excellent in delayed fracture resistance and its production
JPH04268016A (en) Production of high tensile strength steel sheet for door guide bar having excellent crushing characteristic
US4806178A (en) Non-heat refined steel bar having improved toughness
JPH05171262A (en) Manufacture of wire rod or bar steel for case hardened product
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH0366383B2 (en)
JPH01176055A (en) Non-heat treated steel for hot forging having excellent machinability
JPH0693332A (en) Production of high tensile strength and high toughness fine bainitic steel
JP2000336460A (en) Hot rolled wire rod and steel bar for machine structure and manufacture of the same
JPS62196359A (en) Non-heattreated steel for hot forging and production thereof
JPH01176031A (en) Manufacture of non-heattreated steel for hot forging
JPH0696742B2 (en) High strength / high toughness non-heat treated steel manufacturing method
JPH0112815B2 (en)
JPH04285118A (en) Production of hot forged non-heattreated steel having high strength and high toughness
JPH04180521A (en) Production of high tensile thick steel plate having high yield strength and high toughness
JPH0813028A (en) Production of precipitation hardening steel material having high tensile strength and high toughness
JPS61139646A (en) Nontemper bar steel for hot forging
JPS62253725A (en) Production of high-toughness non-heattreated bar steel for hot forging
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture
JPH044371B2 (en)
JPH03260010A (en) Production of non-heattreated steel bar for hot forging and production of hot forged non-heattreated parts
JPH0688129A (en) Production of high strength steel pipe as welded low in residual stress
JPH07126741A (en) Production of high ductility and high toughness rail
JPH10280036A (en) Wire rod for high strength bolt excellent in strength and ductility and its production
JPH0559964B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees