JPS62196359A - Non-heattreated steel for hot forging and production thereof - Google Patents

Non-heattreated steel for hot forging and production thereof

Info

Publication number
JPS62196359A
JPS62196359A JP3888586A JP3888586A JPS62196359A JP S62196359 A JPS62196359 A JP S62196359A JP 3888586 A JP3888586 A JP 3888586A JP 3888586 A JP3888586 A JP 3888586A JP S62196359 A JPS62196359 A JP S62196359A
Authority
JP
Japan
Prior art keywords
steel
less
hot forging
toughness
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3888586A
Other languages
Japanese (ja)
Other versions
JPH0472886B2 (en
Inventor
Kenji Aihara
相原 賢治
Kazuhiko Nishida
和彦 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3888586A priority Critical patent/JPS62196359A/en
Publication of JPS62196359A publication Critical patent/JPS62196359A/en
Publication of JPH0472886B2 publication Critical patent/JPH0472886B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve mechanism properties, particularly toughness, of the titled steel to be obtained, by limiting a cooling velocity to a specific temp. range after casting at the time of manufacturing ingots, etc., from a molten steel in which steel composition is specified. CONSTITUTION:In a process for manufacturing ingots or billets from the molten steel having a composition mentioned below, the cast steel is cooled from 1,400-1,000 deg.C at a cooling rate of >=2 deg.C/min to be formed into the titled steel. The composition of the above steel consists of, by weight, 0.1-0.6% C, 0.02-2.0% Si, 0.1-3.0% Mn, <=0.05% P, <=0.05% S, 0.001-0.3% Zr, 0.001-0.1% Al, 0.001-0.02% N, one or more kinds among 0.01-3.0% Cr, 0.01-1.0% Cu, 0.01-2.0% Ni, 0.01-1.0% Mo, 0.001-1.0% V, 0.001-0.30% Nb, and 0.001-0.30% Ti, and the balance Fe with inevitable impurities.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱間鍛造用非調質鋼とその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a non-tempered steel for hot forging and a method for producing the same.

(従来の技術) 従来にあっても、自動車部品など多くの機械部品は熱間
鍛造により成形された後、焼入れ、焼戻しからなる調質
処理を行い、さらに切削、研暦などの機械加工を施して
製造されている。かかる調質処理は部品の機械的性質を
所要の値に調整するための熱処理として極めて有用であ
り、従来より必須の処理と考えられてきた。
(Conventional technology) Even in the past, many mechanical parts such as automobile parts are formed by hot forging, then subjected to tempering treatment consisting of quenching and tempering, and then subjected to mechanical processing such as cutting and grinding. Manufactured by Such thermal refining treatment is extremely useful as a heat treatment for adjusting the mechanical properties of parts to desired values, and has traditionally been considered an essential treatment.

しかしなから、今日のように製造ラインの合理化、生産
性の向上が強く叫ばれている状況下では、■熱処理工程
の省略合理化、■熱処理の熱エネルギーの省略合理化、
■焼入れ時の焼き割れ防止による生産性向上、■焼入れ
時の変形の防止による生産性の向上等の観点から従来の
製造ラインの形態には多くの改善すべき点がある。
However, in today's situation where there is a strong demand for streamlining production lines and improving productivity, there are
There are many points that should be improved in the conventional manufacturing line form from the viewpoints of (1) improving productivity by preventing quench cracking during quenching, and (2) improving productivity by preventing deformation during quenching.

このような従来技術における今日的問題点を一気に解決
する手段として、上述の調質処理を省略することが考え
られ、そのためにvなどの析出強化元素を添加して組織
の微細化と析出強化とを利用し、鍛造ままで所要特性を
備えたいわゆる非調質型の鍛造用鋼が種々提案されてい
る。
As a means to solve these current problems in the conventional technology at once, it is possible to omit the above-mentioned tempering treatment, and for this purpose, precipitation strengthening elements such as v are added to refine the structure and strengthen the precipitation. Various types of so-called non-thermal forging steels have been proposed that utilize the above-mentioned methods and have the required properties as-forged.

例えば、特公昭60−45250号には、熱間鍛造後に
、成形部品を1000℃から550℃の温度範囲を0゜
7℃/sec以下の速度で冷却して、オーステナイト粒
中に多角形フェライトを多量に分散させ、実質的に細粒
組織とすることが開示されている。
For example, in Japanese Patent Publication No. 60-45250, polygonal ferrite is formed in austenite grains by cooling the formed part at a rate of 0°7°C/sec or less over a temperature range of 1000°C to 550°C after hot forging. It is disclosed that the material is dispersed in a large amount and has a substantially fine-grained structure.

特開昭59−100256号は、中炭素211 SR域
テノTiノ粗粒化抑制効果を利用するものであって、T
i/Nの比を限定することを提案している。
JP-A No. 59-100256 utilizes the coarsening suppressing effect of Teno Ti in the medium carbon 211 SR region, and
It is proposed to limit the i/N ratio.

特開昭60−103161号には、C:0.05〜0.
15%の範囲内においてCr4Mn=2.20〜5.9
0に調整することが開示されている。
JP-A-60-103161 discloses that C: 0.05 to 0.
Cr4Mn=2.20-5.9 within the range of 15%
It is disclosed to adjust to 0.

このように、従来にあっては、鋼の成分と組織とを調整
することで、熱間鍛造後の冷却途上におけるV、Nb等
の化合物の析出硬化を利用した熱間鍛造ままの非調質鋼
部品を得ていたのであった。
In this way, in the past, by adjusting the composition and structure of the steel, it was possible to create a non-temperature treatment that utilizes the precipitation hardening of compounds such as V and Nb during cooling after hot forging. They had obtained steel parts.

しかしなから、これらの従来の非調質鋼部品は、同じく
熱間鍛造による従来の調質鋼部品に比べて靭性が劣るた
め、靭性を要求されない限られた一部の部品で実用化さ
れているだけで、高強度、高靭性を要求される重要部品
にまで一般的に実用化することは不可能であった。
However, these conventional non-tempered steel parts have inferior toughness compared to conventional hot-forged steel parts, so they have not been put to practical use in a limited number of parts where toughness is not required. However, it has been impossible to put it into practical use in important parts that require high strength and toughness.

特に、比較的大型の熱間鍛造部品では加工時に負荷を下
げるために、鋼材の加熱温度を1200℃以上にする必
要があり、このような高温加熱では予め鋼中に八Q、 
V、 Nb、 Ti、等の細粒化元素を添加して組織の
微細化を図っても、これらの元素の化合物は鍛造加工に
先立つ高温加熱時にほとんど分解固溶してしまって、そ
の細粒化作用も消失してしまう。このため、微細化元素
による細粒化を利用するにはいきおい熱間鍛造後の熱処
理を工夫しなければならず、結局、高強度、高靭性を実
現することは、費用がかかり、従来技術では極めて困難
であった。
In particular, in order to reduce the load during processing for relatively large hot forged parts, it is necessary to heat the steel material to a temperature of 1200°C or higher.
Even if grain-refining elements such as V, Nb, and Ti are added to refine the structure, most of the compounds of these elements decompose into solid solution during high-temperature heating prior to forging, and the fine grains The chemical effect also disappears. For this reason, in order to take advantage of grain refinement by refining elements, it is necessary to devise heat treatment after vigorous hot forging, and in the end, achieving high strength and high toughness is expensive and cannot be achieved with conventional technology. It was extremely difficult.

(発明が解決しようとする問題点) かくして、本発明の目的は、上述のような従来技術の欠
点を解消した、熱間鍛造用、特に大型部品の熱間鍛造用
非調質鋼とその製造方法を提供することである。
(Problems to be Solved by the Invention) Thus, an object of the present invention is to provide a non-tempered steel for hot forging, particularly for hot forging of large parts, and its production, which eliminates the drawbacks of the prior art as described above. The purpose is to provide a method.

(問題点を解決するための手段) ここに、本発明者らは、かかる目的達成のため、種々検
討したところ、従来法と全く異なる観点からの解決手段
があることを知り、本発明を完成させた。
(Means for solving the problem) In order to achieve the above object, the present inventors conducted various studies and found that there was a solution from a completely different perspective from the conventional method, and completed the present invention. I let it happen.

すなわち、従来からの炭窒化物分散によりオーステナイ
ト粒成長阻止作用をもとにしたオーステナイト組織粗大
化の防止法が十分その効果を発揮できないのは、熱間鍛
造におけるような1200〜1300℃というような高
温度に加熱する際には、炭窒化物がことごと(分解して
オーステナイト中に固溶してしまうため、オーステナイ
ト粒の成長I訂正の作用が全く消失してしまうからであ
る。
In other words, the conventional method of preventing austenite structure coarsening based on the effect of inhibiting austenite grain growth by dispersing carbonitrides cannot fully demonstrate its effect at temperatures such as 1200 to 1300°C such as in hot forging. This is because when heating to a high temperature, carbonitrides completely decompose (decompose and form a solid solution in austenite), so that the effect of correcting the growth I of austenite grains is completely lost.

したがって、本発明の目的達成には、このような、加熱
状態でも分解固溶しない化合物でなければならない。こ
のような化合物としては、MnS、TiN −、ZrN
 −Alz03.5ift等の非金属介在物がある。ち
なみに、従来のオーステナイト微細化化合物である八Q
Nの分解温度は1100℃である。
Therefore, in order to achieve the object of the present invention, it is necessary to use a compound that does not decompose into solid solution even under heated conditions. Such compounds include MnS, TiN -, ZrN
-There are nonmetallic inclusions such as Alz03.5ift. By the way, 8Q, which is a conventional austenite refining compound,
The decomposition temperature of N is 1100°C.

しかしなから、これらの非金属介在物は従来の’J1?
i方法では粗大でまばらにしか分布しておらず、そのま
までは結晶粒成長の阻止を有効に発揮し得る状態ではな
い。また、従来は非金属介在物は一般に可及的に少なく
することが要望されており、それを積極的に利用すると
いう考えはみられなかった。
However, these nonmetallic inclusions are not the same as the conventional 'J1?
In method i, the distribution is coarse and sparse, and as it is, it is not in a state where it can effectively inhibit crystal grain growth. Furthermore, in the past, it has generally been desired to reduce the number of nonmetallic inclusions as much as possible, and there has been no idea of actively utilizing them.

そこで種々の実験を重ねたところ、Zrを含有する製鋼
原料を使用することにより、従来であれば粗大でまばら
にしか分布していなかった非金属介在物のうち、鋼中の
硫化物が極めて微細に分散するようになるばかりか、鋼
中の酸化物も極めて微細に分散するようになることが分
かった。
After conducting various experiments, we found that by using a steelmaking raw material containing Zr, the sulfides in the steel became extremely fine, out of the nonmetallic inclusions that were previously coarse and sparsely distributed. It was found that not only the oxides in the steel became dispersed, but also the oxides in the steel became extremely finely dispersed.

かかるZr添加の作用により、微細に分散した硫化物、
酸化物が存在することになり、これによって熱間鍛造前
の高温加熱時のオーステナイト結晶粒の粗大化が抑制さ
れているものと思われる。一方、これらの非金属介在物
はそのような高温でも分解しないため鍛造加工後の高温
領域でのオーステナイト粒の粒成長も抑制されると同時
に、微細に分散した多数の介在物が変態の核として作用
するため、これらの作用が複合して鍛造ま\材における
最終組織は微細化される結果、鋼の靭性が向上するので
ある。
Due to the effect of such Zr addition, finely dispersed sulfides,
It is thought that the presence of oxides suppresses the coarsening of austenite crystal grains during high-temperature heating before hot forging. On the other hand, since these nonmetallic inclusions do not decompose even at such high temperatures, grain growth of austenite grains in the high temperature region after forging is suppressed, and at the same time, many finely dispersed inclusions act as transformation nuclei. These effects combine to refine the final structure of the forged material, improving the toughness of the steel.

またさらに、硫化物、酸化物が微細に分散することによ
り、今度はその他の鋼中介在物も微細分散することにな
り、鋼の靭性がさらに一層改善されるのである。
Furthermore, by finely dispersing sulfides and oxides, other inclusions in the steel are also finely dispersed, and the toughness of the steel is further improved.

よって、本発明の要旨とするところは、重量%で、 C: 0.1〜0.6%、 Si: 0.02〜2.0
%、Mn: 0.1〜3.0%、 P : 0.05%
以下、S : 0.05%以下、  Zr: 0.00
1〜0.3%、Al:   0.001  〜O11%
、 N   :  0.001  〜0.02%、なら
びに Cr: 0.O1〜3.0%、Cu: 0.01〜1.
0%、Ni:0゜01〜2.0%、Mo:Q、Ql−1
,0%、V :o、oot〜1.0%、Nb:0.00
1〜0.3%およびTj:0.001〜0.3%の1種
もしくは2種以上 を含有し、さらに 希土類元素を合計0.001〜0.5%および/または
、S:0.05〜0.5%、l”b:Q、005〜0.
59A。
Therefore, the gist of the present invention is, in weight %, C: 0.1 to 0.6%, Si: 0.02 to 2.0
%, Mn: 0.1-3.0%, P: 0.05%
Below, S: 0.05% or less, Zr: 0.00
1-0.3%, Al: 0.001-O11%
, N: 0.001 to 0.02%, and Cr: 0. O1-3.0%, Cu: 0.01-1.
0%, Ni: 0°01-2.0%, Mo: Q, Ql-1
, 0%, V: o, oot~1.0%, Nb: 0.00
1 to 0.3% and Tj: 0.001 to 0.3%, and further contains a total of 0.001 to 0.5% of rare earth elements and/or S: 0.05 ~0.5%, l”b:Q, 005~0.
59A.

Ca:0.001〜0.05%、Te:0.001〜0
.2%、Sago。
Ca: 0.001-0.05%, Te: 0.001-0
.. 2%, Sago.

01〜0.5%、およびBi:0.01〜0.5%の1
種もしくは2種以上を含有し、 残部Feおよび不可避的不純物 から成る熱間鍛造用非調質鋼である。
01-0.5%, and Bi: 0.01-0.5% 1
It is a non-thermal steel for hot forging, which contains one or more types of iron, and the remainder is Fe and unavoidable impurities.

また、別の面において、本発明の要旨とするところは、
ffl量%で、 C: 0.1〜0.6%、 Si: 0.02〜2.0
%、Mn: 0.1〜3.0%、 P : 0.05%
以下、・S : 0.05%以下、  Zr: 0.0
01〜0.3%、Al:  0.001  〜0.1 
  %、 N  :  0.001  〜0.02%、
ならびに ′Cr: 0.01〜3.0%、Cu: 0.01〜1
.0%、Ni:0゜01〜2.0%、Mo:0.01〜
1.0%、V :0.OQl〜1,0%、Nb:Q、0
01〜0.3%およびTi:0.001〜0.3%の1
種もしくは2種以上 を含有し、さらに 希土類元素を合計0.001〜0.5%、および/また
は、 S:0.05〜o、s%、Pb:0.005〜o、s%
、Ca:0.001〜0.05%、Te:0.001〜
0.2%、Se:0.01〜0.5%、およびBi:0
.01〜0.5%の1種もしくは2種以上含有し、 残部Peおよび不可避的不純物 から成る組成を有する鋼を、溶鋼から鋼塊もしくは鋳片
を製造する工程において、鋳込後1400〜1000℃
間を2℃/分以上好ましくは5〜b冷却速度で冷却する
ことからなる熱間鍛造用非調質鋼の製造方法である。
In addition, in another aspect, the gist of the present invention is to
In ffl amount%, C: 0.1-0.6%, Si: 0.02-2.0
%, Mn: 0.1-3.0%, P: 0.05%
Below, ・S: 0.05% or less, Zr: 0.0
01-0.3%, Al: 0.001-0.1
%, N: 0.001 to 0.02%,
and 'Cr: 0.01-3.0%, Cu: 0.01-1
.. 0%, Ni: 0°01~2.0%, Mo: 0.01~
1.0%, V: 0. OQl ~ 1,0%, Nb:Q, 0
01-0.3% and Ti: 0.001-0.3% 1
0.001 to 0.5% in total of rare earth elements, and/or S: 0.05 to o, s%, Pb: 0.005 to o, s%
, Ca: 0.001~0.05%, Te: 0.001~
0.2%, Se: 0.01-0.5%, and Bi: 0
.. In the process of manufacturing steel ingots or slabs from molten steel, steel containing one or more of 01 to 0.5% and the balance consisting of Pe and unavoidable impurities is heated to 1400 to 1000°C after casting.
This is a method for producing non-tempered steel for hot forging, which comprises cooling at a cooling rate of 2° C./min or more, preferably at a cooling rate of 5 to b.

ここに、「鋼塊もしくは鋼片を製造する」とは造塊法に
よる場合、連続鋳造による場合のいずれをも包含する趣
旨である。しかし、本発明の作用効果が特に発揮される
のは造塊法による場合である。連続鋳造法による場合、
他の操業条件から冷却速度が制約されることが多いから
である。
Here, "manufacturing steel ingots or billets" includes both methods such as ingot-forming and continuous casting. However, the effects of the present invention are particularly exhibited when the agglomeration method is used. When using continuous casting method,
This is because the cooling rate is often restricted by other operating conditions.

かくして、本発明にあっては、前述のような非金属介在
物を微細にし、均一にマトリックス中に分散させること
によって、結晶粒の成長を阻止して所期の目的を達成す
るものである。これらの介在物は、溶鋼中および凝固過
程中の高温オーステナイト中で生成するので、これらの
介在物が生成析出する温度域を急速に冷却することによ
り介在物を均一微細に生成析出させるのである。
Thus, in the present invention, by making the nonmetallic inclusions as described above fine and uniformly dispersing them in the matrix, the growth of crystal grains is inhibited and the intended purpose is achieved. These inclusions are generated in molten steel and in high-temperature austenite during the solidification process, so by rapidly cooling the temperature range in which these inclusions form and precipitate, the inclusions are formed and precipitated in a uniform and fine manner.

本発明において非金属介在物の種類、量、分散形態は特
に制限しないが、これは通常の鋼組成にあって実際上含
有されるような種類、量であれば十分な程度であり、そ
れを本発明において規定する冷却を行なったときに得ら
れた程度の分散形態で十分であるとの趣旨である。
In the present invention, there are no particular restrictions on the type, amount, or dispersion form of nonmetallic inclusions, but it is sufficient that the type and amount of nonmetallic inclusions are the same as those actually contained in ordinary steel compositions. The idea is that the degree of dispersion obtained when cooling as defined in the present invention is performed is sufficient.

しかし、特に効果的な非金属介在物は、MnS、ZrN
 、 TiNであって、その量もMn:0.6〜2.5
重量%、Zr:0.005〜0.03重量%、Ti :
0.005〜0.03重量%の範囲で効果が顕著である
However, particularly effective nonmetallic inclusions include MnS, ZrN
, TiN, the amount of which is Mn: 0.6 to 2.5
Weight%, Zr: 0.005-0.03% by weight, Ti:
The effect is significant in the range of 0.005 to 0.03% by weight.

したがって、本発明によれば、溶湯凝固時に非金属介在
物の析出、分散を制御することによって熱間鍛造前の加
熱時および熱間鍛造後のオーステナイト粒の成長粗大化
を阻止できる。
Therefore, according to the present invention, by controlling the precipitation and dispersion of nonmetallic inclusions during solidification of the molten metal, it is possible to prevent the growth and coarsening of austenite grains during heating before hot forging and after hot forging.

このように、鋳込み直後の冷却速度を抑制するという考
えは前述の従来技術においても全く触れられておらず、
また介在物による熱間鍛造後のオーステナイト粒の成長
粗大化の阻止というその作用効果においても、従来は全
く知られていなかった事項である。
In this way, the idea of suppressing the cooling rate immediately after casting is not mentioned at all in the prior art mentioned above.
Furthermore, its effect of preventing the growth and coarsening of austenite grains after hot forging due to inclusions is a matter that has not been known in the past.

特に、本発明は熱間鍛造に際しての加熱温度が1200
〜1300℃と高い比較的大型の熱間鍛造部品、例えば
一部品の重量が1kg以上という部品の製造において特
にすぐれた効果を発揮する。
In particular, in the present invention, the heating temperature during hot forging is 1200
It is particularly effective in manufacturing relatively large hot forged parts at temperatures as high as ~1300°C, for example, parts weighing 1 kg or more.

(作用) 次に、本発明において、炭素含有量および冷却条件を上
述のように限定した理由を詳述する。
(Function) Next, the reason why the carbon content and cooling conditions are limited as described above in the present invention will be explained in detail.

C: Cは0.6%を越えると靭性が劣化して従来の熱間鍛造
用非調質鋼と同様の靭性不良問題を生じるので、0.6
%を上限とした。また、O,15未満になると機械構造
用部品としての所要強度が得られなくなるので0.1%
を下限とした。
C: If C exceeds 0.6%, the toughness will deteriorate and cause the same poor toughness problem as conventional hot forging non-thermal steel, so 0.6
The upper limit was %. Also, if it is less than 0.15, it will not be possible to obtain the required strength as a mechanical structural component, so 0.1%
was set as the lower limit.

なお、熱間鍛造部品は高周波焼入れを施して使用するこ
とも多く、この場合にはCff1は0.25%以上にし
ないと充分な高周波焼入れ効果があられれず、0.55
%を越えると焼割れを発生することがあるので、0.2
5〜0.55%とするのが好ましい。
Note that hot forged parts are often used after induction hardening, and in this case, Cff1 must be 0.25% or more to obtain a sufficient induction hardening effect;
If it exceeds 0.2%, quench cracking may occur.
It is preferably 5 to 0.55%.

Si: Siは強度を確保するのに非常に有効な元素であるが、
2%を越えるとフェライト地が脆化して靭性が著しく劣
化するので上限を2%、好ましくは1.5%とした。ま
た、Siは?8鋼の脱酸に作用な元素として活用され、
含有量が0.02%未満では脱酸が不充分になり鋼の成
分、&[l織、性質が不安定になるので下限を0.02
%とし、好ましくは0.05%とした。
Si: Si is a very effective element for ensuring strength, but
If it exceeds 2%, the ferrite base becomes brittle and the toughness deteriorates significantly, so the upper limit is set to 2%, preferably 1.5%. Also, what about Si? 8 It is used as an effective element for deoxidizing steel,
If the content is less than 0.02%, deoxidation will be insufficient and the composition, texture, and properties of the steel will become unstable, so the lower limit is set at 0.02%.
%, preferably 0.05%.

Mn= Mnは強靭化作用が大きく極めて有用な元素であり、0
.1%以上の添加で効果があられれる。
Mn = Mn is an extremely useful element with a large toughening effect, and 0
.. Addition of 1% or more can be effective.

含有量が0.3%以下になると熱間加工割れを生じるこ
とがあるので、下限は0.1%以上、好ましくは0.3
%以上とした。Mn含有量が2.0%を越えると熱間鍛
造部品のサイズが小さくて熱間鍛造後の冷却速度が比較
的大きい場合には均一なフェライトパーライトMi織に
ならずにベイナイトが混在するようになる。含有量が3
%を越えると靭性を川なう異常粗大U織があられれる。
If the content is less than 0.3%, hot working cracks may occur, so the lower limit is 0.1% or more, preferably 0.3%.
% or more. If the Mn content exceeds 2.0%, if the size of the hot forged part is small and the cooling rate after hot forging is relatively high, bainite will be mixed instead of a uniform ferrite pearlite Mi texture. Become. Content is 3
%, an abnormally coarse U-weave that deteriorates the toughness will occur.

このため上限を3%以下、好ましくは2%以下とした。Therefore, the upper limit is set to 3% or less, preferably 2% or less.

P、、S、N: P、SおよびNはいずれも靭性を劣化させ、それぞれ限
定範囲の上限を越えると従来の熱間鍛造用非調質鋼より
もすぐれた靭性を得ることが困難になるので、p :0
.05%以下、S :0.05%以下、N :0.00
1〜0゜02%とした。これらの元素はなるべり微量に
することが好ましいが、被削性の改善をはかるべくsi
を上限値以上に含有してもよい。
P, S, N: P, S, and N all deteriorate toughness, and if the upper limits of their respective limited ranges are exceeded, it becomes difficult to obtain superior toughness to conventional non-tempered steel for hot forging. Therefore, p: 0
.. 0.05% or less, S: 0.05% or less, N: 0.00
It was set at 1 to 0.02%. It is preferable to keep these elements in very small amounts, but in order to improve machinability, Si
may be contained above the upper limit.

Zr: Z「を含有する添加剤で処理して、掻く微量のZr含有
にとどめると介在物が非常に均一微細に分散して熱間鍛
造後の靭性が向上する。この場合、Z「含有量が現在の
分析手段では定量的に含有量を分析することが容易でな
い極微壇であっても靭性改善の効果が認められるが、下
限値をo、ooi%とした。Zr含有量が増加すると上
記の介在物微細均一分散による効果に加えて非常に微細
なZr化合物が生成析出することにより、熱間鍛造後の
組織微細化と靭性向上がさらに効果的にもたらされる。
Zr: If the Zr content is kept to a very small amount by treatment with an additive containing Zr, inclusions will be dispersed very uniformly and finely, improving the toughness after hot forging. However, the effect of improving toughness is recognized even in extremely fine particles whose content cannot be quantitatively analyzed using current analytical methods.However, the lower limit value was set as o, ooi%.As the Zr content increases, the above-mentioned In addition to the effect of fine and uniform dispersion of inclusions, the formation and precipitation of very fine Zr compounds further effectively refines the structure and improves toughness after hot forging.

このときのZr化合物は、例えば1100℃以上で鍛造
加工を加える場合、オーステナイトの結晶の再結晶を促
進しその後の結晶粒粗大化を抑制する作用も併せて有す
る。この場合、Zr含有量が0.3%を越えると靭性が
劣化するので、上限を0.3%とした。
The Zr compound at this time also has the effect of promoting recrystallization of austenite crystals and suppressing subsequent coarsening of crystal grains when forging is performed at a temperature of 1100° C. or higher, for example. In this case, if the Zr content exceeds 0.3%, the toughness deteriorates, so the upper limit was set to 0.3%.

Al: 八Qは脱酸元素として非常に有用な元素であり、含有量
が0.001%未満では気泡を生じたり表面疵が生成す
るなどのトラブルを生じやすい。また、0.1%を越え
ると熱間加工割れを起こしやすくなるので、下限値をo
、ooi%、上限値を0゜1%とした。
Al: 8Q is a very useful element as a deoxidizing element, and if the content is less than 0.001%, problems such as bubbles and surface flaws are likely to occur. In addition, if it exceeds 0.1%, hot processing cracks are likely to occur, so the lower limit value should be set to o.
, ooi%, and the upper limit was set to 0°1%.

Cr−CuSN1% MOlV % Nb1Ti:これ
らの元素はいずれも熱間鍛造後の組織を微細なフェライ
ト・パーライト&lI織にして強度、靭性を向上させる
のに有効なものであり、少なくとも1種または2種以上
添加される。こうした強靭化作用を具現するためには、
Cr、 Cu、 Nl、Moは0.01%以上が必要で
あり、V 、 Nb、 Tiは0゜・001 %以上が
必要であるので、これらを下限値とした。又、Cr 3
.0%、Cu 1.0%、Ni 2.0%、Mo 1.
0  %を越えると熱間鍛造後の組織は靭性を太き(l
員なう異常粗大組織になり、一方、Vl、0%、)lb
 0.3%、Ti O,3%を越えるとフェライト・パ
ーライト組織が著しく脆化して靭性が劣化するので、こ
れらをそれぞれの上限値とした。
Cr-CuSN1% MOLV% Nb1Ti: All of these elements are effective in changing the structure after hot forging into a fine ferrite/pearlite &lI weave to improve strength and toughness, and at least one or two of these elements are effective. or more is added. In order to realize this toughening effect,
Since Cr, Cu, Nl, and Mo need to be at least 0.01%, and V, Nb, and Ti need to be at least 0°.001%, these were set as the lower limits. Also, Cr 3
.. 0%, Cu 1.0%, Ni 2.0%, Mo 1.
If it exceeds 0%, the structure after hot forging will have a thick toughness (l
On the other hand, Vl, 0%, )lb
If the content exceeds 0.3% and 3% of TiO, the ferrite/pearlite structure will become extremely brittle and the toughness will deteriorate, so these were set as the respective upper limit values.

したがって、本発明にあって、Cr:0.01〜3゜0
%、Cu O,01〜1.0%、Ni:0,01〜2.
0%、Mo:0.01〜1.0%、V:O,OOl 〜
1.0%、Nb:0.001−0.3 %、T亀:0.
001〜0.3%とした。
Therefore, in the present invention, Cr: 0.01 to 3°0
%, Cu O, 01-1.0%, Ni: 0.01-2.
0%, Mo: 0.01-1.0%, V: O, OOl ~
1.0%, Nb: 0.001-0.3%, T turtle: 0.
001 to 0.3%.

希土類元素: 高温加熱の熱間鍛造の場合には、特に希土類元素を添加
することにより、靭性を大きく改善することができる。
Rare earth elements: In the case of hot forging using high temperature heating, the toughness can be greatly improved by adding rare earth elements in particular.

この向上効果はZr処理鋼で一層大きくあられれており
、含有hto、001%を越えてその効果が認められる
。希土類元素の添加量が0.5%を越えても向上効果は
飽和してしまうので、上限値を0.5%とした。
This improvement effect is even greater in Zr-treated steel, and the effect is observed when the content of hto exceeds 0.01%. Even if the amount of rare earth elements added exceeds 0.5%, the improvement effect is saturated, so the upper limit was set at 0.5%.

被削性向上元素: 被削性を向上させることが要求される場合、S % P
b、 Ca、 Te、 Se、 Biの1種もしくは2
種以上の添加が有効である。 S:0.05%、Pb:
0.005%、Ca:0.001%、Te:0.001
%、Se:0.01%Bi:0.01%がそれぞれ有効
に作用する最小含有噴であるので、これらを下限値とし
た。 S:0.5%、Pb:0゜5%、Ca:0.05
%、Te:0.2%、Se:0.5%、Bi:0゜5%
を越えて含有しても被711性向上効果は飽和し、むし
ろ靭性が大きく劣化するのでこれらを上限値とした。
Machinability improving element: When it is required to improve machinability, S % P
One or two of b, Ca, Te, Se, Bi
It is effective to add more than one species. S: 0.05%, Pb:
0.005%, Ca: 0.001%, Te: 0.001
%, Se: 0.01%, and Bi: 0.01% are the minimum contained jets that work effectively, so these were set as the lower limit values. S: 0.5%, Pb: 0°5%, Ca: 0.05
%, Te: 0.2%, Se: 0.5%, Bi: 0°5%
Even if the content exceeds the above, the effect of improving the 711 resistance will be saturated, and the toughness will actually deteriorate significantly, so these are set as the upper limit values.

本発明は、上述のような鋼組成を有する熱間鍛造用非調
質鋼に関するものであるが、本発明におけるZr添加の
効果を最大限に発揮させるためには、鋳込後1400〜
1ooo℃間に冷却速度を2°C/分以上とするのが好
ましい。冷却速度が2℃/分よりも大きくなると、2℃
/分よりも小さい冷却速度の場合に生じている硫化物、
酸化物および窒化物の凝集粗大化がおこらなくなり、こ
れら介在物が均一に微細分散するようになる。特に、Z
r化合物の関与している介在物の凝集粗大化が5℃/分
よりも小さい冷却速度で生じ始め2°C/分より小にな
ると顕著になる。このため靭性が大幅に低下するので、
冷却速度の下限値を2℃/分好ましくは5℃/分とした
。介在物や化合物の微細均一分散という点に関していえ
ば冷却速度は大きいほど有効であるが、表面割れ発生な
どのトラブルを生じやすくなるので、トラブルを回避で
きる範囲内で可能な限り大きい冷却速度をとることが望
ましい。
The present invention relates to a non-thermal steel for hot forging having the above-mentioned steel composition, but in order to maximize the effect of Zr addition in the present invention, it is necessary to
Preferably, the cooling rate is 2°C/min or more per 100°C. When the cooling rate is greater than 2℃/min, 2℃
sulfides formed for cooling rates less than /min,
Coagulation and coarsening of oxides and nitrides no longer occurs, and these inclusions become uniformly and finely dispersed. In particular, Z
Coagulation and coarsening of inclusions involving r-compounds begins to occur at a cooling rate lower than 5°C/min and becomes noticeable when the cooling rate is lower than 2°C/min. As a result, the toughness is significantly reduced.
The lower limit of the cooling rate was set to 2°C/min, preferably 5°C/min. In terms of finely uniform dispersion of inclusions and compounds, the higher the cooling rate, the more effective it is, but this increases the likelihood of problems such as surface cracking, so set the cooling rate as high as possible within the range that can avoid problems. This is desirable.

一般にはその上限は15℃/分である。Generally, the upper limit is 15°C/min.

このように、本発明によれば、鋳込後1400〜100
0℃間の温度域を2゛C/分以上、好ましくは5〜b 00°Cまでの冷却速度は硫化物、窒化物の大きさと分
布に非常に大きな影響を与えると共に、硫化物や酸化物
の偏析に大きな影響を与える。本発明では高温域での熱
間鍛造組織が介在物によって大幅に変化し、介在物がで
きるだけ微細に均一分散すれば、熱間鍛造後の靭性が改
善されることを活用しているが、鋳込みから1ooo℃
に至るまでの間の冷却速度を大きくすることによって硫
化物、酸化物、窒化物が均一微細に分散して靭性の改善
がさらに顕著になることが判明した。特にZr処理鋼で
は硫化物、酸化物の微細均一分散が顕著になり、またZ
r含有鋼ではZr化合物の凝集粗大化が抑制されるなど
、鋳込後の冷却速度を2℃/分以上とすることによる効
果は顕著である。
As described above, according to the present invention, after casting 1400 to 100
The cooling rate in the temperature range between 0°C and 2°C/min or more, preferably 5 to 00°C has a very large effect on the size and distribution of sulfides and nitrides, and has a significant impact on the segregation of The present invention takes advantage of the fact that the hot forged structure in the high temperature range is significantly changed by inclusions, and if the inclusions are dispersed as finely and uniformly as possible, the toughness after hot forging is improved. From 1ooo℃
It has been found that by increasing the cooling rate until , sulfides, oxides, and nitrides are uniformly and finely dispersed, and the improvement in toughness becomes even more remarkable. In particular, in Zr-treated steel, fine and uniform dispersion of sulfides and oxides becomes remarkable, and Zr
In r-containing steel, the effect of setting the cooling rate after casting to 2° C./min or more is remarkable, such as suppressing agglomeration and coarsening of Zr compounds.

上述したように冷却速度は鋳込みから1000’cまで
の間で調整されるべきであるが、実際上鋳込みから凝固
までの冷却速度は測定が困難であること、頗固後はは一
直線的に冷却されるので容易に冷却速度が外挿できるこ
と、また容易に測定できるのが1400〜1ooo℃の
間であることからこの温度範囲を冷却速度の数値限定の
対象範囲とした。
As mentioned above, the cooling rate should be adjusted from casting to 1000'c, but in reality it is difficult to measure the cooling rate from casting to solidification, and cooling should be done in a straight line after solidification. Therefore, the cooling rate can be easily extrapolated, and since it can be easily measured between 1400 and 100° C., this temperature range was set as the target range for numerically limiting the cooling rate.

なお、所望により非金属介在物の量、種類を予め調整す
るには、例えば脱酸の程度を調節するとか、その他、す
でに当業者には良く知られた手段によって適宜行うこと
ができる。
Note that, if desired, the amount and type of nonmetallic inclusions can be adjusted in advance by, for example, adjusting the degree of deoxidation, or by other means already well known to those skilled in the art.

゛ このようにして得られた本発明にかかる熱間鍛造用
鋼は、一般には1200〜1300℃に加熱されてから
1050℃以上の仕上り温度で熱間鍛造され、放冷され
、適宜機械加工後、非調質型製品となる。このときの熱
間鍛造については何ら制限はなく、従来のものであって
もよく、またされに従来の適宜オーステナイトa細化処
理をこの熱間鍛造後に行ってもよい。
゛ The thus obtained hot forging steel according to the present invention is generally heated to 1200 to 1300°C, then hot forged at a finishing temperature of 1050°C or higher, allowed to cool, and then optionally machined. , it becomes a non-heat-refined product. There is no restriction on the hot forging at this time, and it may be a conventional one, or a conventional austenite a-refining treatment may be performed after this hot forging.

次に、本発明を実施例によってさらに詳細に説明する。Next, the present invention will be explained in more detail by way of examples.

実施例1 第1表に示す化学成分の鋼を200 kg低周波誘導炉
で溶製し、鋳込み後、型抜きをしてから断続的に気水噴
霧冷却を施して1400〜1000℃の間を5.2℃/
分で冷却し、得られた鋼塊を一辺80mmの角棒に鍛伸
したものを次の熱間鍛造実験の素材に用いた。
Example 1 200 kg of steel having the chemical composition shown in Table 1 was melted in a low-frequency induction furnace, and after casting, it was cut out of a mold and cooled intermittently to a temperature between 1400 and 1000°C. 5.2℃/
The resulting steel ingot was forged into a square bar with a side of 80 mm and used as a material for the next hot forging experiment.

この−辺80+mmの角棒を1250℃に加熱した後1
100℃の鍛造仕上り温度で一辺30mmの角棒に熱間
鍛造後自然放冷した。
After heating this square bar with side 80+mm to 1250℃, 1
After hot forging into a square bar with a side of 30 mm at a forging finish temperature of 100°C, it was allowed to cool naturally.

上記のシュミレーション熱間鍛造材の中心部からJIS
 14A号の引張試験片(平面部直径10111111
)とJISa号シャルピー試験片を製作して機械的性質
を調査した。
JIS from the center of the above simulation hot forged material
Tensile test piece No. 14A (diameter of flat part 10111111
) and JISa Charpy test specimens were prepared and their mechanical properties were investigated.

得られた時性を第2表にまとめて記載した。The obtained temporalities are summarized in Table 2.

第2表 (次頁につづく) (第2表つづき) 第2表に示すように、綱紀号隘1〜6はclの効果をみ
たものであり、鋼記号階1は強度が60 kgf/開2
に達していないため目的に合わない。銅1阻6は衝撃吸
収エネルギーが5 kgf−n+/cn1未満であって
靭性不足である。
Table 2 (Continued on next page) (Continued from Table 2) As shown in Table 2, steel code Nos. 1 to 6 are based on the effect of CL, and steel code No. 1 has a strength of 60 kgf/opening. 2
It is not fit for purpose because it has not reached the target. Copper 1-6 has an impact absorption energy of less than 5 kgf-n+/cn1 and lacks toughness.

鋼記号隘7〜11は5ililの効果をみたものであり
、鋼記号N17は硬度が不足し、鋼記号隘11は靭性不
足である。
Steel symbols 7 to 11 show the effects of 5ilil, steel symbol N17 lacks hardness, and steel symbol 11 lacks toughness.

鋼記号m12〜15はMnFlの効果をみたものであり
、鋼記号隘15は靭性が不足している。
Steel symbols m12 to m15 show the effect of MnFl, and steel symbol 15 lacks toughness.

鋼記号11kl16〜17はPiの効果をみたものであ
り、PWkの低い方が靭性、特に低温における靭性が向
上することが分かる。
Steel symbols 11kl16 to 17 show the effect of Pi, and it can be seen that the lower the PWk, the better the toughness, especially the toughness at low temperatures.

鋼記号11118〜19は、Cu、 Ni、、Cr、 
Moの複合添加系の例である。
Steel symbols 11118 to 19 are Cu, Ni, Cr,
This is an example of a Mo complex addition system.

鋼記号1b20〜22はCrの効果をみたものである。Steel symbols 1b20 to 22 show the effect of Cr.

鋼記号111Q22ではベイナイトの混在した粗大組織
になり靭性が劣化している。
Steel code 111Q22 has a coarse structure containing bainite and has deteriorated toughness.

鋼記号隘23〜24はMoの効果をみたものであり、鋼
記号隘24では組織の粗大化不均一化が顕著で、靭性も
良くない。
Steel symbols 23 and 24 show the effect of Mo, and in steel symbol 24, the coarsening and non-uniformity of the structure is noticeable and the toughness is not good.

鋼記号魚25〜27はTi、 Nb、 Vの効果をみた
ものであり、これらの元素は上限値をこえて多量に含有
されると強度上昇をあまりともなわずに靭性だけが著し
く劣化する。
Steel symbols 25 to 27 are based on the effects of Ti, Nb, and V, and when these elements are contained in large amounts exceeding the upper limit, only the toughness deteriorates significantly without increasing the strength.

鋼記号漱4と鋼記号NQ28〜33でZrの効果をみる
と、鋼記号階28に比べて鋼記号隘4は非常に靭性が向
上していることからZrの添加効果が明らかである。鋼
記号磁33になると強度は上がるが靭性が大きく劣化す
る。
Looking at the effect of Zr on Steel Symbol 4 and Steel Symbols NQ28 to NQ33, the effect of Zr addition is clear since Steel Symbol 4 has significantly improved toughness compared to Steel Symbol 28. When the steel code becomes 33, the strength increases, but the toughness greatly deteriorates.

鋼記号階34〜37はslの効果をみたものであり、鋼
記号11&137では靭性が大きく低下するので実用的
でない。
Steel symbol grades 34 to 37 are based on the effect of sl, and steel symbols 11 & 137 are not practical because their toughness is greatly reduced.

鋼記号隘38〜42はPb星の効果をみたものであり、
鋼記号VkL38では被削性特にドリル穿孔性が鋼記号
隘4と比べてほとんど同等であったが、鋼記号隘39に
なるドリル穿孔性に大きな故郷がみられ、鋼記号N14
0になると旋削性に大幅な向上がみられる。
Steel symbol numbers 38 to 42 show the effect of Pb stars,
Steel symbol VkL38 had almost the same machinability, particularly drill perforability, as steel symbol 隘4, but there was a strong influence on the drill perforability of steel symbol 隘39, and steel symbol N14
When it becomes 0, there is a significant improvement in turning performance.

鋼記号魚43〜46はTe量の効果をみたものであり、
Te添加で被削性が向上できると共に靭性の低下が非常
に小さく、鋼記号寛46でも実用的な特性である。
Steel symbols 43 to 46 are based on the effect of Te content,
The machinability can be improved by adding Te, and the decrease in toughness is very small, and even steel symbol Kan 46 has practical characteristics.

鋼記号11h47−49はSe、 Biの効果、鋼記号
N150はCa−3−Teの複合添加の効果をみたもの
で、いずれも靭性の劣化は小さい。
Steel code 11h47-49 shows the effect of Se and Bi, and steel code N150 shows the effect of combined addition of Ca-3-Te, and in both cases the deterioration in toughness is small.

鋼記号1に51〜52は希土類元素の含有効果をみたも
のであり、穫微量の含をでも靭性の改外が認められる。
Steel codes 1 and 51 to 52 are based on the effects of rare earth element inclusion, and even a small amount of rare earth elements can change the toughness.

綱記号11m53〜55はTi、 Nb、 Vの含有効
果をみたもので、綱記号寛25〜27と比較してみると
これらの元素の上限値近傍までの添加では強度が著しく
上昇すると共にvE2oは5 kg−++/cm”を確
保している。
Class symbols 11m53 to 55 look at the effects of the addition of Ti, Nb, and V. When compared with class symbols Kan 25 to 27, when these elements are added near the upper limit, the strength increases markedly and vE2o decreases. 5 kg-++/cm”.

実施例2 第3表の成分を有する鋼を実操業ラインの転炉で溶製し
、この溶鋼を第4表に記した断面寸法をもつ鋳型の中に
鋳込んだ。
Example 2 Steel having the components shown in Table 3 was melted in a converter on an actual production line, and this molten steel was cast into a mold having the cross-sectional dimensions shown in Table 4.

これら各種寸法の鋼塊を1400゛cで型抜きし、その
後1000℃になるまでの間、鋼塊の表面l・品度を測
定した。
These steel ingots of various sizes were cut out at 1400°C, and the surface l and quality of the steel ingots were measured until the temperature reached 1000°C.

また同時に、第3表の鋼と同一チャージの溶鋼を30O
Ll+wX400 ms+の断面の連続鍛造鋳片に鋳込
んだ。この時の鋳片の表面温度を鋳造機の各位置で測温
して冷却の状況を参考迄に求めてみた。
At the same time, 30O of molten steel with the same charge as the steel in Table 3
It was cast into a continuous forged slab with a cross section of Ll+wX400 ms+. At this time, the surface temperature of the slab was measured at various positions in the casting machine to determine the cooling status for reference.

これらの鋼塊もしくは鋳片の冷却速度を第4表に示す。Table 4 shows the cooling rates of these steel ingots or slabs.

これら鋼塊もしくは鋼片を直径1300mm棒鋼に圧延
後、実施例1と同じようにして熱間鍛造し、最終品の機
械的性質を調べた。その結果を第5表に示す。
These steel ingots or slabs were rolled into steel bars with a diameter of 1300 mm, then hot forged in the same manner as in Example 1, and the mechanical properties of the final products were examined. The results are shown in Table 5.

記号イ、口、八に比べて記号二でな冷却速度が2℃/分
未満になっており、シャルピー衝撃喚収エネルギーが顕
著に低下している。
The cooling rate for symbol 2 is less than 2°C/min compared to symbols A, 8, and 8, and the Charpy impact recovery energy is significantly lower.

記号ホでは、はぼ記号ハに近い値になっている。The value of the symbol ``ha'' is close to that of the ``habo'' symbol ``ha''.

Claims (8)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.1〜0.6%、Si:0.02〜2.0%、M
n:0.1〜3.0%、P:0.05%以下、S:0.
05%以下、Zr:0.001〜0.3%、Al:0.
001〜0.1%、N:0.001〜0.02%、を含
有し、さらに Cr:0.01〜3.0%、Cu:0.01〜1.0%
、Ni:001〜2.0%、Mo:0.01〜1.0%
、V:0.001〜1.0%、Nb:0.001〜0.
30%およびTi:0.001〜0.30%の1種もし
くは2種以上を含有し、残部Feおよび不可避的不純物 から成る熱間鍛造用非調質鋼。
(1) In weight%, C: 0.1-0.6%, Si: 0.02-2.0%, M
n: 0.1-3.0%, P: 0.05% or less, S: 0.
05% or less, Zr: 0.001 to 0.3%, Al: 0.
001-0.1%, N: 0.001-0.02%, further Cr: 0.01-3.0%, Cu: 0.01-1.0%
, Ni: 001-2.0%, Mo: 0.01-1.0%
, V: 0.001-1.0%, Nb: 0.001-0.
30% and Ti: 0.001 to 0.30%, and the remainder is Fe and unavoidable impurities.
(2)重量%で、 C:0.1〜0.6%、Si:0.02〜2.0%、M
n:0.1〜3.0%、P:0.05%以下、S:0.
05%以下、Zr:0.001〜0.3%、Al:0.
001〜0.1% 、N:0.001〜0.02%、な
らびに Cr:0.01〜3.0%、Cu:0.01〜1.0%
、Ni:0.01〜2.0%、Mo:0.01〜1.0
%、V:0.001〜1.0%、Nb:0.001〜0
.30%およびTi:0.001〜0.30%の1種も
しくは2種以上 を含有し、さらに S:0.05〜0.5%、Pb:0.005〜0.5%
、Ca:0.001〜0.05%、Te:0.001〜
0.2%、Se:0.01〜0.5%、およびBi:0
.01〜0.5%の1種もしくは2種以上含有し、 残部Feおよび不可避的不純物 から成る熱間鍛造用非調質鋼。
(2) In weight%, C: 0.1-0.6%, Si: 0.02-2.0%, M
n: 0.1-3.0%, P: 0.05% or less, S: 0.
05% or less, Zr: 0.001 to 0.3%, Al: 0.
001-0.1%, N: 0.001-0.02%, and Cr: 0.01-3.0%, Cu: 0.01-1.0%
, Ni: 0.01-2.0%, Mo: 0.01-1.0
%, V: 0.001-1.0%, Nb: 0.001-0
.. 30% and one or more of Ti: 0.001-0.30%, further S: 0.05-0.5%, Pb: 0.005-0.5%
, Ca: 0.001~0.05%, Te: 0.001~
0.2%, Se: 0.01-0.5%, and Bi: 0
.. A non-thermal steel for hot forging, containing one or more of 01 to 0.5%, with the balance being Fe and unavoidable impurities.
(3)重量%で、 C:0.1〜0.6%、Si:0.02〜2.0%、M
n:0.1〜3.0%、P:0.05%以下、S:0.
05%以下、Zr:0.001〜0.3%、Al:0.
001〜0.1%、N:0.001〜0.02%、なら
びに Cr:0.01〜3.0%、Cu:0.01〜1.0%
、Ni:0.01〜2.0%、Mo:0.01〜1.0
%、V:0.001〜1.0%、Nb:0.001〜0
.30%およびTi:0.001〜0.30%の1種も
しくは2種以上 を含有し、さらに 希土類元素を合計0.001〜0.5%含有し、残部F
eおよび不可避的不純物 から成る熱間鍛造用非調質鋼。
(3) In weight%, C: 0.1-0.6%, Si: 0.02-2.0%, M
n: 0.1-3.0%, P: 0.05% or less, S: 0.
05% or less, Zr: 0.001 to 0.3%, Al: 0.
001-0.1%, N: 0.001-0.02%, and Cr: 0.01-3.0%, Cu: 0.01-1.0%
, Ni: 0.01-2.0%, Mo: 0.01-1.0
%, V: 0.001-1.0%, Nb: 0.001-0
.. 30% and Ti: 0.001 to 0.30%, and further contains rare earth elements in a total of 0.001 to 0.5%, the balance being F.
Non-thermal steel for hot forging consisting of e and inevitable impurities.
(4)重量%で、 C:0.1〜0.6%、Si:0.02〜2.0%、M
n:0.1〜3.0%、P:0.05%以下、S:0.
05%以下、Zr:0.001〜0.3%、Al:0.
001〜0.1%、N:0.001〜0.02%、なら
びに Cr:0.01〜3.0%、Cu:0.01〜1.0%
、Ni:0.01〜2.0%、Mo:0.01〜1.0
%、V:0.001〜1.0%、Nb:0.001〜0
.30%およびTi:0.001〜0.30%の1種も
しくは2種以上 を含有し、さらに 希土類元素を合計0.001〜0.5%およびS:0.
05〜0.5%、Pb:0.005〜0.5%、Ca:
0.001〜0.05%、Te:0.001〜0.2%
、Se:0.01〜0.5%、およびBi:0.01〜
0.5%の1種もしくは2種以上含有し、 残部Feおよび不可避的不純物 から成る熱間鍛造用非調質鋼。
(4) In weight%, C: 0.1-0.6%, Si: 0.02-2.0%, M
n: 0.1-3.0%, P: 0.05% or less, S: 0.
05% or less, Zr: 0.001 to 0.3%, Al: 0.
001-0.1%, N: 0.001-0.02%, and Cr: 0.01-3.0%, Cu: 0.01-1.0%
, Ni: 0.01-2.0%, Mo: 0.01-1.0
%, V: 0.001-1.0%, Nb: 0.001-0
.. 30% and Ti: 0.001 to 0.30%, and further contains a total of 0.001 to 0.5% of rare earth elements and S: 0.
05-0.5%, Pb: 0.005-0.5%, Ca:
0.001-0.05%, Te: 0.001-0.2%
, Se: 0.01~0.5%, and Bi: 0.01~
Non-thermal steel for hot forging, containing 0.5% of one or more kinds, with the balance being Fe and unavoidable impurities.
(5)重量%で、 C:0.1〜0.6%、Si:0.02〜2.0%、M
n:0.1〜3.0%、P:0.05%以下、S:0.
05%以下、Zr:0.001〜0.3%、Al:0.
001〜0.1%、N:0.001〜0.02%、を含
有し、さらに Cr:0.01〜3.0%、Cu:0.01〜1.0%
、Ni:0.01〜2.0%、Mo:0.01〜1.0
%、V:0.001〜1.0%、Nb:0.001〜0
.30%およびTi:0.001〜0.30%の1種も
しくは2種以上を含有し、残部Feおよび不可避的不純
物 から成る組成を有する鋼を、溶鋼から鋼塊もしくは鋳片
を製造する工程において、鋳込後1400〜1000℃
間を2℃/分以上の冷却速度で冷却することからなる熱
間鍛造用非調質鋼の製造方法。
(5) In weight%, C: 0.1-0.6%, Si: 0.02-2.0%, M
n: 0.1-3.0%, P: 0.05% or less, S: 0.
05% or less, Zr: 0.001 to 0.3%, Al: 0.
001-0.1%, N: 0.001-0.02%, further Cr: 0.01-3.0%, Cu: 0.01-1.0%
, Ni: 0.01-2.0%, Mo: 0.01-1.0
%, V: 0.001-1.0%, Nb: 0.001-0
.. In the process of producing steel ingots or slabs from molten steel, steel containing one or more of 30% and 0.001 to 0.30% Ti, with the balance consisting of Fe and inevitable impurities. , 1400~1000℃ after casting
A method for producing non-tempered steel for hot forging, comprising cooling at a cooling rate of 2° C./min or more.
(6)重量%で、 C:0.1〜0.6%、Si:0.02〜2.0%、M
n:0.1〜3.0%、P:0.05%以下、S:0.
05%以下、Zr:0.001〜0.3%、Al:0.
001〜0.1%、N:0.001〜0.02%、なら
びに Cr:0.01〜3.0%、Cu:0.01〜1.0%
、Ni:0.01〜2.0%、Mo:0.01〜1.0
%、V:0.001〜1.0%、Nb:0.001〜0
.30%およびTi:0.001〜0.30%の1種も
しくは2種以上 を含有し、さらに S:0.05〜0.5%、Pb:0.005〜0.5%
、Ca:0.001〜0.05%、Te:0.001〜
0.2%、Se:0.01〜0.5%、およびBi:0
.01〜0.5%の1種もしくは2種以上含有し、 残部Feおよび不可避的不純物 から成る組成を有する鋼を、溶鋼から鋼塊もしくは鋳片
を製造する工程において、鋳込後1400〜1000℃
間を2℃/分以上の冷却速度で冷却することからなる熱
間鍛造用非調質鋼の製造方法。
(6) In weight%, C: 0.1-0.6%, Si: 0.02-2.0%, M
n: 0.1-3.0%, P: 0.05% or less, S: 0.
05% or less, Zr: 0.001 to 0.3%, Al: 0.
001-0.1%, N: 0.001-0.02%, and Cr: 0.01-3.0%, Cu: 0.01-1.0%
, Ni: 0.01-2.0%, Mo: 0.01-1.0
%, V: 0.001-1.0%, Nb: 0.001-0
.. 30% and one or more of Ti: 0.001-0.30%, further S: 0.05-0.5%, Pb: 0.005-0.5%
, Ca: 0.001~0.05%, Te: 0.001~
0.2%, Se: 0.01-0.5%, and Bi: 0
.. In the process of manufacturing steel ingots or slabs from molten steel, steel containing one or more of 01 to 0.5% and the balance consisting of Fe and unavoidable impurities is heated to 1400 to 1000°C after casting.
A method for producing non-tempered steel for hot forging, comprising cooling at a cooling rate of 2° C./min or more.
(7)重量%で、 C:0.1〜0.6%、Si:0.02〜2.0%、M
n:0.1〜3.0%、P:0.05%以下、S:0.
05%以下、Zr:0.001〜0.3%、Al:0.
001〜0.1%、N:0.001〜0.02%、なら
びに Cr:0.01〜3.0%、Cu:0.01〜1.0%
、Ni:0.01〜2.0%、Mo:0.01〜1.0
%、V:0.001〜1.0%、Nb:0.001〜0
.30%およびTi:0.001〜0.30%の1種も
しくは2種以上 を含有し、さらに 希土類元素を合計0.001〜0.5%含有し、残部F
eおよび不可避的不純物 から成る組成を有する鋼を、溶鋼から鋼塊もしくは鋳片
を製造する工程において、鋳込後1400〜1000℃
間を2℃/分以上の冷却速度で冷却することからなる熱
間鍛造用非調質鋼の製造方法。
(7) In weight%, C: 0.1-0.6%, Si: 0.02-2.0%, M
n: 0.1-3.0%, P: 0.05% or less, S: 0.
05% or less, Zr: 0.001 to 0.3%, Al: 0.
001-0.1%, N: 0.001-0.02%, and Cr: 0.01-3.0%, Cu: 0.01-1.0%
, Ni: 0.01-2.0%, Mo: 0.01-1.0
%, V: 0.001-1.0%, Nb: 0.001-0
.. 30% and Ti: 0.001 to 0.30%, and further contains rare earth elements in a total of 0.001 to 0.5%, the balance being F.
In the process of manufacturing steel ingots or slabs from molten steel, steel having a composition consisting of E and unavoidable impurities is heated at 1400 to 1000°C after casting.
A method for producing non-tempered steel for hot forging, comprising cooling at a cooling rate of 2° C./min or more.
(8)重量%で、 C:0.1〜0.6%、Si:0.02〜2.0%、M
n:0.1〜3.0%、P:0.05%以下、S:0.
05%以下、Zr:0.001〜0.3%、Al:0.
001〜0.1%、N:0.001〜0.02%、なら
びに Cr:0.01〜3.0%、Cu:0.01〜1.0%
、Ni:0.01〜2.0%、Mo:0.01〜1.0
%、V:0.001〜1.0%、Nb:0.001〜0
.30%およびTi:0.001〜0.30%の1種も
しくは2種以上 を含有し、さらに 希土類元素を合計0.001〜0.5%およびS:0.
05〜0.5%、Pb:0.005〜0.5%、Ca:
0.001〜0.05%、Te:0.001〜0.2%
、Se:0.01〜0.5%、およびBi:0.01〜
0.5%の1種もしくは2種以上含有し、 残部Feおよび不可避的不純物 から成る組成を有する鋼を、溶鋼から鋼塊もしくは鋳片
を製造する工程において、鋳込後1400〜1000℃
間を2℃/分以上の冷却速度で冷却することからなる熱
間鍛造用非調質鋼の製造方法。
(8) In weight%, C: 0.1-0.6%, Si: 0.02-2.0%, M
n: 0.1-3.0%, P: 0.05% or less, S: 0.
05% or less, Zr: 0.001 to 0.3%, Al: 0.
001-0.1%, N: 0.001-0.02%, and Cr: 0.01-3.0%, Cu: 0.01-1.0%
, Ni: 0.01-2.0%, Mo: 0.01-1.0
%, V: 0.001-1.0%, Nb: 0.001-0
.. 30% and Ti: 0.001 to 0.30%, and further contains a total of 0.001 to 0.5% of rare earth elements and S: 0.
05-0.5%, Pb: 0.005-0.5%, Ca:
0.001-0.05%, Te: 0.001-0.2%
, Se: 0.01~0.5%, and Bi: 0.01~
In the process of manufacturing steel ingots or slabs from molten steel, steel containing 0.5% of one or more of two or more of the following, with the balance consisting of Fe and unavoidable impurities, is heated to 1400 to 1000°C after casting.
A method for producing non-tempered steel for hot forging, comprising cooling at a cooling rate of 2° C./min or more.
JP3888586A 1986-02-24 1986-02-24 Non-heattreated steel for hot forging and production thereof Granted JPS62196359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3888586A JPS62196359A (en) 1986-02-24 1986-02-24 Non-heattreated steel for hot forging and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3888586A JPS62196359A (en) 1986-02-24 1986-02-24 Non-heattreated steel for hot forging and production thereof

Publications (2)

Publication Number Publication Date
JPS62196359A true JPS62196359A (en) 1987-08-29
JPH0472886B2 JPH0472886B2 (en) 1992-11-19

Family

ID=12537663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3888586A Granted JPS62196359A (en) 1986-02-24 1986-02-24 Non-heattreated steel for hot forging and production thereof

Country Status (1)

Country Link
JP (1) JPS62196359A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198450A (en) * 1988-02-03 1989-08-10 Nippon Steel Corp Hot forged non-heat treated steel having high strength and high toughness
US5362338A (en) * 1990-07-27 1994-11-08 Aichi Steel Works Ltd. Non-heat treating steel for hot forging
US5922145A (en) * 1996-11-25 1999-07-13 Sumitomo Metal Industries, Ltd. Steel products excellent in machinability and machined steel parts
JP2000073141A (en) * 1998-08-28 2000-03-07 Kobe Steel Ltd Non-refining steel for hot forging excellent in breaking splittability
WO2009107282A1 (en) * 2008-02-26 2009-09-03 新日本製鐵株式会社 Hot-forging microalloyed steel and hot-rolled steel material each having excellent fracture splittability and machinability, and hot-forging microalloyed steel part
JP2015124406A (en) * 2013-12-26 2015-07-06 株式会社神戸製鋼所 Steel material and method of producing the same
KR20190058052A (en) * 2017-11-21 2019-05-29 현대제철 주식회사 Non-heat treated steel and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524953A (en) * 1978-08-11 1980-02-22 Daido Steel Co Ltd Not thermally refined high strength steel
JPS5719324A (en) * 1980-05-30 1982-02-01 Nippon Steel Corp Production of steel for machine structural use for forging having fine structure at high temperature
JPS57200541A (en) * 1981-06-04 1982-12-08 Nippon Steel Corp Forged direct tempering steel excellent in tenacity
JPS6274055A (en) * 1985-09-27 1987-04-04 Kobe Steel Ltd Non-heattreated steel with high toughness for hot forging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524953A (en) * 1978-08-11 1980-02-22 Daido Steel Co Ltd Not thermally refined high strength steel
JPS5719324A (en) * 1980-05-30 1982-02-01 Nippon Steel Corp Production of steel for machine structural use for forging having fine structure at high temperature
JPS57200541A (en) * 1981-06-04 1982-12-08 Nippon Steel Corp Forged direct tempering steel excellent in tenacity
JPS6274055A (en) * 1985-09-27 1987-04-04 Kobe Steel Ltd Non-heattreated steel with high toughness for hot forging

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198450A (en) * 1988-02-03 1989-08-10 Nippon Steel Corp Hot forged non-heat treated steel having high strength and high toughness
US5362338A (en) * 1990-07-27 1994-11-08 Aichi Steel Works Ltd. Non-heat treating steel for hot forging
US5922145A (en) * 1996-11-25 1999-07-13 Sumitomo Metal Industries, Ltd. Steel products excellent in machinability and machined steel parts
JP2000073141A (en) * 1998-08-28 2000-03-07 Kobe Steel Ltd Non-refining steel for hot forging excellent in breaking splittability
WO2009107282A1 (en) * 2008-02-26 2009-09-03 新日本製鐵株式会社 Hot-forging microalloyed steel and hot-rolled steel material each having excellent fracture splittability and machinability, and hot-forging microalloyed steel part
JP5251872B2 (en) * 2008-02-26 2013-07-31 新日鐵住金株式会社 Non-tempered steel for hot forging and hot-rolled steel with excellent fracture separation and machinability, and hot-forged non-tempered steel parts
US8715428B2 (en) 2008-02-26 2014-05-06 Nippon Steel & Sumitomo Metal Corporation Hot-forging micro-alloyed steel and hot-rolled steel excellent in fracture-splitability and machinability, and component made of hot-forged microalloyed steel
US9255314B2 (en) 2008-02-26 2016-02-09 Nippon Steel & Sumitomo Metal Corporation Hot-forging micro-alloyed steel and hot-rolled steel excellent in fracture-splitability and machinability, and component made of hot-forged microalloyed steel
JP2015124406A (en) * 2013-12-26 2015-07-06 株式会社神戸製鋼所 Steel material and method of producing the same
KR20190058052A (en) * 2017-11-21 2019-05-29 현대제철 주식회사 Non-heat treated steel and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0472886B2 (en) 1992-11-19

Similar Documents

Publication Publication Date Title
EP3715478B1 (en) Wire rod for cold heading, processed product using same, and manufacturing method therefor
JP4802435B2 (en) Non-tempered steel with small material anisotropy and excellent strength, toughness and machinability, and method for producing the same
JPH10273756A (en) Cold tool made of casting, and its production
JPH11335777A (en) Case hardening steel excellent in cold workability and low carburizing strain characteristics, and its production
JPS62196359A (en) Non-heattreated steel for hot forging and production thereof
JP2001303172A (en) Case hardening boron steel for cold forging free from formation of abnormal structure in carburiazation and its producing method
JPS62207821A (en) Production of unnormalized steel for hot forging
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JPH05186848A (en) Steel for large heat input welding excellent in toughness in weld heat-affected zone
JPS6214606B2 (en)
JPH0140901B1 (en)
JPH0791579B2 (en) Method for manufacturing case-hardening steel in which crystal grains do not coarsen during carburizing heat treatment
JPS62202054A (en) Non-heattreated steel for hot forging
JPH05339676A (en) Steel for machine structure excellent in cold workability and its manufacture
JP3298718B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet
JP3042574B2 (en) Hot forged product having high fatigue strength and method of manufacturing the same
JPH03260010A (en) Production of non-heattreated steel bar for hot forging and production of hot forged non-heattreated parts
JPS6233287B2 (en)
JPH11106866A (en) Case hardening steel excellent in preventability of coarse grain and its production
JP2000160285A (en) High-strength and high-toughness non-heat treated steel
JPS62253725A (en) Production of high-toughness non-heattreated bar steel for hot forging
JP2001011571A (en) Steel for machine structure excellent in machinability, cold forgeability and hardenability
JPH0781175B2 (en) Method for manufacturing non-heat treated heat forged steel in which the structure does not coarsen during hot forging
JPH06340924A (en) Production of low yield ratio high tensile strength steel
JPH0456103B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term