JPH0140901B1 - - Google Patents

Info

Publication number
JPH0140901B1
JPH0140901B1 JP16775081A JP16775081A JPH0140901B1 JP H0140901 B1 JPH0140901 B1 JP H0140901B1 JP 16775081 A JP16775081 A JP 16775081A JP 16775081 A JP16775081 A JP 16775081A JP H0140901 B1 JPH0140901 B1 JP H0140901B1
Authority
JP
Japan
Prior art keywords
steel
less
toughness
present
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16775081A
Other languages
Japanese (ja)
Other versions
JPS5871354A (en
Inventor
Ryoji Tanaka
Atsuyoshi Kimura
Shozo Abeyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP16775081A priority Critical patent/JPS5871354A/en
Publication of JPS5871354A publication Critical patent/JPS5871354A/en
Priority to JP15112386A priority patent/JPS6296653A/en
Publication of JPH0140901B1 publication Critical patent/JPH0140901B1/ja
Pending legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、非調質で、すなわち熱間加工のまま
焼入れ一焼戻しなどの調質処理を行なわずに、す
ぐれた靭性を有する構造用鋼を製造する方法に関
する。
The present invention relates to a method for manufacturing structural steel having excellent toughness without heat refining, that is, without performing heat refining treatment such as quenching and tempering while hot working.

【従来の技術】[Conventional technology]

一般に構造用鋼からの製品の製造は、熱間加工
ののち調質をしてから切削加工を施すことによつ
て行なわれているが、調質を行なわないで済めば
コストの低下がはかれるとともに、省エネルギー
の要請にこたえることもできる。 そこでこのような鋼の研究がさかんに試みられ
ており、とくに、VやNbなどを添加した鋼を熱
間加工後に冷却する過程でこれらの炭化物や窒化
物がフエライト+パーライト組織中に析出するこ
とを利用して強化する鋼が開発され、一部実用化
されている。熱間加工として圧延を行なつた場合
は、圧延のままで強化した鋼材をそのまま、ある
いは冷間または温間で塑性加工してから切削して
最終製品とする。また、製造を行なう場合は、圧
延した鋼材を型打鍛造し、硬化した粗材を切削し
て製品とする。 しかしこのようにして得た製品は、通常の調質
処理をへたものにくらべて、その靭性が低いとい
う弱点がある。
Generally, products are manufactured from structural steel by hot working, tempering, and cutting, but if heat refining can be omitted, costs can be reduced and , it can also meet the demand for energy conservation. Therefore, research on such steels has been actively attempted, and in particular, it has been found that these carbides and nitrides precipitate in the ferrite + pearlite structure during the cooling process after hot working of steels to which V and Nb have been added. Steels that are strengthened using the When rolling is performed as hot working, the steel material is strengthened as it is, or is subjected to cold or warm plastic working and then cutting to form the final product. When manufacturing, the rolled steel material is die-forged and the hardened rough material is cut into products. However, the product obtained in this way has a disadvantage in that its toughness is lower than that of products that undergo ordinary heat treatment.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

本発明の目的は、この弱点を克服し、調質鋼に
くらべてそん色のない非調質構造用鋼を製造する
方法を提供することにある。 発明の構成
An object of the present invention is to overcome this drawback and provide a method for producing non-tempered structural steel that is comparable in color to tempered steel. Composition of the invention

【問題点を解決するための手段】 本発明の非調質構造用鋼の製造方法は、C:
0.30〜0.60%、Si:0.10〜2.0%、Mn:0.20〜2.5
%、A:0.005〜0.10%およびN:0.005〜0.030
%、ならびにV:0.5%以下およびNb:0.5%以下
のいづれか1種または2種を含有し、残余が実質
的にFeからなる鋼合金を、NおよびNbの含有量
に応じて、つぎの限度以下の加熱温度および仕上
げ温度において熱間加工を行なうことを特徴とす
る。
[Means for solving the problems] The method for manufacturing non-tempered structural steel of the present invention includes C:
0.30~0.60%, Si: 0.10~2.0%, Mn: 0.20~2.5
%, A: 0.005-0.10% and N: 0.005-0.030
%, and one or both of V: 0.5% or less and Nb: 0.5% or less, with the remainder essentially consisting of Fe, according to the following limits depending on the N and Nb content. It is characterized by performing hot working at the following heating and finishing temperatures.

【表】【table】

【作用】[Effect]

本発明で採用した合金組成における各成分の役
割と、その限定の理由は、つぎのとおりである。 C:0.30〜0.60%、 必要な強度を確保するため、0.30%以上の存
在が必須である。上限は靭性の観点から定め
た。 Si:0.10〜2.0%、好ましくは0.15〜1.0% Siは脱酸剤として必要な元素であり、0.10%
以上含有させるが、非調質構造用鋼は、熱間加
工後、機械加工により製品とするのがふつうで
あり、被削性が良好であることが望まれる。従
つて、Siは2.0%以下、好ましくは1.0%までに
止めるべきである。 Mn:0.20〜2.5%、好ましくは0.5〜1.8% いうまでもなくMnも脱酸剤として作用する
が、非調質鋼においては高い靭性を得る上で重
要である。本発明においても、比較的高含有
量、代表的には1.5%内外を採用する。ただし
被削性の点からは、あまり多量に加えることは
避けたい。 A:0.005〜0.10%、好ましくは0.01〜0.05% 脱酸作用もあるが、主な役割は結晶粒の微細
化である。Aもまた被削性に関してはマイナ
スにはたらくので、0.10%以下に限定する。 N:0.005〜0.30%、好ましくは0.23%までNの効
果は、ひとつは結晶粒の微細化であり、いまひ
とつはVまたはNbとの窒化物形成による析出
強化である。これも多量にすぎると靭性を損
う。 V:0.5%以下、Nb:0.5%以下(併用の場合は合
計で0.5%以下)どちらも窒化物を形成し、析
出強化および結晶粒の微細化に寄与する。ただ
し、鋼材の加工条件に対してはNbの影響が大
きく、高含有量の方が、適切な加工温度の上限
が拡がる。上限は熱間加工性の低下を理由に設
けたが、VもNbも高価な材料であるから、添
加効果と経済性との調和において添加量を定め
ればよい。 本発明の実施に当つて、NbおよびNの含有量
は、目的とする非調質構造用鋼に許されるコスト
と、現場の作業の実際的な要求とを考慮して決定
する。とくにNbは、添加の効果が高い材料であ
るとともに、コストへの影響も大きいという点で
重要である。ここで、現場作業の実際的な要求と
は、加工条件の異なる種々の鋼材を取扱う工場に
おける、均熱炉の使用に伴う待ち時間を最小限に
するという要求である。均熱炉内に保持すべき時
間は、各種鋼材の加工条件に従つて異なるから、
それらを巧みに組み合わせることによつて、待ち
時間が最小となる。各種鋼材のひとつとして本発
明の非調質構造用鋼を取扱う場合、そのNbおよ
びNの含有量を選択して加熱温度の上限を変える
ことによつて、より有利な組み合わせが実現し、
上記の要求をみたすことができる。 調質、非調質をとわず、鋼材には機械的特性に
関する異方性が、程度の差こそあれ、存在するこ
とは避け難い。本発明の鋼において、とくに靭性
の方向性を低くしたい場合には、S:0.40%以下
およびTe:0.10%以下を、Te/S:0.04以上の
割合で含有させることが推奨される。Sはもちろ
ん被削性の改善に役立つ元素であるが、ここでは
むしろ、適量のSとTeとの組み合わせにより、
鋼中の硫化物系介在物の形態をコントロールし、
靭性の異方性を軽減する効果が得られるのであ
る。 SおよびTeの上限値は、主として熱間加工性
にもとづいて定めた。 そのほか本発明の鋼においては、所望の特性や
用途に応じて、さまざまな効果を期待して下記の
諸元素を特定の範囲内で添加するとよい。 ・ 結晶粒度をさらに微細化したいとき…Ti:
0.5%以下、Ta:0.5%以下、またはZr:0.5%
以下 ・ 耐候性を高めたいとき…Cu:2.0%以下 ・ 被削性の一層の向上を望むとき…Pb:0.4%
以下、Bi:0.4%以下、Se:0.4%以下、Ca:
0.01%以下 ・ 疲労強度を改善したいとき…0:0.0030%以
下 ・ 強度の増大をはかるとき…Cr:5%以下、
Ni:5%以下、Mo:3%以下 本発明の鋼は、前記したように、旧オーステナ
イト結晶粒の大きさが平均結晶粒度番号5以上の
細粒組織であるという点が、大きな特徴である。
いうまでもなく、「旧オーステナイト」結晶粒と
は、熱間加工後常温まで冷却されて生成したフエ
ライトーパーライト系の組織のフエライト粒が、
高温の状態では存在していたオーステナイト結晶
粒界をくまどるように存在し、以前の結晶粒の大
きさを示すものを意味する。この測定は、JIS
GO551に定める徐冷法に従つて行なう。従来の
非調質鋼の組織が一般に結晶粒度番号2〜3であ
ることを考慮すると、本発明でえらんだ組織は、
きわめて特異なものである。 熱間加工のままで高い靭性を有する構造用鋼を
得るには、前記の組成の鋼合金を熱間加工して冷
却する際の加工条件を、所定の結晶粒度番号にな
るようにえらばなければならない。NおよびNb
の含有量の大小に応じて、良好な結果を与える熱
間加工の加熱温度および仕上げ温度の上限界を決
定したのが本発明であつて、その値は前記したと
おりである。 実際の操業条件は、上記限界内で、温度が高い
ほど塑性加工に対する抵抗が低いが、得られる鋼
材の靭性に関する限りは比較的低温が好ましい。
これもまた、両者のバランスをはかつて、それぞ
れの場合に応じて選択すべきことになる。
The role of each component in the alloy composition adopted in the present invention and the reason for its limitation are as follows. C: 0.30 to 0.60%, the presence of 0.30% or more is essential to ensure the necessary strength. The upper limit was determined from the viewpoint of toughness. Si: 0.10-2.0%, preferably 0.15-1.0% Si is an element necessary as a deoxidizer, and 0.10%
However, non-tempered structural steel is usually manufactured into a product by machining after hot working, and it is desired that the material has good machinability. Therefore, Si should be kept at 2.0% or less, preferably 1.0% or less. Mn: 0.20 to 2.5%, preferably 0.5 to 1.8% Needless to say, Mn also acts as a deoxidizing agent, which is important in obtaining high toughness in non-tempered steel. In the present invention, a relatively high content, typically around 1.5%, is used. However, from the viewpoint of machinability, it is best to avoid adding too much. A: 0.005 to 0.10%, preferably 0.01 to 0.05% It also has a deoxidizing effect, but its main role is to refine the crystal grains. Since A also has a negative effect on machinability, it is limited to 0.10% or less. N: 0.005 to 0.30%, preferably 0.23% One of the effects of N is grain refinement, and the other is precipitation strengthening due to the formation of nitrides with V or Nb. Too much of this also impairs toughness. V: 0.5% or less, Nb: 0.5% or less (total 0.5% or less when used together) both form nitrides and contribute to precipitation strengthening and crystal grain refinement. However, Nb has a large influence on the processing conditions of steel materials, and the higher the content, the wider the upper limit of the appropriate processing temperature. The upper limit was set for the reason of deterioration in hot workability, but since both V and Nb are expensive materials, the amount added should be determined in harmony with the effect of addition and economical efficiency. In carrying out the present invention, the contents of Nb and N are determined by taking into consideration the allowable cost of the intended non-tempered structural steel and the practical requirements of the field work. In particular, Nb is important because it is a highly effective material to add and also has a large impact on cost. Here, the practical requirement for on-site work is the requirement to minimize the waiting time associated with the use of soaking furnaces in factories that handle various steel materials with different processing conditions. The time to be kept in the soaking furnace varies depending on the processing conditions of each type of steel.
By judiciously combining them, latency is minimized. When using the non-tempered structural steel of the present invention as one of various steel materials, a more advantageous combination can be achieved by selecting the Nb and N contents and changing the upper limit of the heating temperature.
The above requirements can be met. Regardless of whether the steel is heat-refined or non-heat-refined, it is unavoidable that anisotropy in mechanical properties exists to varying degrees. In the steel of the present invention, especially when it is desired to lower the directionality of toughness, it is recommended to contain S: 0.40% or less and Te: 0.10% or less at a ratio of Te/S: 0.04 or more. S is, of course, an element that helps improve machinability, but here, rather, by combining appropriate amounts of S and Te,
Controls the morphology of sulfide inclusions in steel,
This has the effect of reducing toughness anisotropy. The upper limits of S and Te were determined mainly based on hot workability. In addition, the following elements may be added within specific ranges to the steel of the present invention, depending on the desired properties and uses, with the expectation of various effects.・ When you want to further refine the grain size...Ti:
0.5% or less, Ta: 0.5% or less, or Zr: 0.5%
Below - When you want to improve weather resistance...Cu: 2.0% or less - When you want further improvement in machinability...Pb: 0.4%
Below, Bi: 0.4% or less, Se: 0.4% or less, Ca:
0.01% or less・When you want to improve fatigue strength...0: 0.0030% or less・When you want to increase strength...Cr: 5% or less,
Ni: 5% or less, Mo: 3% or less, as mentioned above, the major feature of the steel of the present invention is that it has a fine grain structure with prior austenite crystal grains having an average grain size number of 5 or more. .
Needless to say, "prior austenite" grains are ferrite grains with a ferrite-to-pearlite structure that are generated by cooling to room temperature after hot working.
It exists around the existing austenite grain boundaries at high temperatures and indicates the size of the previous grains. This measurement is based on JIS
Perform according to the slow cooling method specified in GO551. Considering that the structure of conventional non-tempered steel generally has a grain size number of 2 to 3, the structure selected in the present invention is as follows:
It is extremely unique. In order to obtain structural steel with high toughness as hot-worked, the processing conditions when hot-working and cooling the steel alloy with the above composition must be selected so that a predetermined grain size number is achieved. It won't happen. N and Nb
The present invention determines the upper limits of the heating temperature and finishing temperature for hot working that give good results depending on the content of , and the values are as described above. The actual operating conditions are within the above limits, and the higher the temperature, the lower the resistance to plastic working, but relatively low temperatures are preferred as far as the toughness of the resulting steel is concerned.
Again, the balance between the two must be selected depending on each case.

【実施例】【Example】

第1表に示す合金組成の鋼を2tonアーク炉で溶
解し鋳造した。(No.*は比較鋼)
Steel having the alloy composition shown in Table 1 was melted and cast in a 2 ton arc furnace. (No. * is comparison steel)

【表】 インゴツトを圧延して100mm角のビレツトをつ
くり、加熱温度と仕上げ温度とを下に示す条件に
設定して鍛造し、断面20mm×60mmの素材とした。
比較材は、鍛造後さらに、850度・油冷−600℃・
空冷の条件で焼入れ−焼戻し処理をした。
[Table] An ingot was rolled to make a 100 mm square billet, and the heating temperature and finishing temperature were set to the conditions shown below for forging, resulting in a material with a cross section of 20 mm x 60 mm.
Comparison materials were further forged at 850 degrees, oil cooled at -600 degrees Celsius,
Quenching and tempering were performed under air cooling conditions.

【表】 上記のようにして得た素材について、種々試験
した結果を第2表に示す。表中、番号に*印を付
したものは比較例、無印が本発明の実施例であ
る。「−」は未測定を意味する。 シヤルピー衝撃値はJIS 3号試験片を用い、室
温で測定したものである。 第2表のデータから、本発明に従う合金組成お
よび加工処理条件の組み合わせが所定の大きさの
旧オーステナイト結晶粒度をもたらすこと、そし
てその条件をみたした鋼材が、硬さ、靭性および
靭性の方向性に関して、調質を行なつた在来品に
そん色のない値を示すことがわかり、さらに、適
量のSおよびTeを含有する場合には靭性の方向
性が著しく改善されることが裏付けられる。
[Table] Table 2 shows the results of various tests performed on the materials obtained as described above. In the table, the numbers marked with * are comparative examples, and the numbers without marks are examples of the present invention. "-" means not measured. The Charpy impact value was measured at room temperature using a JIS No. 3 test piece. From the data in Table 2, it can be seen that the combination of alloy composition and processing conditions according to the present invention results in a prior austenite grain size of a predetermined size, and that the steel material satisfying the conditions has a hardness, toughness, and toughness direction. It was found that the steel had a value comparable to that of conventional products that had undergone heat refining, and furthermore, it was confirmed that the directionality of toughness was significantly improved when appropriate amounts of S and Te were contained.

【表】 発明の効果 本発明によれば、産業機械や自動車などの製造
に広く使われている構造用鋼において、熱間加工
のままで高い強度と靭性をもつた鋼が得られる。
従つて、これまで焼入れ、焼戻しの調質処理を必
要としていた各種機械部品、たとえばクランクシ
ヤフト、コネクテイングロツド、アクスルシヤフ
ト、スピンドル、ステアリングラツクなどの製造
に当つて、熱処理工程を省略することができ、生
産性は大いに高まる。この利益は大量生産品にお
いて一層顕著である。
[Table] Effects of the Invention According to the present invention, steel having high strength and toughness can be obtained as it is hot-worked from structural steel widely used in manufacturing industrial machinery and automobiles.
Therefore, it is now possible to omit the heat treatment process when manufacturing various mechanical parts that previously required heat treatment such as quenching and tempering, such as crankshafts, connecting rods, axle shafts, spindles, and steering racks. This will greatly increase productivity. This benefit is even more pronounced for mass-produced products.

Claims (1)

【特許請求の範囲】 1 C:0.30〜0.60%、Si:0.10〜2.0%、Mn:
0.20〜2.5%、A:0.005〜0.10%およびN:
0.005〜0.030%、ならびにV:0.5%以下および
Nb:0.5%以下のいづれか1種または2種を含有
し、残余が実質的にFeからなる鋼合金を、Nお
よびNbの含有量に応じて、つぎの限度以下の加
熱温度および仕上げ温度において熱間加工を行な
うことを特徴とする非調質構造用鋼の製造方法。 【表】
[Claims] 1 C: 0.30-0.60%, Si: 0.10-2.0%, Mn:
0.20-2.5%, A: 0.005-0.10% and N:
0.005-0.030%, and V: 0.5% or less and
Nb: A steel alloy containing 0.5% or less of one or two types, with the remainder substantially consisting of Fe, is heated at a heating temperature and finishing temperature below the following limits, depending on the content of N and Nb. A method for manufacturing non-temperature structural steel, which is characterized by performing temporary processing. 【table】
JP16775081A 1981-10-20 1981-10-20 Unnormalized structural steel and its manufacture Pending JPS5871354A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16775081A JPS5871354A (en) 1981-10-20 1981-10-20 Unnormalized structural steel and its manufacture
JP15112386A JPS6296653A (en) 1981-10-20 1986-06-27 Nonrefined structural steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16775081A JPS5871354A (en) 1981-10-20 1981-10-20 Unnormalized structural steel and its manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP15112386A Division JPS6296653A (en) 1981-10-20 1986-06-27 Nonrefined structural steel

Publications (2)

Publication Number Publication Date
JPS5871354A JPS5871354A (en) 1983-04-28
JPH0140901B1 true JPH0140901B1 (en) 1989-09-01

Family

ID=15855402

Family Applications (2)

Application Number Title Priority Date Filing Date
JP16775081A Pending JPS5871354A (en) 1981-10-20 1981-10-20 Unnormalized structural steel and its manufacture
JP15112386A Granted JPS6296653A (en) 1981-10-20 1986-06-27 Nonrefined structural steel

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP15112386A Granted JPS6296653A (en) 1981-10-20 1986-06-27 Nonrefined structural steel

Country Status (1)

Country Link
JP (2) JPS5871354A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895700A (en) * 1988-03-10 1990-01-23 Dana Corporation Low grade material axle shaft
JPH01290751A (en) * 1988-05-19 1989-11-22 Topy Ind Ltd High-strength non-heattreated steel bar
JPH0796695B2 (en) * 1988-08-10 1995-10-18 新日本製鐵株式会社 Medium carbon tough steel
JP2669178B2 (en) * 1991-05-08 1997-10-27 住友金属工業株式会社 High toughness and high strength seamless steel pipe
CN1039835C (en) * 1995-07-20 1998-09-16 张玉田 Non-hardened and non-tempered alloy structure steel and making process thereof
JP5233848B2 (en) * 2009-06-08 2013-07-10 新日鐵住金株式会社 Non-tempered steel bar for direct cutting
CN104032214B (en) * 2013-09-26 2015-12-09 北大方正集团有限公司 A kind of non-hardened and tempered steel and production technique thereof
JP7009938B2 (en) * 2017-11-07 2022-01-26 日産自動車株式会社 Axle shaft

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923124A (en) * 1972-06-23 1974-03-01
JPS5921369B2 (en) * 1976-10-25 1984-05-19 新日本製鐵株式会社 Manufacturing method for high-tensile, high-carbon steel wire with excellent wire drawability
JPS5853708B2 (en) * 1979-03-15 1983-11-30 住友金属工業株式会社 Welded steel pipe with excellent butt toughness

Also Published As

Publication number Publication date
JPH0557351B2 (en) 1993-08-23
JPS6296653A (en) 1987-05-06
JPS5871354A (en) 1983-04-28

Similar Documents

Publication Publication Date Title
US4812182A (en) Air-cooling low-carbon bainitic steel
JPH10273756A (en) Cold tool made of casting, and its production
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
JPH0140901B1 (en)
JPS5983719A (en) Preparation of unnormalized high strength steel
JPH0555585B2 (en)
JPH075960B2 (en) Method for manufacturing cold forging steel
JP6903507B2 (en) Hot tool steel with excellent hardenability and toughness
JPH01176055A (en) Non-heat treated steel for hot forging having excellent machinability
JPH0115561B2 (en)
JPS62196359A (en) Non-heattreated steel for hot forging and production thereof
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture
JPS6233287B2 (en)
JP2533935B2 (en) Method for producing high Mn non-magnetic steel having excellent SR embrittlement resistance, high strength and high toughness
JP2000160285A (en) High-strength and high-toughness non-heat treated steel
JPS61139646A (en) Nontemper bar steel for hot forging
JPH073327A (en) Production of metastable austenitic stainless steel sheet excellent in season cracking resistance at the time of production
JPH04116125A (en) Production of free cutting pb steel excellent in warm ductility
JPS59170239A (en) Parts for machine structural purpose
JPH01129953A (en) High strength non-heat treated steel and its manufacture
WO2024003593A1 (en) Forged part of steel and a method of manufacturing thereof
JP3012997B2 (en) Manufacturing method of high strength drive shaft
JPH05287373A (en) Manufacture of high strength and high toughness hot worked non-heat-treated steel
JPH04314842A (en) Steel material for shaft parts excellent in induction hardenability
JPH0285320A (en) Production of high-strength unnormalized warm-forged product