JPS6296653A - Nonrefined structural steel - Google Patents

Nonrefined structural steel

Info

Publication number
JPS6296653A
JPS6296653A JP15112386A JP15112386A JPS6296653A JP S6296653 A JPS6296653 A JP S6296653A JP 15112386 A JP15112386 A JP 15112386A JP 15112386 A JP15112386 A JP 15112386A JP S6296653 A JPS6296653 A JP S6296653A
Authority
JP
Japan
Prior art keywords
less
steel
grain size
structural steel
hot working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15112386A
Other languages
Japanese (ja)
Other versions
JPH0557351B2 (en
Inventor
Ryoji Tanaka
良治 田中
Atsuyoshi Kimura
木村 篤良
Shozo Abeyama
阿部山 尚三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP15112386A priority Critical patent/JPS6296653A/en
Publication of JPS6296653A publication Critical patent/JPS6296653A/en
Publication of JPH0557351B2 publication Critical patent/JPH0557351B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a nonrefined structural steel having high toughness as hot worked by selecting conditions during the hot working and cooling of a steel alloy having a specified composition so as to give a prescribed crystal grain size number. CONSTITUTION:The composition of a steel alloy is composed of, by weight, 0.3-0.6% C, 0.1-2% Si, 0.2-2.5% Mn, 0.005-0.1% Al, 0.005-0.03% N, <0.5% V and/or <0.5% Nb and the balance Fe. The alloy is hot worked and cooled to ordinary temp. so as to form a ferrite-pearlite structure contg. former austenite grains having average crystal grain size No.5 or above. It is preferable that <0.4% S and <0.1% Te are added to the composition in >=0.04 ratio of Te/S.

Description

【発明の詳細な説明】[Detailed description of the invention]

1川立旦狗 1 Kawatatetangu

【産業上の利用分野】[Industrial application field]

本発明は、非調質で、すなわち熱間加工のまま焼入れ一
焼戻しなどの調質処理を行なわずに、すぐれた靭性を有
する構造用鋼に関する。 (従来の技術] 一般に構造用鋼からの製品の製造は、熱間加工ののち調
質をしてから切削加工を施すことによって行なわれてい
るが、調質を行なわないで済めばコストの低下がはかれ
るとともに、省エネルギーの要請にこたえることもでき
る。 そこでこのような鋼の研究がさかんに試みられており、
とくに、VやNbなどを添加した鋼を熱間加工後に冷却
する過程でこれらの炭化物や窒化物がフェライト士パー
ライト組織中に析出することを利用して強化する鋼が開
発され、一部実用化されている。 熱間加工として圧延
を行なった場合は、圧延のままで強化した鋼材をそのま
ま、あるいは冷間または温間で塑性加工してから切削し
て最終製品とする。 また、鍛造を行なう場合は、圧延
した鋼材を型打鍛造し、硬化した粗材を切削して製品と
する。 しかしこのようにして冑だ製品は、通常の調質処理をへ
たものにくらべて、その靭性が低いという弱点がある。 [発明が解決しようとする問題点] 本発明の目的は、この弱点を克服し、調質鋼にくらべて
そん色のない非調質構造用鋼を提供することにある。 l」夏璽感
The present invention relates to a structural steel that has excellent toughness without heat treatment, that is, without undergoing heat treatment such as quenching and tempering while hot working. (Conventional technology) Generally, products made from structural steel are manufactured by hot working, tempering, and then cutting, but if heat refining can be omitted, costs can be reduced. In addition to being able to measure energy efficiency, it can also meet the demand for energy conservation.Therefore, research on this kind of steel is actively being attempted.
In particular, steels to which V, Nb, etc. have been added are developed and strengthened by taking advantage of the fact that these carbides and nitrides precipitate into the ferrite/pearlite structure during the cooling process after hot working, and some of them have been put into practical use. has been done. When rolling is performed as hot working, the steel material is strengthened as it is or is cold or warm plastic worked and then cut into the final product. In addition, when forging is performed, the rolled steel material is die-forged, and the hardened rough material is cut into a product. However, products processed in this way have a disadvantage in that they have lower toughness than those processed through normal heat treatment. [Problems to be Solved by the Invention] An object of the present invention is to overcome this weakness and provide a non-tempered structural steel that is comparable to tempered steel. l” summer seal feeling

【問題点を解決するための手段】 熱間加工のままですぐれた靭性を有する本発明の非調質
構造用鋼は、C:0.30〜0.60%、s+  :o
、10〜2.0%、Mn :0.20〜2゜5%、l 
:0.005〜0.10%およびN:0.005〜0.
030%、ならびに、V:O。 5%以下およびNb:0.5%以下のいづれか1種また
は2種を含有し、残余が実質的にFeからなる鋼合金を
熱間加工してなり、常温まで冷却した後の組織が、平均
結晶粒度番号5以上の旧オーステナイト結晶粒を有する
ことを特徴とする。 本発明の非調質構造用鋼は、上記の基本的組成に加えて
、S:0.4%以下およびTe:0,10%以下を、T
e /S≧0.04の割合で含有させることが推奨され
る。
[Means for Solving the Problems] The non-tempered structural steel of the present invention, which has excellent toughness even after hot working, has C: 0.30 to 0.60%, s+: o
, 10-2.0%, Mn: 0.20-2°5%, l
:0.005~0.10% and N:0.005~0.
030%, as well as V:O. 5% or less and Nb: 0.5% or less, and the remainder is substantially Fe, and the structure after cooling to room temperature is It is characterized by having prior austenite crystal grains with a grain size number of 5 or more. In addition to the above basic composition, the non-tempered structural steel of the present invention contains S: 0.4% or less and Te: 0.10% or less.
It is recommended that it be contained in a ratio of e/S≧0.04.

【作 用】[For use]

本発明で採用した合金組成における各成分の役割と、そ
の限定の理由は、つぎのとおりである。 C:0.30−0.60%、 必要な強度を確保するため、0.30%以上の存在が必
須である。 上限は靭性の観点から定めた。 3i  :0.10〜2.0%、好ましくは0.15〜
1.0% 3iは脱酸剤として必要な元素であり、0゜10%以上
含有させるが、非調質構造用鋼は、熱間加工後、機械加
工により製品とするのがふつうであり、被削性が良好で
あることが望まれる。 従って、Siは2.0%以下、
好ましくは1.0%までに止めるべきである。 Mn :0.20〜2.5%、好ましくは0.5〜1.
8% いうまでもなくMnも脱酸剤として作用するが、非調質
鋼においては高い靭性を得る上で重要である。 本発明
においても、比較的高含有量、代表的には1.5%内外
を採用する。 ただし被削性の点からは、あまり多Hに加えることは避
Cプたい。 Δρ:0.005〜0.10%、好ましくは0.01〜
0.05% 脱酸作用もあるが、主な役割は結晶粒の微細化である。  A、llもまた被削性に関してはマイナスにはたらく
ので、0.10%以下に限定する。 N  :0.005〜0.30%、好ましくは0゜23
%までNの効果は、ひとつは結晶粒の微細化であり、い
まひとつはVまたはNbとの窒化物形成による析出強化
でおる。 これも多量にすぎると靭性を損う。 V:0.5%以下、Nb :0.5%以下(併用の場合
は合計で0.5%以下) どちらも窒化物を形成し、析出強化および結晶粒の微細
化に寄与する。 ただし、鋼材の加工条件に対してはN
bの影響が大きく、高含有量の方が適切な加工温度の上
限が拡がる。 上限は熱間加工性の低下を理由に設けたが、VもNbも
高価な材料であるから、添加効果と経演性との調和にお
いて添加量を定めればよい。 本発明の鋼の最大の特徴は、前記した旧オーステナイト
結晶粒の大きざが平均結晶粒度番号5以上であるという
特異な組織にある。 いうまでもなく、「旧オーステナ
イト」結晶粒とは、熱間加工復常温まで冷却されて生成
したフェライト−パーライト系の組織のフェライト粒が
、高温の状態では存在していたオーステナイト結晶粒界
をくまどるように存在し、以前の結晶粒の大きさを示す
ものを意味する。 この測定は、JIS  G  05
51に定める徐冷法に従って行なう。 従来の非調質鋼
の組織が、一般に結晶粒度番号2〜3であることを考慮
すると、本発明でえらんだ組織は、きわめて特異なもの
である。 調質非調軍をとわず、鋼材には機械的特性に関する異方
性が、程度の差こそあれ、存在することは避は雌い。 
本発明の鋼において、とくに靭性の方向性を低くしたい
場合には、SおよびTeを、前記したように含有させた
好ましい態様に従うとよい。 Sはもちろん被剛性の改
善に役立つ元素であるが、ここではむしろ、適量のSと
Teとの組み合わせにより、鋼中の硫化物系介在物の形
態をコントロールし、靭性の異方性を軽減する効果が得
られるのである。 SおよびTeの上限値は、主として
熱間加工性にもとづいて定めた。 そのほか本発明の鋼においては、所望の特性や用途に応
じて、さまざまな効果を期待して下記の諸元素を特定の
範囲内で添加するとよい。 ・ 結晶粒度をざらに微細化したいとき・・・Ti :
0.5%以下、Ta:0.5%以下、またはZr :0
.5%以下 ・ 耐候性を高めたいとき・・・Cu:2.0%以下・
 被削性の一層の向上を望むとき・・・Pb:0゜4%
以下、Bi:0.4%以下、Se :0.4%以下、C
a:0.01%以下 ・ 疲労強度を改善したいとき・・・O:0.0030
%以下 ・ 強度の増大をはかるとき・・・Cr:5%以下、N
i:5%以下、MO:3%以下 上述のような、熱間加工のままで高い靭性を有する構造
用鋼を得るには、前記の組成の鋼合金を熱間加工して冷
却する際の加工条件を、所定の結晶粒度番号になるよう
えらばなければならない。 その条件は、えらんだ組成によって異なるが、最も支配
的な因子はNおよびNbの含有量である。 いま、これらの含有量の大小に応じて、良好な結果を与
える熱間加工の加熱温度および仕上げ温度の上限界を示
せば、次のとおりである。 加熱温度 仕上げ温度 ■軒」5上 −一■工笈り一 上限」1上 上限(’C
)0   0.005〜0.015  1000   
 9000   0.015〜0.030  1100
    1000< 0.1 0.005〜()、01
5 1200   1100< 0.1 0.015〜
0.030 1300   12000.1〜0.5 
0.005〜0.030  1300    1300
実際の操業条件は、上記限界内で、温度が高いほど塑性
加工に対する抵抗が低いが、得られる鋼材の靭性に関す
る限りは比較的低温が好ましい。 これもまた、両者のバランスをはかって、それぞれの場
合に応じて選択すべきことになる。 [実施例] 第1表に示す合金組成の鋼を2 tonアーク炉で溶解
し鋳造した。  (Na Vl *は比較鋼)ローΩ−
1−Mn   A、ll   N−I   O,490
,240,800,0300,010n   O,50
0,261,510,0250,009III   O
,510,251,520,0400,0111V  
 O,500,251,500,0350,020V 
  O,490,241,510,0400,020V
l*0.50 0.25 0.80 0.015 0.
0081表 V Nb Te S Te/S O,11−−−− 0,10−−−− 〇、100.05−−− 0.100.05−−− 0.100.050.0020.0210.10インゴ
ツトを圧延して100m角のビレットをつくり、加熱温
度と仕上げ温度とを下に示す条件に設定して鍛造し、断
面20mX60mの素材とした。 比較材は、鍛造後さ
らに、850度・油冷−600℃・空冷の条件で焼入れ
一焼戻し処理をした。 瓜皿杢豆 旭」U」痕 逝よ11 逸里迭イ 1300
℃1100℃空冷 口     1000   1000      ll
ハ    1000    800      〃二 
 焼入れ(850℃、水冷) +焼戻しく600℃) 上記のようにして得た素材について、種々試験した結果
を第2表に示す。 表中、番号に*印を付したものは比
較例である。  「−」は未測定を意味する。 シャルピー衝撃値はJIS3M試験片を用い、室温で測
定したものである。 第2表のデータから、本発明の合金、とくに好ましい処
理条件で加工したものが、所定の大きざの旧オーステナ
イト結晶粒度をもつこと、そしてその条件をみたした鋼
材が、硬さ、靭性および靭性の方向性に関して、調質を
行なった在来品にそん色のない値を示すことがわかり、
さらに、適量のSおよび1’−eを含有する場合には靭
性の方向性が著しく改善されることが裏付けられる。 第   2 No、   ill  種  処 理  旧オーステナ
  介在物□□末−件 イト結晶粒度 長短比 1     ■    ハ      6.7   1
2.72     ■    ハ      6.0 
  12.03      ■     口     
  6.3    1B、44     ■    ハ
     8.1    12.35     1V 
     イ       6.1    12.56
     1V      0       8.3 
   10.07    1V     ハ    1
0.0   11.28     v     イ  
     6.8      3.39       
V       口       B、0      
4.110     V     ハ      9.
1     5.011*   Vl*   二   
          10.513.2     5.
3   0.4   2113.4         
        2412.1      −    
 −    2714.2             
    2512.2     4.9   0.4 
  2914.5     4.4   0.3   
2716.2     4.9   0.3   24
10.8      B、6   0.8   301
3.3    10.6   0.8   2616.
0    11.2   0.7   2514.7 
    5.9   0.4   25発明の効果 本発明によれば、産業機械や自動車などの製造に広く使
われている構造用鋼において、熱間加工のままで高い強
度と靭性をもった鋼が得られる。 従って、これまで焼入れ、焼戻しの調質処理を必要とし
ていた各種機械部品、たとえばクランクシャフト、コネ
クティングロッド、アクスルシャフト、スピンドル、ス
テアリングラックなどの製造に当って、熱処理工程を省
略することができ、生産性は大いに高まる。 この利益
は大量生産品において一層顕著である。
The role of each component in the alloy composition adopted in the present invention and the reason for its limitation are as follows. C: 0.30-0.60%, the presence of 0.30% or more is essential to ensure the necessary strength. The upper limit was determined from the viewpoint of toughness. 3i: 0.10-2.0%, preferably 0.15-2.0%
1.0% 3i is an element necessary as a deoxidizing agent, and should be contained at 0°10% or more, but non-tempered structural steel is usually made into a product by machining after hot working. Good machinability is desired. Therefore, Si is 2.0% or less,
It should preferably be kept at 1.0%. Mn: 0.20-2.5%, preferably 0.5-1.
8% Needless to say, Mn also acts as a deoxidizing agent, which is important in obtaining high toughness in non-tempered steel. Also in the present invention, a relatively high content is employed, typically around 1.5%. However, from the viewpoint of machinability, it is best to avoid adding too much H. Δρ: 0.005~0.10%, preferably 0.01~
0.05% It also has a deoxidizing effect, but its main role is to refine crystal grains. Since A and ll also have a negative effect on machinability, they are limited to 0.10% or less. N: 0.005-0.30%, preferably 0°23
One of the effects of N up to % is the refinement of crystal grains, and the other is precipitation strengthening due to the formation of nitrides with V or Nb. Too much of this also impairs toughness. V: 0.5% or less, Nb: 0.5% or less (total 0.5% or less if used together) Both form nitrides and contribute to precipitation strengthening and crystal grain refinement. However, N
The influence of b is large, and the higher the content, the wider the upper limit of the appropriate processing temperature. The upper limit was set for the reason of deterioration in hot workability, but since both V and Nb are expensive materials, the amount added should be determined in harmony with the effect of addition and performance. The most distinctive feature of the steel of the present invention is its unique structure in which the aforementioned prior austenite crystal grains have an average grain size number of 5 or more. Needless to say, "prior austenite" grains are those in which ferrite grains with a ferrite-pearlite structure formed by cooling to the hot working recovery temperature cross the austenite grain boundaries that existed at high temperatures. It refers to the presence and size of previous grains. This measurement is based on JIS G 05
It is carried out according to the slow cooling method specified in 51. Considering that the structure of conventional non-tempered steel generally has a grain size number of 2 to 3, the structure selected in the present invention is extremely unique. Regardless of the degree of tempering, it is inevitable that steel materials will have anisotropy in their mechanical properties, albeit to varying degrees.
In the steel of the present invention, when it is particularly desired to lower the directionality of toughness, it is preferable to follow the preferred embodiment in which S and Te are contained as described above. S is, of course, an element that helps improve stiffness, but here the combination of appropriate amounts of S and Te controls the morphology of sulfide inclusions in the steel and reduces the anisotropy of toughness. The effect can be obtained. The upper limits of S and Te were determined mainly based on hot workability. In addition, the following elements may be added within specific ranges to the steel of the present invention, depending on the desired properties and uses, with the expectation of various effects.・When you want to roughly refine the grain size...Ti:
0.5% or less, Ta: 0.5% or less, or Zr: 0
.. 5% or less・When you want to increase weather resistance...Cu: 2.0% or less・
When you want further improvement in machinability...Pb: 0°4%
Below, Bi: 0.4% or less, Se: 0.4% or less, C
a: 0.01% or less・When you want to improve fatigue strength...O: 0.0030
% or less・When increasing the strength...Cr: 5% or less, N
i: 5% or less, MO: 3% or less In order to obtain the above-mentioned structural steel that has high toughness even after hot working, it is necessary to Processing conditions must be selected to achieve a predetermined grain size number. The conditions vary depending on the composition chosen, but the most dominant factors are the N and Nb contents. Now, depending on the magnitude of these contents, the upper limits of the heating temperature and finishing temperature for hot working that give good results are as follows. Heating Temperature Finishing Temperature ■Eaves'' 5 above - 1 ■Works
)0 0.005~0.015 1000
9000 0.015~0.030 1100
1000< 0.1 0.005~(), 01
5 1200 1100< 0.1 0.015~
0.030 1300 12000.1~0.5
0.005-0.030 1300 1300
The actual operating conditions are within the above limits, and the higher the temperature, the lower the resistance to plastic working, but relatively low temperatures are preferred as far as the toughness of the resulting steel is concerned. Again, the choice should be made depending on each case, with a balance between the two. [Example] Steel having the alloy composition shown in Table 1 was melted and cast in a 2 ton arc furnace. (Na Vl * is comparative steel) Low Ω-
1-Mn A, ll N-I O, 490
,240,800,0300,010n O,50
0,261,510,0250,009III O
,510,251,520,0400,0111V
O, 500, 251, 500, 0350, 020V
O,490,241,510,0400,020V
l*0.50 0.25 0.80 0.015 0.
0081 Table V Nb Te S Te/S O, 11---- 0,10---- 〇, 100.05--- 0.100.05--- 0.100.050.0020.0210.10 The ingot was rolled to make a 100m square billet, and the heating temperature and finishing temperature were set to the conditions shown below for forging, resulting in a material with a cross section of 20m x 60m. After the comparative material was forged, it was further quenched and tempered under the conditions of 850 degrees, oil cooling - 600 degrees Celsius, and air cooling. Melon Plate Moto Bean Asahi "U" Mark Die 11 Irisatoi 1300
℃1100℃ air cooling port 1000 1000 ll
C 1000 800 〃2
Table 2 shows the results of various tests performed on the materials obtained as described above. In the table, the numbers marked with * are comparative examples. "-" means not measured. The Charpy impact value was measured at room temperature using a JIS3M test piece. From the data in Table 2, it is clear that the alloy of the present invention, especially one processed under favorable processing conditions, has a prior austenite grain size with a predetermined size, and that steel materials that meet the conditions have good hardness, toughness, and toughness. Regarding the direction of
Furthermore, it is confirmed that when appropriate amounts of S and 1'-e are contained, the directionality of toughness is significantly improved. 2nd No. ill Seed treatment Former austener inclusion
2.72 ■ Ha 6.0
12.03 ■ Mouth
6.3 1B, 44 ■ C 8.1 12.35 1V
A 6.1 12.56
1V 0 8.3
10.07 1V Ha 1
0.0 11.28 v i
6.8 3.39
V mouth B, 0
4.110 V 9.
1 5.011* Vl* 2
10.513.2 5.
3 0.4 2113.4
2412.1 -
-2714.2
2512.2 4.9 0.4
2914.5 4.4 0.3
2716.2 4.9 0.3 24
10.8 B, 6 0.8 301
3.3 10.6 0.8 2616.
0 11.2 0.7 2514.7
5.9 0.4 25 Effects of the Invention According to the present invention, it is possible to obtain structural steel that has high strength and toughness even after hot working, which is widely used in the manufacture of industrial machinery and automobiles. It will be done. Therefore, the heat treatment process can be omitted when manufacturing various mechanical parts, such as crankshafts, connecting rods, axle shafts, spindles, and steering racks, which previously required heat treatment such as quenching and tempering. sex will greatly increase. This benefit is even more pronounced for mass-produced products.

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.30〜0.60%、Si:0.10〜2
.0%、Mn:0.20〜2.5%、Ar:0.005
〜0.10%およびN:0.005〜0.030%、な
らびにV:0.5%以下およびNb:0.5%以下のい
づれか1種または2種を含有し、残余が実質的にFeか
らなる鋼合金を熱間加工してなり、常温まで冷却した後
の組織がフェライト+パーライトであつて、平均結晶粒
度番号5以上の旧オーステナイト結晶粒を有することを
特徴とする非調質構造用鋼。
(1) C: 0.30-0.60%, Si: 0.10-2
.. 0%, Mn: 0.20-2.5%, Ar: 0.005
0.10% and N: 0.005 to 0.030%, and one or two of V: 0.5% or less and Nb: 0.5% or less, and the remainder is substantially Fe. For non-heat-refined structure, which is obtained by hot working a steel alloy consisting of the following, and whose structure after cooling to room temperature is ferrite + pearlite, and has prior austenite crystal grains with an average grain size number of 5 or more. steel.
(2)C:0.30〜0.60%、Si:0.10〜2
.0%、Mn:0.20〜2.5%、Al:0.005
〜0.10%およびN:0.005〜0.030%、な
らびにV:0.5%以下およびNb:0.5%以下のい
づれか1種または2種を含有し、さらに、S:0.40
%以下およびTe:0.10以下をTe/S:0.04
以上の割合で含有し、残余が実質的にFeからなる鋼合
金を熱間加工してなり、常温まで冷却した後の組織がフ
ェライト+パーライトであって、平均結晶粒度番号5以
上の旧オーステナイト結晶粒を有することを特徴とする
非調質構造用鋼。
(2) C: 0.30-0.60%, Si: 0.10-2
.. 0%, Mn: 0.20-2.5%, Al: 0.005
0.10% and N: 0.005 to 0.030%, and one or two of V: 0.5% or less and Nb: 0.5% or less, and further contains S: 0. 40
% or less and Te: 0.10 or less Te/S: 0.04
It is made by hot working a steel alloy containing Fe in the above ratio, and the structure after cooling to room temperature is ferrite + pearlite, with prior austenite crystals having an average grain size number of 5 or more. A non-tempered structural steel characterized by having grains.
JP15112386A 1981-10-20 1986-06-27 Nonrefined structural steel Granted JPS6296653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15112386A JPS6296653A (en) 1981-10-20 1986-06-27 Nonrefined structural steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP16775081A JPS5871354A (en) 1981-10-20 1981-10-20 Unnormalized structural steel and its manufacture
JP15112386A JPS6296653A (en) 1981-10-20 1986-06-27 Nonrefined structural steel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16775081A Division JPS5871354A (en) 1981-10-20 1981-10-20 Unnormalized structural steel and its manufacture

Publications (2)

Publication Number Publication Date
JPS6296653A true JPS6296653A (en) 1987-05-06
JPH0557351B2 JPH0557351B2 (en) 1993-08-23

Family

ID=15855402

Family Applications (2)

Application Number Title Priority Date Filing Date
JP16775081A Pending JPS5871354A (en) 1981-10-20 1981-10-20 Unnormalized structural steel and its manufacture
JP15112386A Granted JPS6296653A (en) 1981-10-20 1986-06-27 Nonrefined structural steel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP16775081A Pending JPS5871354A (en) 1981-10-20 1981-10-20 Unnormalized structural steel and its manufacture

Country Status (1)

Country Link
JP (2) JPS5871354A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290751A (en) * 1988-05-19 1989-11-22 Topy Ind Ltd High-strength non-heattreated steel bar
JPH0247240A (en) * 1988-08-10 1990-02-16 Nippon Steel Corp Medium carbon tough and hard steel
JPH0551699A (en) * 1991-05-08 1993-03-02 Sumitomo Metal Ind Ltd Seamless steel tube with high toughness
JP2010280978A (en) * 2009-06-08 2010-12-16 Sumitomo Metal Ind Ltd Non-heat-treated bar steel for direct cutting
JP2016538417A (en) * 2013-09-26 2016-12-08 ペキン ユニバーシティ ファウンダー グループ カンパニー,リミティド Non-tempered steel and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895700A (en) * 1988-03-10 1990-01-23 Dana Corporation Low grade material axle shaft
CN1039835C (en) * 1995-07-20 1998-09-16 张玉田 Non-hardened and non-tempered alloy structure steel and making process thereof
JP7009938B2 (en) * 2017-11-07 2022-01-26 日産自動車株式会社 Axle shaft

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923124A (en) * 1972-06-23 1974-03-01
JPS5352229A (en) * 1976-10-25 1978-05-12 Nippon Steel Corp Production of high tensile high carbon steel wire rod with excellentdrawability
JPS55122854A (en) * 1979-03-15 1980-09-20 Sumitomo Metal Ind Ltd Welded steel tube having superior butted portion toughness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923124A (en) * 1972-06-23 1974-03-01
JPS5352229A (en) * 1976-10-25 1978-05-12 Nippon Steel Corp Production of high tensile high carbon steel wire rod with excellentdrawability
JPS55122854A (en) * 1979-03-15 1980-09-20 Sumitomo Metal Ind Ltd Welded steel tube having superior butted portion toughness

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290751A (en) * 1988-05-19 1989-11-22 Topy Ind Ltd High-strength non-heattreated steel bar
JPH0247240A (en) * 1988-08-10 1990-02-16 Nippon Steel Corp Medium carbon tough and hard steel
JPH0551699A (en) * 1991-05-08 1993-03-02 Sumitomo Metal Ind Ltd Seamless steel tube with high toughness
JP2010280978A (en) * 2009-06-08 2010-12-16 Sumitomo Metal Ind Ltd Non-heat-treated bar steel for direct cutting
JP2016538417A (en) * 2013-09-26 2016-12-08 ペキン ユニバーシティ ファウンダー グループ カンパニー,リミティド Non-tempered steel and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0140901B1 (en) 1989-09-01
JPH0557351B2 (en) 1993-08-23
JPS5871354A (en) 1983-04-28

Similar Documents

Publication Publication Date Title
JP3845805B2 (en) Low alloy steel for manufacturing molds for plastic or rubber materials
EP0496350B1 (en) Martensitic stainless steel
CN105063509B (en) Yield strength 500MPa levels structural steel for bridge and its production method
US5648044A (en) Graphite steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post-hardening/tempering fatigue resistance
US5123970A (en) Method of producing an air-hardenable bainite-martensite steel
US4886640A (en) Hot work tool steel with good temper resistance
CN114134431B (en) 2000 Mpa-grade high-strength high-toughness high-hardenability spring steel by square billet continuous casting and rolling and manufacturing method thereof
JPS6296653A (en) Nonrefined structural steel
US6146475A (en) Free-machining martensitic stainless steel
JPH075960B2 (en) Method for manufacturing cold forging steel
JP6390685B2 (en) Non-tempered steel and method for producing the same
JPH0115561B2 (en)
JPS62199750A (en) Unrefined steel bar having superior toughness and its manufacture
CN108690935B (en) High-quality alloy tool steel plate and production method thereof
JPH04154936A (en) Precipitation hardening nitriding steel
JPH01159349A (en) Low-alloy high-speed tool steel and its production
JPH06256897A (en) Steel for hot forging die
JPS60128242A (en) High manganese steel for nonmagnetic drill collar
JPS6233287B2 (en)
JP3833379B2 (en) Cold work tool steel with excellent machinability
JPH0673490A (en) High toughness non-heat-treated rolled bar steel
JPS62260042A (en) High strength unrefined tough steel
JPH0456103B2 (en)
JPH01129953A (en) High strength non-heat treated steel and its manufacture
JPS59170239A (en) Parts for machine structural purpose