JPH05186848A - Steel for large heat input welding excellent in toughness in weld heat-affected zone - Google Patents

Steel for large heat input welding excellent in toughness in weld heat-affected zone

Info

Publication number
JPH05186848A
JPH05186848A JP316292A JP316292A JPH05186848A JP H05186848 A JPH05186848 A JP H05186848A JP 316292 A JP316292 A JP 316292A JP 316292 A JP316292 A JP 316292A JP H05186848 A JPH05186848 A JP H05186848A
Authority
JP
Japan
Prior art keywords
toughness
steel
heat input
input welding
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP316292A
Other languages
Japanese (ja)
Inventor
Naoki Saito
直樹 斎藤
Ryota Yamaba
良太 山場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP316292A priority Critical patent/JPH05186848A/en
Publication of JPH05186848A publication Critical patent/JPH05186848A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To remarkably reduce the cost in the construction of a structure by providing a steel composition consisting of respectively specified percentages of C, Si, Mn, P, S, V, Ti, Al and N and the balance Fe with inevitable impurities. CONSTITUTION:The steel for large heat input welding has a composition consisting of, by weight, 0.03-0.10% C, 0.01-0.5% Si, 0.4-2.0% Mn, <=0.03% P, 0.001-0.01% S, 0.03-0.20% V, 0.005-0.02% Ti, 0.005-0.06% Al, 0.005-0.02% N and the balance Fe with inevitable impurities. As a group of strength and toughness improving elements, either or both of 0.2-1.5% Cu and 0.2-3.0% Ni are incorporated. Further, 0.05-1.0% Cr and/or 0.05-1.0% Mo is incorporated. By this method, the number of stages in welding can be remarkably reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶接熱影響部靭性の優れ
た構造用鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural steel having excellent weld heat affected zone toughness.

【0002】[0002]

【従来の技術】溶接時の入熱を増大させ効率的な溶接を
施すことは、構造物の建造コスト削減から大きなメリッ
トがある。しかしながら、溶接入熱の増大とともに、鋼
材の溶接熱影響部(以下、HAZと略す)の靭性が低下
するために、従来、大入熱溶接時の靭性低下の小さい鋼
板に関する検討が行なわれてきた。
2. Description of the Related Art Efficient welding by increasing heat input at the time of welding has a great advantage in reducing the construction cost of a structure. However, as the welding heat input increases, the toughness of the weld heat-affected zone (hereinafter abbreviated as HAZ) of the steel material decreases, and therefore, studies have hitherto been made on a steel sheet with a small decrease in toughness during high heat input welding. ..

【0003】例えば、特開昭58−31065号公報に
開示されているような造船用、海洋構造物用等に開発さ
れている大入熱用鋼では、TiN等の窒化物により結晶
粒の粗大化を抑えることにより靭性の向上を図ってい
る。しかしながら、溶接金属〜HAZ境界ではTiNが
溶解してしまうために、HAZの広い部分に渡って安定
して高い靭性を確保することは困難である。
For example, in a large heat input steel developed for shipbuilding, marine structures, etc. as disclosed in Japanese Patent Laid-Open No. 58-31065, the grain size is large due to a nitride such as TiN. The toughness is improved by suppressing the deterioration. However, since TiN is melted at the boundary between the weld metal and the HAZ, it is difficult to stably secure high toughness over a wide area of the HAZ.

【0004】そのために、近年、特開昭62−1842
号公報に開示されているように、脱酸生成物+TiN+
MnSの複合析出物を変態核として、溶接時の冷却過程
でのフェライトを生成させることで、フェライト粒の積
極的な細粒化を図る提案がある。また、特開昭59−1
85760号公報および特開昭60−245768号公
報で、Tiの酸化物、窒化物とMnSの複合析出物を変
態核として利用する等、同様な技術思想に基づいた発明
もすでに開示されている。
Therefore, in recent years, Japanese Unexamined Patent Publication No. 62-1842.
As disclosed in the publication, deoxidation product + TiN +
There is a proposal to positively reduce the size of ferrite grains by generating ferrite in the cooling process at the time of welding by using a complex precipitate of MnS as a transformation nucleus. In addition, JP-A-59-1
Japanese Patent No. 85760 and Japanese Patent Application Laid-Open No. 60-245768 have already disclosed inventions based on the same technical idea such as utilizing a composite precipitate of Ti oxide and nitride and MnS as a transformation nucleus.

【0005】しかしながら、これらの脱酸生成物あるい
は酸化物を利用した大入熱用鋼では、その製造に際し、
酸化物を鋼板内に均一に分散するのに高度な製造技術を
要し、大量の鋼板を安定して製造するのに困難が生じ
る。
However, in the steel for large heat input utilizing these deoxidation products or oxides, in the production thereof,
A high-level manufacturing technique is required to uniformly disperse the oxides in the steel sheet, which makes it difficult to stably manufacture a large number of steel sheets.

【0006】[0006]

【発明が解決しようとする課題】本発明は、大入熱溶接
時でもHAZ靭性の低下が著しく小さく、しかも高度な
製造技術を要することなく大量に安定供給可能な大入熱
溶接用綱を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a rope for large heat input welding in which the HAZ toughness is remarkably reduced even at the time of large heat input welding, and moreover, stable supply in large quantities is possible without requiring advanced manufacturing technology. To do.

【0007】[0007]

【課題を解決するための手段】本発明者らは、溶接時の
冷却過程で生成するフェライト変態を起こすために、種
々の変態核を検討した結果、VNを多量に含有する鋼
から極めて細粒なフェライトが生成すること、その効
果は、TiNの生成によりさらに助長されること、さ
らに、冷却中にV炭化物の析出が生じるとHAZが著し
く硬化し、靭性が低下するため、C量を低減する必要が
あることを明らかにした。
DISCLOSURE OF THE INVENTION The present inventors have studied various transformation nuclei in order to cause ferrite transformation which is generated in the cooling process during welding. The formation of fine ferrite and its effect are further promoted by the formation of TiN. Further, if precipitation of V carbide occurs during cooling, HAZ is significantly hardened and toughness is lowered, so the C content is reduced. Revealed the need.

【0008】以下、本発明を詳細に説明する。Vと同時
にNを添加することで鋼の強度靭性を改善する技術が従
来から知られている。例えば、特公昭39−2368号
公報には、「V少なくとも0.02%、N0.08%乃
至0.24%、C0.15%乃至0.50%、Mn0.
40%乃至2.00%を含み、キルド鋼を生じるには不
十分な量の脱酸剤で処理して作ったことを特徴とする高
力セミキルド鋼」、また、特公昭48−13803号公
報には、「C:0.08〜0.20%、Si:0.20
〜0.40%、Mn:1.0〜1.6%、Cr:0.0
5〜0.35%、Mo:0.10〜0.60%、V:
0.005〜0.1%、N2:0.004〜0.02%
を含有し、最終熱処理として890℃〜1000℃の加
熱温度より1000℃〜4500℃/hの冷却速度で焼
ならしを行なうことを特徴とする高温用低合金鋼」、さ
らには、特開昭61−130420号公報には、「C:
0.05〜0.20%、Si:0.01〜0.6%、M
n:1.10〜1.6%、V:0.03〜0.2%、
N:0.009〜0.02%を含有した鋼をフランジ形
状に鍛造した後、焼入れし、焼戻すことを特徴とする強
靭性フランジ材の製造法」等が開示されている。
The present invention will be described in detail below. A technique for improving the strength and toughness of steel by adding N at the same time as V has been known. For example, Japanese Examined Patent Publication No. 39-2368 discloses "V at least 0.02%, N 0.08% to 0.24%, C 0.15% to 0.50%, Mn 0.
High-strength semi-killed steel containing 40% to 2.00% and treated with an amount of deoxidizing agent insufficient to produce killed steel. "Also, Japanese Patent Publication No. 48-13803. "C: 0.08 to 0.20%, Si: 0.20
~ 0.40%, Mn: 1.0-1.6%, Cr: 0.0
5 to 0.35%, Mo: 0.10 to 0.60%, V:
0.005-0.1%, N2: 0.004-0.02%
A low-alloy steel for high temperature, characterized in that as a final heat treatment, normalizing is performed at a cooling rate of 1000 ° C to 4500 ° C / h from a heating temperature of 890 ° C to 1000 ° C. " No. 61-130420 discloses "C:
0.05 to 0.20%, Si: 0.01 to 0.6%, M
n: 1.10 to 1.6%, V: 0.03 to 0.2%,
N: 0.009 to 0.02% of steel is forged into a flange shape, followed by quenching and tempering, and the like "is disclosed.

【0009】このいずれの発明においても、その特徴
は、VおよびNの添加であり、これによりVNを多量に
析出させ、結晶粒の細粒化と強化を図っている。VNは
溶解温度が低いために、通常の焼準処理および焼入れ処
理による加熱時に溶解し、その後、空冷での冷却過程で
析出、あるいは焼入れ後の焼戻し過程で析出し、鋼の母
材を強靭化させる。
In any of these inventions, the feature is the addition of V and N, whereby a large amount of VN is precipitated, and the grain size is made finer and strengthened. Since VN has a low melting temperature, it melts during heating by normal leveling and quenching, and then precipitates during the cooling process with air cooling or during the tempering process after quenching, strengthening the steel base material. Let

【0010】しかしながら、上記した従来技術はVNの
有効利用の観点から、窒化物を形成してしまうTi添加
をしないことが前提になっており、母材の機械的性質を
改善せしめるが、HAZ靭性に対しては結晶粒の粗大化
を招くために問題があった。例外として、特開昭56−
127750号公報には、「C:0.12〜0.25
%、Mn:0.5〜2.9%、V:0.05〜0.20
%、Cu:0.05〜0.4%、Ni:0.1〜0.5
%、Cr:0.05〜0.4%、Ti:0.005〜
0.03%、N:0.01〜0.03%に、Ca:0.
0005〜0.0070%、Mg:0.0005〜0.
0070%の少なくとも1種または2種を含有し、歪み
時効脆化の少ない構造用高張力鋼」として、V添加と同
時にTiを添加する旨の記載がある。
However, from the viewpoint of effective utilization of VN, the above-mentioned prior art is premised on not adding Ti which forms a nitride, which improves the mechanical properties of the base material, but has a high HAZ toughness. However, there is a problem in that the crystal grains are coarsened. As an exception, JP-A-56-
No. 127750 discloses "C: 0.12-0.25.
%, Mn: 0.5 to 2.9%, V: 0.05 to 0.20
%, Cu: 0.05 to 0.4%, Ni: 0.1 to 0.5
%, Cr: 0.05 to 0.4%, Ti: 0.005 to
0.03%, N: 0.01 to 0.03%, Ca: 0.
0005-0.0070%, Mg: 0.0005-0.
There is a description that Ti is added at the same time as V is added as "a structural high-strength steel containing at least one or two kinds of 0070% and having less strain-age embrittlement".

【0011】しかしながら、この場合のTi添加は強度
の向上を目的として添加されるものであって、前提とし
てC0.12〜0.20%範囲での添加が必要である。
従って、当該発明中の目的でないHAZ靭性の改善に対
しては際立った効果は期待できない。
However, the addition of Ti in this case is for the purpose of improving the strength, and it is necessary to add Ti in the range of 0.12 to 0.20% C.
Therefore, a remarkable effect cannot be expected to improve the HAZ toughness, which is not the object of the present invention.

【0012】本発明は以上のVNを利用する従来技術の
問題点を検討し、HAZ靭性に対しVNの析出を有効に
利用するためには、V,Nの添加量の制限と同時に、C
添加量を抑制し、さらに、Tiを添加することで、飛躍
的に靭性の向上が図れることを実験的に見いだした。
The present invention has examined the above-mentioned problems of the prior art utilizing VN, and in order to effectively utilize the precipitation of VN with respect to the HAZ toughness, at the same time as limiting the addition amounts of V and N, C
It was experimentally found that the toughness can be dramatically improved by suppressing the addition amount and further adding Ti.

【0013】図1は0.05%C−0.25%Si−
1.0%Mn−0.002%P−0.003%S−0.
068%Vをベースに、Nを変化させた時に最高加熱温
度1400℃で1000kJ/cm相当の大入熱溶接を模し
た熱サイクルを与えた時の靭性をシャルピー衝撃試験で
の遷移温度として評価したものである。図はTiを0.
010〜0.015wt%添加した場合と、無添加の場合
をそれぞれ示している。
FIG. 1 shows 0.05% C-0.25% Si-
1.0% Mn-0.002% P-0.003% S-0.
Based on 068% V, toughness was evaluated as a transition temperature in a Charpy impact test when a heat cycle imitating a large heat input welding of 1000 kJ / cm at a maximum heating temperature of 1400 ° C. when changing N was applied. It is a thing. In the figure, Ti is 0.
The case where 010 to 0.015 wt% is added and the case where no addition is made are shown.

【0014】図から明らかなように、N添加量が0.0
05wt%以上になると、Ti添加、無添加にかかわらず
HAZ靭性の著しい向上がみられるが、Tiを添加する
ことでさらに靭性は向上する。
As is clear from the figure, the amount of N added is 0.0
When the content is 05 wt% or more, the HAZ toughness is remarkably improved regardless of whether Ti is added or not, but the toughness is further improved by adding Ti.

【0015】VNはフェライトとの格子整合性が良好で
あり、オーステナイト中で析出することで、オーステナ
イト粒内から微細なフェライトを多量に生成せしめる
が、その場合、靭性を向上せしめるためには、粒内に生
成するフェライトの微細分散を有効に実現することが重
要である。最近の研究では、VNはMnSを核として析
出することが知られている。
VN has a good lattice matching with ferrite and precipitates in austenite to generate a large amount of fine ferrite from within the austenite grains. In that case, in order to improve the toughness, the grain size is increased. It is important to effectively realize the fine dispersion of ferrite generated inside. Recent studies have known that VN precipitates with MnS as nuclei.

【0016】そこで、本発明者らは種々の実験から、M
nSはさらに高温で生成するTiNに優先的に析出する
ことを明らかにし、Tiを添加することでTiNを微細
分散させ、TiN−MnS−VNの複合析出物を鋼中に
分散でき、HAZ靭性を著しく向上できることを見いだ
した。
Therefore, the present inventors have found that various experiments have shown that M
It was clarified that nS preferentially precipitates in TiN generated at higher temperature, and TiN was finely dispersed by adding Ti, and TiN-MnS-VN composite precipitates could be dispersed in the steel to improve HAZ toughness. We have found that it can be improved significantly.

【0017】しかしながら、フェライトの微細化が達成
されてもVNより低温で析出するV炭化物が析出すると
靭性を著しく阻害する。従って、この炭化物の生成を抑
制するために、C添加量を抑制することも合わせて重要
であることも知見した。
However, even if the refinement of ferrite is achieved, if V carbides that precipitate at a temperature lower than VN precipitate, the toughness is significantly impaired. Therefore, it was also found that in order to suppress the formation of this carbide, it is also important to suppress the amount of C added.

【0018】本発明は上記の知見に基づき構成したもの
であって、その要旨は、C:0.03〜0.10%、S
i:0.01〜0.5%、Mn:0.4〜2.0%、
P:0.030%以下、S:0.001〜0.01%、
V:0.03〜0.20%、Ti:0.005〜0.0
20%、Al:0.005〜0.06%、N:0.00
5〜0.02%を含有し、さらにCu:0.2〜1.5
%、Ni:0.2〜3.0%あるいはCr:0.05〜
1.0%、Mo:0.05〜1.0%のそれぞれ1種ま
たは2種以上を添加した大入熱溶接用鋼である。
The present invention is constructed on the basis of the above findings, and the gist thereof is C: 0.03 to 0.10%, S
i: 0.01 to 0.5%, Mn: 0.4 to 2.0%,
P: 0.030% or less, S: 0.001-0.01%,
V: 0.03 to 0.20%, Ti: 0.005 to 0.0
20%, Al: 0.005-0.06%, N: 0.00
5 to 0.02% and further Cu: 0.2 to 1.5
%, Ni: 0.2 to 3.0% or Cr: 0.05 to
It is a steel for high heat input welding in which 1.0% and Mo: 0.05 to 1.0% each of one type or two or more types are added.

【0019】[0019]

【作用】以下、本発明の詳細をその作用とともに説明す
る。まず、本発明において鋼成分を上記のように限定し
た理由を述べる。
The operation of the present invention will be described in detail below. First, the reason why the steel composition is limited as described above in the present invention will be described.

【0020】C:Cは強度確保に必要な元素であり、
0.03%の添加が必要であるが、0.10%を超える
とV炭化物の析出を招きHAZ靭性が低下するため、含
有量の範囲を0.03〜0.10%とする。
C: C is an element necessary for securing strength,
It is necessary to add 0.03%, but if it exceeds 0.10%, precipitation of V carbides will occur and the HAZ toughness will decrease, so the content range is made 0.03 to 0.10%.

【0021】Si:Siは製鋼上脱酸元素として必要な
元素であり、鋼中に0.01%は含有されるが、0.5
%を超えると母材、HAZ靭性を低下させる。したがっ
て、その範囲を0.01〜0.5%とする。
Si: Si is an element necessary as a deoxidizing element for steelmaking, and 0.01% is contained in steel, but 0.5
%, The base material and HAZ toughness deteriorate. Therefore, the range is set to 0.01 to 0.5%.

【0022】Mn:Mnは強度、靭性の確保に必要な元
素である。しかしながら、2.0%を超えるとHAZ靭
性が著しく低下し、逆に、0.4%未満では母材の強度
確保が困難になるためにその範囲を0.4〜2.0%に
制限する。
Mn: Mn is an element necessary for ensuring strength and toughness. However, if it exceeds 2.0%, the HAZ toughness is remarkably lowered, and conversely, if it is less than 0.4%, it becomes difficult to secure the strength of the base material, so the range is limited to 0.4 to 2.0%. ..

【0023】P:Pは粒界脆化元素でありできるだけ低
減するのが望ましいが、0.03wt%以下では脆化の程
度が小さいためその上限を0.03wt%とする。
P: P is an intergranular embrittlement element and it is desirable to reduce it as much as possible. However, since the degree of embrittlement is small at 0.03 wt% or less, the upper limit is made 0.03 wt%.

【0024】S:Sは本発明において、VNの析出核と
して働くMnSの生成に欠かせない元素であり、0.0
01%以上の添加を必要とするが、多量な添加はMnS
の粗大化を招き靭性の低下を招くためその上限を0.0
10%とする。
S: S is an element indispensable for the formation of MnS which acts as a VN precipitation nucleus in the present invention.
It is necessary to add more than 01%, but a large amount of MnS
Therefore, the upper limit is 0.0.
10%.

【0025】V:Vは本発明において中心的な役割を果
たす元素であり、前述したように、溶接後の冷却中にお
いてフェライト変態を促進し、HAZ靭性の向上をもた
らす。従って、0.03%以上の添加が必要であるが、
多量の添加では炭化物の析出を招くために0.20%以
下に制限する。
V: V is an element that plays a central role in the present invention, and as described above, promotes ferrite transformation during cooling after welding and improves HAZ toughness. Therefore, it is necessary to add 0.03% or more,
Addition of a large amount causes precipitation of carbides, so the content is limited to 0.20% or less.

【0026】Ti:TiはTiNによる結晶粒の細粒化
およびVNの析出核となるMnSの微細分散を促進する
ために、必要不可欠な元素であり、0.005%以上の
添加が必要であるが、過剰の添加は炭化物が生成し靭性
の低下を招く恐れがあるために、その上限を0.020
%に制限する。
Ti: Ti is an indispensable element in order to promote the refinement of crystal grains by TiN and the fine dispersion of MnS which becomes a VN precipitation nucleus, and it is necessary to add 0.005% or more. However, since excessive addition of carbides may cause carbides to deteriorate in toughness, its upper limit is 0.020.
Limit to%.

【0027】Al:Alは脱酸剤として必要な元素であ
り、0.005%以上の添加が必要であるが、過剰に添
加すると、AlNが過剰に生成し、VNの生成に有効な
Nが低下する恐れがあるためにその上限を0.06%と
する。
Al: Al is an element necessary as a deoxidizing agent, and it is necessary to add 0.005% or more. However, if it is added excessively, AlN is excessively generated, and N effective for generating VN is generated. The upper limit is set to 0.06% because it may decrease.

【0028】N:NはTiNおよびVNの生成に必要で
あり、図1に示したように、HAZ靭性の向上から0.
005%以上の添加が必要であるが、過剰の添加は母
材、HAZ靭性の低下を招くために、その上限を0.0
2%とする。
N: N is necessary for the production of TiN and VN, and as shown in FIG.
It is necessary to add 005% or more, but an excessive addition causes deterioration of the base metal and HAZ toughness, so the upper limit is 0.0
2%

【0029】本発明では、さらに強度靭性改善元素、あ
るいは強度改善元素として以下の元素を選択的に添加し
ても本発明の効果を何ら損なわない。まず、強度靭性の
改善元素として、下記の1種または2種を選択して添加
できる。
In the present invention, the effect of the present invention is not impaired even if the following elements are selectively added as a strength / toughness improving element or a strength improving element. First, one or two of the following can be selected and added as an element for improving strength and toughness.

【0030】Cu:Cuは靭性および強度を改善する元
素として有効であり、その効果は0.2%以上の添加で
有効であるが、1.5%を超える過剰の添加ではかえっ
て靭性の低下をきたすためにその上限を1.5%とす
る。
Cu: Cu is effective as an element for improving toughness and strength, and its effect is effective when added in an amount of 0.2% or more, but excessive addition of more than 1.5% causes deterioration of toughness. The upper limit is set to 1.5% in order to bring about.

【0031】Ni:Niは靭性の向上に有効な元素であ
り、0.2%以上の添加が必要であるが、3.0%を超
える添加ではその効果が飽和してしまうため3.0%を
上限とする。
Ni: Ni is an element effective for improving the toughness and needs to be added in an amount of 0.2% or more. However, if it exceeds 3.0%, the effect is saturated, so 3.0%. Is the upper limit.

【0032】さらに、強度改善元素として、Crおよび
Moの1種または2種を添加できる。それぞれ、0.0
5%以上の添加が必要であるが、過剰な添加は靭性を阻
害するために、その範囲をいずれも1.0%までに限定
する。
Further, as the strength improving element, one or two of Cr and Mo can be added. 0.0 respectively
It is necessary to add 5% or more, but excessive addition impairs toughness, so the range is limited to 1.0% in all cases.

【0033】鋼板の製造にあたっては、上記の成分系を
有する鋼を転炉、電気炉等で溶製し、連続鋳造あるいは
造塊分塊法により鋼片を鋳造する。その後、厚板加熱、
熱間圧延を施し所定の厚みの鋼板を製造する。
In the production of a steel sheet, steel having the above component system is melted in a converter, an electric furnace or the like, and a steel slab is cast by continuous casting or ingot agglomeration. After that, heating the plate,
Hot rolling is performed to manufacture a steel plate having a predetermined thickness.

【0034】厚板加熱以降の製造条件については、現在
公知になっている制御圧延、制御冷却等の種々の技術を
適用してもHAZの性質にはなんら影響を及ぼさない。
また、母材の機械的性質を向上させるために、熱間圧延
後、適当な熱処理を施してもHAZ靭性に関しては何ら
差し支えない。
Regarding the manufacturing conditions after heating the thick plate, the properties of HAZ are not affected even if various techniques such as controlled rolling and controlled cooling that are now known are applied.
Further, in order to improve the mechanical properties of the base material, an appropriate heat treatment may be applied after the hot rolling without any problem in the HAZ toughness.

【0035】[0035]

【実施例】表1に示す組成を有する鋼を転炉で溶製し、
造塊分塊法あるいは連続鋳造法により得た鋼片を、それ
ぞれ1150〜1250℃に加熱し、その後熱間圧延お
よび表中に示す熱処理を実施し、板厚25〜90mmの鋼
板を製造した。
EXAMPLES Steel having the composition shown in Table 1 was melted in a converter,
The steel pieces obtained by the ingot-agglomeration method or the continuous casting method were heated to 1150 to 1250 ° C., respectively, and then hot-rolled and heat-treated as shown in the table to carry out a steel sheet having a thickness of 25 to 90 mm.

【0036】その後、大入熱溶接部のHAZ靭性を調べ
るために、溶接入熱1000kJ/cmに相当する最高加熱
温度1400℃、800から500℃の冷却時間が75
0秒の熱サイクルを与えた後、シャルピー衝撃試験を行
なった。表2にその試験結果を示す。
Then, in order to investigate the HAZ toughness of the high heat input weld, the maximum heating temperature corresponding to the welding heat input of 1000 kJ / cm was 1400 ° C., and the cooling time from 800 to 500 ° C. was 75.
A Charpy impact test was performed after a 0 second thermal cycle. Table 2 shows the test results.

【0037】[0037]

【表1】 [Table 1]

【表2】 [Table 2]

【0038】本発明鋼(A,E,G,H,I,J,K,
L)の熱サイクル後の衝撃値は、すべて良好な値を示し
ている。これに対し、鋼B,C,D,Fは本発明範囲を
逸脱しているものである。その中で、鋼BはC含有量が
本発明を逸脱しているもので、熱サイクル後の衝撃値が
著しく低下している。鋼CはTi含有量が、また鋼Dは
Vが発明範囲を逸脱しているものである。この場合も熱
サイクル後の衝撃値の低下が認められる。さらに、鋼F
はNが本発明範囲をより低い場合である。この場合もV
Nの生成が少なく、やはり、溶接熱影部の靭性が低下す
る。
Steels of the present invention (A, E, G, H, I, J, K,
The impact values after thermal cycling of L) all show good values. On the other hand, steels B, C, D and F are outside the scope of the present invention. Among them, Steel B has a C content deviating from the present invention, and the impact value after thermal cycling is remarkably reduced. Steel C has a Ti content, and steel D has a V content outside the scope of the invention. Also in this case, a decrease in impact value after the thermal cycle is recognized. Furthermore, steel F
Is when N is lower than the scope of the present invention. Also in this case V
The amount of N generated is small, and the toughness of the welding heat shadow area is reduced.

【0039】[0039]

【発明の効果】本発明の組成範囲をもった鋼板は、大入
熱溶接を行なっても溶接熱影響部の靭性が極めて良好で
あり、その結果、溶接工数の大幅な削減から構造物建造
の大幅なコストダウンを実現できる。
The steel sheet having the composition range of the present invention has a very good toughness in the heat-affected zone even if large heat input welding is performed. A significant cost reduction can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】0.05%C−0.25%Si−1.0%Mn
−0.002%P−0.003%S−0.068%Vを
ベースに、Ti添加(0.010〜0.015%)およ
び無添加鋼において、Nを変化させた時に最高加熱温度
1400℃で最高加熱温度1000kJ/cm相当の大入熱
溶接を模した熱サイクルを与えた時の靭性をシャルピー
衝撃試験での遷移温度として評価した図表である。
FIG. 1 0.05% C-0.25% Si-1.0% Mn
Based on -0.002% P-0.003% S-0.068% V, in Ti-added (0.010-0.015%) and additive-free steel, the maximum heating temperature was 1400 when N was changed. It is a chart which evaluated toughness as a transition temperature in a Charpy impact test when a heat cycle imitating a large heat input welding corresponding to a maximum heating temperature of 1000 kJ / cm at 0 ° C was applied.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%として、 C :0.03〜0.10% Si:0.01〜0.5% Mn:0.4〜2.0% P :0.030%以下 S :0.001〜0.01% V :0.03〜0.20% Ti:0.005〜0.020% Al:0.005〜0.06% N :0.005〜0.02% 残部がFeおよび不可避的不純物からなる溶接熱影響部
靭性の優れた大入熱溶接用鋼。
1. C .: 0.03 to 0.10% Si: 0.01 to 0.5% Mn: 0.4 to 2.0% P: 0.030% or less S: 0.0. 001-0.01% V: 0.03-0.20% Ti: 0.005-0.020% Al: 0.005-0.06% N: 0.005-0.02% The balance is Fe and High heat input welding steel with excellent toughness in the weld heat affected zone consisting of inevitable impurities.
【請求項2】 強度靭性改善元素群として、重量%で、 Cu:0.2〜1.5% Ni:0.2〜3.0% の1種または2種を含有する請求項1記載の溶接熱影響
部靭性の優れた大入熱溶接用鋼。
2. The strength / toughness improving element group according to claim 1, containing 1 or 2 by weight% Cu: 0.2 to 1.5% Ni: 0.2 to 3.0%. High heat input welding steel with excellent toughness.
【請求項3】 強度改善元素群として、重量%で、 Cr:0.05〜1.0% Mo:0.05〜1.0% の1種または2種を含有する請求項1又は2記載の溶接
熱影響部靭性の優れた大入熱溶接用鋼。
3. The strength-improving element group contains, by weight%, one or two of Cr: 0.05 to 1.0% Mo: 0.05 to 1.0%. High heat input welding steel with excellent toughness.
JP316292A 1992-01-10 1992-01-10 Steel for large heat input welding excellent in toughness in weld heat-affected zone Withdrawn JPH05186848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP316292A JPH05186848A (en) 1992-01-10 1992-01-10 Steel for large heat input welding excellent in toughness in weld heat-affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP316292A JPH05186848A (en) 1992-01-10 1992-01-10 Steel for large heat input welding excellent in toughness in weld heat-affected zone

Publications (1)

Publication Number Publication Date
JPH05186848A true JPH05186848A (en) 1993-07-27

Family

ID=11549664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP316292A Withdrawn JPH05186848A (en) 1992-01-10 1992-01-10 Steel for large heat input welding excellent in toughness in weld heat-affected zone

Country Status (1)

Country Link
JP (1) JPH05186848A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014443A1 (en) * 1994-11-04 1996-05-17 Nippon Steel Corporation High-strength ferritic heat-resistant steel and process for producing the same
EP0940477A1 (en) * 1998-03-05 1999-09-08 Kawasaki Steel Corporation Wide-flange beams made from a steel with high toughness and yield strength, and process for manufacturing these products
US6686061B2 (en) 2000-11-17 2004-02-03 Posco Steel plate having TiN+CuS precipitates for welded structures, method for manufacturing same and welded structure made therefrom
US6946038B2 (en) 2000-12-01 2005-09-20 Posco Steel plate having Tin+MnS precipitates for welded structures, method for manufacturing same and welded structure
US6966955B2 (en) 2000-12-14 2005-11-22 Posco Steel plate having TiN+ZrN precipitates for welded structures, method for manufacturing same and welded structure made therefrom
US7105066B2 (en) 2001-11-16 2006-09-12 Posco Steel plate having superior toughness in weld heat-affected zone and welded structure made therefrom
KR20150057998A (en) 2013-11-19 2015-05-28 신닛테츠스미킨 카부시키카이샤 Steel sheet
CN105349888A (en) * 2015-11-30 2016-02-24 钢铁研究总院 High-heat-input welded vanadium nitrogen titanium high-intensity steel plate and preparation method thereof
KR20210009934A (en) 2019-07-18 2021-01-27 주식회사 포스코 Steel plate with superior HAZ toughness for high heat input welding and method for the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014443A1 (en) * 1994-11-04 1996-05-17 Nippon Steel Corporation High-strength ferritic heat-resistant steel and process for producing the same
US5766376A (en) * 1994-11-04 1998-06-16 Nippon Steel Corporation High-strength ferritic heat-resistant steel and method of producing the same
EP0940477A1 (en) * 1998-03-05 1999-09-08 Kawasaki Steel Corporation Wide-flange beams made from a steel with high toughness and yield strength, and process for manufacturing these products
JPH11315341A (en) * 1998-03-05 1999-11-16 Kawasaki Steel Corp Extra thick wide flange shape excellent in toughness and having more than 325 mpa of yield strength
US6007644A (en) * 1998-03-05 1999-12-28 Kawasaki Steel Corporation Heavy-wall H-shaped steel having high toughness and yield strength and process for making steel
SG82604A1 (en) * 1998-03-05 2001-08-21 Kawasaki Steel Co Heavy-wall h-shaped steel having high toughness and yield strength and process for making steel strength
KR100343052B1 (en) * 1998-03-05 2002-07-02 에모토 간지 Heavy-wall h-shaped steel having high toughness and yield strength and process rof making steel strength
US6686061B2 (en) 2000-11-17 2004-02-03 Posco Steel plate having TiN+CuS precipitates for welded structures, method for manufacturing same and welded structure made therefrom
US6946038B2 (en) 2000-12-01 2005-09-20 Posco Steel plate having Tin+MnS precipitates for welded structures, method for manufacturing same and welded structure
US6966955B2 (en) 2000-12-14 2005-11-22 Posco Steel plate having TiN+ZrN precipitates for welded structures, method for manufacturing same and welded structure made therefrom
US7105066B2 (en) 2001-11-16 2006-09-12 Posco Steel plate having superior toughness in weld heat-affected zone and welded structure made therefrom
US7396423B2 (en) 2001-11-16 2008-07-08 Posco Method for manufacturing steel plate having superior toughness in weld heat-affected zone
KR20150057998A (en) 2013-11-19 2015-05-28 신닛테츠스미킨 카부시키카이샤 Steel sheet
CN105349888A (en) * 2015-11-30 2016-02-24 钢铁研究总院 High-heat-input welded vanadium nitrogen titanium high-intensity steel plate and preparation method thereof
KR20210009934A (en) 2019-07-18 2021-01-27 주식회사 포스코 Steel plate with superior HAZ toughness for high heat input welding and method for the same

Similar Documents

Publication Publication Date Title
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JPH09157787A (en) High tensile strength steel for welding excellent in toughness in very large heat input welded heat affected zone
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
JP3546308B2 (en) Large heat input welding steel
JPH05186848A (en) Steel for large heat input welding excellent in toughness in weld heat-affected zone
JPH02220735A (en) Production of high tensile strength steel for welding and low temperature including titanium oxide
EP1143023A1 (en) Steel for welded structure purpose exhibiting no dependence of haz toughness on heat input and method for producing the same
JP2007284712A (en) Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
JP3369435B2 (en) Manufacturing method of non-heat treated high strength steel excellent in low temperature toughness
JP2005281842A (en) Production method of low temperature service low yield ratio steel material having excellent weld zone toughness
JP3064865B2 (en) Manufacturing method of high strength and high toughness steel with excellent HIC resistance
JPS60121228A (en) Manufacture of tempered high tension steel plate
JPH02125812A (en) Manufacture of cu added steel having superior toughness of weld heat-affected zone
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP2004218081A (en) Method for producing high-tension steel plate
JPH1088231A (en) Production of thick high tensile strength steel plate excellent in toughness and weldability
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JP2000104116A (en) Production of steel excellent in strength and toughness
JP3444244B2 (en) High tensile strength steel excellent in toughness and method of manufacturing the same
JP3236339B2 (en) Manufacturing method of high strength hot rolled steel sheet
JPS621811A (en) Manufacture of rail having superior damage resistance
CN116200662B (en) Tempered high-performance bridge weathering steel with low yield ratio and manufacturing method thereof
JPS6256518A (en) Production of high strength steel sheet for high heat input welding
JP2834500B2 (en) Manufacturing method of high-strength steel sheet with excellent thermal toughness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408