JPH0813028A - Production of precipitation hardening steel material having high tensile strength and high toughness - Google Patents

Production of precipitation hardening steel material having high tensile strength and high toughness

Info

Publication number
JPH0813028A
JPH0813028A JP14902594A JP14902594A JPH0813028A JP H0813028 A JPH0813028 A JP H0813028A JP 14902594 A JP14902594 A JP 14902594A JP 14902594 A JP14902594 A JP 14902594A JP H0813028 A JPH0813028 A JP H0813028A
Authority
JP
Japan
Prior art keywords
steel
toughness
tensile strength
precipitation hardening
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14902594A
Other languages
Japanese (ja)
Inventor
Hidekazu Takahashi
秀和 高橋
Haru Hongo
晴 本郷
Nobuhisa Tabata
綽久 田畑
Kazuo Asao
一夫 朝生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14902594A priority Critical patent/JPH0813028A/en
Publication of JPH0813028A publication Critical patent/JPH0813028A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide high strength and high toughness by means of precipitation hardening treatment, while obviating the necessity of refining treatment of hardening and tempering after hot working, by specifying a composition. CONSTITUTION:A steel, having a composition containing, by weight ratio, 0.3-0.8% C, 0.1-1.5% Si, 0.2-2.0% Mn, <=1.5% Cr, <=0.1% Al, 30-100ppm N, and 0.08-0.5% V and/or 0.01-0.1% Nb, is used. This steel is rolled or hot-forged, reheated to a temp. not lower than the austenitizing temp., and cooled down to 500 deg.C at a rate of <=100 deg.C/min. By this method, a tensile strength of >=750N/mm<2> and a toughness equal to or higher than that of heat treated steel can be obtained. Further, the metallic structure of this steel is composed of ferrite and pearlite.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械構造用鋼に関し、
とくにフェライト・パーライト組織を有する析出硬化型
の高張力、高靱性の構造用鋼の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to machine structural steel,
In particular, the present invention relates to a method for producing a precipitation hardening type high strength, high toughness structural steel having a ferrite / pearlite structure.

【0002】[0002]

【従来の技術】従来、高強度および高靱性の特性が要求
される機械構造用鋼には、焼入れ焼もどしの調質処理さ
れたものが広く使われている。しかしこの調質処理は、
2回以上の熱処理を要するため、コストが高く、また近
年省エネルギー化が求められ熱処理の省略が望まれてい
る。
2. Description of the Related Art Conventionally, tempered and tempered tempered steel is widely used for machine structural steels which are required to have high strength and high toughness. However, this tempering process
Since the heat treatment is required twice or more, the cost is high, and energy saving has been demanded in recent years, and it is desired to omit the heat treatment.

【0003】こうした流れから、VおよびNbを添加した
フェライト・パーライト組織を有する析出硬化型高張力
鋼が開発され、調質処理を必要としない非調質鋼として
使われている。例えば特公昭61-2728 号公報にはC:0.
10〜0.22wt%、Si:0.02〜0.80wt%、Mn:0.6 〜2.00wt
%、Al:0.005 〜0.1 wt%を含みMo、NbとVを複合添加
した鋼を圧延、あるいは鍛造などの熱間加工を施した後
あらためてオーステナイト温度に加熱し、次いで800 ℃
から500 ℃の間を5℃/min以上、30℃/min以下の平均冷
却速度で冷却する焼ならし処理し、その後焼もどしする
引張強さ57kgf/mm2 以上のフェライト・パーライト組織
を有する鋼材の製造方法が提案されている。しかし、こ
の技術では焼ならしの後、焼もどし処理が必要である。
From such a flow, a precipitation hardening type high strength steel having a ferrite-pearlite structure added with V and Nb has been developed and used as a non-heat treated steel which does not require heat treatment. For example, Japanese Patent Publication No. 61-2728 discloses C: 0.
10-0.22wt%, Si: 0.02-0.80wt%, Mn: 0.6-2.00wt
%, Al: 0.005 to 0.1 wt% of steel containing Mo, Nb and V added together, after hot working such as rolling or forging, it is heated again to austenite temperature and then 800 ° C.
Steel material with a ferrite / pearlite structure with a tensile strength of 57 kgf / mm 2 or more, which is subjected to a normalizing process of cooling from 5 to 500 ° C at an average cooling rate of 5 ° C / min or more and 30 ° C / min or less, and then tempering Has been proposed. However, this technique requires a tempering process after normalizing.

【0004】また特公昭63-23261号公報には、C:0.3
〜0.8 wt%、Si:0.15〜1.5 wt%、Mn:0.5 〜2wt%、
Ti:0.01〜0.05wt%、N:0.29Ti〜0.025 wt%にV:0.
01〜0.1 wt%とNb:0.01〜0.1 wt%のうちの1種以上を
含有する鋼を熱間圧延あるいは熱間鍛造のまま、場合に
よっては焼ならしのみ施す非調質強靱鋼が提案されてい
る。
In Japanese Patent Publication No. Sho 63-23261, C: 0.3
~ 0.8 wt%, Si: 0.15 to 1.5 wt%, Mn: 0.5 to 2 wt%,
Ti: 0.01 to 0.05 wt%, N: 0.29 Ti to 0.025 wt% and V: 0.
A non-tempered tough steel is proposed, in which steel containing at least one of 01 to 0.1 wt% and Nb: 0.01 to 0.1 wt% is hot-rolled or hot-forged, and in some cases only normalizing. ing.

【0005】しかしながら、これらの非調質鋼は調質鋼
に比べ靱性が劣るため、調質鋼の代替として使えない場
合がある。また非調質鋼は熱処理を行わないため、その
機械的性質は圧延条件によって大きく左右される。靱性
についてみれば、一般に結晶粒が微細である程高靱性に
なることが知られている。比較的小さいサイズのものは
圧下率を大きくとれ、圧延により組織が微細化される
が、製品サイズが大きくなるに従い圧下率が減り、組織
が微細化されないために低靱性になる傾向にある。ま
た、圧延後の冷却速度もサイズが大きい程遅くなるた
め、結晶粒が粗大化し、かつ析出物が粗大化しやすく強
度や靱性が低下するという問題があった。
However, since these non-heat treated steels are inferior in toughness to the heat treated steels, they may not be used as a substitute for the heat treated steels. Further, since non-heat treated steel is not heat-treated, its mechanical properties are greatly influenced by rolling conditions. Regarding toughness, it is generally known that the finer the crystal grains, the higher the toughness. A material having a relatively small size can have a large reduction ratio and the structure is made finer by rolling. However, as the product size becomes larger, the reduction ratio is decreased and the structure is not made finer, so that the structure tends to have low toughness. Further, since the cooling rate after rolling becomes slower as the size becomes larger, there is a problem that crystal grains become coarse and precipitates easily become coarse, resulting in a decrease in strength and toughness.

【0006】[0006]

【発明が解決しようとする課題】機械構造用に使われて
いる焼入れ焼もどし処理を行う調質鋼は、2回以上の熱
処理が必要であり、コストが高くなるといった問題があ
った。また非調質鋼は調質鋼に比べ靱性が劣り、特に製
品サイズが大きい場合靱性の劣化が顕著になるという問
題があった。
The heat-treated tempered steel used for mechanical structures, which is subjected to quenching and tempering, requires heat treatment twice or more, which causes a problem of high cost. Further, the non-heat treated steel has a lower toughness than the heat treated steel, and there is a problem that the toughness is significantly deteriorated especially when the product size is large.

【0007】本発明は、前記問題点を解決して、熱処理
を焼ならしの1回のみとした高張力、高靱性鋼の製造技
術を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and provide a technique for producing a high tensile strength and high toughness steel in which heat treatment is performed only once.

【0008】[0008]

【課題を解決するための手段】本発明は、重量比でC:
0.3 〜0.8 %、Si:0.1 〜1.5 %、Mn:0.2 〜2.0 %、
Cr:1.5 %以下、Al:0.1 %以下、N:30〜100ppmおよ
びV:0.08〜0.5 %、Nb:0.01〜0.1 %のうちの1種ま
たは2種を含有する鋼を、圧延あるいは熱間鍛造後、再
びオーステナイト化温度以上に加熱し、500 ℃まで 100
℃/min 以下の冷却速度で冷却することを特徴とする、
引張強さ 750N/mm2 以上のフェライト・パーライト組
織を有する析出硬化型高張力高靱性鋼材の製造方法であ
る。
The present invention provides a weight ratio of C:
0.3-0.8%, Si: 0.1-1.5%, Mn: 0.2-2.0%,
Cr: 1.5% or less, Al: 0.1% or less, N: 30 to 100 ppm and V: 0.08 to 0.5%, Nb: Steel containing one or two of 0.01% to 0.1% is rolled or hot forged. After that, heat again above the austenitizing temperature and keep the temperature up to 500 ° C for 100
Characterized by cooling at a cooling rate of ℃ / min or less,
A method for producing a precipitation hardening type high tensile strength and high toughness steel material having a ferrite / pearlite structure having a tensile strength of 750 N / mm 2 or more.

【0009】[0009]

【作用】以下に本発明について詳細に説明する。まず成
分限定の理由を説明する。Cは、強度を得るために0.3
%以上必要であるが、0.8 %を超えると初析セメンタイ
トが生じ、靱性が害されるので、0.3 〜0.8 %の範囲と
した。
The present invention will be described in detail below. First, the reason for limiting the components will be described. C is 0.3 to obtain strength
% Or more, but if it exceeds 0.8%, proeutectoid cementite occurs and the toughness is impaired, so the range was made 0.3 to 0.8%.

【0010】Siは、製鋼時の脱酸剤として0.1 %以上必
要であるが、1.5 %を超えると靱性を損なうので0.1 〜
1.5 %の範囲とした。Mnも、Siと同じ理由で0.2 〜2.0
%の含有が必要である。Crは、強度を向上させるが、1.
5 %超では靱性および被削性が劣化するので、1.5 %以
下とした。
Si is required to be 0.1% or more as a deoxidizing agent during steel making, but if it exceeds 1.5%, toughness is impaired, so 0.1 to 10% is required.
The range was 1.5%. Mn is 0.2-2.0 for the same reason as Si.
% Content is required. Cr improves strength, but 1.
If it exceeds 5%, the toughness and machinability will deteriorate, so it was made 1.5% or less.

【0011】V、Nbは、析出硬化に大きく作用する元素
であり、1種または2種を含有させる必要がある。しか
し、多量に添加しても強度上昇に寄与しないことから、
Vは0.08〜0.5 %、Nbは0.01〜0.1 %の範囲とした。N
は、VやNbと結合して、析出硬化に寄与する元素である
が、多量に含有させると靱性が低下するため、30〜100p
pmの範囲とした。
V and Nb are elements that have a large effect on precipitation hardening, and it is necessary to contain one or two. However, even if added in a large amount, it does not contribute to the strength increase,
V was 0.08 to 0.5% and Nb was 0.01 to 0.1%. N
Is an element that contributes to precipitation hardening by combining with V and Nb, but if contained in a large amount, the toughness decreases, so 30 to 100 p
The range was pm.

【0012】さらにAlは、脱酸剤として必要であるが、
多量に添加しても効果がないため、0.1 %以下に限定し
た。なお、これらの元素の他に強度、靱性、被削性など
要求される材料特性に応じてTi、Ni、Moなどの元素のう
ち1種または2種以上添加してもよい。Tiは、鋼中のN
と結合し析出硬化に寄与するが、多量に添加しても効果
がないため、0.1 %以下に限定した。
Further, Al is necessary as a deoxidizing agent,
Since addition of a large amount has no effect, it was limited to 0.1% or less. In addition to these elements, one or more elements such as Ti, Ni and Mo may be added depending on the required material properties such as strength, toughness and machinability. Ti is N in steel
Although it binds to and contributes to precipitation hardening, addition of a large amount has no effect, so the content was limited to 0.1% or less.

【0013】NiとMoは強度を向上させ、また少量の添加
では靱性を向上させるが、多量に添加した場合、靱性や
被削性を低下させるため、Niは0.2 %以下、Moは0.3 %
以下の添加が望ましい。次に焼ならし処理については、
熱間加工後の粗い組織を改善し、伸びや靱性の回復を図
るため、オーステナイト化温度以上に加熱し、再結晶に
よる組織の微細化と析出硬化元素の固溶をはかる必要が
ある。なお、加熱温度が高いほど、添加成分の固溶量が
増え冷却中の析出硬化が増大し、強度は高くなるが、靱
性はオーステナイト粒の粗大化もあって低下する。靱性
改善の面から加熱温度は1000℃以下が望ましい。またオ
ーステナイト化後100 ℃/min (表面部の冷却速度で、
冷却開始〜500 ℃の間の平均値) を超える冷却速度で 5
00℃以下に冷却した場合、ベイナイトやマルテンサイト
組織が生じ、焼もどしを行わない非調質鋼の場合は靱性
が不良となるため、500 ℃に下がるまでの冷却速度を 1
00℃/min 以下とした。100 ℃/min 以下の冷却速度で
500 ℃まで冷却すればフェライト・パーライト変態は終
了しているので、その後は水冷など急冷しても良く、冷
却速度は1℃/min (φ200mm 程度の棒鋼を空冷した場
合の中心部に相当)程度でも、規定の範囲内で成分を選
定することにより充分な強度と靱性が得られる。また、
表1の鋼番号1についてのCCT 線図を図1に例示した
が、500 ℃に達しないうちに冷却速度を100 ℃/min を
超えて速めると、フェライト・パーライト変態が完了せ
ず、マルテンサイトやベイナイトが混入した組織とな
り、靱性が害されるので、500 ℃になるまでは100 ℃/
min 以下の冷却速度を保つ必要がある。
Ni and Mo improve the strength, and when added in a small amount, they improve toughness, but when added in a large amount, they reduce toughness and machinability, so Ni is 0.2% or less and Mo is 0.3%.
The following additions are desirable. Next, regarding normalizing processing,
In order to improve the rough structure after hot working and to recover elongation and toughness, it is necessary to heat above the austenitizing temperature, to refine the structure by recrystallization and to solidify the precipitation hardening element. Note that the higher the heating temperature, the more the amount of solid solution of the additive component increases, the more precipitation hardening during cooling increases, and the higher the strength becomes, but the toughness decreases due to the coarsening of the austenite grains. From the viewpoint of improving the toughness, the heating temperature is preferably 1000 ° C or lower. After austenitization, 100 ℃ / min (at the surface cooling rate,
5) at a cooling rate above the average value between the start of cooling and 500 ° C)
When cooled below 00 ° C, bainite or martensite structure is formed, and in the case of non-tempered steel that is not tempered, the toughness becomes poor.
It was set to 00 ° C / min or less. At a cooling rate of 100 ° C / min or less
Since the ferrite / pearlite transformation is completed when cooled to 500 ° C, it may be cooled rapidly afterwards with water, etc., and the cooling rate is about 1 ° C / min (corresponding to the center part when air-cooling a steel bar of about φ200 mm). However, sufficient strength and toughness can be obtained by selecting the components within the specified range. Also,
The CCT diagram for steel No. 1 in Table 1 is shown in Fig. 1. If the cooling rate is increased to more than 100 ℃ / min before reaching 500 ℃, the ferrite-pearlite transformation will not be completed and the martensite Since the structure becomes mixed with iron and bainite, and the toughness is impaired, 100 ℃ /
It is necessary to keep the cooling rate below min.

【0014】[0014]

【実施例】表1は、実施例および比較例で使用した供試
材の主な化学成分を示すものである。表1に示される鋼
を、転炉にて溶製し、鋼塊を製造した。表2に示される
試験材は鍛錬成形比2.36で鋼塊を熱間加工し、280mm φ
の丸棒に製造したものである。引張試験は直径の1/4 の
箇所より採取したJIS 4号引張試験片を用いた。衝撃試
験はJIS 3号衝撃試験片を用い、20℃で衝撃値を測定し
た。試験番号7は鋼番号1の鋼から、試験番号8は鋼番
号2の鋼から圧延したままの材料である。
EXAMPLES Table 1 shows the main chemical components of the test materials used in Examples and Comparative Examples. The steel shown in Table 1 was melted in a converter to manufacture a steel ingot. The test materials shown in Table 2 were hot-worked steel ingots with a wrought forming ratio of 2.36,
It is manufactured into a round bar. For the tensile test, a JIS No. 4 tensile test piece sampled from 1/4 of the diameter was used. For the impact test, a JIS No. 3 impact test piece was used to measure the impact value at 20 ° C. Test No. 7 is as-rolled material from Steel No. 1 steel and Test No. 8 from Steel No. 2 steel.

【0015】表2の引張強さについての結果を鋼番号別
にみると、試験番号1と10を比較すると分かるように、
Nb、Vとも本発明の規定範囲以下の鋼番号3のものは同
じ処理を施しても引張強さが 750N/mm2 に達しない。
同じ鋼番号内で比較すると、圧延のままの材料が引張強
さが高く、また焼ならし材料においては熱処理温度が高
くなるにつれ、引張強さは高くなる傾向にある。
Looking at the results of tensile strength in Table 2 by steel number, as can be seen by comparing test numbers 1 and 10,
For both Nb and V, the steel No. 3 which is within the specified range of the present invention does not reach a tensile strength of 750 N / mm 2 even if the same treatment is applied.
When compared within the same steel number, the as-rolled material has a higher tensile strength, and the normalized material tends to have a higher tensile strength as the heat treatment temperature increases.

【0016】衝撃値を同じ鋼番号内でみると、圧延のま
まの材料は低く、また焼ならし材料では熱処理温度を下
げる程、衝撃値は高くなる傾向にある。オーステナイト
化後の冷却速度を100 ℃/min以上に上げた試験番号9は
強度は高いものの靱性が著しく低い。以上の結果から、
本発明範囲内の成分の鋼材について、適当な焼ならし処
理を行うことで靱性を改善させることができ、また熱処
理温度により引張強さおよび衝撃値をコントロールでき
ることが分かる。
Looking at the impact value within the same steel number, the as-rolled material is low, and the normalized material tends to have a higher impact value as the heat treatment temperature is lowered. Test No. 9 in which the cooling rate after austenitizing was increased to 100 ° C./min or more had high strength but markedly low toughness. From the above results,
It is understood that the toughness of the steel materials having the components within the scope of the present invention can be improved by performing a proper normalizing treatment, and the tensile strength and the impact value can be controlled by the heat treatment temperature.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】本発明は、フェライト・パーライト組織
を有する析出硬化型高張力鋼を、焼ならし処理すること
で高靱性化させることができた。特に、圧下率を大きく
できない製品サイズの大きいものに効果がある。また、
熱処理温度により引張強さおよび衝撃値を調節できると
いう効果もある。
INDUSTRIAL APPLICABILITY According to the present invention, precipitation hardening type high strength steel having a ferrite / pearlite structure can be made tougher by normalizing. In particular, it is effective for products with a large product size where the reduction rate cannot be increased. Also,
There is also an effect that the tensile strength and impact value can be adjusted by the heat treatment temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼番号1の試料のCCT線図である。FIG. 1 is a CCT diagram of a steel No. 1 sample.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田畑 綽久 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 朝生 一夫 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inori, Tabata Sokyu Kawashima, Kurashiki, Okayama Prefecture 1-chome (No address) Inside Mizushima Works, Kawasaki Steel Co., Ltd. (72) Inventor, Kazuo Asao Mizushima Kawasaki, Kurashiki, Okayama 1 chome (without street number) Kawasaki Steel Works Mizushima Steel Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量比でC:0.3 〜0.8 %、Si:0.1 〜
1.5 %、Mn:0.2 〜2.0 %、Cr:1.5 %以下、Al:0.1
%以下、N:30〜100ppmおよびV:0.08〜0.5 %、Nb:
0.01〜0.1 %のうちの1種または2種を含有する鋼を、
圧延あるいは熱間鍛造後、再びオーステナイト化温度以
上に加熱し、500 ℃まで 100℃/min以下の冷却速度で
冷却することを特徴とする、引張強さ 750N/mm2 以上
のフェライト・パーライト組織を有する析出硬化型高張
力高靱性鋼材の製造方法。
1. A weight ratio of C: 0.3-0.8%, Si: 0.1-
1.5%, Mn: 0.2 to 2.0%, Cr: 1.5% or less, Al: 0.1
% Or less, N: 30 to 100 ppm and V: 0.08 to 0.5%, Nb:
Steel containing one or two of 0.01-0.1%,
After rolling or hot forging, it is heated again to the austenitizing temperature or higher and cooled to 500 ° C at a cooling rate of 100 ° C / min or less, and a ferrite / pearlite structure having a tensile strength of 750 N / mm 2 or more is formed. A method for producing a precipitation hardening type high tensile strength and high toughness steel material having the same.
JP14902594A 1994-06-30 1994-06-30 Production of precipitation hardening steel material having high tensile strength and high toughness Pending JPH0813028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14902594A JPH0813028A (en) 1994-06-30 1994-06-30 Production of precipitation hardening steel material having high tensile strength and high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14902594A JPH0813028A (en) 1994-06-30 1994-06-30 Production of precipitation hardening steel material having high tensile strength and high toughness

Publications (1)

Publication Number Publication Date
JPH0813028A true JPH0813028A (en) 1996-01-16

Family

ID=15466029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14902594A Pending JPH0813028A (en) 1994-06-30 1994-06-30 Production of precipitation hardening steel material having high tensile strength and high toughness

Country Status (1)

Country Link
JP (1) JPH0813028A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325712B1 (en) * 1997-12-29 2002-07-31 포항종합제철 주식회사 A method of manufacturing bearing steel
JP2009097054A (en) * 2007-10-19 2009-05-07 National Institute For Materials Science Non-heat treated ferrite-pearlite steel material
CN102676931A (en) * 2012-06-08 2012-09-19 沈冬杰 Composite micro-alloy medium and high carbon steel
CN103436686A (en) * 2013-07-25 2013-12-11 中国科学院金属研究所 Tempering technology of G18CrMo2-6 steel
CN103975080A (en) * 2011-10-07 2014-08-06 巴巴萨海布·尼尔康德·卡利亚尼 A process to improve fatigue strength of micro alloy steels, forged parts made from the process and an apparatus to execute the process
CN104313487A (en) * 2014-10-27 2015-01-28 黑龙江省冶金研究所 Steel having no surface hardening and used for ultrahigh strength sucker rod and preparation method of steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325712B1 (en) * 1997-12-29 2002-07-31 포항종합제철 주식회사 A method of manufacturing bearing steel
JP2009097054A (en) * 2007-10-19 2009-05-07 National Institute For Materials Science Non-heat treated ferrite-pearlite steel material
CN103975080A (en) * 2011-10-07 2014-08-06 巴巴萨海布·尼尔康德·卡利亚尼 A process to improve fatigue strength of micro alloy steels, forged parts made from the process and an apparatus to execute the process
CN102676931A (en) * 2012-06-08 2012-09-19 沈冬杰 Composite micro-alloy medium and high carbon steel
CN103436686A (en) * 2013-07-25 2013-12-11 中国科学院金属研究所 Tempering technology of G18CrMo2-6 steel
CN104313487A (en) * 2014-10-27 2015-01-28 黑龙江省冶金研究所 Steel having no surface hardening and used for ultrahigh strength sucker rod and preparation method of steel

Similar Documents

Publication Publication Date Title
US4572748A (en) Method of manufacturing high tensile strength steel plates
CA2341667C (en) Cold workable steel bar or wire and process
JPH07278656A (en) Production of low yield ratio high tensile strength steel
KR20010060760A (en) structural steel having High strength and method for menufactreing it
JPH04358022A (en) Production of high strength steel
JP2000204414A (en) Production of medium carbon steel
KR101518571B1 (en) Non heat treated wire rod having excellent high strength and impact toughness and method for manafacturing the same
JPH0813028A (en) Production of precipitation hardening steel material having high tensile strength and high toughness
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JP2756556B2 (en) Non-heat treated steel for hot forging
JPH04358023A (en) Production of high strength steel
JP2000336460A (en) Hot rolled wire rod and steel bar for machine structure and manufacture of the same
JPH0693332A (en) Production of high tensile strength and high toughness fine bainitic steel
JP2655901B2 (en) Manufacturing method of direct quenching type high strength steel sheet with excellent toughness
JP2756535B2 (en) Manufacturing method for strong steel bars
JPH0219175B2 (en)
JP2767254B2 (en) Method for producing Cr-Mo case hardened steel
JPH026828B2 (en)
JP3274028B2 (en) Manufacturing method of non-heat treated high strength high toughness hot forged parts
JPH08337815A (en) Production of chromium-molybdenum steel excellent in strength and toughness
US20240052467A1 (en) High-strength wire rod for cold heading with superior heat treatment characteristics and resistance of hydrogen-delayed fracture characteristics, heat-treated component, and method for manufacturing same
JPH03223420A (en) Production of high strength steel
KR100419648B1 (en) A method for manufacturing ultra high tensile strenth steel
JP3692565B2 (en) Method for producing B-added high-strength steel
JPH08143955A (en) Production of thick-walled high tensile strength steel uniformized in strength in plate thickness direction