JPH08337815A - Production of chromium-molybdenum steel excellent in strength and toughness - Google Patents

Production of chromium-molybdenum steel excellent in strength and toughness

Info

Publication number
JPH08337815A
JPH08337815A JP14308695A JP14308695A JPH08337815A JP H08337815 A JPH08337815 A JP H08337815A JP 14308695 A JP14308695 A JP 14308695A JP 14308695 A JP14308695 A JP 14308695A JP H08337815 A JPH08337815 A JP H08337815A
Authority
JP
Japan
Prior art keywords
temperature
less
toughness
steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14308695A
Other languages
Japanese (ja)
Other versions
JP3620099B2 (en
Inventor
Kiyoshi Uchida
清 内田
Masanori Nishimori
正徳 西森
Akihiro Matsuzaki
明博 松崎
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14308695A priority Critical patent/JP3620099B2/en
Publication of JPH08337815A publication Critical patent/JPH08337815A/en
Application granted granted Critical
Publication of JP3620099B2 publication Critical patent/JP3620099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To produce a Cr-Mo steel excellent in strength, toughness and resistance to tempering embrittlement sensitivity by a direct hardening method by subjecting a Cr-Mo steel having a specified compsn. to heating and hot rolling, executing hardening and thereafter subjecting the same to cooling and tempering under specified conditions. CONSTITUTION: A slab contg., by weight, 0.05 to 0.20% C, <=0.30% Si, <=1.00% Mn, 1.00 to 3.50% Cr, 0.40 to 2.00% Mo and <=0.0200% N, and the balance Fe is prepd. This slab is heated at 950 to 1100 deg.C, is rolled under the conditions in which the cumulative draft in the unrecrystallized temp. region is regulated to >=20% and the rolling finishing temp. to the Ar3 point or above, is immediately hardened at <=500 deg.C, is thereafter cooled to a room temp. and is subsequently tempered at >=600 deg.C. If required, the same steel may furthermore be incorporated with one or more kinds among <=0.50% Cu, <=0.50% Ni, 0.0003 to 0.0030% B, 0.05 to 0.40% V, 0.003 to 0.050% Nb, 0.003 to 0.015% Ti, 0.005 to 0.050% Al, 0.0005 to 0.0100% Ca and 0.0005 to 0.0200% rare earth metals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、圧力容器用鋼の製造
方法に関するもので、とくに強度と靱性に優れるCr−
Mo鋼の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel for pressure vessels, and particularly to Cr- which is excellent in strength and toughness.
The present invention relates to a method for manufacturing Mo steel.

【0002】[0002]

【従来の技術】Cr−Mo鋼は、耐水素侵食性や高温強
度に優れているために、石油精製プラント、化学プラン
トなどの高温高圧水素雰囲気下で使用される圧力容器用
材料として多用されている。これらのプラントは、近
年、効率化の観点から、より高温高圧化の条件で操業さ
れる傾向にある。このため、Cr−Mo鋼には、一層高
い強度が要求されるようになってきた。また、安全操業
の観点から、圧力容器の脆性破壊を防止するべく、より
高い靱性が要求されるようにもなってきた。なお、この
靱性に関しては、圧力容器の定期点検で実施される耐圧
試験が常温で行われることから、高温の操業温度のみな
らず常温での特性も必要である。このように、圧力容器
用に使用されるCr−Mo鋼は、その使用環境の変化に
よって、従来よりも一層、強度、靱性に優れた材質が必
要とされるようになってきた。
2. Description of the Related Art Since Cr-Mo steel is excellent in hydrogen corrosion resistance and high temperature strength, it is widely used as a material for pressure vessels used under high temperature and high pressure hydrogen atmosphere in petroleum refining plants and chemical plants. There is. In recent years, these plants tend to be operated under conditions of higher temperature and higher pressure from the viewpoint of efficiency improvement. Therefore, Cr-Mo steel is required to have higher strength. Further, from the viewpoint of safe operation, higher toughness has been required to prevent brittle fracture of the pressure vessel. With respect to this toughness, since the pressure resistance test performed in the regular inspection of the pressure vessel is performed at room temperature, not only the high operating temperature but also the characteristics at room temperature are necessary. As described above, the Cr-Mo steel used for the pressure vessel has been required to have a material having higher strength and toughness than ever before due to changes in the use environment.

【0003】ところで、Cr−Mo鋼の製造方法におい
て、従来から一般的に知られている各種の再加熱処理
(焼入れ、焼なまし、焼きならし)法を適用すると、細
粒で良好な靱性は得られるものの、十分な強度が得られ
ないという問題があった。そこで、強度を向上させるた
めの試みが、これまでにもいくつか行われてきた。例え
ば、熱間圧延後に直接焼入れを行う、いわゆる直接焼入
れ法が、特公平1−29853号公報および特公平2−
9647号公報に開示されている。この直接焼入れ法
は、再加熱工程を含まない熱処理方法であるので、省エ
ネルギーの上からは勿論のこと、生産性、経済性の上か
らも多くの利点を有する製造技術である。
By the way, when various reheating treatments (quenching, annealing, normalizing) generally known in the past are applied to the production method of Cr-Mo steel, fine grain and good toughness are applied. However, there was a problem that sufficient strength could not be obtained. Therefore, some attempts have been made to improve the strength. For example, a so-called direct quenching method in which direct quenching is performed after hot rolling is disclosed in Japanese Patent Publication No. 1-29853 and Japanese Patent Publication No.
It is disclosed in Japanese Patent No. 9647. Since this direct quenching method is a heat treatment method that does not include a reheating step, it is a manufacturing technique having many advantages not only in terms of energy saving but also in terms of productivity and economy.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
従来の直接焼入れ法では、上記再加熱熱処理法に比べ
て、鋼の高強度化は図られるものの、圧延後組織の結晶
粒が粗大であるため、靱性が低いという問題があった。
さらに、この方法では、結晶粒が粗大であることに起因
して、焼もどし脆化感受性が高く、使用中の脆化も懸念
されていた。このように、従来の再加熱熱処理法あるい
は直接焼入れ法によるCr−Mo鋼の製造技術では、い
ずれも、高強度かつ高靱性の材質が得られず、また焼も
どし脆化感受性が小さい材質のものが得られないという
問題があった。
However, in these conventional direct quenching methods, although the strength of the steel can be enhanced as compared with the above-mentioned reheating heat treatment method, since the crystal grains of the structure after rolling are coarse, There was a problem of low toughness.
Further, in this method, due to the coarse crystal grains, there is a high susceptibility to temper embrittlement, and there is a concern that embrittlement during use may occur. As described above, in the conventional technology for producing Cr-Mo steel by the reheating heat treatment method or the direct quenching method, the material of high strength and high toughness cannot be obtained, and the material of which temper temper embrittlement susceptibility is small There was a problem that could not be obtained.

【0005】この発明は、上述した従来のCr−Mo鋼
の材質上の問題に鑑み開発されたものであり、強度およ
び靱性について有利に改善したCr−Mo鋼の製造方法
を提案することを目的とする。
The present invention was developed in view of the above-mentioned problems in the material of the conventional Cr-Mo steel, and an object of the present invention is to propose a method for producing Cr-Mo steel in which strength and toughness are advantageously improved. And

【0006】[0006]

【課題を解決するための手段】さて発明者らは、上記の
目的を達成すべく、成分組成、熱間圧延および直接焼入
れの条件が強度および靱性に及ぼす影響について鋭意研
究を重ねた結果、以下の知見を得るに到った。 未再結晶域で20%以上の累積圧下率を付与し、直接
焼入れすることによって、変態強化、組織微細化が図ら
れ、強度と靱性がともに向上する。未再結晶域圧延で得
られるγ粒径は、再加熱熱処理のものほど細かくはなら
ないので、耐焼もどし脆化感受性の低下が懸念された
が、この焼もどし脆化はSi量を0.30wt%以下に制
御することによって抑制できる。 加熱温度を、従来の直接焼入れ法の加熱温度(110
0℃以上)よりも低くすることによって、結晶粒の微細
化が図られ、靱性、耐焼もどし脆化感受性が向上する。 加熱温度を、再加熱熱処理法(再加熱温度は、一般に
900〜950℃)より高くすることによって、Cr ,
Mo ,V ,Nb ,Tiなどの合金元素の固溶、拡散が促
進され、焼もどし軟化抵抗が増加し、高い強度が得られ
る。
Means for Solving the Problems In order to achieve the above object, the inventors have conducted extensive studies on the effects of the composition of components, the conditions of hot rolling and direct quenching on the strength and toughness. Came to obtain the knowledge of. By imparting a cumulative rolling reduction of 20% or more in the unrecrystallized region and directly quenching, transformation strengthening and microstructure refinement are achieved, and both strength and toughness are improved. Since the γ grain size obtained by rolling in the non-recrystallization region should not be as fine as that of the reheating heat treatment, it was feared that the tempering embrittlement susceptibility would decrease, but this tempering embrittlement resulted in a Si content of 0.30 wt%. It can be suppressed by controlling the following. The heating temperature is the same as that of the conventional direct quenching method (110
By setting the temperature lower than 0 ° C. or higher), the crystal grains are made finer, and the toughness and the tempering embrittlement susceptibility are improved. By making the heating temperature higher than that of the reheating heat treatment method (reheating temperature is generally 900 to 950 ° C.), Cr,
The solid solution and diffusion of alloy elements such as Mo, V, Nb, and Ti are promoted, the temper softening resistance is increased, and high strength is obtained.

【0007】この発明は、上記の知見に立脚するもので
あり、その要旨構成は以下のとおりである。 1)C:0.05〜0.20wt%、 Si:0.30wt%以下、Mn:
1.00wt%以下、 Cr:1.00〜3.50wt%、Mo:0.40〜
2.00wt%、 N:0.0200wt%以下を含有し、残部はFe
および不可避的不純物の組成からなる鋼片を、 950〜11
00℃に加熱し、未再結晶温度域における累積圧下率が2
0%以上、かつ圧延終了温度がAr3点以上の条件で圧延
し、直ちに500℃以下の温度に焼き入れ後、室温まで
冷却し、その後600℃以上の温度で焼もどすことを特
徴とする強度と靱性に優れるCr−Mo鋼の製造方法。
The present invention is based on the above findings, and its gist is as follows. 1) C: 0.05 to 0.20 wt%, Si: 0.30 wt% or less, Mn:
1.00wt% or less, Cr: 1.00 to 3.50wt%, Mo: 0.40 to
2.00wt%, N: 0.0200wt% or less, balance is Fe
And a slab consisting of the composition of unavoidable impurities.
When heated to 00 ℃, the cumulative rolling reduction in the unrecrystallized temperature range is 2
A strength characterized by rolling under 0% or more and a rolling end temperature of Ar 3 points or more, immediately quenching at a temperature of 500 ° C or less, cooling to room temperature, and then tempering at a temperature of 600 ° C or more. And a method for producing Cr-Mo steel excellent in toughness.

【0008】2)C:0.05〜0.20wt%、 Si:0.30wt
%以下、Mn:1.00wt%以下、 Cr:1.00〜3.50wt
%、Mo:0.40〜2.00wt%、 N:0.0200wt%以下を含
み、かつCu:0.50wt%以下、 Ni:0.50wt%以下、
B:0.0003〜0.0030wt%、V:0.05〜0.40wt%、Nb:0.
003 〜0.050 wt%、Ti:0.003 〜0.015 wt%、Al:0.00
5 〜0.050 wt%、Ca:0.0005〜0.0100wt%、REM :0.00
05〜0.0200wt%のうちから選んだ1種または2種以上を
含有し、残部はFeおよび不可避的不純物の組成からなる
鋼片を、 950〜1100℃に加熱し、未再結晶温度域におけ
る累積圧下率が20%以上、かつ圧延終了温度がAr3
以上の条件で圧延し、直ちに500℃以下の温度に焼き
入れ後、室温まで冷却し、その後600℃以上の温度で
焼もどすことを特徴とする強度と靱性に優れるCr−M
o鋼の製造方法。
2) C: 0.05 to 0.20 wt%, Si: 0.30 wt%
% Or less, Mn: 1.00 wt% or less, Cr: 1.00 to 3.50 wt
%, Mo: 0.40 to 2.00 wt%, N: 0.0200 wt% or less, Cu: 0.50 wt% or less, Ni: 0.50 wt% or less,
B: 0.0003 to 0.0030 wt%, V: 0.05 to 0.40 wt%, Nb: 0.
003 to 0.050 wt%, Ti: 0.003 to 0.015 wt%, Al: 0.00
5 to 0.050 wt%, Ca: 0.0005 to 0.0100 wt%, REM: 0.00
A steel slab containing one or more selected from 05 to 0.0200 wt% and the balance Fe and inevitable impurities is heated to 950 to 1100 ℃ and accumulated in the non-recrystallization temperature range. Characterized by rolling under a rolling reduction of 20% or more and a rolling end temperature of Ar 3 points or more, immediately quenching at a temperature of 500 ° C or less, cooling to room temperature, and then tempering at a temperature of 600 ° C or more Cr-M with excellent strength and toughness
o Steel manufacturing method.

【0009】[0009]

【作用】以下、この発明において、上記要旨構成のとお
りに限定した理由について説明する。 C:0.05〜0.20wt% Cは,強度確保に有効な元素であり、少なくとも0.0
5wt%の含有が必要である。一方、0.20wt%を超え
て過剰に含有した場合には、溶接性の劣化が大きくなる
ので、0.05〜0.20wt%、好ましくは0.10〜
0.16wt%とする。
In the following, the reason why the present invention is limited to the above-mentioned essential constitution will be explained. C: 0.05 to 0.20 wt% C is an element effective for securing strength, and at least 0.0
A content of 5 wt% is necessary. On the other hand, when the content exceeds 0.20 wt% and is excessive, the weldability is greatly deteriorated, so 0.05 to 0.20 wt%, preferably 0.10 to
0.16 wt%.

【0010】Si:0.30wt%以下 Siは、強度の増加に有効であるが、0.30wt%を超え
て過剰に含有すると焼もどし脆化感受性を高くするので
0.30wt%以下、好ましくは0.15wt%以下とす
る。
Si: 0.30 wt% or less Si is effective for increasing strength, but if it is excessively contained in excess of 0.30 wt%, the temper embrittlement susceptibility becomes high, so 0.30 wt% or less, preferably 0 15 wt% or less.

【0011】Mn:1.00wt%以下 Mnは、強度を高めるのに有効な元素であるが、添加量が
多過ぎると焼もどし脆化感受性を高め、溶接性を低下さ
せるので、1.00wt%以下、好ましくは0.80wt%
以下とする。
Mn: 1.00 wt% or less Mn is an element effective in increasing the strength, but if too much is added, the temper embrittlement susceptibility is increased and the weldability is lowered, so 1.00 wt% or less , Preferably 0.80 wt%
Below.

【0012】Cr:1.00〜3.50wt% Crは、高温強度、耐酸化性および耐水素侵食性の向上
に有効な元素であり、少なくとも1.00wt%以上の添
加が必要である。一方、3.50wt%を超えて添加する
と、溶接性、クリープ強度を低下させるので、1.00
〜3.50wt%の範囲に限定する。
Cr: 1.00 to 3.50 wt% Cr is an element effective in improving high temperature strength, oxidation resistance and hydrogen corrosion resistance, and it is necessary to add at least 1.00 wt% or more. On the other hand, if added in excess of 3.50 wt%, the weldability and creep strength decrease, so 1.00
To 3.50 wt%.

【0013】Mo:0.40〜2.00wt% Moは、耐水素侵食性、高温強度とくにクリープ強度の
向上に有効な元素であり、その効果を発揮させるために
は0.40wt%以上の添加が必要である。一方、2.0
0wt%を超えて添加すると、その効果が飽和し、不経済
であるとともに、溶接性を低下させるので、0.40〜
2.00wt%の範囲に限定する。なお、好ましい添加範
囲は0.50〜1.50wt%である。
Mo: 0.40 to 2.00 wt% Mo is an element effective in improving hydrogen corrosion resistance and high temperature strength, especially creep strength, and in order to exert its effect, 0.40 wt% or more must be added. is there. On the other hand, 2.0
If added in excess of 0 wt%, the effect is saturated, which is uneconomical and reduces weldability.
Limit to the range of 2.00 wt%. The preferable addition range is 0.50 to 1.50 wt%.

【0014】N:0.0200wt%以下 Nは、靱性に悪影響を及ぼす元素であり、とくに0.0
200wt%を超えて含有すると靱性が急激に低下する。
また、N量が多くなると、Bを添加した鋼では、BNを
形成してBの焼入れ性を低下させ、Ti添加鋼ではTi
Nを形成し、低温加熱でのTiの固溶(Tiによる析出
強化)を妨げることになるので、N量は0.0200wt
%以下、好ましくは0.0060wt%以下とする。
N: 0.0200 wt% or less N is an element that adversely affects toughness, and especially 0.0
If the content exceeds 200 wt%, the toughness is drastically reduced.
Further, when the amount of N increases, in the steel containing B, BN is formed to reduce the hardenability of B, and in the steel containing Ti, Ti is added.
The amount of N is 0.0200 wt% because it forms N and hinders solid solution of Ti (precipitation strengthening by Ti) at low temperature heating.
% Or less, preferably 0.0060 wt% or less.

【0015】Cu:0.50wt%以下 Cuは、焼入れ性の向上、靱性の改善に有効な元素であ
るが、0.50wt%を超えて添加すると、焼もどし脆化
感受性を増大させるので0.50wt%以下、好ましくは
0.30wt%以下とする。
Cu: 0.50 wt% or less Cu is an element effective for improving hardenability and toughness, but if added in excess of 0.50 wt%, it increases susceptibility to temper embrittlement, so 0.50 wt% % Or less, preferably 0.30 wt% or less.

【0016】Ni:0.50wt%以下 Niは、焼入れ性の向上、靱性の改善に有効な元素であ
るが、0.50wt%を超えて添加すると、焼もどし脆化
感受性を増大させるので0.50wt%以下、好ましくは
0.30wt%以下とする。
Ni: 0.50 wt% or less Ni is an element effective in improving hardenability and toughness, but if added in excess of 0.50 wt%, it increases susceptibility to temper embrittlement, so 0.50 wt% % Or less, preferably 0.30 wt% or less.

【0017】B:0.0003〜0.0030wt% Bは、焼入れ性を向上させ、強度、靱性をともに向上さ
せるのに有用な元素である。これらの添加効果を発揮さ
せるためには、0.0003wt%以上の添加が必要であ
るが、0.0030wt%を超えて添加しても焼入れ性は
かえって低下し、とくに靱性が低下するので、0.00
03〜0.0030、好ましくは0.0005〜0.0
015wt%の範囲とする.
B: 0.0003 to 0.0030 wt% B is an element useful for improving hardenability, strength and toughness. In order to exert these addition effects, it is necessary to add 0.0003 wt% or more. However, even if added over 0.0030 wt%, the hardenability rather deteriorates, especially the toughness decreases, so 0 .00
03-0.0030, preferably 0.0005-0.0
The range is 015 wt%.

【0018】V:0.05〜0.40wt% Vは、焼もどし時および溶接後熱処理時に安定な炭化物
を析出し、常温および高温の強度を向上させ、耐水索侵
食性を高める元素である。これらの効果を発揮させるた
めには、少なくとも0.05wt%の添加量が必要であ
る。一方、0.40wt%を超えて過剰に添加しても、そ
の効果は飽和する傾向にあり、そのうえ靱性および溶接
性を低下させるので、0.05〜0.40wt%、好まし
くは0.10〜0.35wt%とする。
V: 0.05 to 0.40 wt% V is an element that precipitates stable carbides during tempering and heat treatment after welding, improves the strength at room temperature and high temperature, and enhances the resistance to water line erosion. In order to exert these effects, the addition amount of at least 0.05 wt% is necessary. On the other hand, even if added in excess of 0.40 wt%, the effect tends to be saturated, and further toughness and weldability are deteriorated, so 0.05 to 0.40 wt%, preferably 0.10 to 0. 0.35 wt%.

【0019】Nb:0.003 〜0.050 wt% Nbは、焼もどし時および溶接後熱処理時に安定な炭化
物を析出して、常温および高温における強度を向上さ
せ、耐水索侵食性を高める元素である。これらの効果を
発揮させるためには、少なくとも0.003wt%の添加
量が必要である。一方、0.050wt%を超えて過剰に
添加しても、その効果は飽和する傾向にあり、その上靱
性および溶接性を低下させるので、0.003〜0.0
50wt%、好ましくは0.005〜0.025wt%とす
る。
Nb: 0.003 to 0.050 wt% Nb is an element that precipitates stable carbides during tempering and during post-weld heat treatment to improve strength at room temperature and high temperature and enhance water line erosion resistance. In order to exert these effects, the added amount of at least 0.003 wt% is necessary. On the other hand, even if added in excess of 0.050 wt%, the effect tends to be saturated, and further toughness and weldability are deteriorated, so 0.003 to 0.0
50 wt%, preferably 0.005-0.025 wt%.

【0020】Ti:0.003 〜0.015 wt% Tiは、焼もどし時および溶接後熱処理時に安定な炭化
物を析出して、常温および高温における強度を向上さ
せ、耐水索侵食性を高める元素である。これらの効果を
発揮させるためには、少なくとも0.003wt%の添加
量が必要である。一方、0.015wt%を超えて過剰に
添加しても、その効果は飽和する傾向にあり、その上靱
性および溶接性を低下させるので、0.003〜0.0
15wt%、好ましくは0.008〜0.012%とす
る。
Ti: 0.003 to 0.015 wt% Ti is an element that precipitates stable carbides at the time of tempering and at the time of heat treatment after welding to improve the strength at room temperature and high temperature and to enhance the resistance to water line erosion. In order to exert these effects, the added amount of at least 0.003 wt% is necessary. On the other hand, even if added in excess of 0.015 wt%, the effect tends to be saturated, and further toughness and weldability are deteriorated, so 0.003 to 0.0
15 wt%, preferably 0.008 to 0.012%.

【0021】Al:0.005 〜0.050 wt% Alは、鋼の脱酸のために、また1100℃以下の加熱
における粗粒化抑制に有効な元素であり、これらの効果
を発揮させるためには、0.005wt%以上の添加が必
要である。一方、0.050wt%を超えて過剰に添加す
るとクリープ強度を低下させる。したがって、Alの添
加量は0.005〜0.050wt%、好ましくは0.0
10〜0.025wt%の範囲とする.
Al: 0.005 to 0.050 wt% Al is an element effective for deoxidizing steel and for suppressing coarsening in heating at 1100 ° C. or lower, and in order to exert these effects, 0 It is necessary to add more than 0.005% by weight. On the other hand, if added in excess of 0.050 wt%, the creep strength will be reduced. Therefore, the addition amount of Al is 0.005 to 0.050 wt%, preferably 0.0
The range is 10 to 0.025 wt%.

【0022】Ca:0.0005〜0.0100wt% Caは、耐応力除去焼鈍割れ性および靱性を高めるのに
有用な元素であり、これらの効果を発揮させるために
は、0.0005wt%以上の添加が必要である。一方、
これらの元素を過剰に添加すると鋼の清浄度を悪くし靱
性をかえって低下させる。したがって、Caの添加量は
0.0005〜0.0100wt%、好ましくは0.00
10〜0.0050wt%とする。
Ca: 0.0005 to 0.0100 wt% Ca is an element useful for enhancing stress relief annealing cracking resistance and toughness, and in order to exert these effects, addition of 0.0005 wt% or more is necessary. Is. on the other hand,
If these elements are added excessively, the cleanliness of steel is deteriorated and the toughness is rather lowered. Therefore, the addition amount of Ca is 0.0005 to 0.0100 wt%, preferably 0.00
It is set to 10 to 0.0050 wt%.

【0023】REM :0.0005〜0.0200wt% REM(希土類元素)は、耐応力除去焼鈍割れ性および
靱性を高めるのに有用な元素であり、これらの効果を発
揮させるためには、0.0005wt%以上の添加が必要
である。一方、これらの元素を過剰に添加すると鋼の清
浄度を悪くし靱性をかえって低下させる。このため、R
EMの添加量は0.0005〜0.0200wt%、好ま
しくは0.0010〜0.0080wt%とする。
REM: 0.0005 to 0.0200 wt% REM (rare earth element) is an element useful for enhancing stress relief annealing cracking resistance and toughness, and in order to exert these effects, 0.0005 wt% or more Is required. On the other hand, if these elements are excessively added, the cleanliness of steel deteriorates and the toughness deteriorates. Therefore, R
The amount of EM added is 0.0005 to 0.0200 wt%, preferably 0.0010 to 0.0080 wt%.

【0024】なお、不純物元素としてのP,Sの含有量
は低いほどよいが、Pは焼もどし脆化を抑制するうえか
ら0.015wt%以下、Sは良好な靱性を確保するうえ
から0.008wt%以下に低減するのが望ましい。
The lower the content of P and S as impurity elements, the better. However, P is 0.015 wt% or less from the viewpoint of suppressing temper embrittlement, and S is 0.1% from the viewpoint of ensuring good toughness. It is desirable to reduce it to 008 wt% or less.

【0025】上記のような化学組成を有するる鋼を、転
炉または電気炉で溶製した後、必要に応じて取鍋精錬や
真空脱ガス処理を施し、造塊−分塊法あるいは連続鋳造
法で鋳込み鋼片にする。この鋼片を加熱したのち、熱間
圧延および直接焼入れを施すことにより製造する。以下
に、この発明に従う製造方法について説明する。 ・加熱温度: 950〜1100℃ 加熱温度が、950℃未満ではCr,Mo ,Vの固溶、
拡散が十分に行われないので、良好な焼入性と高い焼も
どし軟化抵抗が得られない。また、950℃未満では、
Nb,Tiの析出強化作用も発揮されない。このため、
十分な強度を確保するためには、再加熱熱処理法より高
い、950℃以上の加熱が必要である。一方、1100
℃を超える温度で加熱すると、γ粒が粗大化し過ぎ、圧
延工程で十分に微細化できなくなり靱性が低下する。し
たがって、加熱温度は950〜1100℃、好ましくは
1030〜1100℃とする。
After the steel having the above chemical composition is melted in a converter or an electric furnace, ladle refining or vacuum degassing treatment is applied if necessary, and the ingot-separating method or continuous casting is performed. Method to make cast steel slab. After heating this steel slab, it is manufactured by hot rolling and direct quenching. The manufacturing method according to the present invention will be described below. -Heating temperature: 950 to 1100 ° C If the heating temperature is lower than 950 ° C, solid solution of Cr, Mo, V,
Since the diffusion is not performed sufficiently, good hardenability and high temper softening resistance cannot be obtained. Also, below 950 ° C,
The precipitation strengthening effect of Nb and Ti is not exhibited. For this reason,
In order to secure sufficient strength, heating at 950 ° C. or higher, which is higher than in the reheating heat treatment method, is necessary. On the other hand, 1100
If the heating is performed at a temperature higher than 0 ° C, the γ-grains become too coarse, and they cannot be sufficiently refined in the rolling process, resulting in a decrease in toughness. Therefore, the heating temperature is 950 to 1100 ° C, preferably 1030 to 1100 ° C.

【0026】・未再結晶温度域における累積圧下率:2
0%以上 加熱されたスラブは複数パスの圧下により熱間圧延され
る。この熱間圧延において、加工γの焼入れにより、変
態強化、組織微細化を図り、強度および靱性の向上を達
成するためには、未再結晶温度域で少なくとも20%以
上の累積圧下率が必要である。したがって、未再結晶域
での累積圧下率は、20%以上、好ましくは25 %以
上とする。なお、この発明において、加熱温度の低下に
よる強度上でのマイナス面は、未再結晶温度域における
累積圧下率:20%以上という、上記手段の採用によっ
て十分解消される。
Cumulative rolling reduction in the non-recrystallization temperature range: 2
The slab heated to 0% or more is hot-rolled by reduction of multiple passes. In this hot rolling, in order to achieve transformation strengthening, microstructure refinement, and strength and toughness improvement by quenching of working γ, at least a cumulative rolling reduction of at least 20% is required in the non-recrystallization temperature range. is there. Therefore, the cumulative reduction rate in the non-recrystallized region is set to 20% or more, preferably 25% or more. In the present invention, the negative side in strength due to the lowering of the heating temperature is sufficiently eliminated by adopting the above-mentioned means that the cumulative rolling reduction in the non-recrystallization temperature region is 20% or more.

【0027】・圧延終了温度:Ar3点以上 圧延温度がAr3点未満では、フェライトが生成し、その
後に急冷を行っても良好な焼入れ性が得られないため、
強度、靱性が低下する。したがって、圧延終了温度はA
r3点以上とする。
Rolling end temperature: Ar 3 points or higher If the rolling temperature is lower than Ar 3 points, ferrite is formed and good quenchability cannot be obtained even after rapid cooling.
Strength and toughness decrease. Therefore, the rolling end temperature is A
r 3 points or more.

【0028】・冷却条件:500℃以下の温度に焼き入
れ後、室温まで冷却 圧延後の焼入れは、噴水による強冷が望ましく、加速冷
却設備などによる能率的な焼入れが好ましい。冷却停止
温度は、低いと微細な焼入れ組織が得られるのに対し、
500℃を超えると粗大な組織を形成し、強度、靱性を
低下させる。したがって、冷却停止温度は500℃以
下、好ましくは450℃以下とする。また、焼入れ後、
室温まで冷却するのは、変態を完全に終了させてから焼
もどしを行いうことにより、良好な強靱性を得るためで
ある。
Cooling condition: Quenching to a temperature of 500 ° C. or lower, and cooling to room temperature. After quenching, strong quenching with a fountain is desirable, and efficient quenching with an accelerated cooling facility is preferable. When the cooling stop temperature is low, a fine quenching structure can be obtained, while
If it exceeds 500 ° C., a coarse structure is formed and strength and toughness are reduced. Therefore, the cooling stop temperature is set to 500 ° C. or lower, preferably 450 ° C. or lower. Also, after quenching,
The reason for cooling to room temperature is to obtain good toughness by performing tempering after completely completing the transformation.

【0029】・焼もどし温度:600℃以上 均質で優れた靱性を得るために、焼入れ後に焼もどし処
理を行う。この目的を達成するためには、焼もどし温度
を600℃以上とする必要がある。なお、好ましい焼も
どし温度は、625〜725℃がよい。
Tempering temperature: 600 ° C. or higher In order to obtain uniform and excellent toughness, tempering treatment is performed after quenching. In order to achieve this purpose, the tempering temperature must be 600 ° C or higher. The preferable tempering temperature is preferably 625 to 725 ° C.

【0030】[0030]

【実施例】【Example】

・実施例1 表1に示す化学組成からなるスラブを、表2に示す条件
で、加熱、熱間圧延、、直接焼入れ(水冷)を行い、室
温まで冷却した後、焼もどしを行った。また、比較のた
めに、一部のものについては、上記直接焼入れに代わ
り、圧延後空冷−再加熱焼入れの処理を行った。これら
焼入れ処理後に、690℃で24時間保持の条件で焼も
どし処理を行った。
Example 1 A slab having the chemical composition shown in Table 1 was heated, hot rolled, and directly quenched (water cooled) under the conditions shown in Table 2, cooled to room temperature, and then tempered. In addition, for comparison, some of them were subjected to air-cooling-reheating quenching after rolling instead of the above direct quenching. After these quenching treatments, a tempering treatment was performed under the condition of holding at 690 ° C. for 24 hours.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】得られた試験材について、室温での引張特
性、シャルピー衝撃特性およびGEタイプのステップク
ーリング処理(焼もどし脆化特性測定のための加速熱処
理)後の脆化量△vTrsを調査した。これらの試験結
果を表2に併せて示す。また図1は、これらのデータか
ら、室温における引張強さ(TS)と破面遷移温度(v
Trs)との関係プロットしたものである。図1におい
て、●印が発明法、○印が比較法でそれぞれ製造した材
料の特性である。
With respect to the obtained test materials, the tensile properties at room temperature, the Charpy impact properties, and the embrittlement amount ΔvTrs after GE type step cooling treatment (accelerated heat treatment for measuring temper embrittlement properties) were investigated. The results of these tests are also shown in Table 2. Further, FIG. 1 shows that the tensile strength (TS) and the fracture surface transition temperature (v
Trs) is plotted as a relation. In FIG. 1, the ● marks indicate the characteristics of the materials produced by the invention method and the ○ marks indicate the characteristics of the materials produced by the comparative method.

【0034】表2あるいは図1から、この発明法にした
がって製造したCr−Mo鋼は、直接焼入れ条件が不適
切な比較法よりも靱性に優れ、再加熱焼入れによる比較
法よりも強度が高いことがわかる。さらに、この発明法
にしたがって製造したCr−Mo鋼は、直接焼入れ条件
が不適切な比較法によるものよりも△vTrsが小さ
く、焼もどし脆化感受性が小さいことがわかる。なお、
Cr、Mo含有量が過少である鋼(F)では、直接焼入
れ条件が適正であっても、機械的性質の向上はほとんど
認められないこと、また、Mn含有量が過多である鋼
(G)は、直接焼入れ条件が適正であっても、△vTr
Sが大きく、焼もどし脆化感受性が大きいことがわか
る。
From Table 2 or FIG. 1, the Cr-Mo steel produced according to the method of the present invention is superior in toughness to the comparative method in which direct quenching conditions are inappropriate and has higher strength than the comparative method by reheating and quenching. I understand. Furthermore, it can be seen that the Cr-Mo steel produced according to the method of the present invention has a smaller ΔvTrs and a lower susceptibility to temper embrittlement than those obtained by the comparative method in which direct quenching conditions are inappropriate. In addition,
Steel (F) with an excessively low Cr and Mo content shows almost no improvement in mechanical properties even if the direct quenching conditions are appropriate, and steel with an excessive Mn content (G). Even if the direct quenching condition is appropriate, ΔvTr
It can be seen that S is large and temper embrittlement susceptibility is large.

【0035】[0035]

【発明の効果】かくしてこの発明によれば、強度、靱性
に優れ、焼もどし脆化感受性が小さいCr−Mo鋼を、
直接焼入れ法により製造することが可能となる。したが
って、この発明によれば、より高温高圧水素雰囲気下で
使用される圧力容器用材料を省エネルギー工程で効率的
に製造できるので、極めて大きな工業的寄与がもたらさ
れる。
As described above, according to the present invention, a Cr-Mo steel having excellent strength and toughness and a low susceptibility to temper embrittlement can be obtained.
It can be manufactured by the direct quenching method. Therefore, according to the present invention, a material for a pressure vessel used under a higher temperature and high pressure hydrogen atmosphere can be efficiently produced in an energy saving process, which brings about an extremely large industrial contribution.

【図面の簡単な説明】[Brief description of drawings]

【図1】室温における引張強さ(TS)と破面遷移温度
(vTrs)との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between tensile strength (TS) and fracture surface transition temperature (vTrs) at room temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松崎 明博 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 天野 虔一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiro Matsuzaki 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture (no address) Inside the Mizushima Works, Kawasaki Steel Co., Ltd. (72) Shinichi Amano, Mizushima-kawasaki-dori, Kurashiki-shi, Okayama Prefecture 1 chome (without street number) Kawasaki Steel Works Mizushima Steel Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.05〜0.20wt%、 Si:0.30wt%以下、 Mn:1.00wt%以下、 Cr:1.00〜3.50wt%、 Mo:0.40〜2.00wt%、 N:0.0200wt%以下を含有
し、残部はFeおよび不可避的不純物の組成からなる鋼片
を、 950〜1100℃に加熱し、未再結晶温度域における累
積圧下率が20%以上、かつ圧延終了温度がAr3点以上
の条件で圧延し、直ちに500℃以下の温度に焼き入れ
後、室温まで冷却し、その後600℃以上の温度で焼も
どすことを特徴とする強度と靱性に優れるCr−Mo鋼
の製造方法。
1. C: 0.05 to 0.20 wt%, Si: 0.30 wt% or less, Mn: 1.00 wt% or less, Cr: 1.00 to 3.50 wt%, Mo: 0.40 to 2.00 wt%, N: 0.0200 wt% or less A steel slab containing Fe and unavoidable impurities in the balance is heated to 950 to 1100 ° C., the cumulative rolling reduction in the unrecrystallized temperature range is 20% or more, and the rolling end temperature is Ar 3 points or more. A method for producing a Cr-Mo steel excellent in strength and toughness, which comprises rolling under conditions, immediately quenching at a temperature of 500 ° C or lower, cooling to room temperature, and then tempering at a temperature of 600 ° C or higher.
【請求項2】 C:0.05〜0.20wt%、 Si:0.30wt%以下、 Mn:1.00wt%以下、 Cr:1.00〜3.50wt%、 Mo:0.40〜2.00wt%、 N:0.0200wt%以下を含み、
かつCu:0.50wt%以下、 Ni:0.50wt%以下、 B:0.0003〜0.0030wt%、V:0.05〜0.40wt%、 Nb:0.003 〜0.050 wt%、Ti:0.003 〜0.015 wt%、 Al:0.005 〜0.050 wt%、Ca:0.0005〜0.0100wt%、 REM :0.0005〜0.0200wt%のうちから選んだ1種または
2種以上を含有し、残部はFeおよび不可避的不純物の組
成からなる鋼片を、 950〜1100℃に加熱し、未再結晶温
度域における累積圧下率が20%以上、かつ圧延終了温
度がAr3点以上の条件で圧延し、直ちに500℃以下の
温度に焼き入れ後、室温まで冷却し、その後600℃以
上の温度で焼もどすことを特徴とする強度と靱性に優れ
るCr−Mo鋼の製造方法。
2. C: 0.05 to 0.20 wt%, Si: 0.30 wt% or less, Mn: 1.00 wt% or less, Cr: 1.00 to 3.50 wt%, Mo: 0.40 to 2.00 wt%, N: 0.0200 wt% or less Including,
And Cu: 0.50 wt% or less, Ni: 0.50 wt% or less, B: 0.0003 to 0.0030 wt%, V: 0.05 to 0.40 wt%, Nb: 0.003 to 0.050 wt%, Ti: 0.003 to 0.015 wt%, Al: 0.005 ~ 0.050 wt%, Ca: 0.0005-0.0100 wt%, REM: 0.0005-0.0200 wt%, containing one or more selected from the rest, the balance is a steel piece composed of Fe and inevitable impurities, Roll at a temperature of 950 to 1100 ° C, a cumulative rolling reduction in the non-recrystallization temperature range of 20% or more, and a rolling end temperature of Ar 3 points or more, immediately quench to a temperature of 500 ° C or less, and then reach room temperature. A method for producing a Cr—Mo steel having excellent strength and toughness, which comprises cooling and then tempering at a temperature of 600 ° C. or higher.
JP14308695A 1995-06-09 1995-06-09 Method for producing Cr-Mo steel excellent in strength and toughness Expired - Fee Related JP3620099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14308695A JP3620099B2 (en) 1995-06-09 1995-06-09 Method for producing Cr-Mo steel excellent in strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14308695A JP3620099B2 (en) 1995-06-09 1995-06-09 Method for producing Cr-Mo steel excellent in strength and toughness

Publications (2)

Publication Number Publication Date
JPH08337815A true JPH08337815A (en) 1996-12-24
JP3620099B2 JP3620099B2 (en) 2005-02-16

Family

ID=15330593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14308695A Expired - Fee Related JP3620099B2 (en) 1995-06-09 1995-06-09 Method for producing Cr-Mo steel excellent in strength and toughness

Country Status (1)

Country Link
JP (1) JP3620099B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037655A (en) * 2008-07-09 2010-02-18 Nippon Steel Corp Steel superior in hydrogen resistance for vessel for storing high-pressure hydrogen gas therein, and manufacturing method therefor
CN102080187A (en) * 2010-12-21 2011-06-01 南阳汉冶特钢有限公司 Large-thickness Cr-Mo system 12Cr2Mo1R container steel and production method thereof
CN107475620A (en) * 2017-07-26 2017-12-15 舞阳钢铁有限责任公司 Low-temperature pressure container quenching and tempering type A537Cl2 steel plates and its production method
CN108034887A (en) * 2017-12-01 2018-05-15 宁波诚泰汽车部件有限公司 A kind of high performance alloys Steel material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037655A (en) * 2008-07-09 2010-02-18 Nippon Steel Corp Steel superior in hydrogen resistance for vessel for storing high-pressure hydrogen gas therein, and manufacturing method therefor
CN102080187A (en) * 2010-12-21 2011-06-01 南阳汉冶特钢有限公司 Large-thickness Cr-Mo system 12Cr2Mo1R container steel and production method thereof
CN107475620A (en) * 2017-07-26 2017-12-15 舞阳钢铁有限责任公司 Low-temperature pressure container quenching and tempering type A537Cl2 steel plates and its production method
CN108034887A (en) * 2017-12-01 2018-05-15 宁波诚泰汽车部件有限公司 A kind of high performance alloys Steel material and preparation method thereof

Also Published As

Publication number Publication date
JP3620099B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
EP1375694B2 (en) Hot-rolled steel strip and method for manufacturing the same
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
WO2020136829A1 (en) Nickel-containing steel sheet
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JPH09143557A (en) Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JP2000204414A (en) Production of medium carbon steel
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
KR20000043762A (en) Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP3620099B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
JP3458604B2 (en) Manufacturing method of induction hardened parts
JPH0693332A (en) Production of high tensile strength and high toughness fine bainitic steel
JPH11302785A (en) Steel for seamless steel pipe
JPH0813028A (en) Production of precipitation hardening steel material having high tensile strength and high toughness
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JPH08337814A (en) Production of chromium-molybdenum steel excellent in strength and toughness

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Effective date: 20040820

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041026

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20041108

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20081126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20111126

LAPS Cancellation because of no payment of annual fees