JPS63183123A - Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating - Google Patents

Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating

Info

Publication number
JPS63183123A
JPS63183123A JP1678387A JP1678387A JPS63183123A JP S63183123 A JPS63183123 A JP S63183123A JP 1678387 A JP1678387 A JP 1678387A JP 1678387 A JP1678387 A JP 1678387A JP S63183123 A JPS63183123 A JP S63183123A
Authority
JP
Japan
Prior art keywords
steel
temperature
less
toughness
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1678387A
Other languages
Japanese (ja)
Inventor
Kensaburo Takizawa
瀧澤 謙三郎
Haruo Kaji
梶 晴男
Takashi Shimohata
下畑 隆司
Hisayoshi Jinno
神野 久喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1678387A priority Critical patent/JPS63183123A/en
Publication of JPS63183123A publication Critical patent/JPS63183123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high tensile steel having excellent low-temp. toughness after linear and spotty reheating by subjecting a low-C steel slab having a specific compsn. consisting of C, Si, Mn, S, Al, Ti, N, and Fe to hot rolling and cooling under specific conditions. CONSTITUTION:The steel slab which contains 0.01-0.08wt.% C, 0.05-0.50% Si, 0.80-2.0% Mn, <=0.030% S, 0.010-0.060% Al, 0.005-0.020% Ti, 0.0020-0.0080% N, contains further, >=1 kinds among <=0.70% Cu, <=2.0% Ni, <=0.50% Cr, <=0.50% Mo, 0.01-0.10% V, 0.005-0.030% Nb, and 0.005-0.030% Ca at need, consists of the balance Fe and unavoildable impurities and has <=0.36% carbon equiv. is heated to 950-1,150 deg.C. The steel is then subjected to hot rolling at <=50% cumulative draft at <=850 deg.C and Ar3 point + or - 40 deg.C rolling finish temp. The hot rolled sheet is subjected to accelerated cooling down to a 600-300 deg.C range at >=2 deg.C/sec cooling rate.

Description

【発明の詳細な説明】 童呈上■剋里公国 本発明は、広範囲の条件にわたる線状及び点状再加熱後
においても、すぐれた低温靭性を保持する高張力鋼の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-strength steel that retains excellent low-temperature toughness even after linear and spot reheating over a wide range of conditions.

従米二茨班 鋼板の表面に線状又は点状の再加熱加工(以下、単に線
状加熱という、)を施すことは、例えば、日本造船学会
論文集第133号にも記載されているように、船舶の建
造において、船殻部材の曲げ加工、曲げ加工後の修正、
溶接後或いは成形後の歪取り等に多く利用されている。
Applying linear or dotted reheating processing (hereinafter simply referred to as linear heating) to the surface of Jubei Nithorn Banner steel plate is, for example, as described in the Transactions of the Society of Naval Architects of Japan No. 133. , In ship construction, bending of hull members, correction after bending,
It is often used to remove distortion after welding or molding.

従来、50 kgf/mm”扱高張力鋼板に許容されて
いる線状加熱の条件は、加熱の場合は900℃が最高温
度とされている。しかし、実施工においては、熟練工の
感覚に基づいて施工が行なわれている場合が多く、従っ
て、実際には施工中に900℃を越える温度になる場合
もあり得る。このように、線状加熱において許容加熱温
度よりも高い温度で施工が行なわれた場合は、高温に加
熱された部分はど、機械的特性、特に靭性の劣化が著し
いという問題が生じる。他方、施工能率の向上には、線
状加熱温度をできるだけ高(することが必要である。
Conventionally, the maximum temperature of linear heating allowed for high-strength steel plates that handle 50 kgf/mm" is 900°C. However, during the actual work, the maximum temperature is 900°C. In many cases, construction is being carried out, and therefore, the temperature may actually exceed 900°C during construction.In this way, in linear heating, construction is carried out at a temperature higher than the allowable heating temperature. In this case, the problem arises that the mechanical properties, especially the toughness, of the parts heated to high temperatures deteriorate significantly.On the other hand, in order to improve construction efficiency, it is necessary to raise the linear heating temperature as high as possible. be.

日が”しようとする間 声 本発明者らは、線状加熱における上記した従来の問題を
解決するために鋭意研究した結果、Cを所定量に低減し
た鋼スラブの熱間圧延条件と、その後の加速冷却条件と
を最適に制御することによって、例えば、900℃以上
の高い温度での線状加熱においても、線状加熱部の靭性
を確保せしめた高張力鋼板を製造しえることを見出して
、本発明に至ったものである。
As a result of intensive research to solve the above-mentioned conventional problems in linear heating, the inventors have determined the hot rolling conditions for steel slabs with C reduced to a predetermined amount and the subsequent We have discovered that by optimally controlling the accelerated cooling conditions, it is possible to produce high-strength steel sheets that ensure the toughness of the linearly heated parts, even when linearly heated at temperatures as high as 900°C or higher, for example. , which led to the present invention.

p 占を解ンするための 本発明による線状及び点状再加熱加工後の低温靭性にす
ぐれる高張力鋼の製造方法は、重量%でc   o、o
i〜0.08% Si0.05〜0.50% Mn   0.80〜2.0% S   0.030%以下 Afo、010〜0.060% Ti  0.005〜0.020% N   0.0020〜0.0080%残部鉄及び不可
避的不純物よりなり、炭素当量が0.36%以下である
鋼スラブを950〜1150℃の範囲の温度に加熱し、
850℃以下での累積圧下率を50%以上とし、且つ、
圧延仕上温度をAr=点±40℃として熱間圧延した後
に、600〜300℃の範囲の温度まで冷却速度2℃/
秒以上で加速冷却することを特徴とする。
The method for manufacturing high-strength steel with excellent low-temperature toughness after linear and spot reheating processing according to the present invention is to solve the problem of co, o in weight percent.
i~0.08% Si0.05~0.50% Mn 0.80~2.0% S 0.030% or less Afo, 010~0.060% Ti 0.005~0.020% N 0.0020 Heating a steel slab consisting of ~0.0080% balance iron and unavoidable impurities and having a carbon equivalent of 0.36% or less to a temperature in the range of 950 to 1150 °C,
The cumulative reduction rate at 850°C or lower is 50% or more, and
After hot rolling with the finishing temperature of Ar=±40°C, the cooling rate is 2°C/2°C to a temperature in the range of 600 to 300°C.
It is characterized by accelerated cooling in seconds or more.

先ず、本発明による方法において用いる鋼の化学成分に
ついて説明する。
First, the chemical composition of the steel used in the method according to the present invention will be explained.

Cは、本発明の方法において、最も重要な合金元素であ
り、強度確保のために必須であると共に、このC量が線
状加熱部の靭性を左右する。従って、強度を確保するた
めに、少なくとも0.01%)添加を必要とする。しか
し、過多に添加する場合は、線状加熱後の冷却において
多量のベイナイトが生成して鋼が硬化し、靭性が低下す
るのみならず、溶接熱影響部の靭性をも劣化させるので
、添加量は0.08%以下とする。
C is the most important alloying element in the method of the present invention and is essential for ensuring strength, and the amount of C influences the toughness of the linear heating section. Therefore, in order to ensure strength, it is necessary to add at least 0.01%. However, if too much is added, a large amount of bainite will be generated during cooling after linear heating, hardening the steel, and will not only reduce the toughness, but also deteriorate the toughness of the weld heat affected zone. shall be 0.08% or less.

Stは、綱の脱酸及び強度の確保に有効な元素であるが
、0.05%より少ないときは、その効果に乏しく、0
.50%を越えるときは、母材の靭性を劣化させると共
に、溶接性を劣化させるので、上限を0.50%とする
St is an effective element for deoxidizing steel and ensuring strength, but if it is less than 0.05%, its effect is poor and 0.
.. When it exceeds 50%, the toughness of the base metal and weldability are deteriorated, so the upper limit is set to 0.50%.

Mnも、母材強度を確保するために必要な元素であって
、そのため少な(とも0.80%を添加することが必要
である。しかし、過多添加するときは、粗大ベイナイト
を生成して、焼入れ硬化し、母材靭性が劣化すると共に
、溶接性及び線状加熱部の靭性も著しく劣化するので、
添加量の上限を2.0%とした。
Mn is also an element necessary to ensure the strength of the base metal, and therefore it is necessary to add a small amount (0.80% in both cases).However, when adding too much, coarse bainite is generated. It hardens by quenching, and the toughness of the base metal deteriorates, and the weldability and toughness of the linear heated part also deteriorate significantly.
The upper limit of the amount added was set to 2.0%.

S量は、母材及び線状加熱部の衝撃吸収エネルギーを高
めるために、本発明においては、0.030%以下に限
定する。
In the present invention, the amount of S is limited to 0.030% or less in order to increase the impact absorption energy of the base material and the linear heating section.

Afは、脱酸上、キルド鋼に添加される元素であって、
0.010%よりも少ないは、脱酸が不十分となって、
母材靭性が劣化するので、0.010%以上を添加する
必要がある。しかし、過多に添加する場合は、Al酸化
物系非金属介在物が生成しやすくなり、母材靭性、線状
加熱部の靭性及び耐ラメラティア特性を劣化させるので
、添加量の上限をo、 o s o%とする。
Af is an element added to killed steel for deoxidation,
If it is less than 0.010%, deoxidation is insufficient,
Since the toughness of the base material deteriorates, it is necessary to add 0.010% or more. However, if too much is added, Al oxide-based nonmetallic inclusions are likely to be generated, which deteriorates the base material toughness, the toughness of the linear heated part, and the lamellar tear resistance properties, so the upper limit of the amount added is set to o, o. Let it be so%.

Tiは、鋼スラブの再加熱時にTiNを生成し、オース
テナイト粒の粗大化を抑制し、熱間圧延後の加速冷却に
おいて、オーステナイト−フェライト変態時の粒内核生
成によって、フェライトを細粒化させる。添加量が0.
OO5%よりも少ないときは、上記した効果を有効に得
ることが困難であり、他方、過多に添加すれば、線状加
熱部の靭性を劣化させるので、上限を0.020%とす
る。
Ti generates TiN during reheating of a steel slab, suppresses coarsening of austenite grains, and refines ferrite grains through intragranular nucleation during austenite-ferrite transformation during accelerated cooling after hot rolling. Addition amount is 0.
When OO is less than 5%, it is difficult to effectively obtain the above-mentioned effects, and on the other hand, when added in excess, the toughness of the linear heating section is deteriorated, so the upper limit is set to 0.020%.

Nは、Tiと結合して上記したTiNを生成させるため
に必要であり、少なくとも0.OO20%を含有させる
。一方、0.0080%を越えて含有させるときは、線
状加熱部を劣化させるのみならず、溶接金属の靭性を劣
化させるので、上限を0゜0080%とした。
N is necessary to combine with Ti to produce the above-mentioned TiN, and is at least 0. Contains 20% OO. On the other hand, when the content exceeds 0.0080%, it not only deteriorates the linear heating section but also the toughness of the weld metal, so the upper limit was set at 0°0080%.

本発明において用いる鋼は、得られる製品の要求特性に
応じて、上記元素に加えて、Cu、Ni、Cr% Mo
5V及びNbより選ばれる少なくとも1種又は2種の元
素を添加することができる。
In addition to the above elements, the steel used in the present invention may contain Cu, Ni, Cr%Mo, depending on the required characteristics of the product to be obtained.
At least one or two elements selected from 5V and Nb can be added.

Cuは、強度調整及び溶接性の向上を図るために有用で
あり、更に、母材靭性の向上にも効果を有する。しかし
、過多に添加するときは、鋼の圧延中にCu割れが発生
するので、添加量の上限を0.70%とする。
Cu is useful for adjusting strength and improving weldability, and is also effective in improving base material toughness. However, if too much Cu is added, Cu cracking occurs during rolling of the steel, so the upper limit of the amount added is set to 0.70%.

Niは、溶接性に有害な影響を与えることなく、母材の
強度、靭性及び線状加熱部の靭性を向上させる効果を有
する。しかし、過多に添加するときは、焼入れ性が増大
し、再加熱後の冷却過程においてベイナイトが発生し、
線状加熱部の靭性を劣化させるので、添加量の上限を2
.0%とする。
Ni has the effect of improving the strength and toughness of the base metal and the toughness of the linear heated part without having a detrimental effect on weldability. However, when adding too much, hardenability increases and bainite is generated during the cooling process after reheating.
Since it deteriorates the toughness of the linear heated part, the upper limit of the amount added is 2.
.. Set to 0%.

Crは、強度及び靭性を向上させる低廉な元素として有
用であるが、過多量の添加は、耐溶接割れ性を劣化させ
るので、所要の材質を確保し得る最小量とすることが望
まし、本発明においては、添加量の上限を0.50%と
する。
Cr is useful as an inexpensive element that improves strength and toughness, but adding too much deteriorates weld cracking resistance, so it is desirable to keep the amount to the minimum that can ensure the required material quality. In the invention, the upper limit of the amount added is 0.50%.

Moは、強度及び靭性を向上させるが、過多に添加する
場合は、母材及び線状加熱部の焼入れ硬化を招き、母材
靭性、線状加熱特性及び溶接性を劣化させるので、添加
量は0.50%以下の範囲とする。
Mo improves strength and toughness, but when added in excess, it causes quench hardening of the base metal and linear heating part, deteriorating base metal toughness, linear heating characteristics, and weldability, so the amount added is The range shall be 0.50% or less.

■及びNbは、炭化物を生成し、その析出強化作用によ
る綱強度の増加と、結晶粒の微細化による靭性の改善に
効果を有する。かかる効果を有効に得るためには、■に
ついては0.010%以上を、また、Nbについてはo
、oos%以上を添加することが必要である。しかし、
いずれの元素も、過多に添加するときは、ベイナイトを
生成し、靭性の劣化をもたらすと共に、耐溶接割れ性を
低下させるので、添加量の上限は、■については0.1
0%、また、Nbについては0.030%とする。
(2) and Nb produce carbides, which are effective in increasing the strength of the steel due to their precipitation-strengthening action and improving toughness due to the refinement of crystal grains. In order to effectively obtain such effects, it is necessary to use 0.010% or more for ■, and o for Nb.
, oos% or more is required. but,
When either element is added in excess, it produces bainite, which causes deterioration of toughness and reduces weld cracking resistance, so the upper limit of the amount added is 0.1 for ■.
0%, and 0.030% for Nb.

Caは、MnSを球状化させ、衝撃吸収エネルギーを向
上させるほか、水素による鋼材の欠陥を軽減する。かか
る効果を有効に得るために、添加量は、0.0005〜
0. OO30%の範囲とする。
Ca makes MnS spheroidal, improves shock absorption energy, and also reduces defects in steel materials caused by hydrogen. In order to effectively obtain such effects, the amount added should be 0.0005~
0. The range is OO30%.

本発明の方法においては、用いる鋼は、その炭素当1t
(Ceq)が0.36%以下であることが必要である。
In the method of the present invention, the steel used is
(Ceq) is required to be 0.36% or less.

Ceqは、鋼の焼入れ性を評価する指数として、強度及
び靭性との関連性が深く、線状加熱特性の向上を図るた
めには、その値が低いほど有利である。鋼における合金
元素量を前述のように規定しても、Ceqが大きいとき
は、靭性の劣化を避けることができないので、本発明に
おいては、鋼のCeqを0.36%以下とする。
As an index for evaluating the hardenability of steel, Ceq is closely related to strength and toughness, and in order to improve linear heating characteristics, the lower the value, the more advantageous it is. Even if the amount of alloying elements in steel is defined as described above, if Ceq is large, deterioration of toughness cannot be avoided, so in the present invention, Ceq of steel is set to 0.36% or less.

本発明の方法は、上記した化学成分とCeqとを有する
綱スラブの熱間圧延において、鋼スラブを950−11
50℃の範囲の温度に加熱し、850℃以下での累積圧
下率を50%以上とし、且つ、圧延仕上温度をAr3点
±40℃として熱間圧延することが、所定の強度及び靭
性を確保するために必要である。
The method of the present invention involves hot rolling a steel slab having the above-mentioned chemical composition and Ceq.
Predetermined strength and toughness can be ensured by heating to a temperature in the range of 50°C, making the cumulative reduction rate at 850°C or less 50% or more, and hot rolling at the finishing temperature of Ar 3 points ±40°C. It is necessary to do so.

次いで、本発明の方法によれば、かかる熱間圧延後に、
600〜300℃の範囲の温度まで平均冷却速度2℃/
秒以上にて加速冷却を行なう。冷却停止温度が600℃
よりも高いときは、所定の強度を得ることができず、他
方、300℃よりも低いときは、ベイナイトの生成によ
って、靭性が劣化する。
Then, according to the method of the present invention, after such hot rolling,
Average cooling rate 2℃/ to temperatures ranging from 600 to 300℃
Perform accelerated cooling in seconds or more. Cooling stop temperature is 600℃
When the temperature is higher than 300°C, it is not possible to obtain the desired strength, and on the other hand, when the temperature is lower than 300°C, the toughness deteriorates due to the formation of bainite.

衾貝■効玉 以上のように、本発明の方法によれば、所定の化学成分
を有せしめた鋼スラブを所定の条件にて熱間圧延した後
、所定の条件にて加速冷却することによって、広範囲の
温度、特に、900℃以上の高い温度での線状加熱によ
っても、低温靭性を保持した高張力鋼を得ることができ
る。
As described above, according to the method of the present invention, a steel slab having a predetermined chemical composition is hot rolled under predetermined conditions and then accelerated cooling under predetermined conditions. High-strength steel that maintains low-temperature toughness can also be obtained by linear heating at a wide range of temperatures, particularly at temperatures as high as 900° C. or higher.

大践■ 第1表は、供試鋼の化学成分、Ceq、 Acs及びA
rzを示し、鋼A〜Eは本発明鋼、鋼E−Hは比較鋼で
ある。
General Practice■ Table 1 shows the chemical composition of the test steel, Ceq, Acs and A.
Steels A to E are inventive steels, and Steels EH are comparative steels.

これらの鋼スラブを950〜1150℃の温度に加熱し
た後、850℃以下の累積圧下率を50〜60%の範囲
として圧延し、厚さ25〜3B++nの鋼板に仕上げ、
その直後から500℃の温度まで、冷却速度10℃/秒
にて加速冷却した。このようにして得られた鋼板につい
て、その引張特性及び衝撃特性を第2表に示す。
After heating these steel slabs to a temperature of 950 to 1150°C, they are rolled at a cumulative reduction rate of 50 to 60% at 850°C or less, and finished into a steel plate with a thickness of 25 to 3B++n.
Immediately thereafter, accelerated cooling was carried out to a temperature of 500°C at a cooling rate of 10°C/sec. Table 2 shows the tensile properties and impact properties of the steel plate thus obtained.

次に、上記供試鋼を用いて、第2表に示す温度にて線状
加熱を行ない、再加熱部の衝撃試験を行なった。第1図
に線状加熱温度と線状加熱部の一40℃における衝撃値
CvE−a。)との関係を示す。
Next, using the above sample steel, linear heating was performed at the temperatures shown in Table 2, and an impact test was conducted on the reheated portion. FIG. 1 shows the linear heating temperature and the impact value CvE-a at 40°C of the linear heating part. ).

比較tIIFの場合は、線状加熱温度が950℃以上に
なれば、νE−,。が著しく劣化するが、本発明鋼Bに
よれば、1050℃に加熱後、空冷したとき、vE−a
oは18kgf−mを示し、また、本発明鋼りを100
0℃に加熱した後、直ちに水冷した場合でも、vE、o
は12kgf−mを示し、このように、本発明鋼によれ
ば、線状加熱後の靭性にすぐれることが明らかである。
In the case of comparative tIIF, if the linear heating temperature becomes 950°C or higher, νE-,. However, according to the invention steel B, when heated to 1050°C and air cooled, vE-a
o indicates 18 kgf-m, and the steel of the present invention is 100 kgf-m.
Even when heated to 0°C and immediately cooled with water, vE, o
shows 12 kgf-m, and thus it is clear that the steel of the present invention has excellent toughness after linear heating.

第2図に供試鋼を950℃の温度で線状加熱した後、空
冷した場合において、(AC++ 50 ) ’Cから
300℃までの冷却時間とvE−4゜との関係を示す0
本発明鋼Eによれば、上記冷却時間を7秒としたときの
vE−4゜は22kgf−a+であって、低温靭性にす
ぐれるのに対して、比較fiGによれば、冷却時間を2
5秒としても、vE−4゜は5kgf−mであって、低
温靭性の劣化が著しい。
Figure 2 shows the relationship between the cooling time from (AC++50)'C to 300°C and vE-4° when the test steel was linearly heated to 950°C and then air cooled.
According to the invention steel E, vE-4° is 22 kgf-a+ when the cooling time is 7 seconds, and it has excellent low-temperature toughness, whereas according to comparative fiG, the cooling time is 22 kgf-a+.
Even if it is for 5 seconds, vE-4° is 5 kgf-m, and the deterioration of low-temperature toughness is significant.

第3表に線状加熱を同一条件下で2回及び3回繰り返し
て行なった場合の引張強さ及び衝撃値を示す、比較鋼H
は、この繰り返しの線状加熱によって、vE−aoは3
.2kgf−となり、低温靭性の劣化が著しい。
Table 3 shows the tensile strength and impact value of comparative steel H when linear heating was repeated two and three times under the same conditions.
By this repeated linear heating, vE-ao becomes 3
.. 2 kgf-, and the deterioration of low-temperature toughness is significant.

これに対して、本発明鋼A及びCにおいては、繰り返し
の線状加熱を行なった場合でも、vE、。
On the other hand, in the steels A and C of the present invention, vE, even when repeated linear heating was performed.

は13.4 kgf−ta以上を示し、繰り返しの線状
加熱を行なっても、すぐれた低温靭性を保持しているこ
とが明らかである。
is 13.4 kgf-ta or more, and it is clear that excellent low-temperature toughness is maintained even after repeated linear heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、線状加熱温度と線状加熱部の一40℃におけ
る衝撃値(VB−4゜)との関係を示すグラフ、第2図
は、線状加熱温度が950℃の場合4−おいて、(AC
3+ 50) ’Cから300℃までのけ即時間と、得
られた線状加熱部のvE−、。との関係を示すグラフで
ある。 特許出願人  株式会社神戸製鋼紡 代理人 弁理士  牧 野 逸 訃 第1図 6齢ぬ醸混度/’Q)
Fig. 1 is a graph showing the relationship between the linear heating temperature and the impact value (VB-4°) at 40°C of the linear heating part, and Fig. 2 is a graph showing the relationship between the linear heating temperature and the impact value (VB-4°) at 40°C. (AC
3+ 50) Immediate heating time from 'C to 300°C and vE- of the obtained linear heating section. It is a graph showing the relationship between Patent applicant: Kobe Steelbo Co., Ltd. Agent: Patent attorney: Itsuki Makino

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で C0.01〜0.08% Si0.05〜0.50% Mn0.80〜2.0% S0.030%以下 Al0.010〜0.060% Ti0.005〜0.020% N0.0020〜0.0080% 残部鉄及び不可避的不純物よりなり、炭素当量が0.3
6%以下である鋼スラブを950〜1150℃の範囲の
温度に加熱し、850℃以下での累積圧下率を50%以
上とし、且つ、圧延仕上温度をAr_3点±40℃とし
て熱間圧延した後に、600〜300℃の範囲の温度ま
で冷却速度2℃/秒以上で加速冷却することを特徴とす
る線状及び点状再加熱加工後の低温靭性にすぐれる高張
力鋼の製造方法。
(1) In weight%: C0.01-0.08% Si0.05-0.50% Mn0.80-2.0% S0.030% or less Al0.010-0.060% Ti0.005-0.020 %N0.0020~0.0080% The balance consists of iron and unavoidable impurities, carbon equivalent is 0.3
A steel slab of 6% or less was heated to a temperature in the range of 950 to 1150°C, and hot-rolled with a cumulative reduction rate of 50% or more at 850°C or less, and a finishing temperature of Ar_3 ± 40°C. A method for producing high-strength steel having excellent low-temperature toughness after linear and spot reheating processing, characterized in that the process is followed by accelerated cooling to a temperature in the range of 600 to 300°C at a cooling rate of 2°C/sec or more.
(2)重量%で (a)C0.01〜0.08% Si0.05〜0.50% Mn0.80〜2.0% S0.030%以下 Al0.010〜0.060% Ti0.005〜0.020%、及び N0.0020〜0.0080%を含有し、更に、 (b)Cu0.70%以下、 Ni2.0%以下、 Cr0.50%以下、 Mo0.50%以下、 V0.01〜0.10%、 Nb0.005〜0.030%、及び Ca0.0005〜0.0030% よりなる群から選ばれる少なくとも1種の元素を含有し
、 残部鉄及び不可避的不純物よりなり、炭素当量が0.3
6%以下である鋼スラブを950〜1150℃の範囲の
温度に加熱し、850℃以下での累積圧下率を50%以
上とし、且つ、圧延仕上温度をAr_3点±40℃とし
て熱間圧延した後に、600〜300℃の範囲の温度ま
で冷却速度2℃/秒以上で加速冷却することを特徴とす
る線状及び点状再加熱加工後の低温靭性にすぐれる高張
力鋼の製造方法。
(2) In weight% (a) C0.01~0.08% Si0.05~0.50% Mn0.80~2.0% S0.030% or less Al0.010~0.060% Ti0.005~ 0.020%, and N0.0020 to 0.0080%, furthermore, (b) Cu0.70% or less, Ni2.0% or less, Cr0.50% or less, Mo0.50% or less, V0.01 ~0.10%, Nb0.005~0.030%, and Ca0.0005~0.0030%, with the balance consisting of iron and inevitable impurities, and carbon equivalent is 0.3
A steel slab of 6% or less was heated to a temperature in the range of 950 to 1150°C, and hot-rolled with a cumulative reduction rate of 50% or more at 850°C or less, and a finishing temperature of Ar_3 ± 40°C. A method for producing high-strength steel having excellent low-temperature toughness after linear and spot reheating processing, characterized in that the process is followed by accelerated cooling to a temperature in the range of 600 to 300°C at a cooling rate of 2°C/sec or more.
JP1678387A 1987-01-26 1987-01-26 Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating Pending JPS63183123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1678387A JPS63183123A (en) 1987-01-26 1987-01-26 Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1678387A JPS63183123A (en) 1987-01-26 1987-01-26 Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating

Publications (1)

Publication Number Publication Date
JPS63183123A true JPS63183123A (en) 1988-07-28

Family

ID=11925786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1678387A Pending JPS63183123A (en) 1987-01-26 1987-01-26 Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating

Country Status (1)

Country Link
JP (1) JPS63183123A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861915A1 (en) * 1997-02-25 1998-09-02 Sumitomo Metal Industries, Ltd. High-toughness, high-tensile-strength steel and method of manufacturing the same
JP2006205181A (en) * 2005-01-25 2006-08-10 Nippon Steel Corp Manufacturing method of thick steel plate having excellent hot bending property, and method for bending thick steel plate
WO2009087944A1 (en) * 2008-01-08 2009-07-16 Nippon Steel Corporation Steel plate exhibiting excellent bendability by line heating and process for production of the plate
KR101131209B1 (en) * 2008-01-08 2012-03-28 신닛뽄세이테쯔 카부시키카이샤 Steel plate excellent in bending workability by linear heating and method of production of same
CN102482751A (en) * 2009-11-20 2012-05-30 新日本制铁株式会社 Thick steel plate for ship hull and process for production thereof
WO2017111443A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 High-strength structural steel sheet excellent in hot resistance and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861915A1 (en) * 1997-02-25 1998-09-02 Sumitomo Metal Industries, Ltd. High-toughness, high-tensile-strength steel and method of manufacturing the same
JP2006205181A (en) * 2005-01-25 2006-08-10 Nippon Steel Corp Manufacturing method of thick steel plate having excellent hot bending property, and method for bending thick steel plate
WO2009087944A1 (en) * 2008-01-08 2009-07-16 Nippon Steel Corporation Steel plate exhibiting excellent bendability by line heating and process for production of the plate
KR101131209B1 (en) * 2008-01-08 2012-03-28 신닛뽄세이테쯔 카부시키카이샤 Steel plate excellent in bending workability by linear heating and method of production of same
CN102482751A (en) * 2009-11-20 2012-05-30 新日本制铁株式会社 Thick steel plate for ship hull and process for production thereof
WO2017111443A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 High-strength structural steel sheet excellent in hot resistance and manufacturing method thereof
CN108431276A (en) * 2015-12-23 2018-08-21 株式会社Posco The excellent high-strength structure steel plate of heat resistance and its manufacturing method
CN108431276B (en) * 2015-12-23 2020-04-14 株式会社Posco Steel plate for high-strength structure excellent in heat resistance and method for producing same

Similar Documents

Publication Publication Date Title
US4572748A (en) Method of manufacturing high tensile strength steel plates
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP7070814B1 (en) Thick steel plate and its manufacturing method
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JPS626730B2 (en)
JP4265582B2 (en) Hot-rolled steel sheet with excellent impact properties after quenching and method for producing the same
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JPS63183123A (en) Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP3220406B2 (en) Manufacturing method of high strength welded joint with excellent crack resistance
JP3337246B2 (en) Method for producing thick H-section steel having a thickness of 40 mm or more with small difference in mechanical properties in the thickness direction
JP4265583B2 (en) Cold-rolled steel sheet having excellent toughness after quenching and method for producing the same
JPH0718326A (en) Production of highly strong and tough rail by on-line heat treatment
JPH04110422A (en) Production of 70kgf/mm2 class steel plate having superior weldability and low yield ratio
KR100368241B1 (en) A method for manufacturing hot rolled trip steels with excellent flange formability
JP3297107B2 (en) Method for producing low temperature steel with excellent weldability
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JPH10168518A (en) Manufacture of high tensile strength steel plate with tapered thickness
JP3114493B2 (en) Thick steel plate manufacturing method
KR20240031547A (en) Thick steel plate and method of manufacturing the same
JPH09227937A (en) Manufacture of thick steel plate with high tensile strength
KR20230102795A (en) Thick steel plate and method of manufacturing the same
KR950003547B1 (en) Making method of low temperature ni-steel