JPH0718326A - Production of highly strong and tough rail by on-line heat treatment - Google Patents

Production of highly strong and tough rail by on-line heat treatment

Info

Publication number
JPH0718326A
JPH0718326A JP16258993A JP16258993A JPH0718326A JP H0718326 A JPH0718326 A JP H0718326A JP 16258993 A JP16258993 A JP 16258993A JP 16258993 A JP16258993 A JP 16258993A JP H0718326 A JPH0718326 A JP H0718326A
Authority
JP
Japan
Prior art keywords
toughness
strength
steel
rail
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16258993A
Other languages
Japanese (ja)
Inventor
Kazutaka Kobayashi
一貴 小林
Sadahiro Yamamoto
定弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP16258993A priority Critical patent/JPH0718326A/en
Publication of JPH0718326A publication Critical patent/JPH0718326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To produce a highly strong and tough rail having high performance by specifically on-line heat treatment a steel material having specific composition composed of C, Si, Mn, P, S, Cr, Nb, Ni and Fe after it is specifically hot-rolled. CONSTITUTION:The steel material having composition composed of, by wt%, 0.60 to 0.85% C, 0.1 to 0.8% Si, 0.5 to 1.5% Mn, <=0.035% P, <=0.035% S, 0.2 to 0.8% Cr, 0.01 to 0.05% Nb, 0.1 to 0.4% Ni and the balance Fe with inevitable impurities is hot-rolled at finish rolling temperature of 800 to 1000 deg.C. The hot rolled material is on-line heat treated to cool the material acceleratively at a cooling rate of 1 to 3 deg.C/sec from >= pearlitic transformation temp. to 400 deg.C or below. Thus, highly strong and tough rail whose tensile strength is 120kg/mm<2> or more and 2mm U-notch Charpy absorption energy 2.0kg f.m or more is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間圧延後オンライン
で熱処理することにより高強度かつ高靭性のレールを製
造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rail having high strength and high toughness by heat-treating it online after hot rolling.

【0002】[0002]

【従来の技術】従来、レールは耐摩耗、耐転動疲労重視
の観点から高強度化のみが指向されてきたが、近年、鉄
道輸送の高速化、高軸重化に伴いレールの使用条件はま
すます厳しいものになってきており、このような厳しい
使用条件の下でも破損の恐れがない優れた靭性を有する
レールが要求されるようになっている。普通レールの靭
性は、2mmUノッチシャルピー吸収エネルギーが+2
0℃で1.0kgf・m以下と低く、0.5kgf・m
増加させるのも困難である。
2. Description of the Related Art Conventionally, rails have been designed only to have high strength from the viewpoint of emphasis on wear resistance and rolling contact fatigue, but in recent years, rail usage conditions have been The rails are becoming more and more severe, and there is a demand for rails having excellent toughness that is free from damage even under such severe operating conditions. The toughness of ordinary rail is 2mmU notch Charpy absorbed energy +2
As low as 1.0 kgf ・ m or less at 0 ° C, 0.5 kgf ・ m
It is also difficult to increase.

【0003】レールの強度、靭性を向上させる手段とし
て熱処理する方法がある。この熱処理法には (1)圧延終了後いったん冷却した後にAc3 点以上に
再加熱して加速冷却を行うオフライン熱処理法(特開昭
63−128123号) (2)圧延終了後Ac3 点以上の温度にある段階でその
まま加速冷却を行うオンライン熱処理法(特開昭63−
23244) の2種類がある。
As a means for improving the strength and toughness of rails, there is a heat treatment method. This heat treatment method includes (1) an offline heat treatment method in which, after the rolling is finished, the material is once cooled and then reheated to an Ac 3 point or more for accelerated cooling (JP-A-63-128123). (2) An Ac 3 point or more after the rolling is completed. On-line heat treatment method in which accelerated cooling is carried out as it is at a stage at a temperature of
23244).

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの方法
をレールの製造に適用した場合それぞれ次のような問題
がある。(1)は加速冷却することで鋼を低温で変態さ
せ組織の微細化を図る方法であり、かつ、変態を繰り返
すことによる組織の微細化の効果もある。このため、高
強度、高靭性のレールが得られる。しかし、冷却後に再
加熱を行うため熱効率の観点から好ましくない。
However, when these methods are applied to the manufacture of rails, there are the following problems, respectively. (1) is a method of transforming steel at a low temperature by accelerating cooling to refine the structure, and also has the effect of refining the structure by repeating the transformation. Therefore, a rail having high strength and high toughness can be obtained. However, reheating is performed after cooling, which is not preferable from the viewpoint of thermal efficiency.

【0005】また、(2)は圧延終了後そのまま加速冷
却を行うため熱効率はよい。しかし、従来の成分のレー
ルでは加速冷却により強度の向上ははかれるものの靭性
が改善されない。
Further, in (2), since the accelerated cooling is performed as it is after the completion of rolling, the thermal efficiency is good. However, with conventional rails, the toughness is not improved although the strength is improved by accelerated cooling.

【0006】本発明はこのような事情に鑑みなされたも
のであって、所望の強度を確保しつつ優れた靭性を有す
る高性能レールをオンライン熱処理で製造する方法を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing a high-performance rail having excellent toughness while ensuring desired strength by online heat treatment.

【0007】[0007]

【課題を解決するための手段及び作用】本発明は、上記
課題を解決するために、重量%でC:0.60〜0.8
5%、Si:0.1〜0.8%、Mn:0.5〜1.5
%、P:0.035%以下、S:0.035%以下、C
r:0.2〜0.8%、Nb:0.01〜0.05%、
Ni:0.1〜0.4%を含有し、残部がFe及び不可
避的不純物からなる鋼素材を、圧延仕上温度が1000
〜800℃となるように熱間圧延し、次いで、パーライ
ト変態開始以前の温度から400℃以下までを1〜3℃
/secの冷却速度で加速冷却することを特徴とするオ
ンライン熱処理による高強度高靭性レールの製造方法を
提供する。
According to the present invention, in order to solve the above problems, C: 0.60 to 0.8 by weight%.
5%, Si: 0.1 to 0.8%, Mn: 0.5 to 1.5
%, P: 0.035% or less, S: 0.035% or less, C
r: 0.2 to 0.8%, Nb: 0.01 to 0.05%,
Ni: A steel material containing 0.1 to 0.4% with the balance being Fe and inevitable impurities, and a rolling finishing temperature of 1000.
~ 800 ℃ hot rolling, then 1 ~ 3 ℃ from the temperature before the start of pearlite transformation to 400 ℃ or less
Provided is a method for manufacturing a high-strength and high-toughness rail by online heat treatment, which is characterized by accelerated cooling at a cooling rate of / sec.

【0008】本願発明者らは、上記課題を解決すべく、
まず、0.78C−0.02Nb−0.1Ni鋼を中心
とする組成の鋼用いて圧延仕上温度と冷却速度の条件の
検討を行った。
In order to solve the above problems, the present inventors have
First, the conditions of the rolling finishing temperature and the cooling rate were examined using a steel having a composition centered on 0.78C-0.02Nb-0.1Ni steel.

【0009】この際に用いた組成を表1に示す。また、
表2には表1の組成の鋼素材を用いてレールを製造した
際の製造条件及び特性を示す。図1は表1のB鋼(0.
78%C−0.51%Si−0.84%Mn−0.10
%Ni−0.44%Cr−0.022%Nb)を128
0℃に加熱し、仕上温度を760〜1040℃の範囲で
変化させて圧延した後、冷却速度を1.8℃/secで
加速冷却した場合の圧延仕上温度と靭性の関係を示す。
圧延仕上温度が800℃未満では U20が低下し、その
値も温度によって大きく変化しており不安定であり、強
度も著しく低下し120kg/mm2 以下となる。80
0℃ではU20が2.6kgf・mと高く、強度も12
0kg/mm2 以上となり、その値も安定している。一
方、1000℃を超えると U20が2.0kgf・m以
下となり靭性が低下する。
The composition used in this case is shown in Table 1. Also,
Table 2 shows the manufacturing conditions and characteristics when rails were manufactured using the steel materials having the compositions shown in Table 1. FIG. 1 shows B steel (0.
78% C-0.51% Si-0.84% Mn-0.10.
% Ni-0.44% Cr-0.022% Nb) to 128
The relationship between the rolling finish temperature and the toughness in the case of heating to 0 ° C., rolling while varying the finishing temperature in the range of 760 to 1040 ° C., and then performing accelerated cooling at a cooling rate of 1.8 ° C./sec is shown.
When the rolling finishing temperature is lower than 800 ° C, U E 20 decreases, the value also largely changes depending on the temperature and is unstable, and the strength also remarkably decreases to 120 kg / mm 2 or less. 80
At 0 ℃, U E 20 is as high as 2.6 kgf ・ m and its strength is 12
The value is 0 kg / mm 2 or more, and the value is stable. On the other hand, if the temperature exceeds 1000 ° C, the U E 20 will be 2.0 kgf · m or less and the toughness will decrease.

【0010】これは、圧延仕上温度が800℃以下では
加速冷却以前にパーライト変態が開始してしまい、耐摩
耗性、高強度化に有効な微細パーライト組織が得られ
ず、また、1000℃を超えるとパーライト変態前のオ
ーステナイト粒が粗大化し、その後の加速冷却において
も組織が十分に微細化されず強度、靭性の確保が困難で
あるからである。
This is because, when the rolling finishing temperature is 800 ° C. or lower, pearlite transformation starts before accelerated cooling, a fine pearlite structure effective for wear resistance and high strength cannot be obtained, and it exceeds 1000 ° C. And the austenite grains before the pearlite transformation become coarse, and the structure is not sufficiently refined even in the subsequent accelerated cooling, and it is difficult to secure the strength and toughness.

【0011】従って、圧延仕上温度を800℃以上10
00℃以下とすることにより、2mmUノッチシャルピ
ー吸収エネルギーが+20℃で2.0kgf・m以上の
高靭性を得ることができる。
Therefore, the rolling finishing temperature is 800 ° C. or higher and 10
By setting the temperature to 00 ° C. or less, it is possible to obtain a high toughness of 2 mm U notch Charpy absorbed energy at + 20 ° C. of 2.0 kgf · m or more.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】図2に表1のB鋼(0.78%C−0.5
1%Si−0.84%Mn−0.10%Ni−0.44
%Cr−0.022%Nb)を1280℃に加熱し、仕
上温度を920℃で圧延した後、冷却速度を空冷(0.
4℃/sec)〜4.0℃/secまで変化させた場合
の冷却速度と強度、靭性の関係を示す。冷却速度が1℃
/sec未満では靭性が低いものの、冷却速度の上昇に
伴い強度、靭性ともに向上する。しかし、3℃/sec
を超えると強度、靭性は共に著しく低下している。つま
り、冷却速度を1℃/sec以上3℃/sec以下とす
ることにより、引張強度120kg/mm2 以上、2m
mUノッチシャルピー吸収エネルギーが+20℃で2.
0kgf・m以上の高強度、高靭性を得ることができる
ことがわかる。これは、パーライト変態時の冷却速度が
1℃/sec未満では過冷度が低くパーライト組織が十
分に微細化されず、目的とする強度、靭性を達成でき
ず、逆に3℃/secを超えるとレール頭部表層にベイ
ナイトやマルテンサイトなどの異常組織が生成し、強
度、靭性を著しく低下させるからである。従って、パー
ライト変態開始以前の温度からパーライト変態が終了す
る400℃以下までの冷却速度を1〜3℃/secとし
た。
FIG. 2 shows the B steel in Table 1 (0.78% C-0.5).
1% Si-0.84% Mn-0.10% Ni-0.44
% Cr-0.022% Nb) was heated to 1280 ° C. and rolled at a finishing temperature of 920 ° C., and then cooled at an air cooling rate (0.
4 ° C./sec) to 4.0 ° C./sec shows the relationship between cooling rate, strength, and toughness. Cooling rate is 1 ℃
If it is less than / sec, the toughness is low, but as the cooling rate increases, both strength and toughness improve. However, 3 ° C / sec
If it exceeds, both the strength and the toughness are remarkably reduced. That is, by setting the cooling rate to 1 ° C./sec or more and 3 ° C./sec or less, the tensile strength is 120 kg / mm 2 or more and 2 m
mU notch Charpy absorbed energy at + 20 ° C 2.
It can be seen that high strength and high toughness of 0 kgf · m or more can be obtained. This is because if the cooling rate during pearlite transformation is less than 1 ° C / sec, the degree of supercooling is low and the pearlite structure is not sufficiently refined, and the desired strength and toughness cannot be achieved, and conversely, it exceeds 3 ° C / sec. And abnormal structures such as bainite and martensite are formed on the surface of the rail head, and the strength and toughness are significantly reduced. Therefore, the cooling rate from the temperature before the start of pearlite transformation to 400 ° C. or less at which the pearlite transformation ends is set to 1 to 3 ° C./sec.

【0015】次に、表1に示すA鋼からJ鋼を1280
℃に加熱し、上記の圧延、冷却条件を満足する920℃
で圧延を終了後、2℃/secで加速冷却した条件で成
分範囲の検討を行った。
Next, the steels A to J shown in Table 1 are 1280
920 ℃ which is heated to ℃ and satisfies the above rolling and cooling conditions.
After the rolling was completed at 1, the composition range was examined under the condition of accelerated cooling at 2 ° C./sec.

【0016】図3に0.78%C−0.51%Si−
0.84%Mn−0.1%Ni−0.44%Cr鋼にN
bを0.0%から0.069%添加した場合のNb添加
量と強度、靭性の関係を示す。Nbの添加に伴い強度は
なだらかに低下し、靭性は向上する。Nbが0.01%
未満では靭性が低く、0.05%を超えると靭性向上の
効果が縮小している。このことから、0.78%C−
0.51%Si−0.84%Mn−0.10%Ni−
0.44%Crの条件ではNbを0.01%以上0.0
5%以下とすることにより、引張強度120kg/mm
2 以上、2mmUノッチシャルピー吸収エネルギーが+
20℃で2.0kgf・m以上という高強度、高靭性レ
ールを得ることができることがわかる。
In FIG. 3, 0.78% C-0.51% Si-
N in 0.84% Mn-0.1% Ni-0.44% Cr steel
The relationship between the Nb addition amount and the strength and toughness when b is added from 0.0% to 0.069% is shown. With the addition of Nb, the strength gradually decreases and the toughness improves. Nb is 0.01%
If it is less than 0.05%, the toughness is low, and if it exceeds 0.05%, the effect of improving the toughness is reduced. From this, 0.78% C-
0.51% Si-0.84% Mn-0.10% Ni-
Under the condition of 0.44% Cr, Nb is 0.01% or more and 0.0
Tensile strength of 120 kg / mm by setting it to 5% or less
2 or more, 2mm U notch Charpy absorbed energy +
It can be seen that a high-strength and high-toughness rail having a strength of 2.0 kgf · m or more at 20 ° C. can be obtained.

【0017】図4に0.78%C−0.51%Si−
0.84%Mn−0.44%Cr−0.02Nb鋼にN
iを0.0%から0.61%添加した場合のNi添加量
と強度、靭性の関係を示す。Niの添加に伴い強度はな
だらかに上昇し、靭性も向上する。Niが0.1%未満
では靭性が低く、0.4%超えると強度、靭性向上の効
果がほとんど見られない。このことから、0.78%C
−0.51%Si−0.84%Mn−0.44%Cr−
0.02%Nbの条件ではNiを0.1%以上0.4%
以下とすることにより、引張強度120kg/mm2
上、2mmUノッチシャルピー吸収エネルギーが+20
℃で2.0kgf・m以上の高強度、高靭性を得ること
ができることがわかる。
In FIG. 4, 0.78% C-0.51% Si-
0.84% Mn-0.44% Cr-0.02Nb Steel with N
The relationship between the amount of Ni added and the strength and toughness when i is added from 0.0% to 0.61% is shown. With the addition of Ni, the strength gradually increases and the toughness also improves. If Ni is less than 0.1%, the toughness is low, and if it exceeds 0.4%, the effect of improving strength and toughness is hardly seen. From this, 0.78% C
-0.51% Si-0.84% Mn-0.44% Cr-
Under the condition of 0.02% Nb, Ni is 0.1% or more and 0.4% or more.
By setting the following, tensile strength is 120 kg / mm 2 or more, 2 mm U notch Charpy absorbed energy is +20
It can be seen that high strength and high toughness of 2.0 kgf · m or more at 0 ° C. can be obtained.

【0018】以上の結果より、Nbを0.01%以上
0.05%以下、Niを0.1%以上0.4%以下添加
し、かつ、圧延仕上温度が800℃以上1000℃以下
となるように熱間圧延し、その後パーライト変態開始以
前の温度から400℃以下までの冷却速度を1〜3℃/
secで加速冷却することにより、引張強度120kg
/mm2 以上、2mmUノッチシャルピー吸収エネルギ
ーが+20℃で2.0kgf・m以上の高強度、高靭性
を得ることができる。
From the above results, Nb is added by 0.01% or more and 0.05% or less, Ni is added by 0.1% or more and 0.4% or less, and the rolling finishing temperature is 800 ° C or more and 1000 ° C or less. Hot rolling, and then the cooling rate from the temperature before the start of pearlite transformation to 400 ° C or less is 1 to 3 ° C /
Tensile strength 120kg by accelerated cooling in sec
/ Mm 2 or more, 2 mmU notch Charpy absorbed energy at + 20 ° C. can obtain high strength and high toughness of 2.0 kgf · m or more.

【0019】次に、各成分の含有量の限定理由について
説明する。 (1)C: Cは共析鋼としての強度確保のため0.6
0%以上必要であるが、0.85%を超えると粒界に初
析セメンタイトが生成し材質の脆化を引き起こすので好
ましくない。従って、C量を0.60〜0.85%の範
囲に規定する。
Next, the reasons for limiting the content of each component will be described. (1) C: C is 0.6 to secure the strength as eutectoid steel.
The content is required to be 0% or more, but if it exceeds 0.85%, pro-eutectoid cementite is generated at the grain boundaries and causes embrittlement of the material, which is not preferable. Therefore, the amount of C is specified in the range of 0.60 to 0.85%.

【0020】(2)Si: Siは製鋼時の脱酸のため
に0.1%以上必要であり、かつパーライト中のフェラ
イトに固溶し高強度化に寄与する。しかし、0.8%を
超えると強度上昇の割合が減少する。従って、Si量を
0.1〜0.8%の範囲に規定する。
(2) Si: Si is required to be 0.1% or more for deoxidation at the time of steel making, and it forms a solid solution with ferrite in pearlite and contributes to strengthening. However, if it exceeds 0.8%, the rate of increase in strength decreases. Therefore, the amount of Si is specified in the range of 0.1 to 0.8%.

【0021】(3)Mn: Mnはパーライト変態温度
を低下させ焼入性を高めることによりレールの高強度化
に寄与する元素である。しかし、0.5%未満では目的
の強度を確保することができず、逆に1.5%を超える
と鋼のミクロ偏析によるマルテンサイト組織を生じ易
く、熱処理時及び溶接時に硬化や脆化を生じ材質劣化を
来すので好ましくない。従って、Mn量を0.5〜1.
5%の範囲に規定する。
(3) Mn: Mn is an element that contributes to the high strength of the rail by lowering the pearlite transformation temperature and enhancing the hardenability. However, if it is less than 0.5%, the desired strength cannot be ensured. On the contrary, if it exceeds 1.5%, a martensitic structure due to the microsegregation of the steel is apt to occur, which causes hardening or embrittlement during heat treatment and welding. This is not preferable because it causes material deterioration. Therefore, the Mn content is 0.5 to 1.
Specify in the range of 5%.

【0022】(4)P: Pは靭性を劣化させるので
0.035%以下に規定する。 (5)S: Sは主として介在物の形態をとって鋼中に
存在し靭性を著しく劣化させるので0.035%以下に
規定する。
(4) P: Since P deteriorates toughness, it is specified to be 0.035% or less. (5) S: S is present mainly in the form of inclusions in steel and significantly deteriorates toughness, so it is specified to be 0.035% or less.

【0023】(6)Cr: Crはパーライトのラメラ
間隔を狭くし高強度に寄与するが、0.2%未満ではそ
の効果が低く、また0.8%を超えると加速冷却時にマ
ルテンサイトを混入させる恐れがある。従って、Cr量
を0.2〜0.8%の範囲に規定する。
(6) Cr: Cr narrows the lamellar spacing of pearlite and contributes to high strength, but if it is less than 0.2%, its effect is low, and if it exceeds 0.8%, martensite is mixed during accelerated cooling. May cause Therefore, the Cr amount is specified in the range of 0.2 to 0.8%.

【0024】(7)Nb: Nbは再結晶を抑制する効
果があり、加速冷却後に得られるパーライトコロニーの
サイズを細かくし靭性を向上させる効果がある。しか
し、上述した図3に示すように、0.01%未満ではそ
の効果が小さく、逆に0.05%を超えると靭性向上の
効果が飽和する。従って、Nb量を0.01〜0.05
%の範囲に規定する。
(7) Nb: Nb has the effect of suppressing recrystallization, and has the effect of reducing the size of pearlite colonies obtained after accelerated cooling and improving toughness. However, as shown in FIG. 3 described above, if it is less than 0.01%, its effect is small, and if it exceeds 0.05%, the effect of improving toughness is saturated. Therefore, the Nb amount is 0.01 to 0.05
Specify in the range of%.

【0025】(8)Ni: Niはパーライト中のフェ
ライトを強化し高強度化に寄与し、同時に靭性を向上さ
せる。しかし、上述した図4に示すように、0.1%未
満ではその効果が小さく、逆に0.4%を超えると経済
性の観点から不利である。従って、Ni量を0.1〜
0.4%の範囲に規定する。
(8) Ni: Ni strengthens ferrite in pearlite and contributes to high strength, and at the same time improves toughness. However, as shown in FIG. 4 described above, if it is less than 0.1%, its effect is small, and if it exceeds 0.4%, it is disadvantageous from the economical viewpoint. Therefore, the Ni content is 0.1 to
Specify in the range of 0.4%.

【0026】以上のような組成を有する鋼素材、すなわ
ちNbを0.01%以上0.05%以下、Niを0.1
%以上0.4%以下複合添加する素材を用い、圧延仕上
温度が800℃以上1000℃以下となるように熱間圧
延し、パーライト変態温度域を1℃/sec以上3℃/
sec以下で加速冷却することにより初めて、引張強度
120kg/mm2 以上、2mmUノッチシャルピー吸
収エネルギーが+20℃で2.0kgf・m以上の高強
度、高靭性を達成することができる。
A steel material having the above composition, that is, 0.01% to 0.05% Nb and 0.1% Ni.
% Or more and 0.4% or less, hot rolling is performed so that the rolling finishing temperature is 800 ° C. or more and 1000 ° C. or less, and the pearlite transformation temperature range is 1 ° C./sec or more and 3 ° C. /
It is possible to achieve high strength and high toughness at a tensile strength of 120 kg / mm 2 or more and a 2 mm U-notch Charpy absorbed energy of 2.0 kgf · m or more at + 20 ° C. only by accelerating cooling at sec or less.

【0027】[0027]

【実施例】【Example】

(実施例1)表3に示す本発明の範囲内の組成を有する
K鋼、L鋼の2鋼種について、圧延仕上温度を750〜
1050℃の範囲、冷却速度を0.4〜4.5℃/sの
範囲で変化させて、引張特性及び2mmUノッチシャル
ピー試験における+20℃での衝撃値(2mm U+20
と表わす)を測定した。その結果を表4に示す。
(Example 1) For two steel types, K steel and L steel, each having a composition within the scope of the present invention shown in Table 3, rolling finish temperatures were set to 750 to 750.
By changing the cooling rate in the range of 1050 ° C. and the cooling rate in the range of 0.4 to 4.5 ° C./s, the tensile properties and the impact value at + 20 ° C. in the 2 mm U notch Charpy test (2 mm U E +20
Is represented). The results are shown in Table 4.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】表4の条件1は圧延仕上温度、冷却速度共
に満足していないために、TS=108.3kg/mm
2 、2mm U+20 =1.3kgf・mと低い値を示し
ている。条件2は冷却速度は本請求範囲内であるが圧延
仕上温度を満足していないために、TS=112.8k
g/mm2 、2mm U+20 =1.5kgf・mと低い
値を示している。条件3,4は共に圧延仕上温度、冷却
速度を満足しているため、TS≧120.0kg/mm
2 、2mm U+20 ≧2.0kgf・mと良好な値を示
している。条件5は圧延仕上温度は条件を満足している
ものの冷却速度を満足していないために、TS=11
9.1kg/mm2 、2mm U+20 =1.8kgf・
mと低い値を示している。条件6は、圧延仕上温度、冷
却速度共に満足しているため、TS≧120.0kg/
mm2 、2mm U+20 ≧2.0kgf・mと良好な値
を示している。条件7は圧延仕上温度は条件を満足して
いるものの冷却速度を満足していないために、2mm U
+20 =1.9kgf・mと若干低い値を示している。
条件8,9は圧延仕上温度、冷却速度共に満足している
ため、TS≧120.0kg/mm2 、2mm U+20
≧2.0kgf・mと良好な値を示している。条件10
は、冷却速度は条件を満足しているが圧延仕上温度を満
足していないために、TS=105.5kg/mm2
2mm U+20=1.5kgf・mと低い値を示してい
る。 (実施例2)表5に示すM〜Wの組成の鋼素材を表6の
本発明条件を満たす仕上圧延温度920℃、冷却速度
1.8〜1.9℃/sの条件で製造した。その際の引張
特性及び2mm U+20 の値を表6に併記する。
Since Condition 1 in Table 4 does not satisfy both the rolling finish temperature and the cooling rate, TS = 108.3 kg / mm
2 , which is a low value of 2 mm U E +20 = 1.3 kgf · m. Condition 2 is that the cooling rate is within the claimed range, but the rolling finishing temperature is not satisfied, so TS = 112.8 k
g / mm 2 , 2 mm U E +20 = 1.5 kgf · m, which is a low value. Since conditions 3 and 4 both satisfy the rolling finish temperature and cooling rate, TS ≧ 120.0 kg / mm
2 , which is a good value of 2 mm U E +20 ≧ 2.0 kgf · m. Condition 5 is that the rolling finishing temperature satisfies the condition but does not satisfy the cooling rate, so TS = 11.
9.1 kg / mm 2 , 2 mm U E +20 = 1.8 kgf ・
It shows a low value of m. Condition 6 satisfies both the rolling finish temperature and the cooling rate, so TS ≧ 120.0 kg /
mm 2 , 2 mm U E +20 ≧ 2.0 kgf · m, which is a good value. Condition 7 is 2 mm U because the rolling finishing temperature satisfies the condition but does not satisfy the cooling rate.
E +20 = 1.9 kgf · m, which is a slightly low value.
Since conditions 8 and 9 satisfy both the rolling finish temperature and the cooling rate, TS ≧ 120.0 kg / mm 2 , 2 mm U E +20
A good value of ≧ 2.0 kgf · m is shown. Condition 10
Indicates that the cooling rate satisfies the conditions but does not satisfy the rolling finishing temperature. Therefore, TS = 105.5 kg / mm 2 ,
It shows a low value of 2 mm U E +20 = 1.5 kgf · m. (Example 2) A steel material having a composition of M to W shown in Table 5 was manufactured under the conditions of a finish rolling temperature of 920 ° C and a cooling rate of 1.8 to 1.9 ° C / s which satisfy the conditions of the present invention shown in Table 6. The tensile properties and the value of 2 mm U E +20 at that time are also shown in Table 6.

【0031】[0031]

【表5】 [Table 5]

【0032】[0032]

【表6】 [Table 6]

【0033】M鋼、N鋼はNiを添加していないために
M鋼では2mm U+20 =1.8kgf・m、N鋼では
TS=118.9kg/mm2 と低い値を示している。
P鋼、Q鋼はNbを添加していないためにP鋼では2m
U+20 =1.6kgf・m、Q鋼では2mm U+2
=1.8kgf・mと低い値を示している。また、Nb
の規定を満足していないS鋼はTS=117.3kg/
mm2 と低い値になっている。
Since M steel and N steel do not contain Ni, the M steel shows a low value of 2 mm U E +20 = 1.8 kgf · m and the N steel shows a TS value of 118.9 kg / mm 2 . .
Since P steel and Q steel do not contain Nb, it is 2 m for P steel.
m U E +20 = 1.6 kgf · m, 2 mm U E +2 for Q steel
The value is as low as 1.8 kgf · m. Also, Nb
S steel that does not meet the requirements of TS is 117.3 kg /
The value is as low as mm 2 .

【0034】これに対して本発明を満足しているO鋼、
R鋼、T鋼、U鋼、V鋼はTS≧120.0kg/mm
2 、2mm U+20 ≧2.0kgf・mと良好な値を示
している。なお、S鋼については、本発明の鋼組成にC
uを添加したものであるが、圧延途中で割れが生じた。
On the other hand, O steel satisfying the present invention,
TS ≧ 120.0 kg / mm for R steel, T steel, U steel and V steel
2 , which is a good value of 2 mm U E +20 ≧ 2.0 kgf · m. For S steel, the steel composition of the present invention is C
Although u was added, cracking occurred during rolling.

【0035】[0035]

【発明の効果】本発明によれば、所望の強度を確保しつ
つ優れた靭性を有する高性能レールをオンライン熱処理
で製造する方法が提供される。具体的には、引張強度1
20kg/mm2 以上、2mmUノッチシャルピー吸収
エネルギーが+20℃で2.0kgf・m以上の高強度
高靭性レールを製造することができる。
According to the present invention, there is provided a method for producing a high-performance rail having excellent toughness while ensuring desired strength by online heat treatment. Specifically, tensile strength 1
It is possible to manufacture a high-strength and high-toughness rail having a 20 mm / mm 2 or more and a 2 mm U notch Charpy absorbed energy of 2.0 kgf · m or more at + 20 ° C.

【図面の簡単な説明】[Brief description of drawings]

【図1】圧延仕上がり温度と靭性との関係を示す図。FIG. 1 is a diagram showing a relationship between rolling finish temperature and toughness.

【図2】冷却速度と強度、靭性との関係を示す図。FIG. 2 is a diagram showing a relationship between a cooling rate, strength, and toughness.

【図3】Nb添加量と強度、靭性との関係を示す図。FIG. 3 is a diagram showing the relationship between the amount of Nb added and the strength and toughness.

【図4】Ni添加量と強度、靭性との関係を示す図。FIG. 4 is a diagram showing the relationship between the amount of Ni added and the strength and toughness.

【手続補正書】[Procedure amendment]

【提出日】平成6年9月30日[Submission date] September 30, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】レールの強度、靭性を向上させる手段とし
て熱処理する方法がある。この熱処理法には (1)圧延終了後いったん冷却した後にAc3 点以上に
再加熱して加速冷却を行うオフライン熱処理法(特願昭
63−128123号) (2)圧延終了後Ac3 点以上の温度にある段階でその
まま加速冷却を行うオンライン熱処理法(特昭63−
23244) の2種類がある。
As a means for improving the strength and toughness of rails, there is a heat treatment method. This heat treatment method includes (1) an offline heat treatment method in which after the completion of rolling, the material is once cooled and then reheated to an Ac 3 point or more to perform accelerated cooling (Japanese Patent Application No. 63-128123) (2) After the rolling, Ac 3 points or more online heat treatment method involving directly accelerated cooling at a stage in the temperature (JP publicly Akira 63-
23244).

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】本願発明者らは、上記課題を解決すべく、
まず、0.78C−0.02Nb−0.1Niを
中心とする組成の素材を用いて圧延仕上温度と冷却速度
の条件の検討を行った。
In order to solve the above problems, the present inventors have
First, the conditions of the rolling finishing temperature and the cooling rate were examined using a material having a composition centered on 0.78 % C-0.02 % Nb-0.1 % Ni.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】図4に0.78%C−0.51%Si−
0.84%Mn−0.44%Cr−0.02Nb鋼に
Niを0.0%から0.61%添加した場合のNi添加
量と強度、靭性の関係を示す。Niの添加に伴い強度は
なだらかに上昇し、靭性も向上する。Niが0.1%未
満では靭性が低く、0.4%超えると強度、靭性向上の
効果がほとんど見られない。このことから、0.78%
C−0.51%Si−0.84%Mn−0.44%Cr
−0.02%Nbの条件ではNiを0.1%以上0.4
%以下とすることにより、引張強度120kg/mm2
以上、2mmUノッチシャルピー吸収エネルギーが+2
0℃で2.0kgf・m以上の高強度、高靭性を得るこ
とができることがわかる。
In FIG. 4, 0.78% C-0.51% Si-
The relationship between the amount of Ni added and the strength and toughness when 0.8% to 0.61% of Ni is added to 0.84% Mn-0.44% Cr-0.02 % Nb steel is shown. With the addition of Ni, the strength gradually increases and the toughness also improves. If Ni is less than 0.1%, the toughness is low, and if it exceeds 0.4%, the effect of improving strength and toughness is hardly seen. From this, 0.78%
C-0.51% Si-0.84% Mn-0.44% Cr
Under the condition of -0.02% Nb, Ni is 0.1% or more and 0.4
%, The tensile strength is 120 kg / mm 2
Above, 2mmU notch Charpy absorbed energy +2
It can be seen that it is possible to obtain high strength and high toughness of 2.0 kgf · m or more at 0 ° C.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0034】これに対して本発明を満足しているO鋼、
R鋼、T鋼、U鋼、V鋼はTS≧120.0kg/mm
2 、2mm U+20 ≧2.0kgf・mと良好な値を示
している。なお、鋼については、本発明の鋼組成にC
uを添加したものであるが、圧延途中で割れが生じた。
On the other hand, O steel satisfying the present invention,
TS ≧ 120.0 kg / mm for R steel, T steel, U steel and V steel
2 , which is a good value of 2 mm U E +20 ≧ 2.0 kgf · m. Regarding W steel, the steel composition of the present invention is C
Although u was added, cracking occurred during rolling.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.60〜0.85%、
Si:0.1〜0.8%、Mn:0.5〜1.5%、
P:0.035%以下、S:0.035%以下、Cr:
0.2〜0.8%、Nb:0.01〜0.05%、N
i:0.1〜0.4%を含有し、残部がFe及び不可避
的不純物からなる鋼素材を、圧延仕上温度が800〜1
000℃となるように熱間圧延し、次いで、パーライト
変態開始以前の温度から400℃以下までを1〜3℃/
secの冷却速度で加速冷却することを特徴とするオン
ライン熱処理による高強度高靭性レールの製造方法。
1. C: 0.60 to 0.85% by weight,
Si: 0.1-0.8%, Mn: 0.5-1.5%,
P: 0.035% or less, S: 0.035% or less, Cr:
0.2-0.8%, Nb: 0.01-0.05%, N
i: a steel material containing 0.1 to 0.4% and the balance being Fe and inevitable impurities, and the rolling finishing temperature is 800 to 1
Hot rolling to 000 ℃, then 1 to 3 ℃ / from the temperature before the start of pearlite transformation to 400 ℃ or less
A method for producing a high-strength and high-toughness rail by online heat treatment, characterized by accelerating cooling at a cooling rate of sec.
【請求項2】 前記レールは、引張強度120kg/m
2 以上、2mmUノッチシャルピー吸収エネルギーが
+20℃で2.0kgf・m以上を有する請求項1記載
のオンライン熱処理による高強度高靭性レールの製造方
法。
2. The rail has a tensile strength of 120 kg / m.
The method for producing a high-strength and high-toughness rail by online heat treatment according to claim 1, wherein the absorbed energy of 2 mm U notch Charpy is 2.0 kgf · m or more at + 20 ° C.
JP16258993A 1993-06-30 1993-06-30 Production of highly strong and tough rail by on-line heat treatment Pending JPH0718326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16258993A JPH0718326A (en) 1993-06-30 1993-06-30 Production of highly strong and tough rail by on-line heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16258993A JPH0718326A (en) 1993-06-30 1993-06-30 Production of highly strong and tough rail by on-line heat treatment

Publications (1)

Publication Number Publication Date
JPH0718326A true JPH0718326A (en) 1995-01-20

Family

ID=15757467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16258993A Pending JPH0718326A (en) 1993-06-30 1993-06-30 Production of highly strong and tough rail by on-line heat treatment

Country Status (1)

Country Link
JP (1) JPH0718326A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169727A (en) * 2005-12-22 2007-07-05 Jfe Steel Kk High-strength pearlitic rail, and its manufacturing method
WO2007111285A1 (en) 2006-03-16 2007-10-04 Jfe Steel Corporation High-strength pearlite rail with excellent delayed-fracture resistance
JP2010185106A (en) * 2009-02-12 2010-08-26 Jfe Steel Corp Wear-resistant rail, and method for manufacturing the same
JP2015209590A (en) * 2014-04-30 2015-11-24 Jfeスチール株式会社 Rail production method
JP2017115229A (en) * 2015-12-25 2017-06-29 Jfeスチール株式会社 rail
CN113373371A (en) * 2021-05-21 2021-09-10 包头钢铁(集团)有限责任公司 Super-high wear-resistance hypereutectoid pearlite steel rail material added with rare earth and nickel elements

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169727A (en) * 2005-12-22 2007-07-05 Jfe Steel Kk High-strength pearlitic rail, and its manufacturing method
JP4736790B2 (en) * 2005-12-22 2011-07-27 Jfeスチール株式会社 High-strength pearlite rail and manufacturing method thereof
WO2007111285A1 (en) 2006-03-16 2007-10-04 Jfe Steel Corporation High-strength pearlite rail with excellent delayed-fracture resistance
US8361382B2 (en) 2006-03-16 2013-01-29 Jfe Steel Corporation High-strength pearlitic steel rail having excellent delayed fracture properties
US8404178B2 (en) 2006-03-16 2013-03-26 Jfe Steel Corporation High-strength pearlitic steel rail having excellent delayed fracture properties
EP3072988A1 (en) 2006-03-16 2016-09-28 JFE Steel Corporation High-strength pearlitic steel rail having excellent delayed fracture properties
JP2010185106A (en) * 2009-02-12 2010-08-26 Jfe Steel Corp Wear-resistant rail, and method for manufacturing the same
JP2015209590A (en) * 2014-04-30 2015-11-24 Jfeスチール株式会社 Rail production method
JP2017115229A (en) * 2015-12-25 2017-06-29 Jfeスチール株式会社 rail
CN113373371A (en) * 2021-05-21 2021-09-10 包头钢铁(集团)有限责任公司 Super-high wear-resistance hypereutectoid pearlite steel rail material added with rare earth and nickel elements

Similar Documents

Publication Publication Date Title
JPH0441616A (en) Production of low-hardness water-resistant steel excellent in wear resistance and bendability
JPH11236644A (en) Steel for induction hardening excellent in high strength characteristic and low heat treating strain characteristic and its production
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JP3893921B2 (en) Low temperature Ni-containing steel and method for producing the same
JPH11217649A (en) Steel for induction hardening having both cold workability and high strength and its production
JPH0718326A (en) Production of highly strong and tough rail by on-line heat treatment
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH11181542A (en) Steel product for induction hardening, excellent in cold workability and induction hardenability, and its production
JP4123597B2 (en) Manufacturing method of steel with excellent strength and toughness
JPH08199310A (en) Production of high strength martensitic stainless steel member
JPS63183123A (en) Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JPH06336648A (en) High strength pc bar wire excellent in delayed fracture resistance and its production
JP3999915B2 (en) ERW steel pipe for cold forging with excellent workability and its manufacturing method
JPH10287957A (en) High strength pc steel bar and its manufacture
KR910003883B1 (en) Making process for high tension steel
JPH0530883B2 (en)
JPH10168518A (en) Manufacture of high tensile strength steel plate with tapered thickness
JPH09263831A (en) Production of extra thick high strength bent pipe excellent in toughness at low temperature
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JP3012997B2 (en) Manufacturing method of high strength drive shaft
JPH07173531A (en) Production of high strength, high toughness non-heat treated steel for hot forging excellent in yield ratio