JP3999915B2 - ERW steel pipe for cold forging with excellent workability and its manufacturing method - Google Patents

ERW steel pipe for cold forging with excellent workability and its manufacturing method Download PDF

Info

Publication number
JP3999915B2
JP3999915B2 JP31315999A JP31315999A JP3999915B2 JP 3999915 B2 JP3999915 B2 JP 3999915B2 JP 31315999 A JP31315999 A JP 31315999A JP 31315999 A JP31315999 A JP 31315999A JP 3999915 B2 JP3999915 B2 JP 3999915B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
point
cold forging
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31315999A
Other languages
Japanese (ja)
Other versions
JP2001131702A (en
Inventor
真也 坂本
好男 寺田
潤一 岡本
正浩 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31315999A priority Critical patent/JP3999915B2/en
Publication of JP2001131702A publication Critical patent/JP2001131702A/en
Application granted granted Critical
Publication of JP3999915B2 publication Critical patent/JP3999915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、優れた加工性が要求される自動車用、機械構造用電縫鋼管に関し、特定の成分と製造方法により優れた特性を有する加工性に優れた冷間鍛造用電縫鋼管とその製造方法に関する。
【0002】
【従来の技術】
従来、冷間鍛造に際し、その変形抵抗を下げて冷間鍛造性の向上を図るために、軟質化処理が行われ、その手段の一つとしてセメンタイトの球状化焼鈍処理が行われている。この球状化焼鈍処理は、例えば特開昭59−136421号公報などに見られるようにA1 点以上の温度に加熱した後、10℃/h程度の超徐冷で連続冷却する方法で行われている。しかしながら、これでは処理時間が非常に長くなり工業的に不利である。一方、焼鈍時間の短縮を目的として連続冷却の冷却速度を速くしたり、あるいはA1 点直下の保定時間を短くするような試み行うと、結果として強度、硬さが増加しいずれも軟質化の目的を達成できない。
【0003】
【発明が解決しようとする課題】
冷間鍛造用電縫鋼管として加工性を向上させるためには電縫鋼管に造管後、熱処理により軟質化することが効果的である。本発明は加工性に優れた冷間鍛造用電縫鋼管とその製造方法を提供するものである。
【0004】
【課題を解決するための手段】
その発明の要旨とするところは、重量%で、C:0.10〜0.50%、Si:0.01〜0.50%、Mn:0.1〜2.0%、S:0.03%以下、P:0.03%以下、Al:0.01〜0.10%、N:0.0030%以下に、さらに必要に応じて、Cr:0.05〜1.0%、Ni:0.1〜2.0%、Cu:0.1〜2.0%、Mo:0.05〜1.0%、V:0.03〜0.2%、Ti:0.01〜0.2%、Nb:0.01〜0.2%、B:0.001%以下、Ca:0.0002〜0.0020%のうち一種または二種以上含有し、残部が鉄および不可避不純物からなり組織中の炭化物の占める割合が面積率にして30%以下、炭化物の球状化率が80%以上で、かつ硬さがHv100〜180であることを特徴とする加工性に優れた冷間鍛造用電縫鋼管であり、これらの電縫鋼管を製造する方法としては電縫鋼管を(AC1 点−100℃)〜AC1 点に再加熱し、その温度で5〜180分保持した後、空冷することである。または、電縫溶接部の均一化を図るためにAC3 点〜(AC3 点+50℃)に再加熱し、その後(AC1 点−100℃)〜AC1 点未満の温度まで空冷し、その温度で5〜180分保持した後、空冷することである。
【0005】
【発明の実施の形態】
本発明の特徴は組織中の炭化物の占める割合が面積率にして30%以下でこの炭化物の球状化率が80%以上で、かつ硬さがHv100〜180であることを特徴とする加工性の優れた冷間鍛造用電縫鋼管であり、これらの電縫鋼管を製造する方法としては電縫鋼管を(AC1 点−100℃)〜AC1 点に再加熱し、その温度で5〜180分保持した後、空冷することである。または、電縫溶接部の均一化を図るためにAC3 点〜(AC3 点+50℃)に再加熱し、その後(AC1 点−100℃)〜AC1 点未満の温度まで空冷し、その温度で5〜180分保持した後、空冷することを特徴とする加工性に優れた冷間鍛造用電縫鋼管とその製造方法である。
【0006】
以下に本発明の加工性に優れた冷間鍛造用電縫鋼管とその製造方法について詳細に説明する。はじめに鋼の化学成分の限定理由について説明する。
Cはセメンタイト相を形成し、製品の強度確保に重要であり、Cは0.10%以上必要である。一方、Cが0.50%を越えるとセメンタイト量が過剰になり強度、硬さが著しく高くなる。したがって、Cは0.10〜0.50%とする。Siは脱酸剤として必須の成分であり、固溶強化あるいは焼き入れ性の増大効果を通じて製品の強度確保に重要な成分である。しかしながら、0.50%を越えると高周波により電縫溶接したとき電縫溶接部に酸化反応生成物(微小粒状酸化物)が生成しやすくなる。また、熱延時に発生するスケ−ルによって鋼管の表面に凹凸が発生しやすくなる。一方、製品の強度確保の観点からSiは0.01%以上必要である。したがって、Siは0.01〜0.50%とする。
【0007】
Mnは焼き入れ性の増大効果を通じて製品の強度確保に重要な成分である。しかし過剰に添加すると強度、硬さが著しく高くなるため、上限を2.0%とした。一方、Mnの下限はS脆化防止のため0.1%とした。したがって、Mnは0.1〜2.0%とする。
S、Pはいずれも冷間鍛造性に有害な元素である。いずれも0.03%を越えると悪影響が顕著になるので、これ以下に限定した。
Alは脱酸剤として作用するが、鋼中のNと結合しオ−ステナイト結晶粒度の粗大化を抑制する。オ−ステナイト粒の粗大化抑制のためには0.01%以上の添加を必要とする。一方、Alが0.10%を越えるとオ−ステナイト結晶粒粗大化抑制効果は飽和し、さらに冷間鍛造性が劣化する。したがって、Alは0.01〜0.10%とする。
【0008】
Nは固溶Nとして存在すると冷間鍛造中において、ひずみ時効を生じて冷間鍛造性を悪化させるため、極力低いことが望ましい。本発明においてはAl等により固溶Nを窒化物として固定しているため、極端な低減は必要ないが、Nが過度に多いと窒化物として固定されない固溶Nの量が増加する恐れがある。したがって、Nは0.0030%以下とする。
Crは焼き入れ性を向上し、強度ならびに靱性を高めると共に炭化物の形成を助長し耐摩耗性を向上させるのに有効である。この効果は0.05%以上で顕著になるためこの値を下限とする。しかし、1.0%を越えると冷間鍛造性が劣化するとともに添加コストが上昇する。したがって、Crは0.05〜1.0%とする。
【0009】
Niは焼き入れ性を向上させる効果があるが、充分添加しなければ効果は顕著に現れず高価でもあるので下限を0.1%とした。一方、添加量が多くなると強度、硬さが高くなるので上限を2.0%とした。したがって、Niは0.1〜2.0%とする。
Cuは強い固溶強化性を有し、焼き入れ性を向上させ少量の添加は切削性を向上させる作用があるが、0.1%より少ないと効果が認められない。一方、2.0%を越えると熱間加工性を著しく劣化させる。したがって、Cuは0.1〜2.0%とする。
【0010】
Moは炭化物を形成する元素であり、また焼き入れ性を向上させる元素で焼き入れ性および耐摩耗性向上のために添加する。しかし、0.05%未満では焼き入れ性および耐摩耗性が不十分であり、1.0%を越えると冷間鍛造性が劣化する。したがって、Moは0.05〜1.0%とする。
VはAlと同様にNの固定に効果のある元素であり、その効果を得るには0.03%以上必要である。しかし、過剰な添加はV炭窒化物の析出強化により冷間鍛造性を阻害する恐れがあるため0.2%を上限とした。したがって、Vは0.03〜0.2%とする。
【0011】
TiはV、Alと同様にNの固定に効果のある元素であり、その効果を得るには0.01%以上必要である。しかし、過剰な添加はTi炭窒化物の析出強化により冷間鍛造性を阻害する恐れがあるため0.2%を上限とした。したがって、Tiは0.01〜0.2%とする。
NbはV、Ti、Alと同様にNの固定に効果のある元素であり、その効果を得るには0.01%以上必要である。しかし、過剰な添加はNb炭窒化物の析出強化により冷間鍛造性を阻害する恐れがあるため0.2%を上限とした。したがって、Nbは0.01〜0.2%とする。
【0012】
BはNとの親和力が強く、Alと同様に固溶Nの固定に効果がある元素である。しかし、過剰な添加はB炭窒化物を過剰に生成し冷間鍛造性を低下させるさせる恐れがあるため0.001%を上限とした。したがって、Bは0.001%以下とする。
Caは、介在物の形態を調整し、冷間加工性を向上するのに有効である。Caは多すぎると鋼中の介在物が増し逆に冷間加工性を劣化させる。したがって、Caは0.0002〜0.0020%とする。
【0013】
上記の組成を満足する鋼を熱処理により軟質化する理由は次の通りである。
熱処理法としては球状化焼鈍を用いる。球状化焼鈍を用いるのは変形能に有害な層状炭化物をなくし、球状炭化物とすることにより変形能を向上させるとともに軟質化することにより冷間鍛造性を良好にするためである。本発明では優れた冷間鍛造性を得るために硬さをHv100〜180を得るために組織中の炭化物の占める割合が面積率にして30%以下、炭化物の球状化率が80%以上と限定した。
【0014】
次に、電縫鋼管に造管後、軟質化処理のための熱処理条件について説明する。熱処理条件として、(AC1 点−100℃)〜AC1 点に再加熱し、その温度で5〜180分保持した後、空冷する。まず、(AC1 点−100℃)以上に限定したのは(AC1 点−100℃)以下では炭化物の球状化が不十分で冷間加工性の向上が少ない。一方、AC1 点以上では一部がオ−ステナイト化され炭化物の一部が再固溶される。オ−ステナイトはその後の冷却によりフェライト+パ−ライトに変態し冷間加工性が劣化する。以上のことから本熱処理での加熱温度を(AC1 点−100℃)〜AC1 点とした。
【0015】
加熱時間を5〜180分に保持した理由について説明する。加熱時間が5分以下では炭化物の球状化が不十分で冷間鍛造性の向上が少ない。一方、180分以上では炭化物の球状化が進行するが鋼の硬さの低下代は飽和してしまう。さらには熱処理時間が増すことで、製造コストが高くなる。以上のことから本熱処理での加熱時間を5分〜180分とした。
【0016】
さらに冷間鍛造性を向上させるためには電縫溶接部と母材部の均一化が重要である。そのためには上記の熱処理前にAC3 点〜(AC3 点+50℃)の温度に再加熱する。AC3 点以下では完全にオ−ステナイト化されないため組織の均一化が達成できない。一方、(AC3 点+50℃)以上ではオ−ステナイト粒径が大きくなり、軟質化にはよいが特定の強度、硬さが得られない。以上のことからAC3 点〜(AC3 点+50℃)の温度の再加熱しその後、上記に記載した熱処理を行うことで電縫溶接部と母材部が均一化され、さらに冷間鍛造性は向上する。本発明のように特性の成分系と熱処理条件により優れた特性を有する加工性に優れた冷間鍛造用電縫鋼管が得られる。
【0017】
【実施例】
表1に鋼板の化学成分を示す。表2に造管後の熱処理条件を示す。表3に本発明により製造された電縫鋼管および比較で製造された電縫鋼管の特性を示す。表3から明らかのように、本発明により製造された電縫鋼管は組織中の炭化物の占める割合が面積率にして30%以下、炭化物の球状化率が80%以上で、かつ硬さがHv100〜180である。本発明法により製造された電縫鋼管の硬さは熱処理前後で著しく低下している。
【0018】
【表1】

Figure 0003999915
【0019】
【表2】
Figure 0003999915
【0020】
【表3】
Figure 0003999915
【0021】
【発明の効果】
本発明法により製造された電縫鋼管は、組織中の炭化物の占める割合が面積率にして30%以下、炭化物の球状化率が80%以上で、かつ硬さがHv100〜180と熱処理前後の硬さの低下が顕著である。今後、自動車および機械構造用部品のコスト削減の観点から安価で加工性の良好な冷間鍛造用電縫鋼管の要求がますます増える。したがって、本発明により製造された電縫鋼管の効果は極めて大きいものである。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an electric resistance welded steel pipe for automobiles and machine structures that requires excellent workability, and an electric resistance welded steel pipe for cold forging having excellent characteristics by a specific component and a manufacturing method and its manufacture. Regarding the method.
[0002]
[Prior art]
Conventionally, in cold forging, in order to lower the deformation resistance and improve cold forgeability, softening treatment has been performed, and cementite spheroidization annealing has been performed as one of the means. This spheroidizing annealing treatment is performed by a method of heating to a temperature of A 1 point or higher and then continuously cooling by ultra-slow cooling of about 10 ° C./h as seen in, for example, Japanese Patent Application Laid-Open No. 59-136421. ing. However, this is very disadvantageous industrially because the processing time becomes very long. On the other hand, or the cooling rate of continuous cooling for the purpose of shortening the annealing time or performed attempted so as to shorten the inter-coercive scheduled immediately below A 1 point, resulting in intensity, both increases the hardness of the softened The goal cannot be achieved.
[0003]
[Problems to be solved by the invention]
In order to improve workability as an electric-welded steel pipe for cold forging, it is effective to make the electric-welded steel pipe soft by heat treatment after it is formed. The present invention provides an electric-welded steel pipe for cold forging excellent in workability and a method for producing the same.
[0004]
[Means for Solving the Problems]
The gist of the invention is weight%, C: 0.10 to 0.50%, Si: 0.01 to 0.50%, Mn: 0.1 to 2.0%, S: 0.00. 03% or less, P: 0.03% or less, Al: 0.01 to 0.10%, N: 0.0030% or less, and if necessary, Cr: 0.05 to 1.0%, Ni : 0.1-2.0%, Cu: 0.1-2.0%, Mo: 0.05-1.0%, V: 0.03-0.2%, Ti: 0.01-0 .2%, Nb: 0.01 to 0.2%, B: 0.001% or less, Ca: 0.0002 to 0.0020%, or one or two or more types, with the balance from iron and inevitable impurities The proportion of carbides in the structure is 30% or less in terms of area ratio, the spheroidization rate of carbides is 80% or more, and the hardness is Hv 100 to 180. An excellent electric resistance welded steel pipe for cold forging in coatability, these as a method for producing an electric resistance welded steel pipe is reheated electric resistance welded steel pipe (AC 1 point -100 ° C.) to Ac 1 point, at that temperature After holding for 5 to 180 minutes, air cooling. Or, reheated to AC 3 point ~ (AC 3 point + 50 ° C.) in order to achieve uniform electric resistance welding unit, air-cooled to thereafter (AC 1 point -100 ° C.) to Ac less than 1 point temperature, the It is air-cooled after holding at temperature for 5 to 180 minutes.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The feature of the present invention is that the proportion of carbide in the structure is 30% or less in terms of area ratio, the spheroidization rate of this carbide is 80% or more, and the hardness is Hv 100 to 180. excellent an electric resistance welded steel pipe for forging cold, the electric resistance welded steel pipe as a method for producing these electric resistance welded steel pipe (AC 1 point -100 ° C.) was reheated to to Ac 1 point, at temperature 5 to 180 It is air cooling after holding for a minute. Or, reheated to AC 3 point ~ (AC 3 point + 50 ° C.) in order to achieve uniform electric resistance welding unit, air-cooled to thereafter (AC 1 point -100 ° C.) to Ac less than 1 point temperature, the It is an electric-welded steel pipe for cold forging excellent in workability, characterized in that it is air-cooled after being held at temperature for 5 to 180 minutes, and a method for producing the same.
[0006]
The electric forging steel pipe for cold forging excellent in workability of the present invention and the manufacturing method thereof will be described in detail below. First, the reasons for limiting the chemical composition of steel will be described.
C forms a cementite phase and is important for securing the strength of the product, and C needs to be 0.10% or more. On the other hand, when C exceeds 0.50%, the amount of cementite becomes excessive and the strength and hardness are remarkably increased. Therefore, C is set to 0.10 to 0.50%. Si is an essential component as a deoxidizer, and is an important component for securing the strength of the product through the effect of solid solution strengthening or hardenability. However, if it exceeds 0.50%, an oxidation reaction product (fine particulate oxide) tends to be generated in the ERW weld when high frequency welding is performed. In addition, irregularities are likely to occur on the surface of the steel pipe due to the scale generated during hot rolling. On the other hand, 0.01% or more of Si is necessary from the viewpoint of securing the strength of the product. Therefore, Si is made 0.01 to 0.50%.
[0007]
Mn is an important component for securing the strength of the product through the effect of increasing hardenability. However, when added excessively, the strength and hardness are remarkably increased, so the upper limit was made 2.0%. On the other hand, the lower limit of Mn is set to 0.1% to prevent S embrittlement. Therefore, Mn is set to 0.1 to 2.0%.
S and P are both elements harmful to the cold forgeability. In any case, if it exceeds 0.03%, the adverse effect becomes remarkable, so it was limited to this.
Al acts as a deoxidizer, but combines with N in the steel to suppress coarsening of the austenite grain size. In order to suppress coarsening of austenite grains, addition of 0.01% or more is required. On the other hand, if Al exceeds 0.10%, the effect of suppressing austenite grain coarsening is saturated, and cold forgeability deteriorates. Therefore, Al is set to 0.01 to 0.10%.
[0008]
If N is present as solute N, it is desirable that it be as low as possible because it causes strain aging and deteriorates cold forgeability during cold forging. In the present invention, since solid solution N is fixed as nitride by Al or the like, an extreme reduction is not necessary, but if N is excessively large, the amount of solid solution N that is not fixed as nitride may increase. . Therefore, N is set to 0.0030% or less.
Cr is effective for improving the hardenability, increasing the strength and toughness, promoting the formation of carbides, and improving the wear resistance. Since this effect becomes significant at 0.05% or more, this value is set as the lower limit. However, if it exceeds 1.0%, the cold forgeability deteriorates and the addition cost increases. Therefore, Cr is made 0.05 to 1.0%.
[0009]
Ni has the effect of improving the hardenability, but if it is not added sufficiently, the effect does not appear remarkably and is expensive, so the lower limit was made 0.1%. On the other hand, the strength and hardness increase as the amount added increases, so the upper limit was made 2.0%. Therefore, Ni is made 0.1 to 2.0%.
Cu has a strong solid solution strengthening property and improves the hardenability, and the addition of a small amount has the effect of improving the machinability, but if it is less than 0.1%, the effect is not recognized. On the other hand, when it exceeds 2.0%, hot workability is remarkably deteriorated. Therefore, Cu is made 0.1 to 2.0%.
[0010]
Mo is an element that forms carbides, and is an element that improves hardenability and is added to improve hardenability and wear resistance. However, if it is less than 0.05%, the hardenability and wear resistance are insufficient, and if it exceeds 1.0%, the cold forgeability deteriorates. Therefore, Mo is set to 0.05 to 1.0%.
V, like Al, is an element effective in fixing N, and 0.03% or more is necessary to obtain the effect. However, excessive addition may impair the cold forgeability due to precipitation strengthening of V carbonitride, so the upper limit was made 0.2%. Therefore, V is 0.03 to 0.2%.
[0011]
Ti, like V and Al, is an element effective in fixing N, and 0.01% or more is necessary to obtain the effect. However, excessive addition may impair the cold forgeability due to precipitation strengthening of Ti carbonitride, so the upper limit was made 0.2%. Therefore, Ti is set to 0.01 to 0.2%.
Nb is an element that is effective in fixing N like V, Ti, and Al, and needs to be 0.01% or more to obtain the effect. However, excessive addition may impair the cold forgeability due to precipitation strengthening of Nb carbonitride, so the upper limit was made 0.2%. Therefore, Nb is set to 0.01 to 0.2%.
[0012]
B is an element that has a strong affinity for N and is effective in fixing solute N as with Al. However, excessive addition may cause excessive formation of B carbonitride and lower the cold forgeability, so 0.001% was made the upper limit. Therefore, B is 0.001% or less.
Ca is effective in adjusting the form of inclusions and improving cold workability. When there is too much Ca, inclusions in the steel increase and conversely the cold workability deteriorates. Therefore, Ca is 0.0002 to 0.0020%.
[0013]
The reason why the steel satisfying the above composition is softened by heat treatment is as follows.
Spheroidizing annealing is used as the heat treatment method. The reason why the spheroidizing annealing is used is to eliminate the layered carbide harmful to the deformability and improve the cold forgeability by improving the deformability and softening by using the spherical carbide. In the present invention, in order to obtain excellent cold forgeability, in order to obtain a hardness of Hv 100 to 180, the proportion of carbide in the structure is limited to 30% or less in terms of area ratio, and the spheroidization rate of carbide is limited to 80% or more. did.
[0014]
Next, heat treatment conditions for softening treatment will be described after forming the ERW steel pipe. As heat treatment conditions, and reheated to (1 point -100 ° C. AC) to Ac 1 point, after holding 5 to 180 minutes at that temperature and air cooling. First, the reason why it is limited to (AC 1 point-100 ° C.) or more is that (AC 1 point-100 ° C.) or less, the carbide is insufficiently spheroidized and the cold workability is hardly improved. On the other hand, at AC 1 or more, a part is austenitized and a part of the carbide is re-dissolved. Austenite is transformed into ferrite + pearlite by subsequent cooling, and the cold workability deteriorates. The heating temperature in this heat treatment (AC 1 point -100 ° C.) to Ac 1 point from the above.
[0015]
The reason why the heating time is kept at 5 to 180 minutes will be described. When the heating time is 5 minutes or less, the spheroidization of the carbide is insufficient and the cold forgeability is not improved. On the other hand, in 180 minutes or more, the spheroidization of carbide proceeds, but the decrease in the hardness of the steel is saturated. Furthermore, the manufacturing cost increases due to the increase in the heat treatment time. From the above, the heating time in this heat treatment was set to 5 minutes to 180 minutes.
[0016]
Furthermore, in order to improve cold forgeability, it is important to make the ERW weld and the base metal uniform. For this purpose, reheating is performed to a temperature of AC 3 point to (AC 3 point + 50 ° C.) before the heat treatment. When AC is 3 points or less, it is not completely austenitic, so that the structure cannot be made uniform. On the other hand, at (AC 3 point + 50 ° C.) or more, the austenite particle size becomes large and it is good for softening, but specific strength and hardness cannot be obtained. From the above, AC 3 point to (AC 3 point + 50 ° C) is reheated, and then the heat treatment described above is performed to make the ERW weld and base material uniform, and further, cold forgeability. Will improve. As in the present invention, it is possible to obtain an electric-welded steel pipe for cold forging with excellent workability having excellent characteristics due to the characteristic component system and heat treatment conditions.
[0017]
【Example】
Table 1 shows the chemical components of the steel sheet. Table 2 shows the heat treatment conditions after pipe making. Table 3 shows the characteristics of the ERW steel pipe manufactured according to the present invention and the ERW steel pipe manufactured by comparison. As is apparent from Table 3, the ratio of carbide in the structure is 30% or less, the spheroidization rate of carbide is 80% or more, and the hardness is Hv100. ~ 180. The hardness of the ERW steel pipe manufactured by the method of the present invention is remarkably reduced before and after the heat treatment.
[0018]
[Table 1]
Figure 0003999915
[0019]
[Table 2]
Figure 0003999915
[0020]
[Table 3]
Figure 0003999915
[0021]
【The invention's effect】
The ratio of the proportion of carbide in the structure produced by the method of the present invention to the area ratio is 30% or less, the spheroidization ratio of carbide is 80% or more, and the hardness is Hv 100 to 180, before and after heat treatment. The decrease in hardness is remarkable. In the future, there will be an increasing demand for ERW steel pipes for cold forging, which are cheap and have good workability, from the viewpoint of cost reduction of automobile and machine structural parts. Therefore, the effect of the electric resistance welded steel pipe manufactured according to the present invention is extremely great.

Claims (3)

重量%で、
C :0.10〜0.50%、
Si:0.01〜0.50%、
Mn:0.1〜2.0%、
S :0.03%以下
P :0.03%以下、
Al:0.01〜0.10%、
N :0.0030%以下に、
さらに必要に応じて
Cr:0.05〜1.0%、
Ni:0.1〜2.0%、
Cu:0.1〜2.0%、
Mo:0.05〜1.0%、
V:0.03〜0.2%、
Ti:0.01〜0.2%、
Nb:0.01〜0.2%、
B:0.001%以下、
Ca:0.0002〜0.0020%のうち一種または二種以上含有し、残部が鉄および不可避不純物からなり組織中の炭化物の占める割合が面積率にして30%以下、炭化物の球状化率が80%以上で、かつ硬さがHv100〜180であることを特徴とする加工性に優れた冷間鍛造用電縫鋼管。
% By weight
C: 0.10 to 0.50%,
Si: 0.01 to 0.50%,
Mn: 0.1 to 2.0%,
S: 0.03% or less P: 0.03% or less,
Al: 0.01 to 0.10%,
N: 0.0030% or less,
If necessary, Cr: 0.05-1.0%
Ni: 0.1 to 2.0%,
Cu: 0.1 to 2.0%,
Mo: 0.05-1.0%,
V: 0.03-0.2%,
Ti: 0.01-0.2%
Nb: 0.01-0.2%
B: 0.001% or less,
Ca: One or two or more of Ca: 0.0002 to 0.0020%, the balance being iron and inevitable impurities, and the proportion of carbide in the structure is 30% or less in terms of area ratio, and the spheroidization rate of carbide is An electric-welded steel pipe for cold forging excellent in workability, characterized by being 80% or more and having a hardness of Hv 100 to 180.
重量%で、
C :0.10〜0.50%、
Si:0.01〜0.50%、
Mn:0.1〜2.0%、
S :0.03%以下、
P :0.03%以下、
Al:0.01〜0.10%、
N :0.0030%以下に、
さらに必要に応じて
Cr:0.05〜1.0%、
Ni:0.1〜2.0%、
Cu:0.1〜2.0%、
Mo:0.05〜1.0%、
V:0.03〜0.2%、
Ti:0.01〜0.2%、
Nb:0.01〜0.2%、
B:0.001%以下、
Ca:0.0002〜0.0020のうち一種または二種以上含有し、残部が鉄および不可避不純物からなる電縫鋼管を熱処理するに際し、(AC1 点−100℃)〜AC1 点に再加熱し、その温度で5〜180分保持した後、空冷することを特徴とする加工性に優れた冷間鍛造用電縫鋼管の製造方法。
% By weight
C: 0.10 to 0.50%,
Si: 0.01 to 0.50%,
Mn: 0.1 to 2.0%,
S: 0.03% or less,
P: 0.03% or less,
Al: 0.01 to 0.10%,
N: 0.0030% or less,
If necessary, Cr: 0.05-1.0%
Ni: 0.1 to 2.0%,
Cu: 0.1 to 2.0%,
Mo: 0.05-1.0%,
V: 0.03-0.2%,
Ti: 0.01-0.2%
Nb: 0.01-0.2%
B: 0.001% or less,
Ca: containing one or two or more of 0.0002 to 0.0020, when heat-treating the electric resistance welded steel pipe balance of iron and inevitable impurities, reheated to (AC 1 point -100 ° C.) to Ac 1 point A method for producing an electric-welded steel pipe for cold forging excellent in workability, characterized by holding the temperature for 5 to 180 minutes and then air-cooling.
重量%で、
C :0.10〜0.50%、
Si:0.01〜0.50%、
Mn:0.1〜2.0%、
S :0.03%以下、
P :0.03%以下、
Al:0.01〜0.10%、
N :0.0030%以下に、
さらに必要に応じて
Cr:0.05〜1.0%、
Ni:0.1〜2.0%、
Cu:0.1〜2.0%、
Mo:0.05〜1.0%、
V:0.03〜0.2%、
Ti:0.01〜0.2%、
Nb:0.01〜0.2%、
B:0.001%以下、
Ca:0.0002〜0.0020%のうち一種または二種以上含有し、残部が鉄および不可避不純物からなる電縫鋼管を熱処理するに際し、AC3 点〜(AC3 点+50℃)に再加熱し、その後(AC1 点−100℃)〜AC1 点未満の温度まで空冷し、その温度で5〜180分保持した後、空冷することを特徴とする加工性に優れた冷間鍛造用電縫鋼管の製造方法。
% By weight
C: 0.10 to 0.50%,
Si: 0.01 to 0.50%,
Mn: 0.1 to 2.0%,
S: 0.03% or less,
P: 0.03% or less,
Al: 0.01 to 0.10%,
N: 0.0030% or less,
If necessary, Cr: 0.05-1.0%
Ni: 0.1 to 2.0%,
Cu: 0.1 to 2.0%,
Mo: 0.05-1.0%,
V: 0.03-0.2%,
Ti: 0.01-0.2%
Nb: 0.01-0.2%
B: 0.001% or less,
Ca: One or two or more of 0.0002 to 0.0020% contained, and when heat-treating an ERW steel pipe consisting of iron and inevitable impurities, reheating from AC 3 point to (AC 3 point + 50 ° C.) and thereafter (AC 1 point -100 ° C.) air-cooled to a temperature of ~AC less than 1 point, its was held 5 to 180 minutes at a temperature, excellent cold forging electroconductive workability, characterized by cooling Manufacturing method of sewn steel pipe.
JP31315999A 1999-11-04 1999-11-04 ERW steel pipe for cold forging with excellent workability and its manufacturing method Expired - Fee Related JP3999915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31315999A JP3999915B2 (en) 1999-11-04 1999-11-04 ERW steel pipe for cold forging with excellent workability and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31315999A JP3999915B2 (en) 1999-11-04 1999-11-04 ERW steel pipe for cold forging with excellent workability and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2001131702A JP2001131702A (en) 2001-05-15
JP3999915B2 true JP3999915B2 (en) 2007-10-31

Family

ID=18037825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31315999A Expired - Fee Related JP3999915B2 (en) 1999-11-04 1999-11-04 ERW steel pipe for cold forging with excellent workability and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3999915B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486516B2 (en) * 2004-05-21 2010-06-23 新日本製鐵株式会社 ERW steel pipe excellent in cold workability and hardenability and its manufacturing method
WO2018139672A1 (en) * 2017-01-30 2018-08-02 新日鐵住金株式会社 Steel pipe for underbody components of automobiles, and underbody component of automobiles
WO2018139671A1 (en) * 2017-01-30 2018-08-02 新日鐵住金株式会社 Steel pipe for underbody components of automobiles, and underbody component of automobiles
CN118613600A (en) * 2022-02-10 2024-09-06 日本制铁株式会社 Electric welded steel pipe for automobile parts and method for manufacturing automobile parts

Also Published As

Publication number Publication date
JP2001131702A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
JP3139876B2 (en) Method of manufacturing non-heat treated steel for hot forging and non-heat treated hot forged product, and non-heat treated hot forged product
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
JP7070696B2 (en) Electric resistance sewn steel pipe for hollow stabilizer
JP4012475B2 (en) Machine structural steel excellent in cold workability and low decarburization and method for producing the same
JP2003328079A (en) Steel pipe superior in workability for cold forging, and manufacturing method therefor
JPH0772323B2 (en) Non-heat treated steel bar for hot forging
JP3999915B2 (en) ERW steel pipe for cold forging with excellent workability and its manufacturing method
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
US20240052467A1 (en) High-strength wire rod for cold heading with superior heat treatment characteristics and resistance of hydrogen-delayed fracture characteristics, heat-treated component, and method for manufacturing same
JPH11124623A (en) Manufacture of boron-containing steel for cold forging
JPH11131187A (en) Rapidly graphitizable steel and its production
JPH07188858A (en) Steel for cold forging
JP2001200313A (en) Method for producing electric resistance welded tube for cold forging excellent in workability
JPH0718326A (en) Production of highly strong and tough rail by on-line heat treatment
JPH07278672A (en) Manufacture of high strength bolt excellent in delayed crack resistance
JPH10265841A (en) Production of high strength cold forging parts
JPH0741855A (en) Production of low yield radio and high toughness seamless steel pipe showing metallic structure essentially consisting of fine-grained ferrite
JP3543581B2 (en) Ferrite / pearlite non-heat treated steel
JP2767254B2 (en) Method for producing Cr-Mo case hardened steel
JPH10265891A (en) Ferrite/pearlite type non-heat treated steel
JP3228051B2 (en) Manufacturing method of ERW steel pipe with excellent wear resistance
JPH09295067A (en) Manufacture of high strength bent pipe excellent in toughness at welded metal part

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070810

R151 Written notification of patent or utility model registration

Ref document number: 3999915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees