JPH07173531A - Production of high strength, high toughness non-heat treated steel for hot forging excellent in yield ratio - Google Patents

Production of high strength, high toughness non-heat treated steel for hot forging excellent in yield ratio

Info

Publication number
JPH07173531A
JPH07173531A JP33172693A JP33172693A JPH07173531A JP H07173531 A JPH07173531 A JP H07173531A JP 33172693 A JP33172693 A JP 33172693A JP 33172693 A JP33172693 A JP 33172693A JP H07173531 A JPH07173531 A JP H07173531A
Authority
JP
Japan
Prior art keywords
steel
hot forging
less
heat treated
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33172693A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Nakatani
良行 中谷
Masao Toyama
雅雄 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33172693A priority Critical patent/JPH07173531A/en
Publication of JPH07173531A publication Critical patent/JPH07173531A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high strength and high toughness non-heat treated steel by specifying the compsn., controlling the ferrite precipitation critical cooling velocity and executing air cooling from the hot forging finishing temp. by tempering treatment. CONSTITUTION:The compsn. of a steel is constituted of, by weight, 0.05 to 0.30% C, 0.05 to 2.0% Si, 0.3 to 5.0% Mn, 1.0 to 3.0% Cr, 0.01 to 0.5% Nb, 0.01 to 0.06% Al and 0.005 to 0.02% N, and the balance Fe with inevitable impurities. Furthermore, componental adjustment is executed in such a manner that the ferrite precipitation critical cooling velocity Vc1 obtd. by the formula I is regulated to the average cooling velocity from 800 to 500 deg.C after hot forging or below. The steel having the same compsn. is subjected to hot forging and is thereafter cooled to form its structure into a mixed one of bainite and martensite contg. no pro-eutectoid ferrite, and next, tempering is executed in the temp. range from 350 to 600 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間鍛造後に焼入れ・
焼戻し等の熱処理を行なわなくとも、熱間鍛造・冷却・
焼戻しにより、自動車用部品や建設機械用部品等として
使用することのできる、降伏比に優れた熱間鍛造用高強
度高靭性非調質鋼を製造する方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to quenching after hot forging.
Even without heat treatment such as tempering, hot forging, cooling,
The present invention relates to a method for producing a high-strength, high-toughness non-heat treated steel for hot forging, which can be used as parts for automobiles, parts for construction machinery and the like by tempering and has an excellent yield ratio.

【0002】[0002]

【従来の技術】自動車や建設機械等に用いられてる構造
用部品は、機械構造用炭素鋼や機械構造用合金鋼を素材
とし、必要な強度や靭性を与えるため熱間鍛造した後に
焼入れ・焼戻し処理(調質処理)を施すのが一般的であ
る。また近年では、上記の様な調質処理に要するエネル
ギーを節減すると共に仕掛かり品のコスト削減を図るた
め、たとえばJIS G 4051に規定される機械構
造用炭素鋼やJIS G4106に規定される機械構造
用マンガン鋼に、VやNb等の析出硬化型元素を添加し
た非調質鋼が開発され、自動車のエンジン部品や足回り
部品あるいは建設機械用部品等として用いられている。
2. Description of the Related Art Structural parts used in automobiles, construction machines, etc. are made of carbon steel for machine structure and alloy steel for machine structure, and are quenched and tempered after hot forging to give necessary strength and toughness. Generally, a treatment (conditioning treatment) is performed. Further, in recent years, in order to reduce the energy required for the above-mentioned heat treatment and to reduce the cost of work-in-process, for example, carbon steel for machine structure specified in JIS G 4051 or machine structure specified in JIS G4106. A non-heat treated steel in which a precipitation hardening type element such as V or Nb is added to a manganese steel for use has been developed and used as an engine part of an automobile, an undercarriage part or a part for construction machinery.

【0003】これらの非調質鋼は、熱間鍛造後冷却して
フェライト・パーライト組織を形成し、VやNbの炭化
物や窒化物の析出強化によって所要の強度を得るもので
ある。ところがこれら公知の非調質鋼は、引張強さや硬
さの様な静的強度においては優れたものであるが、組織
が粗いオーステナイトから変態したフェライト・パーラ
イト組織を主体とするものであるから、靭延性が低いと
いう問題がある。
These non-heat treated steels are those which are cooled after hot forging to form a ferrite / pearlite structure, and obtain the required strength by precipitation strengthening of carbides and nitrides of V and Nb. However, these known non-heat treated steels are excellent in static strength such as tensile strength and hardness, but since the structure is mainly composed of a ferrite-pearlite structure transformed from coarse austenite, There is a problem of low ductility.

【0004】そこで、この様な問題を解決するため、従
来の調質鋼と同等の強度と靭延性を備えた高靭性タイプ
の非調質鋼、例えば、引張強さが80kgf/mm2
で室温における2mmUノッチのシャルピー衝撃値が6
kgf・m/cm2 以上を示す鋼が開発され、一部では
実用化されている(例えば特開昭62−74055号公
報)。
Therefore, in order to solve such a problem, a high toughness type non-heat treated steel having strength and toughness and ductility equivalent to those of conventional heat treated steel, for example, a tensile strength of 80 kgf / mm 2 grade. Charpy impact value of 2mm U notch at room temperature is 6
Steels having a kgf · m / cm 2 or more have been developed and some have been put to practical use (for example, JP-A-62-74055).

【0005】更に、引張強さ90kgf/mm2 以上の
高強度部品としては、例えば特開昭63−312949
号公報に開示されている様な高強度・高靭性タイプの非
調質鋼が提案されている。しかし、引張強さが90kg
f/mm2 以上の高強度・高靭性タイプの非調質鋼にな
ると、強度向上のため水冷処理が行なわれるので、焼入
れに伴う歪の発生や焼割れを起こすという問題があり、
従って空冷タイプの高強度高靭性非調質鋼が求められて
いる。またこれらの非調質鋼は、合金鋼を焼入れ・焼戻
し処理したものに比べると耐力比が低く、例えば引張強
さが焼入れ・焼戻し処理材と同程度のものでは十分な耐
力が得られず、高耐力が要求される部品材料としては適
性を欠く。
Further, as a high-strength component having a tensile strength of 90 kgf / mm 2 or more, there is, for example, Japanese Patent Laid-Open No. 63-129949.
A high strength / high toughness type non-heat treated steel as disclosed in Japanese Patent Publication has been proposed. However, the tensile strength is 90kg
High strength and high toughness type non-heat treated steels with f / mm 2 or more are water-cooled to improve strength, so there is a problem that distortion and quench cracks occur with quenching.
Therefore, there is a demand for an air-cooled type high strength, high toughness non-heat treated steel. Further, these non-heat treated steels have a low yield strength ratio as compared to those obtained by quenching and tempering alloy steel, and for example, sufficient yield strength cannot be obtained if the tensile strength is similar to that of the quenched and tempered material. It is not suitable as a component material that requires high yield strength.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の様な問
題点に着目してなされたものであって、その目的は、従
来の熱間鍛造用非調質鋼の欠点である靭性不足の問題を
解消し、熱間鍛造後空冷もしくは衝風冷却等の調整冷却
のままで高強度、高靭性を有し、且つ降伏比に優れた熱
間鍛造用高強度高靭性非調質鋼の製法を確立しようとす
るものである。
SUMMARY OF THE INVENTION The present invention has been made by paying attention to the above-mentioned problems, and its purpose is to provide sufficient toughness, which is a drawback of the conventional non-heat treated steel for hot forging. A method for manufacturing high-strength, high-toughness non-heat treated steel for hot forging that solves the problem and has high strength and high toughness with an adjusted cooling such as air cooling or air blast cooling after hot forging and an excellent yield ratio. Is to establish.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る製法の構成は、 C:0.05〜0.30%、 Si:0.05〜2.0%、 Mn:0.3〜5.0%、 Cr:1.0〜3.0%、 Nb:0.01〜0.5%、 Al:0.01〜0.06%、 N:0.005〜0.02%、 を含有し、もしくはこれらに加えて Ni:0.2〜3.0%、 Mo:0.05〜1.0%、 V:0.03〜0.5%、 Ti:0.003〜0.2% よりなる群から選択される少なくとも1種の元素を含有
し、残部Feおよび不可避不純物からなり、且つ下記
(I)式または(II)式によって求められるフェライト
析出臨界冷却速度Vc1 またはVc2 が、熱間鍛造後の
800〜500℃間の平均冷却速度V以下となる様に成
分調節された鋼材を使用し、該鋼材を熱間鍛造後冷却し
て冷却後の組織を初析フェライトを含まないベイナイト
またはベイナイトとマルテンサイトとの混合組織とし、
次いで350〜600℃の温度範囲で焼戻しするところ
に要旨を有するものである。 Vc1 =10k1(℃/秒)……(I) Vc2 =10k2(℃/秒)……(II) 但し、k1=4.05-(4.5 ×%C+%Mn +0.8 ×%Cr +9 ×%N
b) k2=4.05-(4.5 ×%C+%Mn+0.8×%Cr+9 ×%Nb+0.5 ×%Ni+
1.6 ×%Mo) (%元素は、当該元素の鋼中の含有率を表わす)
[Means for Solving the Problems] The composition of the manufacturing method according to the present invention, which was able to solve the above problems, is C: 0.05 to 0.30%, Si: 0.05 to 2.0%, Mn: 0.3 to 5.0%, Cr: 1.0 to 3.0%, Nb: 0.01 to 0.5%, Al: 0.01 to 0.06%, N: 0.005 to 0. 02%, or in addition to these, Ni: 0.2 to 3.0%, Mo: 0.05 to 1.0%, V: 0.03 to 0.5%, Ti: 0.003 To 0.2% of at least one element selected from the group consisting of balance Fe and inevitable impurities, and the ferrite precipitation critical cooling rate Vc 1 determined by the following formula (I) or (II) Alternatively, steel whose composition is adjusted so that Vc 2 is equal to or less than the average cooling rate V between 800 and 500 ° C. after hot forging. Using a material, the steel material is cooled after hot forging to a bainite that does not contain proeutectoid ferrite and a mixed structure of bainite and martensite after cooling,
Then, it has the gist of tempering in the temperature range of 350 to 600 ° C. Vc 1 = 10 k1 (° C / sec) …… (I) Vc 2 = 10 k2 (° C / sec) …… (II) However, k1 = 4.05- (4.5 ×% C +% Mn + 0.8 ×% Cr + 9 ×% N
b) k2 = 4.05- (4.5 x% C +% Mn + 0.8 x% Cr + 9 x% Nb + 0.5 x% Ni +
1.6 ×% Mo) (% element represents the content rate of the element in steel)

【0008】本発明においては、更に他の成分として、
S:0.12%以下、Pb:0.3%以下、Ca:0.
01%以下、Te:0.3%以下、Bi:0.3%以下
よりなる群から選択される少なくとも1種の元素を含む
鋼材を使用することによって、優れた被削性を与えるこ
とができる。上記方法を実施するに当たり用いられる熱
間鍛造材としては、溶鋼から鋼塊もしくは鋼片を製造す
る際に、溶鋼の鋳込み後1500〜900℃の間を2℃
/分以上の冷却速度で冷却した非調質鋼棒を使用し、熱
間鍛造時の鋼材加熱温度を1300℃以下として熱間鍛
造を行ない、850〜1150℃の温度で鍛造を終了し
て所定形状に成形加工したものを使用するれば、本発明
の特徴を一層効果的に達成することができる。
In the present invention, as other components,
S: 0.12% or less, Pb: 0.3% or less, Ca: 0.
Excellent machinability can be provided by using a steel material containing at least one element selected from the group consisting of 01% or less, Te: 0.3% or less, and Bi: 0.3% or less. . As a hot forging material used for carrying out the above method, when a steel ingot or a steel slab is produced from molten steel, 2 ° C. between 1500 and 900 ° C. after casting of molten steel is used.
Using a non-heat treated steel bar cooled at a cooling rate of at least 1 minute, hot forging is performed at a steel material heating temperature of 1300 ° C. or less during hot forging, and the forging is completed at a temperature of 850 to 1150 ° C. The features of the present invention can be more effectively achieved by using a molded product.

【0009】[0009]

【作用】上記の様に本発明では、鋼材の化学成分を特定
すると共に、特に熱間鍛造後の800〜500℃の間の
平均冷却速度Vを基準にして、前記(I),(II)式で
求められるフェライト析出臨界冷却速度Vc1 またはV
2 が該冷却速度V以下となる様に成分調整された鋼材
を使用し、これを熱間鍛造後冷却することによって冷却
後の組織を初析フェライトを含まないベイナイトまたは
ベイナイトとマルテンサイトの混合組織とし、その後加
熱あるいは鍛造品の自熱を利用した焼戻しを350〜6
00℃の温度範囲で行なうことにより、高強度且つ高靭
性でしかも高い降伏比を有する熱間鍛造用非調質鋼を得
ることに成功したものである。まず、本発明において鋼
材の化学成分を定めた理由を明確にする。
As described above, in the present invention, the chemical composition of the steel material is specified, and particularly, the average cooling rate V between 800 and 500 ° C. after hot forging is used as a reference, and the above (I) and (II) are used. Ferrite precipitation critical cooling rate Vc 1 or V obtained by the formula
A steel material whose composition is adjusted so that c 2 is equal to or lower than the cooling rate V is used, and the microstructure after cooling is cooled by hot forging and bainite containing no proeutectoid ferrite or a mixture of bainite and martensite. Structured and then tempered by heating or using the self-heating of the forged product 350-6
By carrying out in the temperature range of 00 ° C., the non-heat treated steel for hot forging having high strength and high toughness and a high yield ratio was successfully obtained. First, the reason for defining the chemical composition of the steel material in the present invention will be clarified.

【0010】C:0.05〜0.30% Cは素材の焼入性を高め熱間鍛造・冷却後の組織をベイ
ナイトまたはベイナイトとマルテンサイトとの混合組織
にすると共に、必要な強度を確保するのに必須の元素で
あり、少なくとも0.05%以上含有させなければなら
ない。しかし過度に含有させると、靭性が低下するばか
りでなく、被削性にも悪影響が表われてくるので0.3
0%以下に抑えなければならない。
C: 0.05 to 0.30% C enhances the hardenability of the material and makes the structure after hot forging and cooling into bainite or a mixed structure of bainite and martensite, and secures the necessary strength. It is an indispensable element to achieve this, and it must be contained at least 0.05% or more. However, if it is contained excessively, not only the toughness is deteriorated but also the machinability is adversely affected.
Must be kept below 0%.

【0011】Si:0.05〜2.0% Siは、溶製時の脱酸と必要な強度を確保するのに有用
な元素であり、特にマトリックス中に固溶して耐力や疲
労強度を向上させる。これらの効果は0.05%以上含
有させることによって有効に発揮されるが、過度に添加
すると被削性を大幅に悪化させるので、2.0%を上限
とする。
Si: 0.05 to 2.0% Si is an element useful for deoxidizing during melting and ensuring the required strength, and is particularly solid-dissolved in the matrix to improve the yield strength and fatigue strength. Improve. These effects are effectively exhibited by containing 0.05% or more, but if added excessively, the machinability is significantly deteriorated, so 2.0% is made the upper limit.

【0012】Mn:0.3〜5.0% Mnは、Siと同様溶製時の脱酸元素として有効に作用
するほか、焼入性を上げて強度を高める作用を有してお
り、C量が上記の様に定められた条件の下で引張強さ8
0kgf/mm2 以上の高強度を得るには、Mnを0.
3%以上含有させなければならない。しかし5.0%を
超えて添加してもそれ以上の強度向上効果が得られず、
むしろ被削性に及ぼす悪影響が顕出してくるので、5.
0%を上限とする。
Mn: 0.3-5.0% Mn, like Si, acts effectively as a deoxidizing element during melting, and also has the effect of increasing hardenability and strength. Tensile strength of 8 under the conditions specified above
In order to obtain a high strength of 0 kgf / mm 2 or more, Mn is set to 0.
Must be contained by 3% or more. However, even if added in excess of 5.0%, no further improvement in strength can be obtained,
Rather, it has an adverse effect on machinability, so 5.
The upper limit is 0%.

【0013】Cr:1.0〜3.0% Crは、Mnと同様に焼入性を高めて必要な強度を確保
するのに必須の元素であり、1.0%以上添加する必要
がある。しかしその効果は3.0%以上で飽和するの
で、それ以上の添加は経済的に無駄である。
Cr: 1.0 to 3.0% Cr, like Mn, is an essential element for enhancing the hardenability and ensuring the required strength, and it is necessary to add 1.0% or more. . However, the effect is saturated at 3.0% or more, so addition of more than that is economically useless.

【0014】Nb:0.01〜0.5% Nbは、炭化物または窒化物形成元素としてオーステナ
イト結晶粒を微細化する作用を発揮するほか、添加Nb
の一部は固溶して熱間鍛造後の冷却時の焼入性を増大さ
せる作用も有しており、これらの効果は0.01%以上
添加することによって有効に発揮される。しかしそれら
の作用は0.5%で飽和するので、それ以上の添加は経
済的に無駄である。
Nb: 0.01 to 0.5% Nb has a function of refining austenite crystal grains as a carbide or nitride forming element, and also Nb added.
Has a function of increasing the hardenability at the time of cooling after hot forging by forming a solid solution, and these effects are effectively exhibited by adding 0.01% or more. However, their effects saturate at 0.5%, so any further addition is economically wasteful.

【0015】Al:0.01〜0.06% Alは、溶製時に脱酸元素として作用するほか、窒化物
を生成してオーステナイト結晶粒を微細化するうえでも
有効な元素であり、これらの効果を有効に発揮させるに
は0.01%以上添加しなければならない。しかし過多
に含有させるとオーステナイト結晶粒がかえって粗大化
し靭性を悪化させるので0.06%を上限とする。
Al: 0.01 to 0.06% Al acts as a deoxidizing element during melting, and is also an element effective in forming nitrides and refining austenite crystal grains. In order to exert the effect effectively, 0.01% or more must be added. However, if it is contained excessively, the austenite crystal grains are rather coarsened and the toughness is deteriorated, so the upper limit is 0.06%.

【0016】N:0.005〜0.02% Nは、窒化物形成元素と結合しオーステナイト結晶粒を
微細化する作用があり、その効果を有効に発揮させるに
は0.005%以上添加しなければならない。しかし
0.02%を超えて添加してもそれ以上の効果は得られ
ず、むしろ窒化物系介在物量の増大により靭性に悪影響
が表われてくるので0.02%を上限とする本発明にお
ける必須の構成元素は上記の通りであり、残部はFeと
不可避不純物からなるものであるが、更に他の元素とし
て下記の様にNi,Mo,V,Tiの1種以上を適量含
有させることによって靭性や強度を一層高めたり、ある
いはS,Pb,Ca,Te,Biの1種以上を適量含有
させることによって被削性を高めることも有効である。
N: 0.005-0.02% N has an action of combining with a nitride-forming element to refine austenite crystal grains, and in order to exert its effect effectively, 0.005% or more is added. There must be. However, even if added in excess of 0.02%, no further effect is obtained, and rather, the toughness is adversely affected by an increase in the amount of nitride-based inclusions. Therefore, in the present invention, the upper limit is 0.02%. The essential constituent elements are as described above, and the balance consists of Fe and unavoidable impurities. However, by further adding one or more of Ni, Mo, V, and Ti as appropriate as other elements as described below, It is also effective to further improve the toughness and strength, or to increase the machinability by adding an appropriate amount of one or more of S, Pb, Ca, Te and Bi.

【0017】Ni:0.2〜3.0%,Mo:0.05
〜1.0%,V:0.03〜0.5%,Ti:0.00
3〜0.2%の1種以上 Niは、焼入性を高めると共に靭性を向上させるのに有
効な元素であり、それらの効果は0.2%以上添加する
ことによって有効に発揮される。しかし、その効果は
3.0%で飽和するのでそれ以上の添加は無駄である。
MoもNiと同様良好な焼入性を与えると共に靭性を高
める作用があり、それらの効果は0.05%以上添加す
ることによって有効に発揮される。しかし、その効果は
1.0%で飽和するため、それ以上の添加は無駄であ
る。Vは炭化物または窒化物を形成してオーステナイト
結晶粒を微細化し靭性向上に寄与すると共に強度を高め
る作用も有しており、これらの効果は0.03%以上の
添加で有効に発揮される。しかし、それらの効果は0.
5%で飽和する。Tiは、加熱時のオーステナイト結晶
粒の成長を抑制すると共に、Sとの複合含有により組織
を微細化し、靭性を大幅に改善する。こうした効果は
0.003%以上添加することによって有効に発揮され
るが、0.2%を超えて過多に添加してもそれ以上の効
果は得られないので0.2%を上限とする。
Ni: 0.2 to 3.0%, Mo: 0.05
~ 1.0%, V: 0.03-0.5%, Ti: 0.00
3 to 0.2% of one or more kinds of Ni is an element effective for improving hardenability and toughness, and these effects are effectively exhibited by adding 0.2% or more. However, the effect is saturated at 3.0%, so any further addition is useless.
Mo, like Ni, has the effects of providing good hardenability and enhancing toughness, and these effects are effectively exhibited by adding 0.05% or more. However, the effect saturates at 1.0%, so any further addition is useless. V has the effect of forming carbides or nitrides, refining the austenite crystal grains, contributing to improving the toughness, and increasing the strength, and these effects are effectively exhibited by addition of 0.03% or more. However, their effect is 0.
Saturate at 5%. Ti suppresses the growth of austenite crystal grains at the time of heating, and when it is combined with S, Ti makes the structure fine and significantly improves the toughness. Such an effect is effectively exhibited by adding 0.003% or more, but even if it is added in excess of 0.2%, no further effect can be obtained, so the upper limit is 0.2%.

【0018】S:0.12%以下,Pb:0.3%以
下,Ca:0.01%以下,Te:0.3%以下,B
i:0.3%以下の1種以上 これらの元素はいずれも被削性向上元素であり、各々上
記の範囲で含有させることによって被削性を改善するこ
とができるが、夫々上限値を超えてもそれ以上の被削性
改善効果は得られず、むしろ靭性劣化の問題が生じてく
るので、上記の様に各々の上限値を定めた。
S: 0.12% or less, Pb: 0.3% or less, Ca: 0.01% or less, Te: 0.3% or less, B
i: 1% or more of 0.3% or less All of these elements are machinability improving elements, and the machinability can be improved by including each in the above range, but each exceeds the upper limit. However, no further improvement in machinability can be obtained, and rather the problem of toughness deterioration arises, so the upper limit of each is set as described above.

【0019】本発明では上記化学成分の要件を満たす鋼
材を使用し、これを熱間鍛造後冷却して所定の金属組織
を得た後、再加熱もしくは当該鍛造品の自熱を利用した
焼戻しを行なって非調質鋼を得るものであるが、本発明
で意図する高レベルの降伏比と強度および靭性を得るに
は、熱間鍛造後の800〜500℃間の平均冷却速度V
を基準にして、前記(I)式または(II)式で求められ
るフェライト析出臨界冷却速度Vc1 またはVc2 が上
記平均冷却速度V以下となる様に鋼材の化学成分(C,
Mn,Cr,Nb,NiおよびMoの含有量)を調整
し、熱間鍛造・冷却後の組織を、初析フェライトを含ま
ないベイナイトまたはベイナイトとマルテンサイトとの
混合組織とし、その後の焼戻しを350〜600℃の温
度範囲で行なう必要がある。
In the present invention, a steel material satisfying the requirements of the above chemical composition is used. After hot forging, the steel material is cooled to obtain a predetermined metallographic structure, and then reheated or tempered by utilizing the self heat of the forged product. However, in order to obtain a high level of yield ratio, strength and toughness intended in the present invention, the average cooling rate V between 800 and 500 ° C. after hot forging is performed.
With reference to the above formula (I) or (II), the ferrite precipitation critical cooling rate Vc 1 or Vc 2 should be equal to or less than the above average cooling rate V.
(Contents of Mn, Cr, Nb, Ni and Mo) are adjusted, and the structure after hot forging and cooling is set to bainite containing no proeutectoid ferrite or a mixed structure of bainite and martensite, and subsequent tempering is performed at 350 It is necessary to perform in the temperature range of up to 600 ° C.

【0020】ここで、800〜500℃間の平均冷却速
度Vを基準として定めたのは、多くの実験結果からフェ
ライト析出臨界冷却速度Vc1 ,Vc2 の関係を整理し
た結果より、上記温度範囲において最も対応がとれると
の確認結果に基づくものである。またフェライト析出臨
界冷却速度Vc1 またはVc2 は、前記(I),(II)
式に示す如く鋼材の化学成分によって決まってくるもの
であるが、これらVc 1 またはVc2 が上記平均冷却速
度Vを超えると、熱間鍛造・冷却後の組織が初析フェラ
イトやパーライトを含むものとなり、本発明で意図する
様な冷却後の金属組織が得られなくなり、その後の焼戻
し条件を適正に設定しても十分な靭性と降伏比を有する
非調質鋼が得られない。
Here, the average cooling rate between 800 and 500 ° C.
It was decided from the results of many experiments that the degree V was set as the standard.
Light precipitation critical cooling rate Vc1 , Vc2 Organize relationships
From the results, it can be seen that the best correspondence can be obtained in the above temperature range.
It is based on the confirmation result of. In addition, ferrite precipitation
Field cooling rate Vc1 Or Vc2 Is the above (I), (II)
What is determined by the chemical composition of the steel as shown in the formula
However, these Vc 1 Or Vc2 Is the above average cooling speed
If the temperature exceeds V, the structure after hot forging and cooling is the primary eutectoid blower.
And perlite and are contemplated by the present invention.
It is impossible to obtain a metallic structure after cooling like
Sufficient toughness and yield ratio even if the bending conditions are set appropriately
Non-heat treated steel cannot be obtained.

【0021】また熱間鍛造・冷却後に行なわれる焼戻し
は、再加熱もしくは当該鍛造品の自熱を利用して行なわ
れるもので、該焼戻しの処理温度は、得られる非調質鋼
の降伏比や強度・靭性に顕著な影響を及ぼす。即ち、焼
戻し時の温度が350℃未満の低温域では、転移の移動
を阻止する析出物の生成量が少ないため降伏強度を十分
に高めることができず、一方600℃を超える高温で焼
戻しを行なうと、本発明で定める前述の様な低炭素鋼で
は十分な強度と靭性が得られず、高強度・高靭性化の目
的が果たせなくなる。
Further, tempering performed after hot forging / cooling is performed by reheating or utilizing self-heating of the forged product, and the treatment temperature of the tempering depends on the yield ratio of the non-heat treated steel obtained or Significantly affects strength and toughness. That is, in the low temperature range where the temperature during tempering is less than 350 ° C., the yield strength cannot be sufficiently increased because the amount of precipitates that prevent migration of transition is small, while tempering is performed at a high temperature exceeding 600 ° C. Therefore, the above-mentioned low carbon steel defined in the present invention cannot obtain sufficient strength and toughness, and the purpose of high strength and high toughness cannot be achieved.

【0022】しかしながら、前述の如く熱間鍛造後の8
00〜500℃の間の平均冷却速度Vを基準にしてフェ
ライト析出臨界冷却速度Vc1 またはVc2 がV以下と
なる様に成分調整した鋼材を用いて熱間鍛造後冷却する
と、冷却後の組織は、初析フェライトを含まないベイナ
イトもしくはベイナイトとマルテンサイトとの混合組織
となり、且つこれを350〜600℃の温度域で焼戻し
処理すると、降伏比、強度、靭性の全てにおいて優秀な
非調質鋼を得ることができる。尚、焼戻し処理時間は特
に制限はされないが、一般的なのは1〜3時間程度であ
る。
However, as described above, 8 after hot forging
The structure after cooling is performed after hot forging using a steel material whose composition is adjusted so that the ferrite precipitation critical cooling rate Vc 1 or Vc 2 becomes V or less based on the average cooling rate V between 00 and 500 ° C. Is a bainite that does not contain proeutectoid ferrite or a mixed structure of bainite and martensite, and when this is tempered in the temperature range of 350 to 600 ° C., it is an excellent non-heat treated steel in terms of yield ratio, strength, and toughness. Can be obtained. The tempering treatment time is not particularly limited, but is generally about 1 to 3 hours.

【0023】尚、本発明で使用する上記熱間鍛造材とし
ては、溶鋼から鋼塊もしくは鋼片を製造する際に、溶鋼
の鋳込み後1500〜900℃の間を2℃/分の冷却速
度で冷却した非調質鋼棒を使用し、熱間鍛造時の鋼材加
熱温度を1300℃以下として熱間鍛造を行ない、85
0〜1150℃の温度で鍛造を終了して所定形状に成形
加工したものを使用することが望まれる。しかして、上
記温度範囲における冷却速度が2℃/分未満の低速にな
ると、硫化物や酸化物が凝集粗大化して微細な結晶組織
が得られなくなり、鍛造材の靭性が急激に悪くなる傾向
があるからである。
As the above-mentioned hot forged material used in the present invention, when a steel ingot or a steel slab is produced from molten steel, it is cooled at a cooling rate of 2 ° C./minute between 1500 and 900 ° C. after casting the molten steel. Using a cooled non-heat treated steel rod, hot forging was performed by setting the steel material heating temperature during hot forging to 1300 ° C or lower.
It is desirable to use a product that has been forged at a temperature of 0 to 1150 ° C. and formed into a predetermined shape. However, when the cooling rate in the above temperature range becomes lower than 2 ° C./minute, the sulfides and oxides are aggregated and coarsened, and a fine crystal structure cannot be obtained, so that the toughness of the forged material tends to be rapidly deteriorated. Because there is.

【0024】また、鍛造加熱時の温度が1300℃を超
える高温になると、矢張り結晶粒が粗大化して靭性に悪
影響が現れてくる。更に、鍛造仕上げ温度が1150℃
を超える高温になると、結晶粒が粗大化して靭性に悪影
響が現れ、また850℃未満の低温では、鍛造時の変形
抵抗が大きくなって金型寿命を大幅に短縮させることに
なるので実用的でなくなる。
When the temperature during forging heating exceeds 1300 ° C., the arrow-shaped crystal grains become coarse and the toughness is adversely affected. Furthermore, the forging finish temperature is 1150 ° C
When the temperature is higher than, the crystal grains are coarsened and the toughness is adversely affected, and when the temperature is lower than 850 ° C., the deformation resistance during forging becomes large and the life of the mold is significantly shortened, which is practical. Disappear.

【0025】本発明では、上記の様な条件で熱間鍛造を
行なった成形加工材を使用し、これを前述の条件で冷却
後再加熱もしくは自熱を利用した焼戻しを所定条件で行
なうことによって、焼入れ・焼戻しの調質処理を行なう
ことなく非調質のままで従来の調質鋼と同等もしくはこ
れを上回る強度と靭性を有し且つ降伏比の非常に優れた
熱間鍛造用鋼を提供し得ることになった。
In the present invention, the formed material which is hot forged under the above-mentioned conditions is used, and the material is cooled under the above-mentioned conditions and then re-heated or tempered by utilizing the self-heating under the predetermined conditions. Provides hot forging steel that has strength and toughness equal to or higher than that of conventional tempered steel without heat treatment such as quenching and tempering, and with excellent yield ratio I was able to do it.

【0026】[0026]

【実施例】次に本発明の実施例を示すが、本発明はもと
より下記実施例によって制限を受けるものではなく、前
後記の趣旨に適合し得る範囲で適当に変更を加えて実施
することも勿論可能であり、それらはいずれも本発明の
技術的範囲に含まれる。
EXAMPLES Next, examples of the present invention will be shown, but the present invention is not limited by the following examples, and may be carried out with appropriate modifications within a range compatible with the gist of the preceding and following description. Of course, it is possible, and all of them are included in the technical scope of the present invention.

【0027】実施例1 表1に示す化学組成の鋼を150Kg容量のVIF溶製
炉で溶製した後、溶鋼から鋼塊を製造する時の1500
℃から900℃までの間の冷却速度を、気水噴霧と冷却
水シャワーにより変化させて得た各鋼塊を1250℃に
加熱し、鍛造終了温度を1150℃として直径50mm
の丸棒に鍛伸した。得られた各丸棒を75mmの長さに
切断した後、1150〜1350℃に加熱し、鍛造終了
温度を1050〜1250℃として直径25mmまで熱
間鍛造し、空冷処理した。その後、更に500℃で2時
間の焼戻し処理を行なった後、切削加工によって引張試
験片およびJIS 3号衝撃試験片を切り出し、室温で
物性試験を行なった。結果を表2に示す。
Example 1 Steel having the chemical composition shown in Table 1 was melted in a VIF smelting furnace having a capacity of 150 kg, and then 1500 was used when a steel ingot was manufactured from the molten steel.
Each ingot obtained by changing the cooling rate from ℃ to 900 ℃ by steam spray and cooling water shower is heated to 1250 ℃, the forging end temperature is 1150 ℃ and the diameter is 50 mm.
It was forged into a round bar. Each of the obtained round bars was cut into a length of 75 mm, then heated to 1150 to 1350 ° C., hot forged to a diameter of 25 mm at a forging end temperature of 1050 to 1250 ° C., and air-cooled. Then, after further tempering treatment at 500 ° C. for 2 hours, tensile test pieces and JIS No. 3 impact test pieces were cut out by cutting and subjected to physical property tests at room temperature. The results are shown in Table 2.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】表1,2からも明らかである様に、本発明
の好適要件を満たす条件で鍛造を行なったもの(No.
1〜3)は、引張強度、衝撃値および降伏比のいずれに
おいても高い値が得られている。これに対し、鋼塊の冷
却条件、鍛造時の加熱温度、および鍛造終了温度のいず
れかが本発明の好適要件を外れるもの(No.4,5)
は、衝撃値および降伏比が明らかに低い結果を示してい
る。
As is clear from Tables 1 and 2, those forged under the conditions satisfying the preferred requirements of the present invention (No.
1-3), high values were obtained in all of the tensile strength, impact value and yield ratio. On the other hand, any of the cooling conditions of the steel ingot, the heating temperature during forging, and the forging end temperature deviates from the preferred requirements of the present invention (No. 4, 5).
Indicates that the impact value and the yield ratio are clearly low.

【0031】実施例2 150kg容量のVIF炉を用いて表3に示す鋼を溶製
した後、溶鋼から鋼塊を製造する時の1500℃から9
00℃までの間の冷却速度を2.25℃/分として製造
した鋼塊を1250℃に加熱し、鍛造終了温度を115
0℃として直径50mmの丸棒に鍛伸した。次いで、こ
の丸棒を75mmの長さに切断した後、1250℃に加
熱し仕上がり温度1150℃で直径25mmまで熱間鍛
造してから空冷した。このときの800〜500℃の間
の平均冷却速度は1.2℃/秒一定とした。その後50
0℃で2時間の焼戻し処理を行ない、切削加工によって
引張試験片およびJIS 3号に規定する衝撃試験片を
切り出して室温で物性試験を行なった。用いた鋼材のフ
ェライト析出臨界冷却速度と鍛造・冷却後の金属組織、
並びに物性試験結果を表4に示す。
Example 2 After melting the steel shown in Table 3 using a VIF furnace having a capacity of 150 kg, a temperature of 1500 ° C. to 9 ° C. at the time of manufacturing a steel ingot from the molten steel
The steel ingot produced at a cooling rate up to 00 ° C of 2.25 ° C / min was heated to 1250 ° C, and the forging end temperature was set to 115
The rod was forged into a round bar having a diameter of 50 mm at 0 ° C. Next, this round bar was cut into a length of 75 mm, heated to 1250 ° C., hot-forged to a diameter of 25 mm at a finishing temperature of 1150 ° C., and then air-cooled. At this time, the average cooling rate between 800 and 500 ° C was constant at 1.2 ° C / sec. Then 50
A tempering treatment was performed at 0 ° C. for 2 hours, a tensile test piece and an impact test piece specified in JIS No. 3 were cut out by cutting, and a physical property test was performed at room temperature. Ferrite precipitation critical cooling rate of used steel and metal structure after forging and cooling,
Table 4 shows the results of the physical property test.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】表3,4において供試鋼A〜Jは、化学成
分、熱間鍛造後の冷却条件、冷却後の金属組織のいずれ
も規定要件を満たす実施例であり、引張強さ、衝撃値、
降伏比のいずれにおいても従来の焼入れ・焼戻し処理材
(調質材:供試鋼X,Y)と同等もしくはそれ以上の値
が得られている。また供試鋼Zは従来の非調質鋼であ
り、C量が多過ぎると共にCr量が不足し、また金属組
織がフェライトとパーライトからなるものであって、本
発明の実施例に比べると引張強さ、衝撃値、降伏比のい
ずれも低い。供試鋼K〜Rは本発明で規定するいずれか
の要件を欠く比較例であり、以下に示す如くいずれも性
能に問題がある。
In Tables 3 and 4, each of the test steels A to J is an example satisfying the prescribed requirements in terms of chemical composition, cooling conditions after hot forging, and metal structure after cooling. Tensile strength and impact value ,
In each of the yield ratios, a value equal to or higher than that of the conventional hardened / tempered material (tempered material: sample steel X, Y) was obtained. Further, the sample steel Z is a conventional non-heat treated steel, has an excessive amount of C and an insufficient amount of Cr, and has a metallographic structure composed of ferrite and pearlite. Low strength, impact value and yield ratio. The test steels K to R are comparative examples lacking any of the requirements specified in the present invention, and all have problems in performance as shown below.

【0035】供試鋼K〜P:フェライト析出冷却速度V
1 ,Vc2 は熱間鍛造後の平均冷却速度(800〜5
00℃間)V以下であり、組織にはいずれもフェライト
が含まれていないが、供試鋼KはC量が不足し、供試鋼
NはCr量が不足し、また供試鋼OはNb量が不足する
ため、特に引張強さが低く、降伏比も十分でない。供試
鋼LはC量が過多であるため衝撃値が低い。供試鋼Mと
Pは引張強さ、衝撃値、降伏比のいずれにおいても比較
的良好な結果が得られているが、供試鋼MはMn量が規
定範囲を超え、また供試鋼PはNb量が規定範囲を超え
て多量添加しているにもかかわらずそれに見合った物性
向上効果は得られておらず、鋼材コストの上で不利であ
る。しかもこれらはの元素は、過剰添加すると被削性を
大幅に低下させ生産性を悪化させることも確認されてい
る。供試鋼Q,Rは、平均冷却速度Vに対してフェライ
ト析出臨界冷却速度Vc1,Vc2 が大きく、熱間鍛造
・冷却後の組織が適正でないため、特に衝撃値が極めて
低い。
Steels K to P tested: Ferrite precipitation cooling rate V
c 1 and Vc 2 are average cooling rates after hot forging (800 to 5
(Between 00 ° C.) V and below, and the structure does not contain any ferrite, but the sample steel K lacks the amount of C, the sample steel N lacks the amount of Cr, and the sample steel O Since the amount of Nb is insufficient, the tensile strength is particularly low and the yield ratio is not sufficient. The steel sample L has an excessive amount of C and thus has a low impact value. The test steels M and P have relatively good results in terms of tensile strength, impact value, and yield ratio, but the test steel M has a Mn content exceeding the specified range, and the test steel P Despite the fact that the Nb amount exceeds the specified range and is added in a large amount, the effect of improving the physical properties commensurate with that is not obtained, which is disadvantageous in terms of steel cost. Moreover, it has been confirmed that these elements, if added excessively, significantly reduce machinability and deteriorate productivity. The test steels Q and R have extremely large ferrite precipitation critical cooling rates Vc 1 and Vc 2 with respect to the average cooling rate V, and the structures after hot forging and cooling are not appropriate, so that the impact values are extremely low.

【0036】実施例3 表3に示したもののうち供試鋼Iを、150kg容量の
VIF溶製炉で溶製した後、1500℃から900℃ま
での間の冷却速度を2.25℃/分として直径50mm
の丸棒に鍛伸した。この鍛伸材を75mmに切断した
後、1250℃に加熱し同温度で直径25mmまで熱間
鍛造してから空冷し、更に100〜650℃で2時間焼
戻し処理した。得られた焼戻し材の物性を前記と同様の
方法で測定し、図1に示す結果を得た。図1からも明ら
かである様に、化学成分等において規定要件を満たす鋼
材を使用した場合でも、焼戻し処理温度が350℃未満
では衝撃値および耐力比が不十分であり、一方600℃
を超えると衝撃値および引張強さが急激に悪化すること
が分かる。
Example 3 Among the steels shown in Table 3, the sample steel I was melted in a VIF melting furnace having a capacity of 150 kg, and then the cooling rate from 1500 ° C. to 900 ° C. was 2.25 ° C./min. As a diameter of 50 mm
It was forged into a round bar. This forged material was cut into 75 mm, heated to 1250 ° C., hot forged to a diameter of 25 mm at the same temperature, air-cooled, and further tempered at 100 to 650 ° C. for 2 hours. The physical properties of the obtained tempered material were measured by the same method as described above, and the results shown in FIG. 1 were obtained. As is clear from FIG. 1, even when a steel material satisfying specified requirements in chemical composition etc. is used, the impact value and the proof stress ratio are insufficient when the tempering temperature is lower than 350 ° C, while 600 ° C.
It can be seen that the impact value and the tensile strength are rapidly deteriorated when the value exceeds.

【0037】[0037]

【発明の効果】本発明は以上の様に構成されており、焼
入れ・焼戻しの調質処理を行なうことなく非調質のまま
でも、従来の調質鋼と同等もしくはこれを上回る強度と
靭性を有し、且つ降伏比の非常に優れた熱間鍛造用非調
質鋼を提供し得ることになった。
EFFECTS OF THE INVENTION The present invention is configured as described above, and has strength and toughness equal to or higher than that of conventional tempered steel even if it is not tempered without tempering treatment such as quenching and tempering. It has become possible to provide a non-heat treated steel for hot forging which has an excellent yield ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱間圧延・冷却後に行なわれる焼戻し処理時の
温度が物性に与える影響を示す実験結果のグラフであ
る。
FIG. 1 is a graph of experimental results showing the effect of temperature during tempering treatment performed after hot rolling and cooling on physical properties.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】C:0.05〜0.30%(重量%を意味
する、以下同じ)、 Si:0.05〜2.0%、 Mn:0.3〜5.0%、 Cr:1.0〜3.0%、 Nb:0.01〜0.5%、 Al:0.01〜0.06%、 N:0.005〜0.02%、 を含有し、残部Feおよび不可避不純物からなり、且つ
下記(I)式によって求められるフェライト析出臨界冷
却速度Vc1 が、熱間鍛造後の800〜500℃間の平
均冷却速度V以下となる様に成分調節された鋼材を使用
し、該鋼材を熱間鍛造後冷却して冷却後の組織を初析フ
ェライトを含まないベイナイトまたはベイナイトとマル
テンサイトとの混合組織とし、次いで350〜600℃
の温度範囲で焼戻しすることを特徴とする降伏比に優れ
た熱間鍛造用高強度高靭性非調質鋼の製法。 Vc1 =10k1(℃/秒)……(I) 但し、k1=4.05-(4.5 ×%C+%Mn +0.8 ×%Cr +9 ×%N
b) (%元素は、当該元素の鋼中の含有率を表わす)
1. C: 0.05 to 0.30% (meaning weight%, the same applies hereinafter), Si: 0.05 to 2.0%, Mn: 0.3 to 5.0%, Cr: 1.0-3.0%, Nb: 0.01-0.5%, Al: 0.01-0.06%, N: 0.005-0.02%, and the balance Fe and unavoidable. A steel material which is composed of impurities and whose composition is adjusted so that the ferrite precipitation critical cooling rate Vc 1 obtained by the following formula (I) is not more than the average cooling rate V between 800 and 500 ° C. after hot forging is used. , The steel material is hot forged and then cooled to obtain a structure after cooling as bainite containing no proeutectoid ferrite or a mixed structure of bainite and martensite, and then 350 to 600 ° C.
A method for producing high-strength, high-toughness non-heat treated steel for hot forging with excellent yield ratio, which is characterized by tempering in the temperature range of. Vc 1 = 10 k1 (° C / sec) (I) However, k1 = 4.05- (4.5 ×% C +% Mn +0.8 ×% Cr +9 ×% N
b) (% element represents the content rate of the element in steel)
【請求項2】 鋼材が、更に他の成分として、S:0.
12%以下、Pb:0.3%以下、Ca:0.01%以
下、Te:0.3%以下、Bi:0.3%以下よりなる
群から選択される少なくとも1種の元素を含むものであ
る請求項1記載の製法。
2. A steel material containing S: 0.
It contains at least one element selected from the group consisting of 12% or less, Pb: 0.3% or less, Ca: 0.01% or less, Te: 0.3% or less, and Bi: 0.3% or less. The manufacturing method according to claim 1.
【請求項3】 溶鋼から鋼塊もしくは鋼片を製造する際
に、溶鋼の鋳込み後1500〜900℃の間を2℃/分
以上の冷却速度で冷却した非調質鋼棒を使用し、熱間鍛
造時の鋼材加熱温度を1300℃以下として熱間鍛造を
行ない、850〜1150℃の温度で鍛造を終了して所
定形状に成形加工したものを使用する請求項1または2
に記載の製法。
3. When producing a steel ingot or a steel slab from molten steel, a non-heat treated steel rod is used which is cooled at a cooling rate of 2 ° C./min or more between 1500 to 900 ° C. after casting of molten steel, Hot-forging is performed at a steel material heating temperature of 1300 ° C. or less during hot forging, and forging is finished at a temperature of 850 to 1150 ° C. and formed into a predetermined shape.
The manufacturing method described in.
【請求項4】C:0.05〜0.30%、 Si:0.05〜2.0%、 Mn:0.3〜5.0%、 Cr:1.0〜3.0%、 Nb:0.01〜0.5%、 Al:0.01〜0.06%、 N:0.005〜0.02% を含有すると共に、 Ni:0.2〜3.0%、 Mo:0.05〜1.0%、 V:0.03〜0.5%、 Ti:0.003〜0.2% よりなる群から選択される少なくとも1種の元素を含有
し、残部Feおよび不可避不純物からなり、且つ下記
(II)式によって求められるフェライト析出臨界冷却速
度Vc2 が、熱間鍛造後の800〜500℃間の平均冷
却速度V以下となる様に成分調節された鋼材を使用し、
該鋼材を熱間鍛造後冷却して冷却後の組織を初析フェラ
イトを含まないベイナイトまたはベイナイトとマルテン
サイトとの混合組織とし、次いで350〜600℃の温
度範囲で焼戻しすることを特徴とする降伏比に優れた熱
間鍛造用高強度高靭性非調質鋼の製法。 Vc2 =10k2(℃/秒)……(II) 但し、k2=4.05-(4.5 ×%C+%Mn+0.8×%Cr+9 ×%Nb+0.5
×%Ni+1.6 ×%Mo) (%元素は、当該元素の鋼中の含有率を表わす)
4. C: 0.05 to 0.30%, Si: 0.05 to 2.0%, Mn: 0.3 to 5.0%, Cr: 1.0 to 3.0%, Nb : 0.01 to 0.5%, Al: 0.01 to 0.06%, N: 0.005 to 0.02%, Ni: 0.2 to 3.0%, Mo: 0 0.05 to 1.0%, V: 0.03 to 0.5%, Ti: 0.003 to 0.2%, containing at least one element selected from the group consisting of balance Fe and inevitable impurities. And the composition is adjusted so that the ferrite precipitation critical cooling rate Vc 2 obtained by the following formula (II) is equal to or less than the average cooling rate V between 800 and 500 ° C. after hot forging,
Yield characterized by cooling the steel material after hot forging to obtain a structure after cooling as bainite containing no proeutectoid ferrite or a mixed structure of bainite and martensite, and then tempering in a temperature range of 350 to 600 ° C. High strength and high toughness non-heat treated steel for hot forging with excellent ratio. Vc 2 = 10 k2 (° C / sec) (II) However, k2 = 4.05- (4.5 ×% C +% Mn + 0.8 ×% Cr + 9 ×% Nb + 0.5
(×% Ni + 1.6 ×% Mo) (% element represents the content rate of the element in steel)
【請求項5】 鋼材が、更に他の成分としてS:0.1
2%以下、Pb:0.3%以下、Ca:0.01%以
下、Te:0.3%以下、Bi:0.3%以下よりなる
群から選択される少なくとも1種の元素を含むものであ
る請求項3記載の製法。
5. The steel material further comprises S: 0.1 as another component.
It contains at least one element selected from the group consisting of 2% or less, Pb: 0.3% or less, Ca: 0.01% or less, Te: 0.3% or less, and Bi: 0.3% or less. The manufacturing method according to claim 3.
【請求項6】 溶鋼から鋼塊もしくは鋼片を製造する際
に、溶鋼の鋳込み後1500〜900℃の間を2℃/分
以上の冷却速度で冷却した非調質鋼棒を使用し、熱間鍛
造時の鋼材加熱温度を1300℃以下として熱間鍛造を
行ない、850〜1150℃の温度で鍛造を終了して所
定形状に成形加工したものを使用する請求項4または5
に記載の製法。
6. When producing a steel ingot or a steel slab from molten steel, a non-heat treated steel rod cooled at a cooling rate of 2 ° C./min or more between 1500 to 900 ° C. after casting of molten steel is used, Hot forging is performed at a steel material heating temperature of 1300 ° C. or lower during hot forging, the forging is finished at a temperature of 850 to 1150 ° C., and a product formed into a predetermined shape is used.
The manufacturing method described in.
JP33172693A 1993-10-29 1993-12-27 Production of high strength, high toughness non-heat treated steel for hot forging excellent in yield ratio Withdrawn JPH07173531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33172693A JPH07173531A (en) 1993-10-29 1993-12-27 Production of high strength, high toughness non-heat treated steel for hot forging excellent in yield ratio

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27274893 1993-10-29
JP5-272748 1993-10-29
JP33172693A JPH07173531A (en) 1993-10-29 1993-12-27 Production of high strength, high toughness non-heat treated steel for hot forging excellent in yield ratio

Publications (1)

Publication Number Publication Date
JPH07173531A true JPH07173531A (en) 1995-07-11

Family

ID=26550357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33172693A Withdrawn JPH07173531A (en) 1993-10-29 1993-12-27 Production of high strength, high toughness non-heat treated steel for hot forging excellent in yield ratio

Country Status (1)

Country Link
JP (1) JPH07173531A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957206A (en) * 2021-10-08 2022-01-21 南京钢铁集团冶金铸造有限公司 Black skin quenching and tempering process for preparing CrNiMo alloy steel forging circle
CN114480788A (en) * 2021-12-23 2022-05-13 江苏理研科技股份有限公司 Controlled cooling process of non-quenched and tempered steel
CN115491605A (en) * 2022-09-27 2022-12-20 东风商用车有限公司 Bainite steel for hot forging, process, device and system for manufacturing hot forged parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957206A (en) * 2021-10-08 2022-01-21 南京钢铁集团冶金铸造有限公司 Black skin quenching and tempering process for preparing CrNiMo alloy steel forging circle
CN114480788A (en) * 2021-12-23 2022-05-13 江苏理研科技股份有限公司 Controlled cooling process of non-quenched and tempered steel
CN115491605A (en) * 2022-09-27 2022-12-20 东风商用车有限公司 Bainite steel for hot forging, process, device and system for manufacturing hot forged parts

Similar Documents

Publication Publication Date Title
US20130186522A1 (en) Carburizing steel having excellent cold forgeability and method of manufacturing the same
CN112877591B (en) High-strength and high-toughness hardware tool and steel for chain and manufacturing method thereof
JP3036416B2 (en) Hot forged non-heat treated steel having high fatigue strength and method for producing forged product
JPH0892687A (en) High strength and high toughness non-heattreated steel for hot forging and its production
JPH11236644A (en) Steel for induction hardening excellent in high strength characteristic and low heat treating strain characteristic and its production
JP5080708B2 (en) Non-tempered steel forged product, method for producing the same, and connecting rod component for internal combustion engine using the same
JPH08277437A (en) Production of high strength and high toughness non-heat treated steel for hot forging and forged product thereof
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
CN113692456B (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JPH11217649A (en) Steel for induction hardening having both cold workability and high strength and its production
JP3554506B2 (en) Manufacturing method of hot-rolled wire and bar for machine structure
JP2888135B2 (en) High durability high strength non-heat treated steel and its manufacturing method
JPH09111401A (en) Steel for machine structural use, excellent in machinability and quenching crack resistance, and its production
JP2004183065A (en) High strength steel for induction hardening, and production method therefor
JPH08199309A (en) Stainless steel excellent in workability and its production
JPH07173531A (en) Production of high strength, high toughness non-heat treated steel for hot forging excellent in yield ratio
JPH0696742B2 (en) High strength / high toughness non-heat treated steel manufacturing method
JP2756535B2 (en) Manufacturing method for strong steel bars
JPH0718326A (en) Production of highly strong and tough rail by on-line heat treatment
JPH0219175B2 (en)
JPH07310118A (en) Production of case hardening steel suitable for cold-working
JP2767254B2 (en) Method for producing Cr-Mo case hardened steel
JP2000160285A (en) High-strength and high-toughness non-heat treated steel
JPH10280036A (en) Wire rod for high strength bolt excellent in strength and ductility and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306