JP3893921B2 - Low temperature Ni-containing steel and method for producing the same - Google Patents

Low temperature Ni-containing steel and method for producing the same Download PDF

Info

Publication number
JP3893921B2
JP3893921B2 JP2001278315A JP2001278315A JP3893921B2 JP 3893921 B2 JP3893921 B2 JP 3893921B2 JP 2001278315 A JP2001278315 A JP 2001278315A JP 2001278315 A JP2001278315 A JP 2001278315A JP 3893921 B2 JP3893921 B2 JP 3893921B2
Authority
JP
Japan
Prior art keywords
steel
low temperature
ctod
arrestability
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001278315A
Other languages
Japanese (ja)
Other versions
JP2002129280A (en
Inventor
一志 大西
浩 壱岐
秀治 岡口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001278315A priority Critical patent/JP3893921B2/en
Publication of JP2002129280A publication Critical patent/JP2002129280A/en
Application granted granted Critical
Publication of JP3893921B2 publication Critical patent/JP3893921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、低温用Ni含有鋼、特にLPG、LNGなどの低温貯槽タンク用含Ni鋼とその製造方法に関するものである。
【0002】
【従来の技術】
LPG、LNGなどの低温貯槽タンクを製造するための低温用鋼には、安全性確保の面から優れた破壊靱性が要求される。例えば、LNGタンクに使用される9%Ni鋼(本明細書では特にことわりがない限り「%」は「質量%」を意味するものとする)においては、LNG温度 (−165 ℃) における母材および溶接継手の脆性破壊伝播停止特性 (以下、アレスト特性という) などが求められる。
【0003】
これに対し、従来技術においてはP、Sをはじめとする不純物の低減、Cの低減、3段熱処理法 [焼入(Q) 、2相域焼入(L) 、焼戻(T)]など種々の改善が行われてきた。一方で、含Ni鋼における強度、靱性向上に有効な合金元素としてMoの添加が検討されてきた。
【0004】
このような従来技術の状況を特許公報を基に概括すると次の通りである。
まず、特公昭60−9568号公報には、Mo≧(Ni+Cr+Mn)/50 に規定した鋼材が開示されている。
【0005】
特公昭53−41614 号公報では、任意元素としてMo:0.01〜0.50%添加した熱延コイルを開示している。
特開昭53−97917 号公報では、Mo:0.05〜1% (ただし、Cr+1.3 Mo:0.3 〜1.5 %) のN−T鋼が開示されている。
【0006】
特公平4−9861号公報では、低Mn系に任意元素としてMo:0.02〜0.40%を添加した鋼材が開示されている。
特開平4−371520号公報では、Mo:0.04〜0.5 %添加した3段熱処理法(QLT) または直接焼入−2相焼入法(DQ-LT) 法にて製造した板厚40mm以上の9Ni鋼が開示されている。
【0007】
特開平6−184630号公報では、上記と同じ焼入焼戻法(QT)または直接焼入−焼戻法(DQ-T)法による40mm以上の9Ni鋼の製造方法が開示されている。
特公昭57−21022 号公報および同57−21024 号公報では、Mo:0.1 〜0.5 %の鋳鋼の製造技術が開示されている。
【0008】
【発明が解決しようとする課題】
しかしながら、特に近年に至り、溶接継手部の脆性破壊防止の観点から、溶接継手部のCTOD特性向上が望まれ、強度の確保とともに溶接継手靱性の確保が大きな問題となってきている。
【0009】
ここに、本発明の目的は、各種低温貯槽に使用される鋼材の規格強度を満足させながら、かつ、設計温度以下でのCTOD値 0.2mm以上の溶接部靱性を実現できる低温用Ni含有鋼とその製造方法を提供することである。
【0010】
【課題を解決するための手段】
そこで、このような観点から上述の従来技術を検討すると、いずれの技術も製造事例としてはMo>0.1%のものが主体であり、Moの下限を0.05%程度に規定しているものについても限定理由は極めてあいまいなものとなっている。
【0011】
ここで、従来技術には靱性確保の点で難があった理由として、Moの添加は、強度向上に有効であるが、Mo>0.1 %の添加は母材および溶接継手部の靱性の劣化もそれに伴って生じることによるものとの知見を得た。
【0012】
本発明者らは、Mo添加の影響をさらに詳細に検討した結果、従来ほとんど影響はないとみられていた0.1 %未満のMo添加が含Ni低温用鋼の特性改善に非常に有効であり、さらに脱酸元素であるSi、Al、ならびに鋼材特性に大きな影響を与えるCとともにMo添加の影響を調査したところ、各々の寄与を考えて4元素の総和を低く押さえることが必要であることを見い出し、本発明に至った。
【0013】
すなわち、図1および図2に9%Ni鋼の母材強度および靱性に及ぼす微量Mo添加の影響を、図3に溶接継手部のCTOD特性に及ぼす微量Mo添加の影響を各々示す。いずれも供試の9%Ni鋼の基本組成はC:0.05%、Si:0.25%、Mn:0.65%、Ni:9.0 %、Al:0.035 %、残部Feおよび不可避不純物である。
【0014】
ここに、図1は、YP、TSに及ぼすMo含有量の影響を示すグラフであり、図中、Mo添加量の増大に伴ってYP、TSともに増加している。
図2は、3面スリットシャルピーの延性破面率 (−196 ℃) に及ぼすMo含有量の影響を示すグラフであり、Mo:0.02〜0.08%に極大範囲を有している。
【0015】
図3は、溶接継手部の限界CTOD値 (−196 ℃) に及ぼすMo含有量の影響を示すグラフであり、図2の場合と同様にMo:0.02〜0.08%の範囲に極大値がみられる。
【0016】
これらより、QLT を行った板厚50mmの9%Ni鋼 (C=0.05%) において0.1 %のMo添加にて約80MPa の強度上昇があり、特に0.02%Moの微量添加にても30MPa 以上強度が上昇すること、0.08%程度のMo添加まで母材靱性 (ここではアレスト性の指標とされる3面スリットシャルピー) の劣化および溶接継手部の靱性 (ここでは脆性破壊発生特性の指標とされるCTOD) の劣化はなく、むしろ向上することが認められる。
【0017】
さらに、溶接継手部の靱性に関しては、図4に示すように、『C+Si/3+10Al+Mo』を0.50%以下に押さえることで著しい向上が認められる。
ここに、図4は、9%Ni鋼の溶接継手部の限界CTOD値に及ぼすC、Si、Al、Mo含有量の影響を示すグラフであり、基本組成としてC:0.03〜0.18%、Si:0.01〜0.50%、Mn:0.65%、Ni:9.0 %、Al:0.01〜0.05%、残部Feおよび不可避不純物を用い、式:C+Si/3+10Al+Moの値を変化させたときの限界CTOD値の変化を示す。実線のグラフ参照。比較のために上述の基本組成でMn=1.65%としたときの同じく限界CTOD値の変化を点線で示す。
【0018】
このように、Mo添加は焼入性の向上および焼戻し時の組織の微細化を通じて母材強度 (および靱性) 向上に有効であるが、逆に硬化相 (M−Aなど) および粒界炭化物の生成をもたらし、母材および溶接継手部の靱性低下につながる。そこで、Mo添加量を抑制 (≦0.08%) し、かつ硬化相の生成を抑えるべく、C、Si、Alを制御 (C+Si/3+10Al+Mo≦0.50%) することによって、母材の強度向上と、母材および溶接継手部の靱性改善とを同時にもたらすことが本発明において判明した。
【0019】
加えてC、Alを低減してMoを微量ながら添加するという本発明にかかる製造方法は、連続鋳造時のスラブ品質向上という効果も併せて期待できることも判明した。
【0020】
ここに、本発明は次の通りである。
(1)C:0.03〜0.10%、Si:0.50%以下、Mn:0.50〜1.50%、Ni:1.5〜5.0%、Mo:0.02〜0.08%、Al:0.05%以下、かつ、C+Si/3+10Al+Mo≦0.50%、残部Feおよび不可避的不純物から成る鋼組成を有するアレスト性および溶接部CTOD特性が優れた低温用Ni含有鋼。
【0021】
(2)Nb:0.02%以下および/または Ti 0.05 %以下を含有する上記(1)のアレスト性および溶接部CTOD特性が優れた低温用Ni含有鋼。
【0022】
(3)Ca:0.003質量%以下を含有する上記(1)または(2)のアレスト性および溶接部CTOD特性が優れた低温用Ni含有鋼
【0023】
(4)上記(1)〜(3)のいずれかの鋼組成を有するスラブを、圧延後Ac3点以上に加熱焼入後、Ac1点以下で焼戻しを行うことによるアレスト性および溶接部CTOD特性が優れた低温用Ni含有鋼の製造方法。
【0024】
(5)上記(1)〜(3)のいずれかの鋼組成を有するスラブを、熱間圧延後直ちにAr3点以上から2℃/s以上の冷却速度で400℃以下まで冷却した後、Ac1点以下で焼戻しを行うことによるアレスト性および溶接部CTOD特性が優れた低温用Ni含有鋼の製造方法。
【0025】
(6)前記焼戻しに先立って、Ac1〜Ar3点に加熱して焼入を行う、上記(4)または(5)のアレスト性および溶接部CTOD特性が優れた低温用Ni含有鋼の製造方法。
【0026】
(7)上記(1)〜(3)のいずれかの鋼組成を有するスラブを、熱間圧延する際に750〜850℃の累積圧下率が50%以上となるようにした後に、2℃/s以上の冷却速度で冷却を行い、400℃以上で冷却を停止することによるアレスト性および溶接部CTOD特性が優れた低温用Ni含有鋼の製造方法。
【0027】
すなわち、本発明が対象とする鋼組成における任意添加成分は、次の各群から選ばれた少なくとも一種以上を適宜組合わせて用いることができる
【0028】
I群:Nb:0.02%以下、Ti:0.05%以下
II群:Ca:0.003%以下。
【0029】
【発明の実施の形態】
本発明において鋼組成および製造条件を上述のように規定した理由について以下詳述する。
【0030】
C:
Cは低い方が靱性上は好ましいため0.10%以下、さらに好ましくは0.06%以下とする。一方、要求規格において異なるものの、強度確保の観点から下限を0.03%とする。
【0031】
Si:
Siは本発明の場合、下限は設定していないが、脱酸元素として、また強度確保の点からは0.10%超の添加が望ましい。一方、多すぎると溶接継手靱性などを劣化させるため上限を0.50%とする。好ましくは0.25%以下が望ましい。
【0032】
Mn:
Mnは強度および靱性向上のため0.50%以上添加するが、多すぎると溶接性を劣化させる。また、母材および溶接継手部の特性上の不均一性を助長することにもつながるため上限を1.5 %とする。好ましくは1.0 %以下である。
【0033】
Ni:
Niは強度および靱性を同時に向上させる元素として貴重な添加元素であることから1.5 %以上、好ましくは4.0 %以上とするが、コストアップにつながるため上限を9.5 %とする。
【0034】
Mo:
Moは本発明の特徴を示す元素であり、その添加量を0.02〜0.08%に規定することで、靱性を損わず強度を上昇させる。逆に強度一定として靱性を向上させるためには本発明の範囲の量のMo添加を前提として別の靱性劣化要因となる元素、例えばCなどを下げることが可能となる。好ましいMo添加量は0.04〜0.06%である。
【0035】
Al:
Alも、本発明では下限を設定しないが、脱酸元素として鋼の清浄性を確保するために0.01%超の添加が望ましいが、多すぎると粗大なAl2O3 を生成するかあるいは溶接継手部が劣化することから0.05%以下とするが、低いほど継手靱性上は有利となるため、好ましい範囲は0.025 %以下である。また、このようにAlの添加量を低く抑えることによってAlN 起因の連続鋳造時のスラブ表面品質劣化を防止することができる。
【0036】
C+Si/3+10Al+Mo:
母材および溶接継手部の靱性向上の観点から、Mo添加によって生成しやすくなるM−A (島状マルテンサイト) の生成を抑制する必要があり、このためにはC、Si、Alの低減が必要となるため上記関係式の値の上限を0.50%、望ましくは0.45%以下に規定する。
【0037】
ここで、Alの係数を10としているのは、継手靱性に対しては他元素よりも低Al化の効果が大きいことを意味している。
次に、本発明においては組織微細化による靱性改善をはかるためにNb Tiの少なくとも一種、そしてMnSの生成を防止して靱性改善をはかるためにCaを、それぞれ必要に応じて配合することができる。
【0039】
Nb:
Nbは細粒化元素として、オンライン加速冷却を活用する際には特に有効であるが、多すぎると継手靱性を劣化させることから上限を0.02%とする。
【0040】
Ti
Nbと同様の効果を有するが、Nbと同じ効果を得るためには添加量を増加させる必要があり、上限を 0.05 とNbより高めた。また、Tiについては脱酸元素としての活用も考えられる。
【0041】
Ca:
MnS の生成を防止して母材の板厚方向特性を向上させるために、あるいはシャルピー吸収エネルギーを増大させるために有効であるが、多すぎると清浄性を損なうため0.003 %以下とする。
【0042】
次に、本発明にかかる低温用Ni含有鋼の製造方法について説明するが、本発明にかかる方法は、圧延終了後に以下のようにオフライン熱処理を行う場合と、オンライン熱処理を行う場合とに分けて考えることができる。
オフライン熱処理の場合:
一般のQT鋼と同様にAc3 以上にて均一にオーステナイト化した後に、焼入れし、Ac1 点以下にて焼戻しを行う。
【0043】
さらに靱性を向上させる手段として高Ni材 (例えばNi>4.5 %) に対してはAc1 〜Ac3 の2相域焼入れを中間に挿入することが好ましい。
オンライン熱処理の場合:
オフライン熱処理の場合と同様に、均一な焼入れ組織とするためにAr3 以上のオーステナイト相から2℃/s以上の速度で加速冷却する。一般的には水冷が好ましいが薄肉で空冷にても2℃/s以上の冷却速度が確保できる場合には空冷でもかまわない。
【0044】
オンライン焼入れ後の熱処理方法はオフライン熱処理と同じである。また、制御圧延+加速冷却を行って強度靱性を向上させる場合には、冷却前の組織の細粒化のために750 〜850 ℃にて累積圧下率50%以上の圧延を行う必要があり、その後の加速冷却は、加速冷却の効果 (強度、靱性の向上) を得るために2℃/s以上の冷却速度とする。また、この場合、400 ℃以下まで加速冷却を行うと靱性の劣化が大きくなることから、400 ℃以上にて加速冷却を停止させることとする。
【0045】
なお、本プロセス適用に際しては、前述の範囲でのNb添加が好ましい。
ところで、C、Alを低減してMoを微量ながら添加するという本発明にかかる製造方法は、連続鋳造時のスラブ品質向上という効果も併せて期待できるという点で優れた製造法であると言えるが、その理由は次のように考えられる。
【0046】
一般に、CCスラブの横ヒビ割れにはAlNの粒界析出の影響が大きいとされることから、Alの低減はAlN析出を抑制し、スラブ品質を向上させ得る。この場合、Nの低減も好ましい。また、Cの低減もCによる脆化域(包晶域)を避けるという観点から有効となる。
【0047】
次に、実施例によって本発明の作用効果についてさらに具体的に説明する。
【0048】
【実施例】
表1に示す鋼組成を有する供試材を溶製し連続鋳造法によりスラブを製造し、本発明にしたがって熱間圧延終了後、オフラインおよびオンラインで熱処理を行い、得られたNi含有鋼材について溶接性、低温衝撃性の各特性を試験した。製造条件は同じく表1に示す。
【0049】
結果は表2にまとめて示す。
なお、溶接条件は次の通りである。
溶接方法:SMAW(X開先)
溶接材料:インコネル
溶接入熱量:約3KJ/mm
【0050】
【表1】

Figure 0003893921
【0051】
【表2】
Figure 0003893921
【0052】
【発明の効果】
本発明法により製造さた含Ni低温用鋼は、優れた母材および溶接継手特性を有することから各種低温貯槽タンク用鋼板をはじめとする低温用途に幅広く適用可能である。
【図面の簡単な説明】
【図1】 YP、TSに及ぼすMo含有量の影響を示すグラフである。
【図2】3面スリットシャルピーの延性破面率 (−196 ℃) に及ぼすMo含有量の影響を示すグラフである。
【図3】溶接継手FL部の限界CTOD値に及ぼすMo含有量の影響を示すグラフである。
【図4】9%Ni鋼の溶接継手FL部の限界CTOD値に及ぼすC、Si、Al、Moの影響を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to Ni-containing steel for low temperature, particularly Ni-containing steel for low temperature storage tanks such as LPG and LNG, and a production method thereof.
[0002]
[Prior art]
Steels for low temperature for producing low temperature storage tanks such as LPG and LNG are required to have excellent fracture toughness from the viewpoint of ensuring safety. For example, in the 9% Ni steel used in the LNG tank (“%” means “% by mass” unless otherwise specified), the base material at the LNG temperature (−165 ° C.) In addition, brittle fracture propagation stop characteristics (hereinafter referred to as arrest characteristics) of welded joints are required.
[0003]
In contrast, in the prior art, reduction of impurities including P and S, reduction of C, three-stage heat treatment [quenching (Q), two-phase region quenching (L), tempering (T)], etc. Various improvements have been made. On the other hand, addition of Mo has been studied as an alloying element effective for improving the strength and toughness of Ni-containing steels.
[0004]
Such a state of the prior art is summarized as follows based on the patent gazette.
First, Japanese Patent Publication No. 60-9568 discloses a steel material specified by Mo ≧ (Ni + Cr + Mn) / 50.
[0005]
Japanese Examined Patent Publication No. 53-41614 discloses a hot rolled coil containing Mo: 0.01 to 0.50% as an optional element.
Japanese Patent Laid-Open No. 53-97917 discloses an NT steel having Mo: 0.05 to 1% (provided that Cr + 1.3 Mo: 0.3 to 1.5%).
[0006]
Japanese Patent Publication No. 4-9861 discloses a steel material in which Mo: 0.02 to 0.40% is added as an optional element to a low Mn system.
In Japanese Patent Laid-Open No. 4-371520, 9Ni having a thickness of 40 mm or more manufactured by a three-stage heat treatment method (QLT) or a direct quenching-two phase quenching method (DQ-LT) method in which Mo: 0.04 to 0.5% is added. Steel is disclosed.
[0007]
Japanese Patent Laid-Open No. 6-184630 discloses a method for producing 9Ni steel of 40 mm or more by the same quenching and tempering method (QT) or direct quenching and tempering method (DQ-T) as described above.
Japanese Patent Publication Nos. 57-21022 and 57-21024 disclose a technique for producing a cast steel of Mo: 0.1 to 0.5%.
[0008]
[Problems to be solved by the invention]
However, particularly in recent years, from the viewpoint of preventing brittle fracture of the welded joint, it is desired to improve the CTOD characteristics of the welded joint, and securing the welded joint toughness as well as ensuring the strength has become a major problem.
[0009]
Here, the object of the present invention is to provide a low temperature Ni-containing steel that can realize the weld toughness with a CTOD value of 0.2 mm or more at a design temperature or lower while satisfying the standard strength of steel materials used in various low temperature storage tanks. The manufacturing method is provided.
[0010]
[Means for Solving the Problems]
Therefore, when examining the above-mentioned conventional technologies from this point of view, all the technologies are mainly manufactured with Mo> 0.1% as a manufacturing example, and those that specify the lower limit of Mo to about 0.05% are also limited. The reason is very vague.
[0011]
Here, the reason why the prior art has difficulty in securing toughness is that the addition of Mo is effective in improving the strength, but the addition of Mo> 0.1% also deteriorates the toughness of the base metal and the welded joint. The knowledge that it was caused by that was obtained.
[0012]
As a result of examining the effects of Mo addition in more detail, the present inventors have found that the addition of Mo of less than 0.1%, which has been considered to have almost no influence in the past, is very effective in improving the properties of Ni-containing low-temperature steels. We investigated the effects of Mo addition along with deoxidizing elements Si, Al, and C, which has a large effect on steel properties, and found that it was necessary to keep the total of the four elements low considering each contribution. The present invention has been reached.
[0013]
That is, FIG. 1 and FIG. 2 show the influence of trace Mo addition on the base metal strength and toughness of 9% Ni steel, and FIG. 3 shows the influence of trace Mo addition on the CTOD characteristics of the weld joint. In all cases, the basic composition of the 9% Ni steel used for the test is C: 0.05%, Si: 0.25%, Mn: 0.65%, Ni: 9.0%, Al: 0.035%, the balance Fe and inevitable impurities.
[0014]
Here, FIG. 1 is a graph showing the influence of the Mo content on YP and TS. In the figure, both YP and TS increase as the Mo addition amount increases.
FIG. 2 is a graph showing the influence of the Mo content on the ductile fracture surface ratio (−196 ° C.) of the three-surface slit Charpy, and has a maximum range of Mo: 0.02 to 0.08%.
[0015]
Fig. 3 is a graph showing the effect of Mo content on the critical CTOD value (-196 ° C) of welded joints. Similar to Fig. 2, a maximum value is seen in the range of Mo: 0.02 to 0.08%. .
[0016]
As a result, the strength of the 9% Ni steel (C = 0.05%) with a thickness of 50mm increased by about 80MPa with the addition of 0.1% Mo, and more than 30MPa with the addition of a small amount of 0.02% Mo. As a result, the base metal toughness (three-face slit Charpy, which is an arrestability index here) deteriorates and the weld joint toughness (here, an index of brittle fracture occurrence characteristics) CTOD) is not degraded, but rather improved.
[0017]
Furthermore, with respect to the toughness of the welded joint, as shown in FIG. 4, a marked improvement is observed by keeping “C + Si / 3 + 10Al + Mo” to 0.50% or less.
FIG. 4 is a graph showing the influence of the contents of C, Si, Al, and Mo on the critical CTOD value of a welded joint of 9% Ni steel. The basic composition is C: 0.03 to 0.18%, Si: 0.01 to 0.50%, Mn: 0.65%, Ni: 9.0%, Al: 0.01 to 0.05%, Remaining Fe and inevitable impurities are used, and the change in the critical CTOD value when the value of formula: C + Si / 3 + 10Al + Mo is changed is shown . See solid line graph. For comparison, the change in the critical CTOD value is also indicated by a dotted line when Mn = 1.65% in the above basic composition.
[0018]
Thus, the addition of Mo is effective in improving the strength (and toughness) of the base metal through improvement of hardenability and refinement of the structure during tempering, but conversely, the hardening phase (such as MA) and grain boundary carbides. This leads to formation and leads to reduced toughness of the base metal and the welded joint. Therefore, the strength of the base material is improved by controlling C, Si, and Al (C + Si / 3 + 10Al + Mo ≦ 0.50%) in order to suppress the Mo addition amount (≦ 0.08%) and suppress the formation of the hardened phase. It has been found in the present invention that the toughness of the material and the welded joint is improved simultaneously.
[0019]
In addition, it has also been found that the production method according to the present invention in which C and Al are reduced and Mo is added in a trace amount can also be expected to improve the slab quality during continuous casting.
[0020]
Here, the present invention is as follows.
(1) C: 0.03 to 0.10%, Si: 0.50% or less, Mn: 0.50 to 1.50%, Ni: 1.5 to 5.0 %, Mo: 0.02 to 0.08%, Al: 0.05% or less, and C + Si / 3 + 10Al + Mo ≦ 0.50 % Ni-containing steel for low temperature with excellent arrestability and CTOD characteristics of welded part with steel composition consisting of%, balance Fe and inevitable impurities.
[0021]
(2) The Ni-containing steel for low temperature with excellent arrestability and CTOD characteristics of the welded part of (1) above , containing Nb: 0.02% or less and / or Ti : 0.05 % or less .
[0022]
(3) A Ni-containing steel for low temperature having excellent arrestability and CTOD characteristics of the welded portion of (1) or (2) above, containing Ca: 0.003% by mass or less .
[0023]
( 4 ) Arrestability and weld zone CTOD by tempering the slab having the steel composition of any one of the above (1) to ( 3 ) after rolling and heat quenching to Ac 3 points or higher and then tempering at less than Ac 1 point A method for producing low temperature Ni-containing steel with excellent properties.
[0024]
(5) above (1) to (3) slabs having any steel composition of, after cooling to 400 ° C. or less after hot rolling immediately from Ar 3 point or higher 2 ° C. / s or more cooling rate, Ac A method for producing low temperature Ni-containing steels with excellent arrestability and CTOD characteristics of welds by tempering at 1 point or less.
[0025]
( 6 ) Prior to the tempering, heating is performed to Ac 1 to Ar 3 points and quenching is performed. Production of Ni-containing steel for low temperature with excellent arrestability and welded CTOD characteristics of ( 4 ) or ( 5 ) above Method.
[0026]
( 7 ) After the slab having the steel composition of any one of (1) to ( 3 ) above is hot rolled, the cumulative rolling reduction at 750 to 850 ° C is 50% or more, and then 2 ° C / A method for producing low temperature Ni-containing steel with excellent arrestability and CTOD characteristics of welds by cooling at a cooling rate of s or higher and stopping cooling at 400 ° C or higher.
[0027]
That is, the optional additive component in the steel composition targeted by the present invention can be used by appropriately combining at least one or more selected from the following groups .
[0028]
Group I : Nb: 0.02% or less, Ti: 0.05% or less .
Group II : Ca: 0.003% or less.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
The reason why the steel composition and production conditions are defined as described above in the present invention will be described in detail below.
[0030]
C:
A lower C is preferable in terms of toughness, so it is 0.10% or less, more preferably 0.06% or less. On the other hand, although it differs in required standards, the lower limit is set to 0.03% from the viewpoint of securing strength.
[0031]
Si:
In the present invention, the lower limit of Si is not set, but addition of more than 0.10% is desirable as a deoxidizing element and from the viewpoint of securing strength. On the other hand, if the amount is too large, the toughness of the welded joint is deteriorated, so the upper limit is made 0.50%. Preferably it is 0.25% or less.
[0032]
Mn:
Mn is added in an amount of 0.50% or more for improving strength and toughness, but if it is too much, weldability is deteriorated. In addition, the upper limit is set to 1.5% because it also contributes to the non-uniformity in characteristics of the base metal and welded joint. Preferably it is 1.0% or less.
[0033]
Ni:
Ni is a valuable additive element for improving strength and toughness at the same time, so it is 1.5% or more, preferably 4.0% or more, but the upper limit is set to 9.5% because it leads to cost increase.
[0034]
Mo:
Mo is an element showing the characteristics of the present invention, and by specifying the addition amount of 0.02 to 0.08%, the strength is increased without impairing toughness. On the other hand, in order to improve the toughness while keeping the strength constant, it is possible to lower other elements that cause toughness deterioration, such as C, on the premise of adding Mo in the amount within the range of the present invention. A preferable Mo addition amount is 0.04 to 0.06%.
[0035]
Al:
Although Al does not set a lower limit in the present invention, it is desirable to add more than 0.01% as a deoxidizing element in order to ensure the cleanliness of steel, but if it is too much, coarse Al 2 O 3 is generated or a welded joint is formed. However, the lower the value, the more advantageous the joint toughness. Therefore, the preferable range is 0.025% or less. In addition, by suppressing the amount of Al added in this way, it is possible to prevent deterioration of the slab surface quality during continuous casting due to AlN.
[0036]
C + Si / 3 + 10Al + Mo:
From the viewpoint of improving the toughness of the base metal and the welded joint, it is necessary to suppress the formation of MA (island martensite) that is likely to be generated by the addition of Mo. For this purpose, reduction of C, Si, and Al is necessary. Since this is necessary, the upper limit of the value of the above relational expression is specified to 0.50%, preferably 0.45% or less.
[0037]
Here, the fact that the coefficient of Al is 10 means that the effect of reducing Al is greater than that of other elements with respect to joint toughness.
Next, in the present invention, at least one of Nb and Ti in order to improve toughness by refining the structure, and Ca in order to improve toughness by preventing the formation of MnS, respectively, are blended as necessary. Can do.
[0039]
Nb:
Nb is particularly effective as an atomizing element when using on-line accelerated cooling, but too much N degrades joint toughness, so the upper limit is made 0.02%.
[0040]
Ti :
Although it has the same effect as Nb, in order to obtain the same effect as Nb, it was necessary to increase the amount of addition, and the upper limit was increased to 0.05 % higher than Nb. Ti can also be used as a deoxidizing element.
[0041]
Ca:
This is effective to prevent the formation of MnS and improve the thickness direction characteristics of the base material, or to increase the Charpy absorbed energy. However, if it is too much, the cleanliness is impaired, so the content is made 0.003% or less.
[0042]
Next, a method for producing a low temperature Ni-containing steel according to the present invention will be described. The method according to the present invention is divided into a case where offline heat treatment is performed after rolling and a case where online heat treatment is performed as follows. Can think.
For offline heat treatment:
Like ordinary QT steel, it is uniformly austenitic with Ac 3 or higher, and then quenched and tempered with Ac 1 point or lower.
[0043]
Further, as a means for improving toughness, it is preferable to insert a two-phase quenching of Ac 1 to Ac 3 in the middle for a high Ni material (for example, Ni> 4.5%).
For online heat treatment:
As in the case of off-line heat treatment, accelerated cooling is performed at a rate of 2 ° C./s or more from an austenite phase of Ar 3 or higher in order to obtain a uniform quenched structure. In general, water cooling is preferable, but air cooling may be used if it is thin and air cooling can secure a cooling rate of 2 ° C./s or more.
[0044]
The heat treatment method after online quenching is the same as the offline heat treatment. Moreover, when improving the strength toughness by performing controlled rolling + accelerated cooling, it is necessary to perform rolling at a cumulative reduction ratio of 50% or more at 750 to 850 ° C in order to refine the structure before cooling. Subsequent accelerated cooling is performed at a cooling rate of 2 ° C./s or more in order to obtain the effect of accelerated cooling (improvement of strength and toughness). In this case, accelerated cooling to 400 ° C or lower increases toughness deterioration, so accelerated cooling is stopped at 400 ° C or higher.
[0045]
In applying this process, Nb addition within the above-mentioned range is preferable.
By the way, it can be said that the production method according to the present invention in which C and Al are reduced and Mo is added in a trace amount is an excellent production method in that the effect of improving the slab quality during continuous casting can also be expected. The reason is considered as follows.
[0046]
In general, the lateral cracking of CC slabs is considered to have a large influence of AlN grain boundary precipitation, so Al reduction can suppress AlN precipitation and improve slab quality. In this case, reduction of N is also preferable. Further, reduction of C is also effective from the viewpoint of avoiding an embrittlement region (peritectic region) due to C.
[0047]
Next, the effects of the present invention will be described more specifically with reference to examples.
[0048]
【Example】
Sample materials having the steel compositions shown in Table 1 are melted and slabs are produced by a continuous casting method. After hot rolling is completed according to the present invention, heat treatment is performed offline and online, and the obtained Ni-containing steel materials are welded. And low temperature impact properties were tested. The production conditions are also shown in Table 1.
[0049]
The results are summarized in Table 2.
The welding conditions are as follows.
Welding method: SMAW (X groove)
Welding material: Inconel welding heat input: About 3KJ / mm
[0050]
[Table 1]
Figure 0003893921
[0051]
[Table 2]
Figure 0003893921
[0052]
【The invention's effect】
The Ni-containing low-temperature steel produced by the method of the present invention has excellent base material and welded joint properties, and therefore can be widely applied to low-temperature applications including various low-temperature storage tank steel plates.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of Mo content on YP and TS.
FIG. 2 is a graph showing the effect of Mo content on the ductile fracture surface ratio (−196 ° C.) of a three-surface slit Charpy.
FIG. 3 is a graph showing the effect of Mo content on the critical CTOD value of welded joint FL part.
FIG. 4 is a graph showing the influence of C, Si, Al, and Mo on the critical CTOD value of the weld joint FL part of 9% Ni steel.

Claims (7)

質量%で、C:0.03〜0.10%、Si:0.50%以下、Mn:0.50〜1.50%、Ni:1.5〜5.0%、Mo:0.02〜0.08%、Al:0.05%以下、かつ、C+Si/3+10Al+Mo≦0.50%、残部Feおよび不可避的不純物から成る鋼組成を有するアレスト性および溶接部CTOD特性が優れた低温用Ni含有鋼。  In mass%, C: 0.03-0.10%, Si: 0.50% or less, Mn: 0.50-1.50%, Ni: 1.5-5.0%, Mo: 0.02-0.08%, Al: 0.05% or less, and C + Si / 3 + 10Al + Mo ≦ Low temperature Ni-containing steel with excellent arrestability and CTOD characteristics of welded part, having a steel composition of 0.50%, balance Fe and inevitable impurities. 質量%で、Nb:0.02%以下および/または Ti 0.05 %以下を含有する請求項1に記載されたアレスト性および溶接部CTOD特性が優れた低温用Ni含有鋼。The low-temperature Ni-containing steel having excellent arrestability and welded CTOD characteristics according to claim 1, which contains Nb: 0.02% or less and / or Ti : 0.05 % or less by mass%. Ca:0.003質量%以下を含有する請求項1または請求項2に記載されたアレスト性および溶接部CTOD特性が優れた低温用Ni含有鋼。  The low-temperature Ni-containing steel excellent in arrestability and weld zone CTOD characteristics according to claim 1 or claim 2 containing Ca: 0.003 mass% or less. 請求項1から請求項3までのいずれか1項に記載された鋼組成を有するスラブを、圧延後A slab having a steel composition according to any one of claims 1 to 3 after rolling. AcAc 3Three 点以上に加熱焼入後、After heating and quenching above the point, AcAc 11 点以下で焼戻しを行うことによるアレスト性および溶接部Arrestability and welds by tempering below the point CTODCTOD 特性が優れた低温用Excellent low temperature characteristics NiNi 含有鋼の製造方法。Manufacturing method of contained steel. 請求項1から請求項3までのいずれか1項に記載された鋼組成を有するスラブを、熱間圧延後直ちにA slab having the steel composition according to any one of claims 1 to 3, immediately after hot rolling. ArAr 3Three 点以上から2℃2 ℃ from the point /s/ s 以上の冷却速度でWith the above cooling rate 400400 ℃以下まで冷却した後、After cooling to below ℃ AcAc 11 点以下で焼戻しを行うことによるアレスト性および溶接部Arrestability and welds by tempering below the point CTODCTOD 特性が優れた低温用Excellent low temperature characteristics NiNi 含有鋼の製造方法。Manufacturing method of contained steel. 前記焼戻しに先立って、Prior to the tempering, AcAc 11 ~ ArAr 3Three 点に加熱して焼入を行う請求項4または請求項5に記載されたアレスト性および溶接部The arrestability and welded portion according to claim 4 or 5, wherein quenching is performed by heating to a point. CTODCTOD 特性が優れた低温用Excellent low temperature characteristics NiNi 含有鋼の製造方法。Manufacturing method of contained steel. 請求項1から請求項3までのいずれか1項に記載された鋼組成を有するスラブを、熱間圧延する際にWhen hot-rolling the slab which has the steel composition described in any one of Claim 1- Claim 3 750750 ~ 850850 ℃の累積圧下率がCumulative rolling reduction of ℃ 5050 %以上となるようにした後に、2℃2% or more after adjusting to /s/ s 以上の冷却速度で冷却を行い、Cool at the above cooling rate, 400400 ℃以上で冷却を停止することによるアレスト性および溶接部Arrestability and weld by stopping cooling above ℃ CTODCTOD 特性が優れた低温用Excellent low temperature characteristics NiNi 含有鋼の製造方法。Manufacturing method of contained steel.
JP2001278315A 2001-09-13 2001-09-13 Low temperature Ni-containing steel and method for producing the same Expired - Fee Related JP3893921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001278315A JP3893921B2 (en) 2001-09-13 2001-09-13 Low temperature Ni-containing steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001278315A JP3893921B2 (en) 2001-09-13 2001-09-13 Low temperature Ni-containing steel and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11497796A Division JPH09302445A (en) 1996-05-09 1996-05-09 Nickel-containing steel for low temperature use and its production

Publications (2)

Publication Number Publication Date
JP2002129280A JP2002129280A (en) 2002-05-09
JP3893921B2 true JP3893921B2 (en) 2007-03-14

Family

ID=19102702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001278315A Expired - Fee Related JP3893921B2 (en) 2001-09-13 2001-09-13 Low temperature Ni-containing steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3893921B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710488B2 (en) * 2005-08-30 2011-06-29 Jfeスチール株式会社 Method for producing 9% Ni steel with excellent low temperature toughness
WO2010038470A1 (en) 2008-10-01 2010-04-08 新日本製鐵株式会社 Steel plate which exhibits excellent low-tempreature toughness both in base metal and in weld-heat affected zone and has small strength anisotropy and process for manufacturing same
JP5494167B2 (en) * 2010-04-14 2014-05-14 新日鐵住金株式会社 Cryogenic steel plate and manufacturing method thereof
JP5494166B2 (en) * 2010-04-14 2014-05-14 新日鐵住金株式会社 Cryogenic steel plate and manufacturing method thereof
BR112013000436B1 (en) 2010-07-09 2018-07-03 Nippon Steel & Sumitomo Metal Corporation NI ADDED STEEL SHEET AND SAME PRODUCTION METHOD
BR112014003519B1 (en) 2011-09-28 2020-05-12 Nippon Steel Corporation STEEL SHEET WITH ADDED Ni AND THE SAME PRODUCTION METHOD
JP6610352B2 (en) * 2016-03-11 2019-11-27 日本製鉄株式会社 Low temperature nickel-containing steel sheet with excellent tensile strength and toughness and method for producing the same
CN109983144B (en) 2016-12-01 2020-05-26 日本制铁株式会社 Nickel-containing steel for low temperature use and tank for low temperature use
KR102043523B1 (en) 2017-12-24 2019-11-12 주식회사 포스코 Low temperature steel materal having excellent toughness in welded zone and method for manufacturing the same
CN114318175A (en) * 2021-12-15 2022-04-12 石横特钢集团有限公司 HRB500DW ribbed steel bar and production process thereof

Also Published As

Publication number Publication date
JP2002129280A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
EP2272994A1 (en) High-tensile strength steel and manufacturing method thereof
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP2020510749A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature and method for producing the same
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP3893921B2 (en) Low temperature Ni-containing steel and method for producing the same
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP5151693B2 (en) Manufacturing method of high-strength steel
JP2000178688A (en) Resistance welded tube for hollow stabilizer, excellent in fatigue endurance
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JP3502691B2 (en) Fitting material excellent in hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance and method for producing the same
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JP2004162085A (en) Steel plate with excellent fatigue crack propagation resistance, and its manufacturing method
JP3858647B2 (en) High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same
JPH09302445A (en) Nickel-containing steel for low temperature use and its production
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same
JP3852295B2 (en) Steel with excellent super heat input welding characteristics
JP3894148B2 (en) Low yield ratio low temperature steel and method for producing the same
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JP2001064749A (en) Hic-resisting non-heat treated high tensile strength steel product excellent in toughness in weld heat-affected zone
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees