JP3894148B2 - Low yield ratio low temperature steel and method for producing the same - Google Patents

Low yield ratio low temperature steel and method for producing the same Download PDF

Info

Publication number
JP3894148B2
JP3894148B2 JP2003093399A JP2003093399A JP3894148B2 JP 3894148 B2 JP3894148 B2 JP 3894148B2 JP 2003093399 A JP2003093399 A JP 2003093399A JP 2003093399 A JP2003093399 A JP 2003093399A JP 3894148 B2 JP3894148 B2 JP 3894148B2
Authority
JP
Japan
Prior art keywords
less
steel
temperature
content
yield ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003093399A
Other languages
Japanese (ja)
Other versions
JP2004300493A (en
Inventor
弘 勝元
公久 弓野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003093399A priority Critical patent/JP3894148B2/en
Publication of JP2004300493A publication Critical patent/JP2004300493A/en
Application granted granted Critical
Publication of JP3894148B2 publication Critical patent/JP3894148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、主として液体アンモニアとLPGなどの多種液化ガスを混載する多目的用タンクに用いられる鋼材に好適な低降伏比低温用鋼およびその製造方法に関するものである。
【0002】
【従来の技術】
上記の多目的用タンクに用いられる鋼材には、低温貯蔵の観点から母材部および溶接部の低温靱性が基本特性として要求される。近年、多目的用タンクにはLPGとともに液体アンモニアが混載されることもあることから、その鋼材にはアンモニアによる応力腐食割れを防止できるものが求められている。これらの要求に対応すべく、種々の技術が提案されている。
【0003】
特許文献1には、鋼板素材の表面から0.3mm以内のC含有量が母材C量の50%以下になるように表面脱炭する工程と、表面脱炭鋼板を焼入れ温度に加熱した後、冷却速度を800〜500℃の温度範囲で150℃/sec以下になるように冷却する工程とを有する鋼板の製造方法が提案されている。この方法では、母材部および溶接部の表面硬さをHv190以下に制限してアンモニアによる応力腐食割れを防止することとされているが、鋼材を得るまでの工程が煩雑であるとともに、母材部および溶接部のいずれにおいても優れた低温靱性を有しているとはいえない。
【0004】
特許文献2には、所定の化学組成を有する鋼片を、950〜1250℃に加熱してから仕上温度700〜900℃の条件で熱間圧延すると共に、その熱間圧延終了後の冷却過程では600〜850℃の温度域より水冷を開始して600℃を下回る温度域において水冷を停止する鋼板の製造方法が提案されている。この方法により製造された鋼板は、引張強さ:530〜610MPa、降伏強度:360〜440MPa、降伏比:80%以下ならびに50%破面遷移温度(vTrs):−60℃以下を示し、耐応力腐食割れ性に優れているとされているが、この方法に供される鋼片には、Niが0.05〜0.80%含まれており、鋼材のコストを著しく上昇させる。また、Niは母材靱性の向上に寄与するが、応力腐食割れ感受性を高める元素であるという欠点がある。
【0005】
特許文献3には、所定の化学組成を有し、フェライトの平均粒径が5〜15μmで、且つ層状パーライトの層間隔が30μm以下である低降伏比型低温用鋼板が提案されている。この鋼板は、耐アンモニア応力腐食割れ性および大入熱溶接における熱影響部の靱性に優れているとされ、引張強さが400MPa以上で、降伏比が90%以下である。しかし、これらの特性は、上記の多目的用タンクに用いる鋼材の特性としては不十分である。
【0006】
特許文献4には、所定の化学組成を有するスラブを熱間圧延後、オーステナイト化温度に加熱し空冷以下の冷却速度で冷却した後、さらに2相域温度(Ac1−Ac3)に加熱焼入れし、続いて焼戻し処理を施す高張力鋼の製造方法が提案されている。また、特許文献5には、所定の化学組成を有する鋼を1000〜1250℃に加熱し、オーステナイト未再結晶温度域での累積圧下量を30%以上とし、800℃以上の温度で熱間圧延を終了後直ちに焼入れし、さらに750〜870℃に再加熱後焼入れ、引続きAc1点以下の温度に加熱して焼戻し処理をする溶接性および低温靱性に優れた低降伏比高張力鋼の製造方法が提案されている。しかし、特許文献4および5で提案される方法は、再加熱熱処理を施すため、作業工数が増大し、ひいては製造コストの上昇を招く。
【0007】
【特許文献1】
特開昭58-67830号公報
【特許文献2】
特開平10-195533号公報
【特許文献3】
特開平11-131178号公報
【特許文献4】
特開平5-9571号公報
【特許文献5】
特開平10-168516号公報
【0008】
【発明が解決しようとする課題】
本発明は、高価な元素を添加せず、母材部および溶接部の機械的特性に優れた低降伏比低温用鋼を提供し、さらに、作業工数を増大させることなく、上記の低降伏比低温用鋼を製造できる方法を提供することを目的とする。なお、本発明においては、機械的特性として、引張強さ、降伏強さ、降伏比、母材部および溶接部の低温靱性、ならびにアンモニアに対する耐応力腐食割れ性の各性能を評価した。
【0009】
それぞれの目標値は、引張強さ(TS)が490〜610MPa、降伏強さ(YS)が360〜440MPa、降伏比(〔YS/TS〕×100%)が80%以下、母材部の低温靱性が破面遷移温度(vTrs)で−60℃以下、溶接部の低温靱性が−55℃での吸収エネルギー(vE-55)で50J以上とした。また、アンモニアに対する耐応力腐食割れ性の評価は、溶接部から切り出した試験片を4点曲げによって降伏応力の80%、100%および120%に相当する応力を付与し、試験温度25℃で腐食溶液(飽和NH4CONH2−液体NH3)中に240時間浸漬した後、光学顕微鏡を用いて200倍の倍率で、それぞれの試験片の割れの有無を調査した。その結果、割れが観察されなかった場合を良好、割れが観察された場合を不良として評価した。
【0010】
【課題を解決するための手段】
本発明は、下記の(A)および(B)に示す低降伏比低温用鋼および下記の(C)および(D)に示す低降伏比低温用鋼の製造方法を要旨とする。
【0011】
(A)質量%で、C:0.02〜0.06%、Si:0.1〜0.5%、Mn:1.0〜2.0%、P:0.020%以下、S:0.010%以下、Nb:0.005〜0.050%、Ti:0.005〜0.025%、sol.Al:0.090%以下およびN:0.001〜0.01%を含有し、残部がFeおよび不純物からなり、不純物としてのNiが0.05%未満であり、下記の(1)式から求められるSP1が0.23〜0.32%であり、表面からt/4(tは板厚)の位置におけるベイナイト組織またはベイナイトおよびパーライトの混合組織の面積率が5〜70%であり、表面からt/4(tは板厚)の位置におけるフェライト組織の円相当平均粒径が 10 μm以下であることを特徴とする低降伏比低温用鋼。
【0012】
SP1=Si/24+Mn/6 …(1)
但し、(1)式中の各元素は含有量を意味する。
【0013】
(B)質量%で、C:0.02〜0.06%、Si:0.1〜0.5%、Mn:1.0〜2.0%、P:0.020%以下、S:0.010%以下、Nb:0.005〜0.050%、Ti:0.005〜0.025%、sol.Al:0.090%以下およびN:0.001〜0.01%、更にCu:0.05〜0.50%、Cr:0.05〜0.50%、Mo:0.05〜0.50%、V:0.01〜0.05%、Ca:0.0005〜0.005%およびMg:0.0003〜0.004%のうちの一種以上を含有し、残部がFeおよび不純物からなり、不純物としてのNiが0.05%未満であり、下記の(2)式から求められるSP2が0.23〜0.32%であり、表面からt/4(tは板厚)の位置におけるベイナイト組織またはベイナイトおよびパーライトの混合組織の面積率が5〜70%であり、表面からt/4(tは板厚)の位置におけるフェライト組織の円相当平均粒径が 10 μm以下であることを特徴とする低降伏比低温用鋼。
【0014】
SP2=Si/24+Mn/6+Cu/40+Cr/5+Mo/4+V/14 …(2)
但し、(2)式中の各元素は含有量を意味する。
【0016】
(C)質量%で、C:0.02〜0.06%、Si:0.1〜0.5%、Mn:1.0〜2.0%、P:0.020%以下、S:0.010%以下、Nb:0.005〜0.050%、Ti:0.005〜0.025%、sol.Al:0.090%以下およびN:0.001〜0.01%を含有し、残部がFeおよび不純物からなり、不純物としてのNiが0.05%未満であり、かつ下記の(1)式から求められるSP1が0.23〜0.32%である鋼を1000〜1200℃に加熱し、Ar3〜850℃の温度で熱間圧延を終了した後、(Ar3−30)〜(Ar3−100)℃の温度から加速冷却を開始し、150℃未満で停止することを特徴とする低降伏比低温用鋼の製造方法。
【0017】
SP1=Si/24+Mn/6 …(1)
但し、(1)式中の各元素は含有量を意味する。
【0018】
(D)質量%で、C:0.02〜0.06%、Si:0.1〜0.5%、Mn:1.0〜2.0%、P:0.020%以下、S:0.010%以下、Nb:0.005〜0.050%、Ti:0.005〜0.025%、sol.Al:0.090%以下およびN:0.001〜0.01%、更にCu:0.05〜0.50%、Cr:0.05〜0.50%、Mo:0.05〜0.50%、V:0.01〜0.05%、Ca:0.0005〜0.005%およびMg:0.0003〜0.004%のうちの一種以上を含有し、残部がFeおよび不純物からなり、不純物としてのNiが0.05%未満であり、かつ下記の(2)式から求められるSP2が0.23〜0.32%である鋼を1000〜1200℃に加熱し、Ar3〜850℃の温度で熱間圧延を終了した後、(Ar3−30)〜(Ar3−100)℃の温度から加速冷却を開始し、150℃未満で停止することを特徴とする低降伏比低温用鋼の製造方法。
【0019】
SP2=Si/24+Mn/6+Cu/40+Cr/5+Mo/4+V/14 …(2)
但し、(2)式中の各元素は含有量を意味する。
【0020】
【発明の実施の形態】
以下、本発明の実施の態様を詳しく説明する。以下の説明において、各元素の含有量についての「%」は「質量%」を意味する。
【0021】
1.化学組成について
C:0.02〜0.06%
Cは、鋼材の強度を上昇させるのに極めて有効な元素である。しかし、その含有量が0.02%未満では、所望の強度(490〜610MPa)を確保できないばかりでなく、低降伏比(80%以下)を達成するために必要なパーライトやベイナイトなどの硬化組織の生成が不十分となる。一方、Cの含有量が0.06%を超えると、硬度の上昇に伴う降伏強度の上昇、溶接部の靱性劣化を引き起こし、所望の耐アンモニア応力腐食割れ性を確保する上で不利となる。従って、Cの含有量を0.02〜0.06%とした。
【0022】
Si:0.1〜0.5%
Siは、Alとともに脱酸剤として有効な元素であり、鋼の強度上昇にも極めて有効である。しかし、その含有量が0.1%未満ではこれらの効果が得られない。一方、Si含有量が0.5%を超えると、溶接部の低温靱性が低下する。従って、Siの含有量を0.1〜0.5%とした。
【0023】
Mn:1.0〜2.0%
Mnは、焼入性を上昇させて、鋼の強度および靱性を確保する上で重要な元素である。しかし、その含有量が1.0%未満では母材の低温靱性が低い。一方、Mnを2.0%を超えて含有させると、これらの効果が飽和するばかりでなく、連続鋳造によるスラブの製造時に中心偏析の主要因となる。従って、Mnの含有量を1.0〜2.0%とした。
【0024】
P:0.020%以下
Pは、鋼中に不純物として存在する元素である。Pの含有量を低減すれば、母材の機械的特性および溶接部の低温靱性を向上させ、中心偏析を低減できるので、その含有量はできるだけ少ない方がよい。従って、Pの含有量を0.020%以下に制限した。
【0025】
S:0.010%以下
Sも鋼中に不純物として存在する元素であり、鋼中でMnSを形成して機械的特性の圧延異方性を助長させるばかりではなく、アンモニアによる応力腐食割れを増加させる。このため、Sの含有量を0.010%以下に制限した。
【0026】
Nb:0.005〜0.050%
Nbは、オーステナイトの未再結晶温度を上昇させて、熱間圧延時の制御圧延の効果を最大限に発揮させるだけでなく、析出強化により母材の強度を向上させる効果を有する元素である。これらの効果を得るためには、0.005%以上含有させる必要がある。しかし、Nbの含有量が0.050%を超えると、溶接部の靱性を劣化させる。従って、Nb含有量を0.005〜0.050%とした。
【0027】
Ti:0.005〜0.025%
Tiは、Nと結合してTiNとしてスラブ中に微細に析出し、加熱時のオーステナイト粒の粗大化を抑制するので、圧延組織の微細化に有効である。また、TiNが鋼中に存在すると、溶接時に熱影響部の組織の粗大化を抑制する。このため、Tiは母材および溶接部の靱性を改善する上で必要な元素である。これらの効果はその含有量が0.005%未満では不十分であるが、0.025%を超えて含有させると溶接部の低温靱性を劣化させる。従って、Tiの含有量を0.005〜0.025%とした。
【0028】
sol.Al:0.090%以下
sol.Alは、鋼中の溶存酸素を低減するのに極めて有効な元素である、脱酸剤として鋼中に含有させる。また、sol.Alは、鋼中のフリーNをAlNとして固定し無害化する効果も有する。しかし、これらの効果は、sol.Alの含有量を過剰に増加させても飽和する。従って、sol.Alの含有量を0.090%とした。なお、上記の効果はsol.Alの含有量が0.005%以上の場合に顕著となる。また、鋼の清浄度の観点からはsol.Alの含有量を0.060%以下とするのが好ましい。
【0029】
N:0.001〜0.01%
Nは、鋼中に不純物として存在する元素であるが、Nbと結合して炭窒化物を形成すると、鋼の強度を上昇させ、Tiと結合してTiNを形成すると圧延組織を微細化するなどの効果を有する。これらの効果を得るためには、Nの含有量を0.001%以上とする必要がある。しかし、Nの含有量が過剰な場合には溶接部の低温靱性を劣化させる。従って、Nの含有量を0.001〜0.01%とした。
【0030】
Ni:0.05%未満
Niは、鋼中に不純物として存在する元素であり、本発明の鋼には添加しない。Niは、母材の靱性を向上させるなどの効果を有するため、従来の鋼においては、積極的に添加されてきた。しかし、前述の多目的タンクのように種々の液体が積荷されるような用途においては、応力腐食割れ感受性を高めるという欠点がある。また、鉄鋼製造の主流となっている連続鋳造法においては、Ni非添加鋼材の方が量産化しやすい。即ち、連続鋳造法により量産される鉄鋼製品には、Ni非添加鋼材が多いため、Ni添加鋼材を連続的に鋳込むと、Ni非添加鋼材とNi添加鋼材との境界に位置する鋼材を使用できないことが多い。しかし、Ni非添加鋼材同士であれば、境界付近における使用可能な鋼材が多くなるため、歩留りが向上し、製造コストを低減できる。
【0031】
以上の理由から、本発明の低降伏比低温用鋼においては、Niを添加しないこととし、その含有量を0.05%未満に制限することとした。
【0032】
本発明の低降伏比低温用鋼には、鋼の降伏比を低減することを目的として、更にCu:0.05〜0.50%、Cr:0.05〜0.50%、Mo:0.05〜0.50%、V:0.01〜0.05%、Ca:0.0005〜0.005%およびMg:0.0003〜0.004%のうちの一種以上を含有させてもよい。
【0033】
Cu:0.05〜0.50%
Cuは、母材の強度および低温靱性を改善するのに有効な元素である。これらの効果を得るためには0.05%以上含有させるのが望ましい。しかし、Cuの含有量が0.50%を超えると、熱間圧延時に割れが発生して製造が困難となる。従って、Cuを含有させる場合の含有量を0.05〜0.50%とした。
【0034】
Cr:0.05〜0.50%
Crも母材の強度および低温靱性を改善するのに有効な元素であり、これらの効果を得るためには0.05%以上含有させるのが望ましい。しかし、Crの含有量が0.50%を超えると、母材および溶接部の低温靱性を劣化させる。従って、Crを含有させる場合には、その含有量を0.05〜0.50%とすればよい。
【0035】
Mo:0.05〜0.50%
Moも母材の強度および低温靱性を改善するのに有効な元素である。これらの効果を得るためには0.05%以上含有させるのが望ましい。しかし、Moの含有量が0.50%を超えると、母材および溶接部の低温靱性を劣化させる。従って、Moを含有させる場合の含有量を0.05〜0.50%とした。
【0036】
V:0.01〜0.05%
Vは、析出強化元素であり、母材の強度を向上させる効果を有する元素である。この効果を得るためには、その含有量を0.01%以上とするのが望ましい。しかし、その含有量が0.05%を超えると、母材および溶接部の低温靱性を劣化させる。従って、Vを含有させる場合の含有量を0.01〜0.05%とした。
【0037】
Ca:0.0005〜0.005%
Caは、硫化物の形態を制御して母材の低温靱性を向上させる効果を有するとともに、耐硫化物応力腐食割れ性および耐アンモニア応力腐食割れ性を向上させる効果も有する。これらの効果を得るためには、Caを0.0005%以上含有させるのが望ましい。しかし、Caの含有量が0.005%を超えても、これらの効果が飽和する。従って、Caを含有させる場合の含有量を0.0005〜0.005%とした。
【0038】
Mg:0.0003〜0.004%
Mgは、溶接熱影響部においてオーステナイト粒の成長を抑制して組織を微細化する効果を有し、溶接部の低温靱性を向上させるのに有効な元素である。この効果を得るためには、Mgを0.0003%以上含有させるのが望ましい。しかし、その含有量が0.004%を超えてもその効果が飽和する。従って、Mgを含有させる場合の含有量を0.003〜0.004%とした。
【0039】
SP1またはSP2:0.23〜0.32%
但し、SP1は下記の(1)式から求められる値であり、SP2は下記の(2)式から求められる値である。(1)式および(2)式中の各元素は含有量を意味する。
【0040】
SP1=Si/24+Mn/6 …(1)
SP2=Si/24+Mn/6+Cu/40+Cr/5+Mo/4+V/14 …(2)
Cの含有量が多いほど二相組織化が容易となり、且つ硬質相の硬さが上昇して低降伏比が得られやすくなるが、低温靱性を著しく劣化させるという問題がある。従って、C含有量を低減することが有効であるが、硬質相の硬さが低減するため、結果として降伏比の上昇を引き起こし、低温靱性の向上と降伏比の低減の両方を得ることは困難である。
【0041】
そこで、本発明者らは、C含有量を比較的低減させることを前提として研究を重ねた結果、C以外の元素の含有量を規定することによりパーライトやベイナイトなどの硬化組織の硬さを確保することとした。しかし、個々の成分の範囲を規定しても、成分系全体のバランスが適切でない場合には、優れた特性が得られないことから、本発明においては、上記の(1)式から求められるSP1の値、Cu、Cr、MoおよびVが含まれる場合には、上記の(2)式から求められるSP2の値を規定することとした。
【0042】
ここで、SP1またはSP2の値が0.23%未満の場合、鋼がフェライト主体の組織となり、さらにフェライトマトリックス中に存在するパーライトやベイナイトなどの硬化組織の強度を確保することができず、低降伏比を得ることができない。しかし、SP1またはSP2の値が0.32%を超えると、硬化組織の硬さが上昇して、母材および溶接部の靱性が劣化する。また、フェライト中に固溶する元素が多くなるため、フェライトマトリックスの強度を上昇させて降伏比の上昇を引き起こす。従って、SP1またはSP2の値を0.23〜0.32%とした。
【0043】
2.ミクロ組織について
本発明の低降伏比低温用鋼は、表面からt/4(tは板厚)の位置におけるベイナイト組織またはベイナイトおよびパーライトの混合組織の面積率が5〜70%であることが必要である。これらの組織の面積率によって鋼の降伏比が大きく変動するからである。なお、「表面からt/4(tは板厚)の位置」とは、表面からt/4(tは板厚)の位置およびその近傍位置を意味し、実際には0.22t〜0.28t(tは板厚)の範囲で観察すればよい。
【0044】
ここで、上記の面積率が5%未満の場合、フェライト組織主体の軟相の組織となるため、引張強さが490MPa以上で、且つ降伏比が80%以下という条件を満足しない。一方、上記の面積率が70%を超えると、引張強さが上昇し過ぎるとともに、母材および溶接部の靱性の劣化を引き起こす。従って、表面からt/4(tは板厚)の位置におけるベイナイト組織またはベイナイトおよびパーライトの混合組織の面積率を5〜70%と規定した。
【0045】
なお、上記の組織以外の組織については特に制限はない。このような組織で微細な島状マルテンサイトが生成する場合があるが、その面積率が5%未満であれば許容できる。この面積率の範囲であれば、鋼材の性能に悪影響を及ぼさないからである。
【0046】
本発明の低降伏比低温用鋼は、表面からt/4(tは板厚)の位置におけるフェライト組織の円相当平均粒径が10μm以下であることが必要である。本発明の低降伏比低温用鋼は、応力腐食割れの観点からNiを添加しないこととしているため、低温靱性の劣化が懸念される。このため、組織の微細化により低温靱性を確保することとしたものである。
【0047】
こで、上記のフェライトとは、粒状のフェライトを示し、ベイニティックフェライトやパーライトを構成するフェライトは除かれる。また、「円相当平均粒径」とは、任意の一視野についてJIS G 0552に規定される方法に従って測定したフェライト結晶粒度から結晶粒の平均断面積を求め、これを円に置き換えたときの半径を意味する。
【0048】
なお、上記の組織の規定を表面からt/4(tは板厚)の位置で観察するのは、鋼板の組織が板厚方向の位置によって変動することから、この位置が鋼板の組織状態を代表する位置として相応しいからである。従って、上記のt/4(tは板厚)の位置は、表面側からの位置でも、裏面側からの位置でもよい。また、組織の面積率および粒径の観察は、図1に示すように、鋼板1の圧延方向についての横断面(図で「観察面」として示した面)で行えばよい。
【0049】
3.製造方法について
本発明の低降伏比低温用鋼の製造方法においては、上記の化学組成を有する鋼を1000〜1200℃に加熱し、Ar3〜850℃の温度で熱間圧延を終了した後、(Ar3−30)〜(Ar3−100)℃の温度から加速冷却を開始し、150℃未満で停止する。
【0050】
鋼の加熱温度は、加熱時のオーステナイト結晶粒の粗大化を防止するためには、1200℃以下とする必要がある。しかし、鋼の加熱温度が1000℃未満の場合、圧延中に結晶粒を微小化を微細化させることができず、さらに、圧延後の析出硬化に有効なNbを固溶させることが困難となる。従って、鋼の加熱温度を1000〜1200℃とした。
【0051】
熱間圧延の仕上温度は、できるだけ低温で行うことが望ましい。これは、オーステナイトの微細化を促進して、表面からt/4(tは板厚)の位置におけるフェライト組織の円相当平均粒径を10μm以下とするためである。しかし、熱間圧延の仕上温度がAr3未満も場合、フェライト・オーステナイト二相域での圧延になるため、フェライト中に転位が導入される。このため、降伏強度が上昇して低降伏比を達成できない。一方、熱間圧延の仕上温度が850℃を超えると、粗大なオーステナイトが生成して圧延後の母材の靱性の劣化を引き起こす。従って、熱間圧延の仕上温度をAr3〜850℃とした。
【0052】
冷却開始温度は、フェライト変態、パーライト変態またはベイナイト変態を適度に生じせしめて適切な複合組織を得るためには、熱間圧延の仕上温度を勘案して設定する必要がある。冷却開始温度が(Ar3−30)℃を超える場合には、フェライトの変態量が十分ではなく、硬化組織の比率が大きくなって降伏比が上昇する。しかし、(Ar3−100)℃未満の場合、フェライトの変態量が多くなりすぎて所望の強度(特に降伏比)が得られない。従って、冷却開始温度を(Ar3−30)〜(Ar3−100)℃とした。
【0053】
水冷停止温度は、本発明において非常に重要である。即ち、水冷停止温度が150℃以上では、ベイナイト変態やマルテンサイト変態などの変態点の影響を受けて鋼板の表面と内部において温度勾配が生じる。これにより、変態むらが生じ、組織の不均一に伴い母材の特性の劣化を引き起こす。従って、水冷停止温度を150℃未満とした。
【0054】
なお、本発明の製造方法によって得られる組織に変化を及ぼす熱処理は避けるべきである。
【0055】
【実施例】
表1に示す化学組成を有する鋼を溶製し、連続鋳造機によって厚さ235mmのスラブを得た。
【0056】
【表1】

Figure 0003894148
得られたスラブから表2に示す製造条件で厚さ20mmの鋼板を作製し、これらを供試材とした。
【0057】
【表2】
Figure 0003894148
【0058】
得られた供試材について、下記の方法により組織状態および各種の特性を調査した。この結果を表3に示す。
【0059】
ミクロ組織の状態
上記の供試材から圧延方向に水平な方向の断面を切り出した試験片を採取した。各試験片の板厚方向の断面について表面からt/4(tは板厚)の位置をナイタールでエッチングした後、光学顕微鏡を用い、倍率500倍で写真撮影を行い、100μm角中に存在する硬化組織の面積率をイメージスキャナーで読み取り、求めた。これを合計3視野について行い、その平均値を硬化組織の面積率とした。また、フェライトの平均粒径については、任意の一視野についてJIS Z 0552に規定される方法に従って測定したフェライト結晶粒度から結晶粒の平均断面積を求め、これを円に置き換えたときの半径を算出して求めた。
【0060】
母材の特性
上記の供試材の圧延方向に垂直な方向からJIS Z2201に規定される14B号試験片を採取し、引張試験を行った。降伏強さ(YS)は360〜440MPa、引張強さ(TS)は490〜610MPa、降伏比(〔YS/TS〕×100%)は80%以下を良好な範囲とした。母材部の低温靱性は、上記の供試材の圧延方向に垂直な方向で、t/4(tは板厚)の位置からJIS Z 2202に規定されるVノッチ試験片を採取し、シャルピー衝撃試験を行った。その試験結果から破面遷移温度(vTrs)を算出した。破面遷移温度(vTrs)は−60℃以下を良好な範囲とした。
【0061】
溶接部の低温靱性
上記の供試材から長さ600mm、幅300mmの溶接試験片を切り出し、その端部をX型開先に加工し、入熱量が約4kJ/mmのサブマージアーク溶接を行って溶接継手を作製した。各溶接継手から衝撃試験片の端部が鋼板の表面から1mmとなる位置でノッチ位置がフュージョンラインに一致するように採取し、シャルピー衝撃試験を行い、−55℃での吸収エネルギー(vE-55)を測定した。−55℃での吸収エネルギー(vE-55)は50J以上を良好な範囲とした。
【0062】
耐アンモニア応力腐食割れ性
耐アンモニア応力腐食割れ性の評価は、上記の溶接継ぎ手の溶接ビートままの表面から厚さ2mm、幅15mm、長さ60mmの試験片を切り出し、4点曲げによって降伏応力の80%、100%および120%に相当する応力(0.8σy、1.0σyおよび1.2σy)を付与し、試験温度25℃で腐食溶液(飽和NH4CONH2−液体NH3)中に240時間浸漬した後、光学顕微鏡を用い、倍率200倍で、それぞれの試験片の割れの有無を調査した。その結果、割れが観察されなかった場合を良好、割れが観察された場合を不良として評価した。
【0063】
【表3】
Figure 0003894148
【0064】
表3に示すように、本発明例であるNo.1、3、4および9〜17の鋼は、いずれも多目的タンク用鋼として十分な特性を有していた。
【0065】
一方、比較例であるNo.2は、化学組成は本発明の範囲内であるが、フェライト・オーステナイト二相域温度での焼戻しを行ったものである。このため、No.2では、硬化組織の面積率が低く、且つフェライト平均粒径が本発明で規定される範囲を超え、母材の強度および靱性が劣化した。
【0066】
比較例であるNo.5〜8の鋼は、本発明で規定される化学組成の範囲内にあるが、本発明で規定される範囲を外れる製造条件により作製されたものであり、いずれかの特性が劣っていた。即ち、No.5の鋼は、加熱温度が高すぎたためにオーステナイト粒が粗大化して焼入性が増大し、硬化組織の面積率が本発明で規定される範囲を超えた。このため、No.5の鋼では、母材の強度および靱性が劣化した。No.6の鋼は、仕上温度が低すぎたために水冷開始温度がAr3点未満となった。このため、No.6の鋼では、硬化組織の面積率が小さくなり、母材の耐力および靱性が劣化した。No.7の鋼は、水冷開始温度が高すぎたために硬化組織の面積率が大きくなり、耐力および強度の双方が上昇した。No.8の鋼は、水冷停止温度が高すぎたために、硬化組織の面積率が小さくなり、母材の強度および靱性が劣化した。
【0067】
比較例であるNo.18、19、20、21、22および23の鋼は、化学組成が本発明で規定される範囲を外れる鋼である。No.18の鋼では、C含有量が本発明で規定される範囲を上回っていたため、母材の靱性が劣化し、更に溶接部の硬化を引き起こして耐アンモニア応力腐食割れ性が劣化した。No.19の鋼では、Mn含有量が本発明で規定される範囲を下回っていたため、母材の靱性が劣化した。No.20の鋼では、Ti含有量が本発明で規定される範囲を下回っていたため、オーステナイトが粗大化し、変態後のフェライトが粗大化したことで、母材の耐力、強度および靱性のいずれの性能も劣っていた。No.21の鋼では、Ni含有量が本発明で規定される範囲を上回っていたため、耐アンモニア応力腐食割れ性が劣化した。No.22の鋼では、Cr含有量が本発明で規定される範囲を上回っていたため、母材の靱性が劣化した。No.23の鋼では、SP値が本発明で規定される範囲を上回っていたため、母材の耐力、強度および靱性のいずれもが劣っていた。
【0068】
【発明の効果】
本発明の低降伏比低温用鋼は、低い降伏比が得られるとともに母材および溶接部の低温靱性に優れ、さらに、応力腐食割れ感受性が低い鋼である。また、Niを添加しないので、経済性にも優れる鋼である。従って、多目的タンクに用いられる鋼として最適である。
【図面の簡単な説明】
【図1】組織の面積率および粒径を観察する位置を示す図である。
【符号の説明】
1.鋼板[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a low yield ratio low temperature steel suitable for a steel material used in a multipurpose tank in which various kinds of liquefied gases such as liquid ammonia and LPG are mixed and a manufacturing method thereof.
[0002]
[Prior art]
The steel material used for the above-mentioned multipurpose tank is required to have the low temperature toughness of the base metal part and the weld part as a basic characteristic from the viewpoint of low temperature storage. In recent years, since liquid ammonia is sometimes mixed with LPG in a multipurpose tank, a steel material that can prevent stress corrosion cracking due to ammonia is required. Various techniques have been proposed to meet these demands.
[0003]
Patent Document 1 discloses a step of surface decarburization so that the C content within 0.3 mm from the surface of the steel sheet material is 50% or less of the base material C amount, and after heating the surface decarburized steel sheet to the quenching temperature, There has been proposed a method of manufacturing a steel sheet having a step of cooling so that the cooling rate is 150 ° C./sec or less in a temperature range of 800 to 500 ° C. In this method, it is supposed that the surface hardness of the base metal part and the welded part is limited to Hv190 or less to prevent stress corrosion cracking due to ammonia, but the process until obtaining the steel material is complicated, and the base metal It cannot be said that both the welded portion and the welded portion have excellent low temperature toughness.
[0004]
In Patent Document 2, a steel slab having a predetermined chemical composition is heated to 950 to 1250 ° C. and then hot-rolled at a finishing temperature of 700 to 900 ° C. In the cooling process after the hot rolling is completed, There has been proposed a method of manufacturing a steel sheet that starts water cooling from a temperature range of 600 to 850 ° C. and stops water cooling in a temperature range below 600 ° C. Steel sheets produced by this method exhibit a tensile strength of 530 to 610 MPa, a yield strength of 360 to 440 MPa, a yield ratio of 80% or less and a 50% fracture surface transition temperature (vTrs) of −60 ° C. or less. Although it is said that it is excellent in the corrosion cracking property, the steel slab used for this method contains 0.05 to 0.80% of Ni, which significantly increases the cost of the steel material. Further, Ni contributes to improvement of the base material toughness, but has a drawback that it is an element that enhances stress corrosion cracking susceptibility.
[0005]
Patent Document 3 proposes a low yield ratio low-temperature steel sheet having a predetermined chemical composition, an average grain size of ferrite of 5 to 15 μm, and a layer spacing of layered pearlite of 30 μm or less. This steel sheet is considered to be excellent in resistance to ammonia stress corrosion cracking and toughness of the heat-affected zone in high heat input welding, has a tensile strength of 400 MPa or more and a yield ratio of 90% or less. However, these characteristics are insufficient as the characteristics of the steel material used for the multipurpose tank.
[0006]
In Patent Document 4, a slab having a predetermined chemical composition is hot-rolled, heated to an austenitizing temperature, cooled at a cooling rate equal to or lower than air cooling, and further cooled to a two-phase region temperature (Ac1-AcThree) Has been proposed for producing high-strength steel that is heat-quenched and subsequently tempered. In Patent Document 5, steel having a predetermined chemical composition is heated to 1000 to 1250 ° C., the cumulative reduction in the austenite non-recrystallization temperature range is 30% or more, and hot rolling is performed at a temperature of 800 ° C. or more. Immediately after the completion of quenching, reheat to 750-870 ° C and quench, and continue to Ac1There has been proposed a method for producing a low-yield ratio high-strength steel excellent in weldability and low-temperature toughness by heating to a temperature below the point and tempering. However, since the methods proposed in Patent Documents 4 and 5 are subjected to reheating heat treatment, the number of work steps is increased, resulting in an increase in manufacturing cost.
[0007]
[Patent Document 1]
JP 58-67830 A
[Patent Document 2]
JP-A-10-195533
[Patent Document 3]
Japanese Patent Laid-Open No. 11-131178
[Patent Document 4]
Japanese Patent Laid-Open No. 5-9571
[Patent Document 5]
Japanese Patent Laid-Open No. 10-168516
[0008]
[Problems to be solved by the invention]
The present invention provides a low yield ratio low temperature steel excellent in the mechanical properties of the base metal part and the welded part without adding an expensive element, and further, without increasing the work man-hours, the low yield ratio described above. It aims at providing the method which can manufacture the steel for low temperature. In the present invention, the mechanical properties were evaluated for each of tensile strength, yield strength, yield ratio, low temperature toughness of the base metal part and the welded part, and stress corrosion cracking resistance against ammonia.
[0009]
The target values are: tensile strength (TS) 490 to 610 MPa, yield strength (YS) 360 to 440 MPa, yield ratio ([YS / TS] x 100%) less than 80%, low temperature of base metal part Absorbed energy (vE) when toughness is −60 ° C or less at fracture surface transition temperature (vTrs) and low temperature toughness of weld is −55 ° C-55) To 50J or higher. In addition, the evaluation of stress corrosion cracking resistance against ammonia was performed by applying a stress corresponding to 80%, 100% and 120% of the yield stress to the test piece cut out from the welded part by 4-point bending, and corroding at a test temperature of 25 ° C. Solution (saturated NHFourCONH2-Liquid NHThree) Was immersed in 240 hours, and then the presence or absence of cracks in each test piece was examined using an optical microscope at a magnification of 200 times. As a result, the case where no crack was observed was evaluated as good, and the case where a crack was observed was evaluated as defective.
[0010]
[Means for Solving the Problems]
The gist of the present invention is the low yield ratio low temperature steel shown in the following (A) and (B) and the low yield ratio low temperature steel shown in the following (C) and (D).
[0011]
  (A) By mass%, C: 0.02 to 0.06%, Si: 0.1 to 0.5%, Mn: 1.0 to 2.0%, P: 0.020% or less, S: 0.010% or less, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.025%, sol. Al: 0.090% or less and N: 0.001 to 0.01%, the balance is Fe and impurities, Ni as impurities is less than 0.05%, from the following formula (1) The required SP1 is 0.23 to 0.32%, and the area ratio of the bainite structure or the mixed structure of bainite and pearlite at a position of t / 4 (t is the plate thickness) from the surface is 5 to 70%.The circle equivalent average particle diameter of the ferrite structure at a position t / 4 (t is the plate thickness) from the surface is Ten below μmLow yield ratio steel for low temperature.
[0012]
SP1 = Si / 24 + Mn / 6… (1)
However, each element in the formula (1) means content.
[0013]
  (B) By mass%, C: 0.02 to 0.06%, Si: 0.1 to 0.5%, Mn: 1.0 to 2.0%, P: 0.020% or less, S: 0.010% or less, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.025%, sol. Al: 0.090% or less and N: 0.001-0.01%, Cu: 0.05-0.50%, Cr: 0.05-0.50%, Mo: 0.05-0. 50%, V: 0.01 to 0.05%, Ca: 0.0005 to 0.005%, and Mg: 0.0003 to 0.004%, and the balance is Fe and impurities Thus, Ni as an impurity is less than 0.05%, SP2 obtained from the following formula (2) is 0.23 to 0.32%, and the position is t / 4 (t is the plate thickness) from the surface. The area ratio of the bainite structure or the mixed structure of bainite and pearlite is 5 to 70%.The circle equivalent average particle diameter of the ferrite structure at a position t / 4 (t is the plate thickness) from the surface is Ten below μmLow yield ratio steel for low temperature.
[0014]
SP2 = Si / 24 + Mn / 6 + Cu / 40 + Cr / 5 + Mo / 4 + V / 14 (2)
However, each element in the formula (2) means content.
[0016]
(C) By mass%, C: 0.02 to 0.06%, Si: 0.1 to 0.5%, Mn: 1.0 to 2.0%, P: 0.020% or less, S: 0.010% or less, Nb: 0.005 to 0.050%, Ti: 0.005 ~ 0.025%, sol.Al: 0.090% or less and N: 0.001 ~ 0.01%, the balance is Fe and impurities, Ni as impurities is less than 0.05%, and calculated from the following formula (1) Heated steel with SP1 of 0.23-0.32% to 1000-1200 ° C, ArThreeAfter finishing hot rolling at a temperature of ~ 850 ° C, (ArThree−30) to (ArThreeA method for producing a low yield ratio low temperature steel characterized in that accelerated cooling starts at a temperature of −100) ° C. and stops at less than 150 ° C.
[0017]
SP1 = Si / 24 + Mn / 6… (1)
However, each element in the formula (1) means content.
[0018]
(D) By mass%, C: 0.02 to 0.06%, Si: 0.1 to 0.5%, Mn: 1.0 to 2.0%, P: 0.020% or less, S: 0.010% or less, Nb: 0.005 to 0.050%, Ti: 0.005 ~ 0.025%, sol.Al: 0.090% or less and N: 0.001 ~ 0.01%, Cu: 0.05 ~ 0.50%, Cr: 0.05 ~ 0.50%, Mo: 0.05 ~ 0.50%, V: 0.01 ~ 0.05%, Ca: SP2 which contains one or more of 0.0005 to 0.005% and Mg: 0.0003 to 0.004%, the balance is Fe and impurities, Ni as impurities is less than 0.05%, and is obtained from the following formula (2) Is heated to 1000-1200 ° C, and the steel is 0.23-0.32% ArThreeAfter finishing hot rolling at a temperature of ~ 850 ° C, (ArThree−30) to (ArThreeA method for producing a low yield ratio low temperature steel characterized in that accelerated cooling starts at a temperature of −100) ° C. and stops at less than 150 ° C.
[0019]
SP2 = Si / 24 + Mn / 6 + Cu / 40 + Cr / 5 + Mo / 4 + V / 14 (2)
However, each element in the formula (2) means content.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. In the following description, “%” for the content of each element means “mass%”.
[0021]
1. About chemical composition
C: 0.02 to 0.06%
C is an element that is extremely effective in increasing the strength of the steel material. However, if the content is less than 0.02%, not only the desired strength (490-610MPa) can be secured, but also the formation of hardened structures such as pearlite and bainite necessary to achieve a low yield ratio (80% or less). Is insufficient. On the other hand, if the C content exceeds 0.06%, the yield strength increases as the hardness increases, and the toughness of the welded portion deteriorates, which is disadvantageous in securing desired ammonia stress corrosion cracking resistance. Therefore, the content of C is set to 0.02 to 0.06%.
[0022]
Si: 0.1-0.5%
Si, together with Al, is an effective element as a deoxidizer and is extremely effective in increasing the strength of steel. However, if the content is less than 0.1%, these effects cannot be obtained. On the other hand, when the Si content exceeds 0.5%, the low-temperature toughness of the welded portion decreases. Therefore, the Si content is set to 0.1 to 0.5%.
[0023]
Mn: 1.0-2.0%
Mn is an important element for increasing the hardenability and ensuring the strength and toughness of the steel. However, if the content is less than 1.0%, the low temperature toughness of the base material is low. On the other hand, if Mn is contained in excess of 2.0%, these effects are not only saturated, but also become a main cause of center segregation during the production of slabs by continuous casting. Therefore, the Mn content is set to 1.0 to 2.0%.
[0024]
P: 0.020% or less
P is an element present as an impurity in steel. If the P content is reduced, the mechanical properties of the base metal and the low temperature toughness of the weld can be improved and the center segregation can be reduced. Therefore, the content should be as low as possible. Therefore, the P content is limited to 0.020% or less.
[0025]
S: 0.010% or less
S is also an element present in the steel as an impurity, and not only forms MnS in the steel to promote the rolling anisotropy of mechanical properties, but also increases stress corrosion cracking due to ammonia. For this reason, the S content is limited to 0.010% or less.
[0026]
Nb: 0.005 to 0.050%
Nb is an element that not only raises the non-recrystallization temperature of austenite and maximizes the effect of controlled rolling during hot rolling, but also improves the strength of the base metal by precipitation strengthening. In order to obtain these effects, it is necessary to contain 0.005% or more. However, when the Nb content exceeds 0.050%, the toughness of the welded portion is deteriorated. Therefore, the Nb content is set to 0.005 to 0.050%.
[0027]
Ti: 0.005-0.025%
Ti combines with N and precipitates finely in the slab as TiN, which suppresses coarsening of austenite grains during heating, and is therefore effective for refining the rolling structure. Moreover, when TiN exists in steel, the coarsening of the structure of the heat affected zone during welding is suppressed. For this reason, Ti is an element necessary for improving the toughness of the base material and the weld. These effects are insufficient when the content is less than 0.005%. However, if the content exceeds 0.025%, the low temperature toughness of the weld is deteriorated. Therefore, the Ti content is set to 0.005 to 0.025%.
[0028]
sol.Al: 0.090% or less
sol.Al is contained in steel as a deoxidizer, which is an extremely effective element for reducing dissolved oxygen in steel. In addition, sol.Al also has an effect of fixing and detoxifying free N in steel as AlN. However, these effects are saturated even if the sol.Al content is excessively increased. Therefore, the content of sol.Al is set to 0.090%. In addition, said effect becomes remarkable when content of sol.Al is 0.005% or more. Further, from the viewpoint of steel cleanliness, the content of sol.Al is preferably 0.060% or less.
[0029]
N: 0.001 to 0.01%
N is an element present in the steel as an impurity, but when combined with Nb to form carbonitride, the strength of the steel is increased, and when combined with Ti to form TiN, the rolling structure is refined. It has the effect of. In order to obtain these effects, the N content needs to be 0.001% or more. However, when the N content is excessive, the low temperature toughness of the welded portion is deteriorated. Therefore, the N content is set to 0.001 to 0.01%.
[0030]
Ni: less than 0.05%
Ni is an element present as an impurity in the steel and is not added to the steel of the present invention. Ni has an effect of improving the toughness of the base metal and has been actively added to conventional steels. However, in applications where various liquids are loaded, such as the above-mentioned multipurpose tank, there is a drawback of increasing the stress corrosion cracking sensitivity. Moreover, in the continuous casting method which has become the mainstream of steel production, non-Ni-added steel materials are more likely to be mass-produced. In other words, steel products that are mass-produced by the continuous casting method have many Ni-free steel materials. Therefore, when Ni-added steel materials are continuously cast, steel materials located at the boundary between Ni-free steel materials and Ni-added steel materials are used. There are many things that cannot be done. However, since steel materials that can be used in the vicinity of the boundary increase if they are non-Ni-added steel materials, the yield can be improved and the manufacturing cost can be reduced.
[0031]
For the above reasons, in the low yield ratio low temperature steel of the present invention, Ni is not added, and the content is limited to less than 0.05%.
[0032]
In the steel for low yield ratio low temperature according to the present invention, Cu: 0.05 to 0.50%, Cr: 0.05 to 0.50%, Mo: 0.05 to 0.50%, V: 0.01 to One or more of 0.05%, Ca: 0.0005 to 0.005%, and Mg: 0.0003 to 0.004% may be contained.
[0033]
Cu: 0.05-0.50%
Cu is an effective element for improving the strength and low temperature toughness of the base material. In order to obtain these effects, 0.05% or more is desirable. However, if the Cu content exceeds 0.50%, cracking occurs during hot rolling, making manufacturing difficult. Therefore, the content when Cu is contained is set to 0.05 to 0.50%.
[0034]
Cr: 0.05-0.50%
Cr is also an element effective for improving the strength and low-temperature toughness of the base material. In order to obtain these effects, 0.05% or more is desirable. However, when the Cr content exceeds 0.50%, the low temperature toughness of the base metal and the welded portion deteriorates. Therefore, when Cr is contained, the content may be 0.05 to 0.50%.
[0035]
Mo: 0.05-0.50%
Mo is also an effective element for improving the strength and low temperature toughness of the base material. In order to obtain these effects, 0.05% or more is desirable. However, if the Mo content exceeds 0.50%, the low temperature toughness of the base metal and the welded portion deteriorates. Therefore, the content when Mo is contained is set to 0.05 to 0.50%.
[0036]
V: 0.01-0.05%
V is a precipitation strengthening element and is an element having an effect of improving the strength of the base material. In order to obtain this effect, the content is desirably 0.01% or more. However, when its content exceeds 0.05%, the low temperature toughness of the base metal and the welded portion is deteriorated. Therefore, the content when V is contained is set to 0.01 to 0.05%.
[0037]
Ca: 0.0005 to 0.005%
Ca has the effect of improving the low temperature toughness of the base material by controlling the form of sulfide, and also has the effect of improving the resistance to sulfide stress corrosion cracking and the resistance to ammonia stress corrosion cracking. In order to obtain these effects, it is desirable to contain 0.0005% or more of Ca. However, even if the Ca content exceeds 0.005%, these effects are saturated. Therefore, the content when Ca is contained is set to 0.0005 to 0.005%.
[0038]
Mg: 0.0003-0.004%
Mg has the effect of suppressing the growth of austenite grains in the weld heat affected zone and refining the structure, and is an effective element for improving the low temperature toughness of the weld zone. In order to acquire this effect, it is desirable to contain 0.0003% or more of Mg. However, even if the content exceeds 0.004%, the effect is saturated. Therefore, the content when Mg is contained is set to 0.003 to 0.004%.
[0039]
SP1 or SP2: 0.23-0.32%
However, SP1 is a value obtained from the following equation (1), and SP2 is a value obtained from the following equation (2). Each element in the formulas (1) and (2) means the content.
[0040]
SP1 = Si / 24 + Mn / 6… (1)
SP2 = Si / 24 + Mn / 6 + Cu / 40 + Cr / 5 + Mo / 4 + V / 14 (2)
As the C content increases, the two-phase structure becomes easier and the hardness of the hard phase increases and a low yield ratio is easily obtained, but there is a problem that the low-temperature toughness is remarkably deteriorated. Therefore, it is effective to reduce the C content, but the hardness of the hard phase is reduced, resulting in an increase in yield ratio, and it is difficult to obtain both improved low-temperature toughness and reduced yield ratio. It is.
[0041]
Therefore, as a result of repeated research on the premise that the C content is relatively reduced, the present inventors ensure the hardness of hardened structures such as pearlite and bainite by specifying the content of elements other than C. It was decided to. However, even if the ranges of the individual components are defined, if the balance of the entire component system is not appropriate, excellent characteristics cannot be obtained.In the present invention, SP1 obtained from the above equation (1) When Cu, Cr, Mo and V are included, the value of SP2 obtained from the above equation (2) is defined.
[0042]
Here, when the value of SP1 or SP2 is less than 0.23%, the steel becomes a structure mainly composed of ferrite, and the strength of hardened structures such as pearlite and bainite existing in the ferrite matrix cannot be secured, and the low yield ratio Can't get. However, if the value of SP1 or SP2 exceeds 0.32%, the hardness of the hardened structure increases and the toughness of the base material and the welded portion deteriorates. In addition, since more elements dissolve in the ferrite, the strength of the ferrite matrix is increased and the yield ratio is increased. Therefore, the value of SP1 or SP2 is set to 0.23 to 0.32%.
[0043]
2. About microstructure
In the steel for low yield ratio low temperature of the present invention, the area ratio of the bainite structure or the mixed structure of bainite and pearlite at a position t / 4 (t is the plate thickness) from the surface is required to be 5 to 70%. This is because the yield ratio of steel varies greatly depending on the area ratio of these structures. The “position of t / 4 (t is a plate thickness) from the surface” means a position of t / 4 (t is a plate thickness) from the surface and a position in the vicinity thereof, and actually 0.22 t to 0.28 t ( What is necessary is just to observe in the range of t).
[0044]
Here, when the area ratio is less than 5%, a soft phase structure mainly composed of a ferrite structure is formed. Therefore, the conditions that the tensile strength is 490 MPa or more and the yield ratio is 80% or less are not satisfied. On the other hand, when the area ratio exceeds 70%, the tensile strength is excessively increased and the toughness of the base material and the welded portion is deteriorated. Therefore, the area ratio of the bainite structure or the mixed structure of bainite and pearlite at a position of t / 4 (t is the plate thickness) from the surface was defined as 5 to 70%.
[0045]
In addition, there is no restriction | limiting in particular about organizations other than said organization. Although fine island martensite may be generated in such a structure, it is acceptable if the area ratio is less than 5%. This is because the area ratio does not adversely affect the performance of the steel material.
[0046]
  In the low yield ratio low temperature steel of the present invention, the circle-equivalent average grain size of the ferrite structure at a position t / 4 (t is the plate thickness) from the surface is 10 μm or less.It is necessary. In the low yield ratio low temperature steel of the present invention, Ni is not added from the viewpoint of stress corrosion cracking, so there is a concern about deterioration of low temperature toughness. Therefore, the low temperature toughness is ensured by refining the structure.
[0047]
ThisHere, the above ferrite refers to granular ferrite, and bainitic ferrite and ferrite constituting pearlite are excluded. The “equivalent circle average particle size” is a radius when an average cross-sectional area of a crystal grain is obtained from a ferrite crystal grain size measured according to a method specified in JIS G 0552 for an arbitrary field of view, and this is replaced with a circle. Means.
[0048]
It should be noted that the observation of the structure definition at a position t / 4 (t is the plate thickness) from the surface is because the structure of the steel plate varies depending on the position in the plate thickness direction. This is because it is suitable as a representative position. Accordingly, the position of t / 4 (t is the plate thickness) may be a position from the front surface side or a position from the back surface side. Further, as shown in FIG. 1, the area ratio and grain size of the structure may be observed on the cross section in the rolling direction of the steel sheet 1 (the surface indicated as “observation surface” in the drawing).
[0049]
3. About manufacturing method
In the method for producing the low yield ratio low temperature steel of the present invention, the steel having the above chemical composition is heated to 1000 to 1200 ° C., and ArThreeAfter finishing hot rolling at a temperature of ~ 850 ° C, (ArThree−30) to (ArThreeAccelerated cooling starts at a temperature of −100) ° C. and stops at less than 150 ° C.
[0050]
The heating temperature of the steel needs to be 1200 ° C. or lower in order to prevent coarsening of the austenite crystal grains during heating. However, if the heating temperature of the steel is less than 1000 ° C., the crystal grains cannot be refined during rolling, and it becomes difficult to dissolve Nb effective for precipitation hardening after rolling. . Therefore, the heating temperature of the steel was set to 1000 to 1200 ° C.
[0051]
It is desirable that the hot rolling finish temperature be as low as possible. This is to promote the miniaturization of austenite so that the circle-equivalent average particle diameter of the ferrite structure at a position of t / 4 (t is the plate thickness) from the surface is 10 μm or less. However, the hot rolling finish temperature is ArThreeIf it is less than 1, dislocations are introduced into the ferrite because the rolling is performed in the ferrite-austenite two-phase region. For this reason, the yield strength increases and a low yield ratio cannot be achieved. On the other hand, when the finishing temperature of hot rolling exceeds 850 ° C., coarse austenite is generated, which causes deterioration of the toughness of the base material after rolling. Therefore, the finishing temperature of hot rolling is ArThree˜850 ° C.
[0052]
The cooling start temperature needs to be set in consideration of the hot rolling finishing temperature in order to appropriately generate ferrite transformation, pearlite transformation, or bainite transformation to obtain an appropriate composite structure. The cooling start temperature is (ArThreeWhen the temperature exceeds −30) ° C., the amount of transformation of ferrite is not sufficient, and the ratio of the hardened structure increases and the yield ratio increases. But (ArThreeWhen the temperature is lower than −100) ° C., the amount of transformation of ferrite becomes too large to obtain a desired strength (particularly yield ratio). Therefore, set the cooling start temperature to (ArThree−30) to (ArThree−100) ° C.
[0053]
The water cooling stop temperature is very important in the present invention. That is, when the water cooling stop temperature is 150 ° C. or higher, a temperature gradient is generated on the surface and inside of the steel sheet due to the influence of transformation points such as bainite transformation and martensitic transformation. As a result, transformation unevenness occurs, and the characteristics of the base material are deteriorated due to the unevenness of the structure. Therefore, the water cooling stop temperature was set to less than 150 ° C.
[0054]
In addition, the heat processing which changes the structure | tissue obtained by the manufacturing method of this invention should be avoided.
[0055]
【Example】
Steel having the chemical composition shown in Table 1 was melted, and a slab having a thickness of 235 mm was obtained by a continuous casting machine.
[0056]
[Table 1]
Figure 0003894148
  A steel plate having a thickness of 20 mm was produced from the obtained slab under the production conditions shown in Table 2, and these were used as test materials.
[0057]
[Table 2]
Figure 0003894148
[0058]
About the obtained test material, the structure state and various characteristics were investigated by the following method. The results are shown in Table 3.
[0059]
Microstructure state
A test piece obtained by cutting out a cross section in a direction horizontal to the rolling direction from the test material was collected. After etching the n / 4 position from the surface at the position of t / 4 (t is the plate thickness) of the cross section in the plate thickness direction of each test piece, the photograph was taken at a magnification of 500 times using an optical microscope and existed in a 100 μm square. The area ratio of the cured tissue was obtained by reading with an image scanner. This was performed for a total of three visual fields, and the average value was defined as the area ratio of the hardened tissue. In addition, for the average grain size of ferrite, calculate the average cross-sectional area of the crystal grain from the ferrite grain size measured according to the method prescribed in JIS Z 0552 for any one field of view, and calculate the radius when this is replaced with a circle. And asked.
[0060]
Base material properties
A specimen No. 14B specified in JIS Z2201 was taken from a direction perpendicular to the rolling direction of the above specimen, and a tensile test was performed. The yield strength (YS) was 360 to 440 MPa, the tensile strength (TS) was 490 to 610 MPa, and the yield ratio ([YS / TS] × 100%) was 80% or less. The low temperature toughness of the base metal part is a direction perpendicular to the rolling direction of the above-mentioned specimen, and a V-notch test piece specified in JIS Z 2202 is taken from a position of t / 4 (t is the plate thickness). An impact test was performed. The fracture surface transition temperature (vTrs) was calculated from the test results. The fracture surface transition temperature (vTrs) was within a favorable range of −60 ° C. or lower.
[0061]
Low temperature toughness of welds
A 600 mm long and 300 mm wide weld specimen was cut out from the above test material, the end was processed into an X-shaped groove, and a welded joint was produced by performing submerged arc welding with a heat input of about 4 kJ / mm. . Samples were taken from each welded joint so that the end of the impact test piece was 1 mm from the surface of the steel plate so that the notch position coincided with the fusion line, Charpy impact test was conducted, and the absorbed energy at -55 ° C (vE-55) Was measured. Absorbed energy at −55 ℃ (vE-55) 50J or more was considered a good range.
[0062]
Ammonia stress corrosion cracking resistance
Ammonia stress corrosion cracking resistance was evaluated by cutting out a test piece having a thickness of 2 mm, a width of 15 mm, and a length of 60 mm from the surface of the weld bead as described above, and 80%, 100% Stress equivalent to 120% (0.8σy, 1.0σyAnd 1.2σy) And a corrosive solution (saturated NH) at a test temperature of 25 ° C.FourCONH2-Liquid NHThree) Was immersed for 240 hours, and then the presence or absence of cracks in each test piece was examined using an optical microscope at a magnification of 200 times. As a result, the case where no crack was observed was evaluated as good, and the case where a crack was observed was evaluated as defective.
[0063]
[Table 3]
Figure 0003894148
[0064]
As shown in Table 3, the steels of Nos. 1, 3, 4, and 9 to 17 as examples of the present invention all had sufficient characteristics as multipurpose tank steel.
[0065]
On the other hand, No. 2, which is a comparative example, has a chemical composition within the range of the present invention, but is tempered at a ferrite-austenite two-phase temperature. For this reason, in No. 2, the area ratio of the hardened structure was low, the ferrite average particle diameter exceeded the range specified in the present invention, and the strength and toughness of the base material deteriorated.
[0066]
The steels of Nos. 5 to 8 that are comparative examples are within the range of the chemical composition defined in the present invention, but were produced under production conditions that deviate from the range defined in the present invention. The characteristics were inferior. That is, in No. 5 steel, since the heating temperature was too high, the austenite grains became coarse and the hardenability increased, and the area ratio of the hardened structure exceeded the range specified in the present invention. For this reason, in the steel No. 5, the strength and toughness of the base material deteriorated. The steel No. 6 has a water cooling start temperature of Ar because the finishing temperature was too low.ThreeIt became less than the point. For this reason, in the steel No. 6, the area ratio of the hardened structure was reduced, and the proof stress and toughness of the base material were deteriorated. In No. 7, the water cooling start temperature was too high, so the area ratio of the hardened structure increased, and both the yield strength and strength increased. In the steel No. 8, since the water cooling stop temperature was too high, the area ratio of the hardened structure was reduced, and the strength and toughness of the base material were deteriorated.
[0067]
Steels No. 18, 19, 20, 21, 22, and 23, which are comparative examples, are steels whose chemical compositions are outside the range defined in the present invention. In the steel No. 18, since the C content exceeded the range specified in the present invention, the toughness of the base material was deteriorated, and further, the welded portion was hardened and the ammonia stress corrosion cracking resistance was deteriorated. In the steel No. 19, the toughness of the base material deteriorated because the Mn content was below the range specified in the present invention. In the steel No. 20, since the Ti content was below the range specified in the present invention, the austenite was coarsened, and the ferrite after the transformation was coarsened. The performance was also inferior. In the steel No. 21, the Ni content exceeded the range specified in the present invention, so the ammonia stress corrosion cracking resistance deteriorated. In the steel No. 22, the toughness of the base material deteriorated because the Cr content exceeded the range specified in the present invention. In the steel No. 23, since the SP value exceeded the range specified in the present invention, all of the proof stress, strength and toughness of the base material were inferior.
[0068]
【The invention's effect】
The low yield ratio low temperature steel of the present invention is a steel that has a low yield ratio, is excellent in low temperature toughness of the base metal and the welded part, and has low stress corrosion cracking susceptibility. Further, since Ni is not added, the steel is excellent in economic efficiency. Therefore, it is optimal as steel used for multipurpose tanks.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing positions at which the area ratio and particle size of a tissue are observed.
[Explanation of symbols]
1. steel sheet

Claims (4)

質量%で、C:0.02〜0.06%、Si:0.1〜0.5%、Mn:1.0〜2.0%、P:0.020%以下、S:0.010%以下、Nb:0.005〜0.050%、Ti:0.005〜0.025%、sol.Al:0.090%以下およびN:0.001〜0.01%を含有し、残部がFeおよび不純物からなり、不純物としてのNiが0.05%未満であり、下記の(1)式から求められるSP1が0.23〜0.32%であり、表面からt/4(tは板厚)の位置におけるベイナイト組織またはベイナイトおよびパーライトの混合組織の面積率が5〜70%であり、表面からt/4(tは板厚)の位置におけるフェライト組織の円相当平均粒径が10μm以下であることを特徴とする低降伏比低温用鋼。
SP1=Si/24+Mn/6 ・・・(1)
但し、(1)式中の各元素は含有量を意味する。
In mass%, C: 0.02-0.06%, Si: 0.1-0.5%, Mn: 1.0-2.0%, P: 0.020% or less, S: 0.010 % Or less, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.025%, sol. Al: 0.090% or less and N: 0.001 to 0.01%, the balance is Fe and impurities, Ni as impurities is less than 0.05%, from the following formula (1) SP1 sought a is 0.23~0.32%, t / 4 from the surface (t is thickness) Ri 5% to 70% der is bainite or bainite and pearlite mixed structure area ratio of at the position of, t / 4 (t is thickness) low yield ratio steel for low temperature service which circle-equivalent average grain size of ferrite structure at the position of, characterized in der Rukoto below 10μm from the surface.
SP1 = Si / 24 + Mn / 6 (1)
However, each element in the formula (1) means the content.
質量%で、C:0.02〜0.06%、Si:0.1〜0.5%、Mn:1.0〜2.0%、P:0.020%以下、S:0.010%以下、Nb:0.005〜0.050%、Ti:0.005〜0.025%、sol.Al:0.090%以下およびN:0.001〜0.01%、更にCu:0.05〜0.50%、Cr:0.05〜0.50%、Mo:0.05〜0.50%、V:0.01〜0.05%、Ca:0.0005〜0.005%およびMg:0.0003〜0.004%のうちの一種以上を含有し、残部がFeおよび不純物からなり、不純物としてのNiが0.05%未満であり、下記の(2)式から求められるSP2が0.23〜0.32%であり、表面からt/4(tは板厚)の位置におけるベイナイト組織またはベイナイトおよびパーライトの混合組織の面積率が5〜70%であり、表面からt/4(tは板厚)の位置におけるフェライト組織の円相当平均粒径が10μm以下であることを特徴とする低降伏比低温用鋼。
SP2=Si/24+Mn/6+Cu/40+Cr/5+Mo/4+V/14
・・・(2)
但し、(2)式中の各元素は含有量を意味する。
In mass%, C: 0.02-0.06%, Si: 0.1-0.5%, Mn: 1.0-2.0%, P: 0.020% or less, S: 0.010 % Or less, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.025%, sol. Al: 0.090% or less and N: 0.001-0.01%, Cu: 0.05-0.50%, Cr: 0.05-0.50%, Mo: 0.05-0. 50%, V: 0.01 to 0.05%, Ca: 0.0005 to 0.005%, and Mg: 0.0003 to 0.004%, and the balance is Fe and impurities Thus, Ni as an impurity is less than 0.05%, SP2 obtained from the following formula (2) is 0.23 to 0.32%, and the position is t / 4 (t is the plate thickness) from the surface. 5% to 70% der is bainite or bainite and pearlite mixed structure area ratio of at is, from the surface t / 4 (t is thickness) Ru der circle-equivalent average particle diameter of 10μm or less of ferrite structure in the position of Low yield ratio steel for low temperature.
SP2 = Si / 24 + Mn / 6 + Cu / 40 + Cr / 5 + Mo / 4 + V / 14
... (2)
However, each element in the formula (2) means content.
質量%で、C:0.02〜0.06%、Si:0.1〜0.5%、Mn:1.0〜2.0%、P:0.020%以下、S:0.010%以下、Nb:0.005〜0.050%、Ti:0.005〜0.025%、sol.Al:0.090%以下およびN:0.001〜0.01%を含有し、残部がFeおよび不純物からなり、不純物としてのNiが0.05%未満であり、かつ下記の(1)式から求められるSP1が0.23〜0.32%である鋼を1000〜1200℃に加熱し、Ar〜850℃の温度で熱間圧延を終了した後、(Ar−30)〜(Ar−100)℃の温度から加速冷却を開始し、150℃未満で停止することを特徴とする低降伏比低温用鋼の製造方法。
SP1=Si/24+Mn/6 ・・・(1)
但し、(1)式中の各元素は含有量を意味する。
In mass%, C: 0.02-0.06%, Si: 0.1-0.5%, Mn: 1.0-2.0%, P: 0.020% or less, S: 0.010 % Or less, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.025%, sol. Al: 0.090% or less and N: 0.001 to 0.01%, the balance is Fe and impurities, Ni as impurities is less than 0.05%, and the following formula (1) after SP1 obtained from heats the steel is 0.23-.32% to 1000 to 1200 ° C., to complete the hot rolling at a temperature of Ar 3 ~850 ℃, (Ar 3 -30) ~ (Ar A method for producing a low yield ratio low temperature steel characterized in that accelerated cooling starts at a temperature of 3-100) ° C. and stops at less than 150 ° C.
SP1 = Si / 24 + Mn / 6 (1)
However, each element in the formula (1) means the content.
質量%で、C:0.02〜0.06%、Si:0.1〜0.5%、Mn:1.0〜2.0%、P:0.020%以下、S:0.010%以下、Nb:0.005〜0.050%、Ti:0.005〜0.025%、sol.Al:0.090%以下およびN:0.001〜0.01%、更にCu:0.05〜0.50%、Cr:0.05〜0.50%、Mo:0.05〜0.50%、V:0.01〜0.05%、Ca:0.0005〜0.005%およびMg:0.0003〜0.004%のうちの一種以上を含有し、残部がFeおよび不純物からなり、不純物としてのNiが0.05%未満であり、かつ下記の(2)式から求められるSP2が0.23〜0.32%である鋼を1000〜1200℃に加熱し、Ar〜850℃の温度で熱間圧延を終了した後、(Ar−30)〜(Ar−100)℃の温度から加速冷却を開始し、150℃未満で停止することを特徴とする低降伏比低温用鋼の製造方法。
SP2=Si/24+Mn/6+Cu/40+Cr/5+Mo/4+V/14
・・・(2)
但し、(2)式中の各元素は含有量を意味する。
In mass%, C: 0.02-0.06%, Si: 0.1-0.5%, Mn: 1.0-2.0%, P: 0.020% or less, S: 0.010 % Or less, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.025%, sol. Al: 0.090% or less and N: 0.001-0.01%, Cu: 0.05-0.50%, Cr: 0.05-0.50%, Mo: 0.05-0. 50%, V: 0.01 to 0.05%, Ca: 0.0005 to 0.005%, and Mg: 0.0003 to 0.004%, and the balance is Fe and impurities The steel with Ni as an impurity of less than 0.05% and SP2 calculated from the following formula (2) of 0.23 to 0.32% is heated to 1000 to 1200 ° C., and Ar 3 to after finishing the hot rolling at a temperature of 850 ° C., a low yield ratio, characterized in that the stop at (Ar 3 -30) ~ (Ar 3 -100) starts accelerated cooling from ° C. of temperature, lower than 0.99 ° C. Low temperature steel manufacturing method.
SP2 = Si / 24 + Mn / 6 + Cu / 40 + Cr / 5 + Mo / 4 + V / 14
... (2)
However, each element in the formula (2) means content.
JP2003093399A 2003-03-31 2003-03-31 Low yield ratio low temperature steel and method for producing the same Expired - Fee Related JP3894148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093399A JP3894148B2 (en) 2003-03-31 2003-03-31 Low yield ratio low temperature steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093399A JP3894148B2 (en) 2003-03-31 2003-03-31 Low yield ratio low temperature steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004300493A JP2004300493A (en) 2004-10-28
JP3894148B2 true JP3894148B2 (en) 2007-03-14

Family

ID=33406207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093399A Expired - Fee Related JP3894148B2 (en) 2003-03-31 2003-03-31 Low yield ratio low temperature steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3894148B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176847B2 (en) * 2008-10-03 2013-04-03 新日鐵住金株式会社 Low yield ratio low temperature steel and method for producing the same
JP5428999B2 (en) * 2010-03-30 2014-02-26 新日鐵住金株式会社 LPG / ammonia mixed steel manufacturing method
JP5842358B2 (en) * 2010-10-12 2016-01-13 Jfeスチール株式会社 Non-tempered low yield ratio high tensile steel plate and method
CN107557685B (en) * 2017-08-30 2019-03-26 武汉钢铁有限公司 440MPa grades of ship corrosion-resisting steels and its production method under low temperature environment
KR20220084138A (en) * 2019-11-22 2022-06-21 제이에프이 스틸 가부시키가이샤 Steel for transport and storage of liquid ammonia, and method for manufacturing steel for transport and storage of liquid ammonia

Also Published As

Publication number Publication date
JP2004300493A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP4066905B2 (en) Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness
KR101908819B1 (en) High strength steel having excellent fracture initiation resistance and fracture arrestability in low temperature, and method for manufacturing the same
KR102045641B1 (en) High strength steel for arctic environment having excellent resistance to fracture in low temperature, and method for manufacturing the same
KR101908818B1 (en) High strength steel having excellent fracture initiation resistance and fracture arrestability in low temperature, and method for manufacturing the same
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP2007177318A (en) High-tension steel sheet and method for producing the same
JP4464909B2 (en) High yield strength high tensile strength steel plate with excellent toughness of weld heat affected zone
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2020037734A (en) High strength and low yield ratio thick steel plate having excellent toughness in base material and weld heat-affected zone, while having smaller acoustic anisotropy, and method for producing the same
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP5139015B2 (en) Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP3906779B2 (en) Manufacturing method of low temperature steel with excellent stress corrosion cracking resistance
JP5151693B2 (en) Manufacturing method of high-strength steel
JP4044470B2 (en) High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same
JP2008248359A (en) Method for manufacturing on-line cooling type high tension steel sheet
JP4868762B2 (en) High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy
JP3894148B2 (en) Low yield ratio low temperature steel and method for producing the same
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP3737300B2 (en) Non-tempered low yield ratio high tensile strength steel plate with excellent weldability
JP4354754B2 (en) High-tensile steel plate with excellent base metal toughness and HAZ toughness
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP4899885B2 (en) Thin-walled tempered high-strength steel sheet with excellent toughness and brittle crack propagation stopping characteristics and method for producing the same
JP3852295B2 (en) Steel with excellent super heat input welding characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3894148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees