JP5176847B2 - Low yield ratio low temperature steel and method for producing the same - Google Patents

Low yield ratio low temperature steel and method for producing the same Download PDF

Info

Publication number
JP5176847B2
JP5176847B2 JP2008258639A JP2008258639A JP5176847B2 JP 5176847 B2 JP5176847 B2 JP 5176847B2 JP 2008258639 A JP2008258639 A JP 2008258639A JP 2008258639 A JP2008258639 A JP 2008258639A JP 5176847 B2 JP5176847 B2 JP 5176847B2
Authority
JP
Japan
Prior art keywords
less
steel
content
low
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008258639A
Other languages
Japanese (ja)
Other versions
JP2010090406A (en
Inventor
武史 大久保
知哉 藤原
公久 弓野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008258639A priority Critical patent/JP5176847B2/en
Publication of JP2010090406A publication Critical patent/JP2010090406A/en
Application granted granted Critical
Publication of JP5176847B2 publication Critical patent/JP5176847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、液体アンモニアやLPGなどといった複数種の液化ガスを積載する多目的タンク用の鋼材に好適な低降伏比低温用鋼、およびその製造方法に関する。   The present invention relates to a low yield ratio low temperature steel suitable for a steel material for a multipurpose tank loaded with a plurality of types of liquefied gases such as liquid ammonia and LPG, and a method for producing the same.

一般に、タンクに用いられる鋼材には、貯蔵される液化ガスが低温であることから、基本特性として母材および溶接熱影響部(以下、「溶接部」という)の低温靭性が要求される。   In general, steel materials used in tanks require low temperature toughness of a base material and a weld heat affected zone (hereinafter referred to as “welded zone”) as a basic characteristic because the stored liquefied gas is low temperature.

また、近年のタンクは、同一のタンクで複数種の液化ガスを別途積載する多目的タンクとして使用されることがあり、この場合、例えば、LPGが積載されたり、LPGを取り出した後に液体アンモニアが積載される。このため、多目的タンクに用いられる鋼材には、低温靭性に加え、アンモニアに起因する応力腐食割れを防止できる特性が要求される。応力腐食割れに対し、液化ガスを運搬する船舶の構造および設備に関する国際規則であるIGCコードでは、タンク用の鋼材で、Ni含有量を5%以下に制限することや、実降伏強さを440MPa以下に抑えることなどが規定されている。   In addition, recent tanks are sometimes used as multipurpose tanks in which multiple types of liquefied gas are separately loaded in the same tank. In this case, for example, LPG is loaded or liquid ammonia is loaded after LPG is taken out. Is done. For this reason, in addition to low-temperature toughness, steel materials used for multipurpose tanks are required to have characteristics that can prevent stress corrosion cracking caused by ammonia. For stress corrosion cracking, the IGC Code, which is an international regulation on the structure and equipment of ships that carry liquefied gas, is a steel material for tanks that limits the Ni content to 5% or less, and the actual yield strength is 440 MPa. It is stipulated to keep it below.

さらに、多目的タンクは、大容量化や船舶への搭載のために高張力化が求められ、その鋼材には、結局のところ、低温靭性のみならず、降伏強さの上限規定および高張力化に伴う低降伏比化が要求される。この要求に対応して、これまで種々の技術が提案されている。   In addition, multipurpose tanks are required to have high tensile strength in order to increase capacity and to be mounted on ships. Ultimately, not only low-temperature toughness but also the upper limit of yield strength and high tensile strength are required for the steel materials. Along with this, a lower yield ratio is required. In response to this demand, various technologies have been proposed so far.

特許文献1には、鋼板素材の表面から0.3mm以内のC含有量が母材C量の50%以下になるように表面脱炭する工程と、表面脱炭鋼板を焼入れ温度に加熱した後、冷却速度を800〜500℃の温度範囲で150℃/sec以下になるように冷却する工程とを有する鋼板の製造方法が提案されている。同文献に提案された方法では、母材および溶接部の表面硬さをHv190以下にすることが可能で、アンモニアによる応力腐食割れを防止できるとされているが、鋼材を得るまでの工程が煩雑であり、さらに、母材および溶接部で低温靱性を確保できるとはいえない。   Patent Document 1 discloses a process of decarburizing the surface so that the C content within 0.3 mm from the surface of the steel sheet material is 50% or less of the amount of the base material C, and after heating the surface decarburized steel sheet to the quenching temperature. And the manufacturing method of the steel plate which has the process of cooling so that a cooling rate may be 150 degrees C / sec or less in the temperature range of 800-500 degreeC is proposed. In the method proposed in this document, it is said that the surface hardness of the base material and the welded portion can be Hv 190 or less, and stress corrosion cracking due to ammonia can be prevented, but the process until obtaining the steel material is complicated. Furthermore, it cannot be said that low-temperature toughness can be secured in the base material and the welded portion.

特許文献2、3には、化学組成が規定された鋼素材を加熱し、熱間圧延した後に、加速冷却を行って複相組織を得ることにより、低降伏比で低温靭性に優れた低温用鋼を製造する方法が提案されている。同文献2、3に提案された方法では、ベイナイトやマルテンサイトなどといった硬質組織の面積率が大きくなり過ぎ、引張試験を行ったときの応力ひずみ曲線が降伏点の不明瞭なラウンド型となる。このため、降伏強さのバラツキが大きくなり、安定して低降伏比を得ることは困難である。さらに、加速冷却によって生じる残留応力の影響で、得られた鋼材の平坦度が悪化し、平坦度を矯正する工数が別途必要となり、高い生産性が望めない。   In Patent Documents 2 and 3, a steel material having a defined chemical composition is heated, hot rolled, and then subjected to accelerated cooling to obtain a multiphase structure, thereby obtaining a low yield ratio and excellent low temperature toughness. Methods for producing steel have been proposed. In the methods proposed in References 2 and 3, the area ratio of hard structures such as bainite and martensite becomes too large, and the stress-strain curve when the tensile test is performed becomes a round type with an unclear yield point. For this reason, the variation in yield strength increases, and it is difficult to stably obtain a low yield ratio. Furthermore, the flatness of the obtained steel material deteriorates due to the influence of residual stress caused by accelerated cooling, and additional man-hours for correcting the flatness are required, and high productivity cannot be expected.

特開昭58−67830号公報JP 58-67830 A 特開平11−293380号公報JP-A-11-293380 特開2004−300493号公報JP-A-2004-300493

本発明は、上記の問題に鑑みてなされたものであり、母材および溶接部の機械的特性に優れ、多目的タンク用の鋼材として好適な低降伏比低温用鋼を提供することを目的とする。また本発明の目的は、その低降伏比低温用鋼を高い生産性で製造できる製造方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a low yield ratio low temperature steel that is excellent in mechanical properties of a base material and a welded portion and is suitable as a steel material for a multipurpose tank. . Moreover, the objective of this invention is providing the manufacturing method which can manufacture the steel for the low yield ratio low temperature with high productivity.

本発明者らは、上記目的を達成するため、引張強さ(TS)が490〜610MPa、降伏強さ(YS)が360〜440MPa、降伏比([YS/TS]×100%)が80%以下、母材の低温靭性に関して破面遷移温度(vTrs)が−60℃以下、および溶接部の低温靭性に関して−55℃での吸収エネルギー(vE−55)が50J以上という機械的特性を有する鋼材の実現を目標にして、種々の試験を行い、鋭意検討を重ねた。その結果、鋼材の化学組成および組織の状態、並びに熱間圧延条件を適正に規定すれば、いずれの機械的特性も満足する鋼材が得られることを知見し、本発明を完成させた。   In order to achieve the above object, the present inventors have a tensile strength (TS) of 490 to 610 MPa, a yield strength (YS) of 360 to 440 MPa, and a yield ratio ([YS / TS] × 100%) of 80%. Hereinafter, a steel material having mechanical properties such that the fracture surface transition temperature (vTrs) is −60 ° C. or less with respect to the low temperature toughness of the base material, and the absorbed energy (vE-55) at −55 ° C. is 50 J or more with respect to the low temperature toughness of the weld. With the goal of realizing this, various tests were conducted and extensive studies were conducted. As a result, the inventors have found that a steel material satisfying any mechanical characteristics can be obtained if the chemical composition and structure of the steel material and the hot rolling conditions are properly defined, and the present invention has been completed.

本発明は、下記(A)に示す低降伏比低温用鋼、および下記(B)に示す低降伏比低温用鋼の製造方法を要旨とする。   The gist of the present invention is a low yield ratio low temperature steel shown in the following (A) and a method of manufacturing a low yield ratio low temperature steel shown in the following (B).

(A)質量%で、C:0.02〜0.08%、Si:0.1〜0.5%、Mn:1.0〜2.0%、P:0.020%以下、S:0.010%以下、Nb:0.003%以下、Ti:0.005〜0.025%、sol.Al:0.090%以下、およびN:0.001〜0.010%を含有し、さらに、Cu:0.50%以下、Ni:0.50%以下、Cr:0.20%以下、およびMo:0.15%以下のうちの2種以上を含有し、残部がFeおよび不純物からなり、下記(1)式から求められるSP1が0.06〜0.12%である低降伏比低温用鋼であって、板厚をtとして表面からt/4の位置において、組織がフェライト組織と硬質組織の複相組織であり、前記フェライト組織の面積率が80%以上であり、前記硬質組織のうちで下記(2)式の関係を満たす硬質組織を100μm四方の領域に15個以上含み、当該硬質組織の円相当平均粒径が2〜5μmであり、前記フェライト組織の円相当平均粒径が7.5〜20μmであり、前記フェライト組織のアスペクト比が2.0以下であることを特徴とする低降伏比低温用鋼。
SP1=Cr/5+Mo/3+(Cu+Ni)/15 ・・・(1)
但し、(1)式中の元素記号は含有量を示す。
Hvh/Hvm≧3.0 ・・・(2)
但し、(2)式中のHvhは硬質組織のビッカース硬さを、Hvmはフェライト組織のビッカース硬さをそれぞれ示す。
(A) In mass%, C: 0.02 to 0.08%, Si: 0.1 to 0.5%, Mn: 1.0 to 2.0%, P: 0.020% or less, S: 0.010% or less, Nb: 0.003% or less, Ti: 0.005 to 0.025%, sol. Al: 0.090% or less, and N: 0.001-0.010%, further Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.20% or less, and Mo: Contains at least two of 0.15% or less, the balance is Fe and impurities, and the SP1 calculated from the following formula (1) is 0.06 to 0.12% for low yield ratio for low temperature Steel, wherein the thickness is t / 4 from the surface, and the structure is a multiphase structure of a ferrite structure and a hard structure, and the area ratio of the ferrite structure is 80% or more, Among them, 15 or more hard structures satisfying the relationship of the following expression (2) are included in a 100 μm square region, the circle-equivalent average particle diameter of the hard structure is 2 to 5 μm, and the circle-equivalent average particle diameter of the ferrite structure is 7.5-20 μm, the ferrite set Low yield ratio steel for low temperature service which aspect ratio is equal to or more than 2.0.
SP1 = Cr / 5 + Mo / 3 + (Cu + Ni) / 15 (1)
However, the element symbol in the formula (1) indicates the content.
Hvh / Hvm ≧ 3.0 (2)
However, Hvh in the formula (2) indicates the Vickers hardness of the hard structure, and Hvm indicates the Vickers hardness of the ferrite structure.

ここで、「表面からt/4の位置」とは、鋼材の表面から厳密にt(鋼材の板厚)/4の位置のみならず、その近傍位置も含み、具体的には、表面から0.22t〜0.28tの範囲内の位置を意味する。   Here, the “position of t / 4 from the surface” includes not only the position of t (steel plate thickness) / 4 from the surface of the steel material but also the position in the vicinity thereof, specifically, 0 from the surface. Means a position within the range of .22t to 0.28t.

「フェライト組織」とは、軟質な粒状のフェライト組織を意味し、ベイニティックフェライトやパーライトを構成するフェライトの組織は除かれる。また、「硬質組織」とは、硬質なベイナイトおよびマルテンサイトの組織を意味する。   The “ferrite structure” means a soft granular ferrite structure, and bainitic ferrite and ferrite structure constituting pearlite are excluded. The “hard structure” means a hard bainite and martensite structure.

「円相当平均粒径」とは、任意の一視野について、JIS G 0552に準拠して測定した結晶粒度から結晶粒の平均断面積を求め、これを円に置き換えたときの半径を意味する。   The “equivalent circle average particle diameter” means a radius when an average cross-sectional area of a crystal grain is obtained from a crystal grain size measured in accordance with JIS G 0552 for an arbitrary field of view and is replaced with a circle.

上記(A)の低降伏比低温用鋼では、Cu、Ni、CrおよびMoのうちの2種以上を含有する場合、Cuの含有量が0.05%以上であり、Niの含有量が0.05%以上であり、Crの含有量が0.05%以上であり、Moの含有量が0.03%以上であることが好ましい。   In the steel for low yield ratio low temperature of the above (A), when two or more of Cu, Ni, Cr and Mo are contained, the Cu content is 0.05% or more and the Ni content is 0. 0.05% or more, Cr content is preferably 0.05% or more, and Mo content is preferably 0.03% or more.

(B)質量%で、C:0.02〜0.08%、Si:0.1〜0.5%、Mn:1.0〜2.0%、P:0.020%以下、S:0.010%以下、Nb:0.003%以下、Ti:0.005〜0.025%、sol.Al:0.090%以下、およびN:0.001〜0.010%を含有し、さらに、Cu:0.50%以下、Ni:0.50%以下、Cr:0.20%以下、およびMo:0.15%以下のうちの2種以上を含有し、残部がFeおよび不純物からなり、上記(1)式から求められるSP1が0.06〜0.12%である鋼素材を、1000℃〜1200℃に加熱した後、Ac3点以上の温度で圧下率を30%以上として圧延し、さらに(Ar3点−40℃)以上、Ac3点未満の温度で圧下率を30%以上として圧延し、(Ar3点−40℃)以上、800℃未満の温度で圧延を終了し、室温まで5℃/s以下の冷却速度で冷却することを特徴とする低降伏比低温用鋼の製造方法。 (B)% by mass, C: 0.02 to 0.08%, Si: 0.1 to 0.5%, Mn: 1.0 to 2.0%, P: 0.020% or less, S: 0.010% or less, Nb: 0.003% or less, Ti: 0.005 to 0.025%, sol. Al: 0.090% or less, and N: 0.001-0.010%, further Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.20% or less, and Mo: A steel material containing two or more of 0.15% or less, the balance being Fe and impurities, and SP1 obtained from the above formula (1) being 0.06 to 0.12%, 1000 After heating to ℃ to 1200 ℃, rolling at a temperature of Ac 3 point or higher at a reduction rate of 30% or higher, and further, at a temperature of (Ar 3 point −40 ° C.) or higher and lower than Ac 3 point, the rolling reduction rate is 30% or higher. Of low yield ratio low temperature steel, characterized in that rolling is finished at a temperature of (Ar 3 point −40 ° C.) or more and less than 800 ° C. and cooled to room temperature at a cooling rate of 5 ° C./s or less. Production method.

本発明の低降伏比低温用鋼は、化学組成および組織の状態を適正に規定することにより、低降伏比で母材および溶接部の低温靭性に優れたものとなり、多目的タンク用の鋼材として好適に用いることができる。また、本発明の低降伏比低温用鋼の製造方法では、平坦度の悪化要因である圧延後の水冷処理が不要であることから、低温靭性に優れた低降伏比低温用鋼の鋼材を高い生産性で製造することができる。   The steel for low yield ratio low temperature of the present invention has excellent low temperature toughness of the base metal and the welded portion at a low yield ratio by appropriately specifying the chemical composition and the state of the structure, and is suitable as a steel material for a multipurpose tank. Can be used. Moreover, in the manufacturing method of the low yield ratio low temperature steel according to the present invention, the water cooling treatment after rolling, which is a cause of deterioration in flatness, is unnecessary, so the steel material of the low yield ratio low temperature steel excellent in low temperature toughness is high. Can be manufactured with productivity.

上記(A)および(B)に示す通りに本発明の低降伏比低温用鋼およびその製造方法を規定した理由を、以下に説明する。以下の説明において、特に断らない限り、下記「%」は「質量%」を意味する。   The reason why the low yield ratio low temperature steel of the present invention and the manufacturing method thereof are specified as shown in the above (A) and (B) will be described below. In the following description, “%” below means “mass%” unless otherwise specified.

1.化学組成について
C:0.02〜0.08%
Cは、鋼材の強度を上昇させるのに極めて有効な元素である。しかし、その含有量が0.02%未満では、目標とする引張強さ(490〜610MPa)を確保できないばかりでなく、低降伏比(80%以下)を達成するために必要なベイナイトやマルテンサイトなどの硬化組織の生成が不十分となる。一方、Cの含有量が0.08%を超えると、母材および溶接部の低温靭性が低下し、溶接性も悪化する。従って、Cの含有量を0.02〜0.08%とする。
1. About chemical composition C: 0.02-0.08%
C is an element that is extremely effective in increasing the strength of the steel material. However, if the content is less than 0.02%, not only the target tensile strength (490 to 610 MPa) can be secured, but also bainite and martensite necessary for achieving a low yield ratio (80% or less). The formation of a hardened structure such as is insufficient. On the other hand, if the C content exceeds 0.08%, the low-temperature toughness of the base material and the welded portion is lowered, and the weldability is also deteriorated. Therefore, the C content is 0.02 to 0.08%.

Si:0.1〜0.5%
Siは、Alとともに脱酸剤として有効な元素であり、鋼材の強度上昇にも極めて有効である。しかし、その含有量が0.1%未満では、これらの効果が得られない。一方、Siの含有量が0.5%を超えると、溶接部の低温靭性が低下する。従って、Siの含有量を0.1%〜0.5%とする。
Si: 0.1 to 0.5%
Si is an element that is effective as a deoxidizer together with Al, and is extremely effective in increasing the strength of steel. However, if the content is less than 0.1%, these effects cannot be obtained. On the other hand, when the Si content exceeds 0.5%, the low temperature toughness of the welded portion is lowered. Therefore, the Si content is set to 0.1% to 0.5%.

Mn:1.0〜2.0%
Mnは、焼入れ性を上昇させて、鋼材の強度および靭性を確保する上で重要な元素である。しかし、その含有量が1.0%未満では、母材の低温靭性の向上が図れない。一方、2.0%を超える含有は、それらの効果が飽和するばかりでなく、連続鋳造によるスラブ(鋼素材)の製造時に中心偏析の主要因となる。従って、Mnの含有量を1.0〜2.0%とする。
Mn: 1.0-2.0%
Mn is an important element for increasing the hardenability and ensuring the strength and toughness of the steel material. However, if the content is less than 1.0%, the low temperature toughness of the base material cannot be improved. On the other hand, the content exceeding 2.0% not only saturates these effects, but also becomes a main factor of center segregation during the production of a slab (steel material) by continuous casting. Therefore, the Mn content is set to 1.0 to 2.0%.

P:0.020%以下
Pは、鋼中に不純物として存在する元素である。Pの含有量を低減すれば、母材の機械的特性および溶接部の低温靭性を向上させることができ、中心偏析も低減できるので、その含有量はできるだけ少ない方がよい。このため、Pの含有量を0.020%以下に制限する。
P: 0.020% or less P is an element present as an impurity in steel. If the P content is reduced, the mechanical properties of the base metal and the low temperature toughness of the weld can be improved, and the center segregation can also be reduced. Therefore, the content should be as low as possible. For this reason, the P content is limited to 0.020% or less.

S:0.010%以下
Sも、鋼中に不純物として存在する元素である。Sは中心偏析を助長したり、延伸したMnSを生成し、母材および溶接部の機械的特性を劣化させるため、その含有量はできるだけ少ない方がよい。このため、Sの含有量を0.010%以下に制限する。
S: 0.010% or less S is also an element present as an impurity in steel. S promotes center segregation or produces stretched MnS and degrades the mechanical properties of the base metal and the welded portion, so its content should be as low as possible. For this reason, the S content is limited to 0.010% or less.

Nb:0.003%以下
Nbは、微量の添加でも結晶粒を細粒化させる元素であり、低降伏比の確保に有効であるが、適度に粒径が大きいフェライトの生成を困難にする。このため、積極的にはNbを添加しないこととし、不純物として含有する場合でも、その含有量を0.003%以下に制限する。
Nb: 0.003% or less Nb is an element that makes crystal grains fine even when added in a small amount, and is effective in securing a low yield ratio, but makes it difficult to generate ferrite having a moderately large grain size. For this reason, Nb is not positively added, and even when it is contained as an impurity, the content is limited to 0.003% or less.

Ti:0.005〜0.025%
Tiは、Nと結合しTiNとしてスラブ中に微細に析出し、加熱時のオーステナイト粒の粗大化を抑制する元素であり、圧延組織の微細化に有効である。また、TiNが鋼中に存在すると、溶接時に溶接部の組織の粗大化が抑制される。すなわち、Tiは、母材および溶接部の靭性を改善する上で必要な元素である。Tiの含有量が0.005%未満では、その効果が不十分であり、一方、0.025%を超えると、溶接部の低温靭性が劣化する。従って、Tiの含有量を0.005〜0.025%とする。
Ti: 0.005-0.025%
Ti is an element that combines with N and precipitates finely in the slab as TiN, and suppresses the coarsening of austenite grains during heating, and is effective in refining the rolling structure. Moreover, when TiN exists in steel, the coarsening of the structure of a welding part is suppressed at the time of welding. That is, Ti is an element necessary for improving the toughness of the base material and the welded portion. If the Ti content is less than 0.005%, the effect is insufficient. On the other hand, if the Ti content exceeds 0.025%, the low temperature toughness of the welded portion deteriorates. Therefore, the Ti content is set to 0.005 to 0.025%.

sol.Al:0.090%以下
sol.Alは、鋼中の溶存酸素を低減するのに極めて有効な元素であり、脱酸剤として鋼中に含有させる。また、sol.Alは、鋼中のフリーNをAlNとして固定し無害化する効果も有する。しかし、sol.Alの含有量を過剰に増加させても、それらの効果は飽和する。従って、sol.Alの含有量を0.090%以下とする。なお、sol.Alは、0.005%以上含有する場合に上記の効果が顕著となる。また、鋼の清浄度の観点から、sol.Alの含有量を0.060%以下とするのが好ましい。
sol. Al: 0.090% or less sol. Al is an element that is extremely effective in reducing dissolved oxygen in steel, and is contained in steel as a deoxidizer. Also, sol. Al also has the effect of fixing free N in steel as AlN and making it harmless. However, sol. Even if the content of Al is excessively increased, these effects are saturated. Therefore, sol. The Al content is 0.090% or less. Note that sol. When Al is contained by 0.005% or more, the above effect becomes remarkable. From the viewpoint of the cleanliness of steel, sol. The Al content is preferably 0.060% or less.

N:0.001〜0.010%
Nは、Nbと結合して炭窒化物を形成すると、鋼の強度を上昇させ、Tiと結合してTiNを形成すると、圧延組織を微細化するなどの効果を有する。これらの効果を得るためには、Nの含有量を0.001%以上とする必要がある。しかし、Nの過剰な含有は溶接部の低温靭性を劣化させる。従って、Nの含有量を0.001〜0.010%とする。
N: 0.001 to 0.010%
When N combines with Nb to form carbonitride, it increases the strength of the steel, and when combined with Ti to form TiN, N has the effect of refining the rolled structure. In order to obtain these effects, the N content needs to be 0.001% or more. However, the excessive content of N deteriorates the low temperature toughness of the weld. Therefore, the N content is set to 0.001 to 0.010%.

本発明の低降伏比低温用鋼には、鋼材の強度および低温靭性を確保しつつ、降伏比の低減を図るため、さらに、Cu:0.50%以下、Ni:0.50%以下、Cr:0.20%以下、Mo:0.15%以下のうちの2種以上を、後述する(1)式で与えられるSP1:0.06〜0.12%を満足するように含有させる。   In the steel for low yield ratio low temperature of the present invention, in order to reduce the yield ratio while ensuring the strength and low temperature toughness of the steel material, Cu: 0.50% or less, Ni: 0.50% or less, Cr : Two or more of 0.20% or less and Mo: 0.15% or less are contained so as to satisfy SP1: 0.06 to 0.12% given by the formula (1) described later.

Cu:0.50%以下
Cuは、鋼材の強度および低温靭性を改善するのに有効な元素である。しかし、Cuは、0.50%を超えて含有させると、熱間圧延時に割れが発生して製造が困難となる。従って、Cuを含有させる場合は、その含有量を0.50%以下とする。特に、Cuの含有による効果を有効に発揮させるには、Cuを0.05%以上含有させるのが望ましい。
Cu: 0.50% or less Cu is an element effective for improving the strength and low-temperature toughness of steel materials. However, if Cu is contained in an amount exceeding 0.50%, cracks occur during hot rolling, making manufacture difficult. Therefore, when it contains Cu, the content shall be 0.50% or less. In particular, it is desirable to contain 0.05% or more of Cu in order to effectively exhibit the effects due to the inclusion of Cu.

Ni:0.50%以下
Niは、溶接性や溶接部の靭性に悪影響を及ぼすことなく、鋼材の強度および靭性を向上させるのに有効な元素である。しかし、Niの過剰な含有は、不経済であるだけでなく、溶接性に好ましくない。また、Niを過剰に含有させると、液体アンモニアによる応力腐食割れを誘起するおそれがある。従って、Niを含有させる場合は、その含有量を0.50%以下とする。特に、Niの含有による効果を有効に発揮させるには、Niを0.05%以上含有させるのが望ましい。
Ni: 0.50% or less Ni is an element effective for improving the strength and toughness of the steel material without adversely affecting the weldability and the toughness of the welded portion. However, excessive content of Ni is not only uneconomical but also undesirable for weldability. Moreover, when Ni is contained excessively, there is a risk of inducing stress corrosion cracking due to liquid ammonia. Therefore, when Ni is contained, the content is made 0.50% or less. In particular, it is desirable to contain 0.05% or more of Ni in order to effectively exhibit the effect of containing Ni.

Cr:0.20%以下
Crも、鋼材の強度および低温靭性を改善するのに有効な元素である。しかし、Crは、0.20%を超えて含有させると、母材および溶接部の低温靭性を劣化させる。従って、Crを含有させる場合は、その含有量を0.20%以下とする。特に、Crの含有による効果を有効に発揮させるには、Crを0.05%以上含有させるのが望ましい。
Cr: 0.20% or less Cr is also an effective element for improving the strength and low temperature toughness of steel materials. However, when Cr is contained exceeding 0.20%, the low temperature toughness of the base material and the welded portion is deteriorated. Therefore, when Cr is contained, the content is made 0.20% or less. In particular, in order to effectively exhibit the effect of the Cr content, it is desirable to contain 0.05% or more of Cr.

Mo:0.15%以下
Moも、鋼材の強度および低温靭性を改善するのに有効な元素である。しかし、Moの含有量が0.15%を超えると、母材および溶接部の低温靭性が劣化する。従って、Moを含有させる場合は、その含有量を0.15%以下とする。特に、Moの含有による効果を有効に発揮させるには、Moを0.03%以上含有させるのが望ましい。
Mo: 0.15% or less Mo is also an effective element for improving the strength and low-temperature toughness of steel materials. However, if the Mo content exceeds 0.15%, the low temperature toughness of the base metal and the welded portion deteriorates. Therefore, when Mo is contained, the content is made 0.15% or less. In particular, it is desirable to contain 0.03% or more of Mo in order to effectively exhibit the effect of containing Mo.

SP1:0.06〜0.12%
SP1は下記の(1)式から求められる値であり、同式中の元素記号は含有量を示す。
SP1=Cr/5+Mo/3+(Cu+Ni)/15 ・・・(1)
SP1: 0.06-0.12%
SP1 is a value obtained from the following formula (1), and the element symbol in the formula represents the content.
SP1 = Cr / 5 + Mo / 3 + (Cu + Ni) / 15 (1)

低降伏比を得るには、鋼の組織が、より軟質なフェライト組織(以下、「フェライト相」ともいう)と、より硬質なベイナイトやマルテンサイトなどの硬質組織(以下、「硬質相」ともいう)とから構成される複相組織であることが有効である。ここで、Cの含有量が多いほど硬質相の硬さが上昇し、引張強さが上昇するため、低降伏比が得られ易くなるが、これに伴って低温靭性が著しく低下する。一方、Cの含有量を低減すれば、軟質なフェライトが増加するため、降伏強さが低下するとともに、引張強さが低下し、その結果、降伏比が上昇してしまう。そこで、Cの含有量を低減したまま、引張強さを上昇させ、なおかつ低温靭性を確保する方法として、鋼中にNb、Vなどを含有させることが考えられるが、これらの元素はフェライト粒の細粒化を促進させるため、降伏強さが上昇し、結果的に降伏比の上昇をもたらす。   To obtain a low yield ratio, the steel has a softer ferrite structure (hereinafter also referred to as “ferrite phase”) and a hard structure such as harder bainite and martensite (hereinafter also referred to as “hard phase”). It is effective to have a multiphase structure composed of Here, as the C content is increased, the hardness of the hard phase is increased and the tensile strength is increased, so that a low yield ratio is easily obtained, but the low temperature toughness is remarkably lowered. On the other hand, if the C content is reduced, soft ferrite increases, yield strength decreases, and tensile strength decreases, resulting in an increase in yield ratio. Therefore, as a method for increasing the tensile strength and reducing the low temperature toughness while reducing the C content, it is conceivable to contain Nb, V, etc. in the steel. In order to promote finer grain, the yield strength increases, resulting in an increase in yield ratio.

これに対し、鋼中にCrやMoやCuやNiを含有させると、圧延後の変態遅れのオーステナイト相にCの濃縮が促進され、硬質相をより硬くすることができる。このため、本発明者らは、C含有量を比較的低減させることを前提として研究を重ね、Cの含有量を低下させても硬質相の硬さを維持でき、なおかつフェライト粒を適度な大きさに保ち、さらに低温靭性を確保することのできるCr、Mo、Cu、Niの含有量のバランスを見出した。本発明では、それらの含有量のバランス関係を(1)式で規定し、(1)式から求められるSP1の範囲を規定する。   On the other hand, when Cr, Mo, Cu, or Ni is contained in the steel, the concentration of C is promoted to the austenite phase delayed in transformation after rolling, and the hard phase can be made harder. For this reason, the present inventors have repeated research on the premise that the C content is relatively reduced, and can maintain the hardness of the hard phase even if the C content is reduced, and the ferrite grains are appropriately sized. The balance of the content of Cr, Mo, Cu, and Ni that can maintain the low-temperature toughness and further ensure low temperature toughness was found. In the present invention, the balance relationship between these contents is defined by equation (1), and the range of SP1 obtained from equation (1) is defined.

SP1が0.06%未満の場合、硬質相の硬さを維持することができず引張強さが低下するため、低降伏比を得ることができない。一方、SP1が0.12%を超えると、焼入れ性が過大となり低温靭性が劣化する。従って、SP1を0.06〜0.12%とする。   When SP1 is less than 0.06%, the hardness of the hard phase cannot be maintained and the tensile strength is lowered, so that a low yield ratio cannot be obtained. On the other hand, if SP1 exceeds 0.12%, the hardenability becomes excessive and the low temperature toughness deteriorates. Therefore, SP1 is set to 0.06 to 0.12%.

2.ミクロ組織について
本発明の低降伏比低温用鋼は、鋼材の板厚をtとして表面からt/4の位置において、組織がフェライト相と硬質相の複相組織であり、そのうちのフェライト相の占める面積率が80%以上であることが必要である。ここでいう「表面からt/4の位置」とは、鋼材の表面からt/4の位置およびその近傍位置を意味し、その組織観察は、具体的には、表面から0.22t〜0.28tの範囲内の位置で行うことができる。
2. About Microstructure The low yield ratio low temperature steel according to the present invention is a multiphase structure of a ferrite phase and a hard phase at a position t / 4 from the surface where the thickness of the steel material is t, and the ferrite phase occupies it. It is necessary that the area ratio is 80% or more. Here, “position at t / 4 from the surface” means a position at t / 4 from the surface of the steel material and a position in the vicinity thereof. Specifically, the observation of the structure is 0.22 t to 0. 0 from the surface. It can be performed at a position within the range of 28t.

フェライト相と硬質相の複相組織を有する鋼材においては、引張試験時に軟質なフェライト相が硬質相よりも先に降伏するため、フェライト相の状態が降伏強さに及ぼす影響が大きい。特に、フェライト相の面積率が降伏強さに与える影響は極めて大きい。すなわち、フェライト相の面積率が80%未満の場合、降伏強さが440MPa以下という目標を満足しない。そのため、フェライト相の面積率を80%以上と規定する。但し、フェライト相の面積率が大きすぎると、硬質相が著しく減少してその機能を果たさなくなることから、フェライト相の面積率は95%以下とするのが好ましい。   In a steel material having a dual phase structure of a ferrite phase and a hard phase, the soft ferrite phase yields before the hard phase during a tensile test, so the state of the ferrite phase has a great influence on the yield strength. In particular, the influence of the ferrite phase area ratio on the yield strength is extremely large. That is, when the area ratio of the ferrite phase is less than 80%, the target that the yield strength is 440 MPa or less is not satisfied. Therefore, the area ratio of the ferrite phase is defined as 80% or more. However, if the area ratio of the ferrite phase is too large, the hard phase is remarkably reduced and does not perform its function. Therefore, the area ratio of the ferrite phase is preferably 95% or less.

本発明の低降伏比低温用鋼は、上記のフェライト面積率の規定に加え、上記と同じ表面からt/4の位置において、下記の(2)式の関係を満たす硬質相を、100μm四方の視野領域に15個以上含むことが必要である。
Hvh/Hvm≧3.0 ・・・(2)
(2)式中、Hvhは、対象とする硬質組織で測定したビッカース硬さを示し、Hvmは、フェライト組織で数箇所測定したビッカース硬さの平均値を示す。
In the low yield ratio low temperature steel of the present invention, in addition to the above-mentioned definition of the ferrite area ratio, a hard phase satisfying the relationship of the following formula (2) at a position of t / 4 from the same surface as described above is a 100 μm square. It is necessary to include 15 or more in the visual field region.
Hvh / Hvm ≧ 3.0 (2)
(2) In formula, Hvh shows the Vickers hardness measured with the hard structure made into object, and Hvm shows the average value of the Vickers hardness measured several places with the ferrite structure.

低降伏比は、より硬い硬質相と軟質なフェライト相を有する複相組織で達成できる。このため、本発明者らは研究をさらに重ね、表面からt/4の位置において、硬質相のうちでもより硬い硬質相、すなわち(2)式の関係を満たす硬質相が、100μm四方の領域に15個未満である場合、引張強さが490MPa以上という目標に到達しないことを見出した。そのため、上記(2)式の関係を満たす硬質相を100μm四方の領域に15個以上含むことを規定する。   A low yield ratio can be achieved with a multiphase structure having a harder hard phase and a soft ferrite phase. For this reason, the present inventors have further researched, and at a position of t / 4 from the surface, a harder hard phase among the hard phases, that is, a hard phase satisfying the relationship of the formula (2) is in a region of 100 μm square. When it was less than 15, it was found that the tensile strength did not reach the target of 490 MPa or more. Therefore, it is defined that 15 or more hard phases satisfying the relationship of the above expression (2) are included in a 100 μm square region.

さらに、本発明の低降伏比低温用鋼では、上記(2)式の関係を満たす硬質相について、その円相当平均粒径が2〜5μmであることが必要である。硬質相の円相当平均粒径が2μm未満である場合、実質的に引張強さを上昇させる効果がなく、低降伏比が得られない。また、硬質相の円相当平均粒径が5μmを超えると、硬質相が破壊の起点となり低温靭性が劣化する。そのため、硬質相の円相当平均粒径を2〜5μmと規定する。   Further, in the low yield ratio low temperature steel of the present invention, the equivalent circle average particle size of the hard phase satisfying the relationship of the above formula (2) needs to be 2 to 5 μm. When the equivalent circle average particle diameter of the hard phase is less than 2 μm, there is no effect of substantially increasing the tensile strength, and a low yield ratio cannot be obtained. On the other hand, when the equivalent-circle average particle diameter of the hard phase exceeds 5 μm, the hard phase becomes a starting point of fracture and the low temperature toughness deteriorates. Therefore, the circle-equivalent average particle diameter of the hard phase is defined as 2 to 5 μm.

また、本発明の低降伏比低温用鋼は、上記と同じ表面からt/4の位置において、フェライト組織の円相当平均粒径が7.5〜20μmであり、そのアスペクト比が2.0以下であることが必要である。   Further, the low yield ratio low temperature steel of the present invention has a circle-equivalent mean grain size of the ferrite structure of 7.5 to 20 μm at the position t / 4 from the same surface as described above, and an aspect ratio of 2.0 or less. It is necessary to be.

上述したように、フェライト組織の状態が降伏強さに与える影響は大きく、フェライト組織の円相当平均粒径が大きいほど降伏強さの低減に有効である。すなわち、フェライト組織の円相当平均粒径が7.5μm未満の場合は、降伏強さが440MPa以下という目標を達成することが困難となる。一方、低温靭性の向上にはフェライト組織の円相当平均粒径が小さいことが有効である。すなわち、フェライト組織の円相当平均粒径が20μmを超えると、母材の低温靭性に関して、破面遷移温度(vTrs)が−60℃以下という目標を達成することが困難となる。これらから、フェライト組織の円相当平均粒径を7.5〜20μmと規定する。   As described above, the influence of the state of the ferrite structure on the yield strength is large, and the larger the equivalent circle average grain size of the ferrite structure is, the more effective the reduction of the yield strength is. That is, when the equivalent circle average particle diameter of the ferrite structure is less than 7.5 μm, it is difficult to achieve the target of yield strength of 440 MPa or less. On the other hand, in order to improve low temperature toughness, it is effective that the equivalent circular average grain size of the ferrite structure is small. That is, when the circle-equivalent average particle diameter of the ferrite structure exceeds 20 μm, it is difficult to achieve the target that the fracture surface transition temperature (vTrs) is −60 ° C. or less with respect to the low temperature toughness of the base material. From these, the circle-equivalent average particle diameter of the ferrite structure is defined as 7.5 to 20 μm.

さらに、フェライト変態後の圧下により、フェライト組織が加工硬化すると、降伏強さが著しく上昇し、低降伏比の達成が困難となる。この時、フェライトは扁平でアスペクト比が大きい組織となっており、アスペクト比が2.0を超えている場合、フェライト組織が加工硬化していると判断できる。そのため、本発明の低降伏比低温用鋼では、フェライト組織のアスペクト比を2.0以下と規定する。   Furthermore, when the ferrite structure is work hardened due to the reduction after the ferrite transformation, the yield strength is remarkably increased and it is difficult to achieve a low yield ratio. At this time, the ferrite has a flat structure with a large aspect ratio. When the aspect ratio exceeds 2.0, it can be determined that the ferrite structure is work-hardened. Therefore, in the low yield ratio low temperature steel of the present invention, the aspect ratio of the ferrite structure is defined as 2.0 or less.

本発明では、上述したように組織の状態を規定する際、鋼材の表面からt/4の位置での観察を採用しているが、これは、鋼材の組織が板厚方向の位置によって変動することから、その位置が鋼材の組織状態を代表する位置として適切だからである。従って、上記のt/4の位置は、表面側からの位置でも、裏面側からの位置でもよい。   In the present invention, when the state of the structure is defined as described above, observation at a position of t / 4 from the surface of the steel material is employed, but this is because the structure of the steel material varies depending on the position in the plate thickness direction. This is because the position is appropriate as a position representing the structural state of the steel material. Therefore, the position of t / 4 may be a position from the front surface side or a position from the back surface side.

3.製造方法について
本発明の低降伏比低温用鋼の製造方法においては、上記の化学組成を有する鋼素材を、1000℃〜1200℃に加熱した後、Ac3点以上の温度で圧下率を30%以上として圧延し、さらに(Ar3点−40℃)以上、Ac3点未満の温度で圧下率を30%以上として圧延し、(Ar3点−40℃)以上、800℃未満の温度で圧延を終了し、室温まで5℃/s以下の冷却速度で冷却を行う。なお、圧下率は、対象の温度域での圧延開始厚を分母として計算する。例えば、Ac3点以上の温度域で250mmから100mmの圧延を行った後、(Ar3点−40℃)以上、Ac3点未満の温度域で100mmから10mmの圧延を行った場合、Ac3点以上の温度域での圧下率は(250−100)/250×100=60%、(Ar3点−40℃)以上、Ac3点未満の温度域での圧下率は(100−10)/100×100=90%、と計算する。
3. In the method for producing low yield ratio steel for low temperature service of the present invention a method for manufacturing a steel material having the above chemical composition, after heating to 1000 ° C. to 1200 ° C., the rolling reduction in Ac 3 point or more temperature 30% Rolled as above, further rolled at a temperature of (Ar 3 point −40 ° C.) or higher and lower than Ac 3 point at a reduction ratio of 30% or higher, and rolled at a temperature of (Ar 3 point −40 ° C.) or higher and lower than 800 ° C. And cooling to room temperature at a cooling rate of 5 ° C./s or less. The rolling reduction is calculated using the rolling start thickness in the target temperature range as the denominator. For example, when rolling from 250 mm to 100 mm in a temperature range of Ac 3 points or higher and then rolling from 100 mm to 10 mm in a temperature range of (Ar 3 points −40 ° C.) or higher and lower than Ac 3 points, Ac 3 The reduction rate in the temperature range above the point is (250-100) / 250 × 100 = 60%, (Ar 3 point−40 ° C.) or more, and the reduction rate in the temperature range below the Ac 3 point is (100-10). / 100 × 100 = 90%.

鋼の加熱温度は、加熱時のオーステナイト結晶粒の粗大化を抑制するために、1200℃以下とする必要がある。しかし、鋼の加熱温度が1000℃未満の場合、圧延前のオーステナイト結晶粒が微細となるため、圧延後に得られるフェライト粒が極めて微細となる。フェライト粒の微細化により、低温靭性は向上するが、降伏強さが上昇するため、低降伏比の達成が困難となる。従って、鋼の加熱温度を1000〜1200℃とする。   The heating temperature of the steel needs to be 1200 ° C. or less in order to suppress coarsening of the austenite crystal grains during heating. However, when the heating temperature of the steel is less than 1000 ° C., since the austenite crystal grains before rolling become fine, the ferrite grains obtained after rolling become extremely fine. Refinement of ferrite grains improves low-temperature toughness, but yield strength increases, making it difficult to achieve a low yield ratio. Therefore, the heating temperature of steel shall be 1000-1200 degreeC.

熱間圧延において、Ac3点以上の温度で圧下率を30%以上として圧延するのは、オーステナイトを十分に再結晶させて細粒化させ、最終的に得られる低温靭性を向上させるためである。好ましくは、Ac3点以上の温度で圧下率を60%以上として圧延する。 In the hot rolling, the rolling is performed at a temperature of Ac 3 point or higher and the reduction ratio is 30% or higher because the austenite is sufficiently recrystallized to be finely divided and the finally obtained low temperature toughness is improved. . Preferably, rolling is performed at a temperature of Ac 3 point or higher and a reduction rate of 60% or higher.

Ac3点未満の圧延では、未再結晶オーステナイトに十分な歪が加えられると、フェライト析出が促進され、未変態オーステナイトにフェライト中の炭素が排出される。これにより、硬質相をより硬質なものにすることができ、低降伏比が得られる。そのため、Ac3点未満の温度で圧下率を30%以上として圧延を行う。しかし、最終圧延温度が800℃以上である場合、未変態オーステナイトへの炭素濃縮が不十分であり、目標とする低降伏比が得られない。そのため、最終圧延温度を800℃未満とする。 In rolling with less than Ac 3 points, when sufficient strain is applied to unrecrystallized austenite, ferrite precipitation is promoted, and carbon in the ferrite is discharged to untransformed austenite. Thereby, a hard phase can be made harder and a low yield ratio is obtained. Therefore, rolling is performed at a temperature lower than Ac 3 point and a reduction rate of 30% or more. However, when the final rolling temperature is 800 ° C. or higher, the carbon concentration to untransformed austenite is insufficient, and the target low yield ratio cannot be obtained. Therefore, the final rolling temperature is set to less than 800 ° C.

さらに、最終圧延温度を低下させれば、フェライト粒が細粒化され、低温靭性が向上するが、最終圧延温度が(Ar3点−40℃)未満になると、フェライト粒の加工硬化の影響により、降伏強さが上昇し、低降伏比が得られない。そのため、最終圧延温度を(Ar3点−40℃)以上とする。 Furthermore, if the final rolling temperature is lowered, the ferrite grains are refined and the low temperature toughness is improved. However, when the final rolling temperature is less than (Ar 3 point-40 ° C), the effect of work hardening of the ferrite grains The yield strength increases, and a low yield ratio cannot be obtained. Therefore, the final rolling temperature is set to (Ar 3 point−40 ° C.) or higher.

そして、圧延後の冷却に加速冷却を用いた場合、フェライト組織が減少し、ベイナイトを初めとする硬化組織の面積率が大きくなり、強度が高くなり過ぎたり、引張試験時の応力ひずみ曲線がラウンド型となるため、安定して所望の機械的性質を得ることができない。また、加速冷却を用いた場合、残留応力の影響から平坦度が悪化し易く、平坦度を矯正する工数が別途必要となる。このため、圧延後の冷却は冷却速度を5℃/s以下とする。5℃/s以下の冷却速度で冷却するには、空冷とすれば十分である。これ以外に、組織に変化を及ぼす熱処理は避けるべきである。   When accelerated cooling is used for cooling after rolling, the ferrite structure decreases, the area ratio of the hardened structure including bainite increases, the strength becomes too high, and the stress-strain curve during the tensile test becomes round. Since it becomes a mold, the desired mechanical properties cannot be obtained stably. Further, when accelerated cooling is used, the flatness tends to deteriorate due to the influence of residual stress, and a man-hour for correcting the flatness is required separately. For this reason, the cooling after rolling is performed at a cooling rate of 5 ° C./s or less. Air cooling is sufficient for cooling at a cooling rate of 5 ° C./s or less. Apart from this, heat treatments that change the structure should be avoided.

このように、本発明の低降伏比低温用鋼は、化学組成および組織の状態を適正に規定することにより、低降伏比で母材および溶接部の低温靭性に優れたものとなり、多目的タンク用の鋼材に好適である。また、本発明の低降伏比低温用鋼の製造方法では、平坦度を悪化要因である圧延後の水冷処理が不要であることから、低温靭性に優れた低降伏比低温用鋼の鋼材を高い生産性で製造することができる。   As described above, the low yield ratio low temperature steel of the present invention has a low yield ratio and excellent low temperature toughness of the base metal and the welded portion by appropriately specifying the chemical composition and the state of the structure. It is suitable for these steel materials. Further, in the method for producing a low yield ratio low temperature steel according to the present invention, the water cooling treatment after rolling, which is a factor for deteriorating the flatness, is unnecessary, so the steel material of the low yield ratio low temperature steel excellent in low temperature toughness is high. Can be manufactured with productivity.

本発明の低降伏比低温用鋼およびその製造方法による効果を確認するため、下記の試験を行い、各機械的特性を評価した。表1に示す化学組成を有する鋼を転炉で溶製し、連続鋳造機を用いて厚さ250mmのスラブを得た。   In order to confirm the effects of the low yield ratio low temperature steel of the present invention and the method for producing the same, the following tests were conducted to evaluate each mechanical property. Steel having the chemical composition shown in Table 1 was melted in a converter, and a slab having a thickness of 250 mm was obtained using a continuous casting machine.

Figure 0005176847
Figure 0005176847

得られたスラブを、表2に示す加熱・圧延・冷却条件で熱間圧延し、板厚が10〜40mmの鋼板を作製した。   The obtained slab was hot-rolled under the heating, rolling and cooling conditions shown in Table 2 to produce a steel plate having a plate thickness of 10 to 40 mm.

Figure 0005176847
Figure 0005176847

得られた鋼板にそれぞれついて、下記の方法により各種の組織状態および機械的特性を調査した。その結果を表3に示す。   For each of the obtained steel plates, various structural states and mechanical properties were investigated by the following methods. The results are shown in Table 3.

<ミクロ組織>
上記の各鋼板から圧延方向に垂直な断面を切り出して試験片を採取した。各試験片の板厚方向の断面において、表面からt/4部(tは板厚)の位置で走査電子顕微鏡により組織観察を行い、その組織観察図を画像解析して、フェライトの円相当平均粒径およびフェライト相の面積率を求めた。
<Microstructure>
A cross section perpendicular to the rolling direction was cut out from each of the above steel plates to obtain a test piece. In the cross section in the plate thickness direction of each test piece, the structure is observed with a scanning electron microscope at a position of t / 4 part (t is the plate thickness) from the surface, the structure observation diagram is subjected to image analysis, and the ferrite circle equivalent average The particle size and the area ratio of the ferrite phase were determined.

更に、同位置で100μm四方の視野中におけるフェライト相と硬質相のビッカース硬さをJIS Z 2244に準拠して測定した。硬質相について個々に測定したビッカース硬さ(Hvh)を、フェライト相を10点測定し平均したビッカース硬さ(Hvm)で除して「Hvh/Hvm」を算出し、上記(2)式の関係を満たす硬質相の個数を調査した。ここで、(2)式の関係を満たす硬質相については、走査電子顕微鏡による組織観察図を画像解析して粒径を測定し、円相当平均粒径を求めた。   Furthermore, the Vickers hardness of the ferrite phase and the hard phase in the field of view of 100 μm square at the same position was measured according to JIS Z 2244. The Vickers hardness (Hvh) individually measured for the hard phase is divided by the average Vickers hardness (Hvm) of 10 measurements of the ferrite phase to calculate “Hvh / Hvm”, and the relationship of the above equation (2) The number of hard phases satisfying the conditions was investigated. Here, for the hard phase satisfying the relationship of the expression (2), the particle diameter was measured by image analysis of the structure observation chart by a scanning electron microscope, and the equivalent circle average particle diameter was obtained.

<母材の特性>
上記の各鋼板の圧延方向に垂直な方向からJIS Z 2201に規定される14B号試験片を採取し、引張試験を実施した。降伏強さ(YS)は360〜440MPa、引張強さ(TS)は490〜610MPa、降伏比(YR:[YS/TS]×100%)は80%以下をそれぞれ良好な範囲とし、評価を行った。
<Characteristics of base material>
The 14B test piece prescribed | regulated to JISZ2201 was extract | collected from the direction perpendicular | vertical to the rolling direction of each said steel plate, and the tension test was implemented. Yield strength (YS) is 360 to 440 MPa, tensile strength (TS) is 490 to 610 MPa, and yield ratio (YR: [YS / TS] × 100%) is 80% or less, and evaluation is performed. It was.

また、母材部の低温靭性を評価するため、上記の各鋼板の圧延方向に垂直な方向で、t/4の位置からJIS Z 2202に規定されるVノッチ試験片を採取し、シャルピー試験を実施した。その試験結果から破面遷移温度(vTrs)を算出した。破面遷移温度は−60℃以下を良好な範囲とし、評価を行った。   In addition, in order to evaluate the low temperature toughness of the base metal part, a V-notch test piece specified in JIS Z 2202 was sampled from the position of t / 4 in a direction perpendicular to the rolling direction of each steel plate, and a Charpy test was performed. Carried out. The fracture surface transition temperature (vTrs) was calculated from the test results. The fracture surface transition temperature was evaluated in a favorable range of −60 ° C. or lower.

<溶接部の低温靭性>
上記の各鋼板から長さ600mm、幅300mmの溶接試験片を切り出し、板厚が25mm未満の鋼板についてはI型開先に加工し、また、板厚が25mm以上の鋼板についてはX型開先に加工し、それぞれの試験片について、入熱量が約35kJ/mmのサブマージアーク溶接を行って溶接継手を作製した。各溶接継手から衝撃試験片の端部が鋼板の表面から1mmとなる位置でノッチ位置がフュージョンラインに一致するように採取し、シャルピー試験を行い、−55℃での吸収エネルギー(vE−55)を測定した。−55℃での吸収エネルギーは50J以上を良好な範囲とし、評価を行った。
<Low temperature toughness of welds>
A test piece having a length of 600 mm and a width of 300 mm is cut out from each of the above steel plates, and a steel plate having a thickness of less than 25 mm is processed into an I-type groove, and a steel plate having a thickness of 25 mm or more is processed into an X-type groove. Each test piece was subjected to submerged arc welding with a heat input of about 35 kJ / mm to produce a welded joint. Samples were taken from each welded joint so that the end of the impact test piece was 1 mm from the surface of the steel sheet so that the notch position coincided with the fusion line, Charpy test was conducted, and the absorbed energy at -55 ° C (vE-55) Was measured. The absorption energy at −55 ° C. was evaluated in a favorable range of 50 J or more.

Figure 0005176847
Figure 0005176847

表3に示すように、本発明例である試験番号1〜10の鋼は、本発明で規定する種々の条件のいずれも満たしていることから、目標とする機械的特性を達成しており、多目的タンク用の鋼材として十分な特性を有していた。   As shown in Table 3, the steels of Test Nos. 1 to 10, which are examples of the present invention, satisfy all of the various conditions defined in the present invention, and thus have achieved the target mechanical characteristics. It had sufficient characteristics as a steel material for multipurpose tanks.

一方、比較例の試験番号11では、C含有量が多過ぎるため、強度特性は満足するが、フェライト相の面積率が低くなり、さらに上記(2)式の関係を満たす硬質相の粒径が大き過ぎるため、低温靭性が劣化した。比較例の試験番号14でも低温靭性が劣化しているが、これは、Moを過剰に含有することに起因して、SP1が本発明で規定する範囲を超えたためである。   On the other hand, in the test number 11 of the comparative example, since the C content is too much, the strength characteristics are satisfied, but the area ratio of the ferrite phase is lowered, and the particle size of the hard phase satisfying the relationship of the above formula (2) is further reduced. Since it was too large, the low temperature toughness deteriorated. The test number 14 of the comparative example also deteriorated the low-temperature toughness, which is because SP1 exceeded the range specified in the present invention due to excessive Mo content.

比較例の試験番号12および13では、強度特性が目標を満足しなかった。すなわち、試験番号12では、Nbを添加したためフェライト粒が過剰に細粒化され、降伏強さ(YS)および降伏比(YR)が上限を超えた。試験番号13では、SP1が本発明の規定範囲を下回ったため、上記(2)式の関係を満たす硬質相が十分に得られず、降伏強さおよび引張強さが目標に達しなかった。   In the test numbers 12 and 13 of the comparative examples, the strength characteristics did not satisfy the target. That is, in test number 12, since Nb was added, the ferrite grains were excessively refined, and the yield strength (YS) and the yield ratio (YR) exceeded the upper limit. In Test No. 13, SP1 was below the specified range of the present invention, so that a hard phase satisfying the relationship of the above formula (2) was not sufficiently obtained, and the yield strength and tensile strength did not reach the targets.

比較例の試験番号15〜18の鋼は、本発明で規定する化学組成の範囲内であるが、本発明で規定する範囲を外れる製造条件により作製されたものである。試験番号15では、圧延終了温度がAr3温度−40℃を下回り、フェライト相が加工硬化したため、フェライト相のアスペクト比が本発明の規定範囲を超え、降伏強さが上昇し、低降伏比が得られなかった。 The steels having test numbers 15 to 18 of the comparative examples are produced under manufacturing conditions that are within the range of the chemical composition defined in the present invention but are outside the range defined in the present invention. In Test No. 15, the rolling end temperature was lower than Ar 3 temperature −40 ° C., and the ferrite phase was work-hardened, so the aspect ratio of the ferrite phase exceeded the specified range of the present invention, the yield strength increased, and the low yield ratio was It was not obtained.

試験番号16および17では、いずれもAr3点以下の温度での圧下率が不足したため、Cの硬質相への濃縮が不十分となり、引張強さが目標に達しなかった。特に、試験番号16では、圧延終了温度が高すぎたため、フェライト粒が粗大でもあった。試験番号18では、圧延後の冷却で水冷処理を施したため、フェライト相の面積率が低下し、降伏強さが上昇した。 In Test Nos. 16 and 17, since the reduction rate at a temperature of Ar 3 or lower was insufficient, the concentration of C into the hard phase was insufficient, and the tensile strength did not reach the target. In particular, in the test number 16, since the rolling end temperature was too high, the ferrite grains were also coarse. In test number 18, since the water cooling treatment was performed by cooling after rolling, the area ratio of the ferrite phase decreased and the yield strength increased.

本発明の低降伏比低温用鋼は、低降伏比で母材および溶接部の低温靭性に優れ、多目的タンク用の鋼材に好適である。また、本発明の低降伏比低温用鋼の製造方法によれば、平坦度の矯正といった別途の工数を必要とすることなく、低温靭性に優れた低降伏比低温用鋼の鋼材を高い生産性で製造することができる。   The low yield ratio low temperature steel of the present invention has a low yield ratio and is excellent in the low temperature toughness of the base metal and the welded portion, and is suitable as a steel material for a multipurpose tank. In addition, according to the method for producing low-yield ratio low-temperature steel of the present invention, low yield ratio low-temperature steel with excellent low-temperature toughness can be produced with high productivity without requiring additional steps such as correction of flatness. Can be manufactured.

Claims (3)

質量%で、C:0.02〜0.08%、Si:0.1〜0.5%、Mn:1.0〜2.0%、P:0.020%以下、S:0.010%以下、Nb:0.003%以下、Ti:0.005〜0.025%、sol.Al:0.090%以下、およびN:0.001〜0.010%を含有し、さらに、Cu:0.50%以下、Ni:0.50%以下、Cr:0.20%以下、およびMo:0.15%以下のうちの2種以上を含有し、残部がFeおよび不純物からなり、下記(1)式から求められるSP1が0.06〜0.12%である低降伏比低温用鋼であって、
板厚をtとして表面からt/4の位置において、組織がフェライト組織と硬質組織の複相組織であり、前記フェライト組織の面積率が80%以上であり、前記硬質組織のうちで下記(2)式の関係を満たす硬質組織を100μm四方の領域に15個以上含み、当該硬質組織の円相当平均粒径が2〜5μmであり、前記フェライト組織の円相当平均粒径が7.5〜20μmであり、前記フェライト組織のアスペクト比が2.0以下であることを特徴とする低降伏比低温用鋼。
SP1=Cr/5+Mo/3+(Cu+Ni)/15 ・・・(1)
但し、(1)式中の元素記号は含有量を示す。
Hvh/Hvm≧3.0 ・・・(2)
但し、(2)式中のHvhは硬質組織のビッカース硬さを、Hvmはフェライト組織のビッカース硬さをそれぞれ示す。
In mass%, C: 0.02 to 0.08%, Si: 0.1 to 0.5%, Mn: 1.0 to 2.0%, P: 0.020% or less, S: 0.010 % Or less, Nb: 0.003% or less, Ti: 0.005 to 0.025%, sol. Al: 0.090% or less, and N: 0.001-0.010%, further Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.20% or less, and Mo: Contains at least two of 0.15% or less, the balance is Fe and impurities, and the SP1 calculated from the following formula (1) is 0.06 to 0.12% for low yield ratio for low temperature Steel,
At a position t / 4 from the surface where the plate thickness is t, the structure is a multiphase structure of a ferrite structure and a hard structure, the area ratio of the ferrite structure is 80% or more, and the following (2 ) Containing 15 or more hard structures satisfying the relationship of the formula in a 100 μm square area, the hard structure has an equivalent circle average particle diameter of 2 to 5 μm, and the ferrite structure has an equivalent circle average particle diameter of 7.5 to 20 μm. A low yield ratio steel for low temperature, wherein the ferrite structure has an aspect ratio of 2.0 or less.
SP1 = Cr / 5 + Mo / 3 + (Cu + Ni) / 15 (1)
However, the element symbol in the formula (1) indicates the content.
Hvh / Hvm ≧ 3.0 (2)
However, Hvh in the formula (2) indicates the Vickers hardness of the hard structure, and Hvm indicates the Vickers hardness of the ferrite structure.
Cu、Ni、CrおよびMoのうちの2種以上を含有、Cuの含有量が0.05%以上であり、Niの含有量が0.05%以上であり、Crの含有量が0.05%以上であり、Moの含有量が0.03%以上であることを特徴とする請求項1に記載の低降伏比低温用鋼。
Cu, Ni, comprise two or more of Cr and Mo, and the content of Cu is 0.05% or more and the content of Ni is 0.05% or more, the content of Cr 0. The low yield ratio low temperature steel according to claim 1, characterized in that it is at least 05% and the Mo content is at least 0.03%.
質量%で、C:0.02〜0.08%、Si:0.1〜0.5%、Mn:1.0〜2.0%、P:0.020%以下、S:0.010%以下、Nb:0.003%以下、Ti:0.005〜0.025%、sol.Al:0.090%以下、およびN:0.001〜0.010%を含有し、さらに、Cu:0.50%以下、Ni:0.50%以下、Cr:0.20%以下、およびMo:0.15%以下のうちの2種以上を含有し、残部がFeおよび不純物からなり、下記(1)式から求められるSP1が0.06〜0.12%である鋼素材を、
1000℃〜1200℃に加熱した後、Ac3点以上の温度で圧下率を30%以上として圧延し、さらに(Ar3点−40℃)以上、Ac3点未満の温度で圧下率を30%以上として圧延し、(Ar3点−40℃)以上、800℃未満の温度で圧延を終了し、室温まで5℃/s以下の冷却速度で冷却することを特徴とする低降伏比低温用鋼の製造方法。
SP1=Cr/5+Mo/3+(Cu+Ni)/15 ・・・(1)
但し、(1)式中の元素記号は含有量を示す。
In mass%, C: 0.02 to 0.08%, Si: 0.1 to 0.5%, Mn: 1.0 to 2.0%, P: 0.020% or less, S: 0.010 % Or less, Nb: 0.003% or less, Ti: 0.005 to 0.025%, sol. Al: 0.090% or less, and N: 0.001-0.010%, further Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.20% or less, and Mo: a steel material containing two or more of 0.15% or less, the balance being Fe and impurities, and SP1 calculated from the following formula (1) being 0.06 to 0.12%,
After heating to 1000 ° C. to 1200 ° C., rolling is performed at a temperature of Ac 3 point or higher at a reduction rate of 30% or higher, and (Ar 3 point −40 ° C.) or higher and at a temperature lower than Ac 3 point is 30%. Rolling as above, rolling is finished at a temperature of (Ar 3 point−40 ° C.) or more and less than 800 ° C., and cooled to room temperature at a cooling rate of 5 ° C./s or less. Manufacturing method.
SP1 = Cr / 5 + Mo / 3 + (Cu + Ni) / 15 (1)
However, the element symbol in the formula (1) indicates the content.
JP2008258639A 2008-10-03 2008-10-03 Low yield ratio low temperature steel and method for producing the same Active JP5176847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008258639A JP5176847B2 (en) 2008-10-03 2008-10-03 Low yield ratio low temperature steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258639A JP5176847B2 (en) 2008-10-03 2008-10-03 Low yield ratio low temperature steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010090406A JP2010090406A (en) 2010-04-22
JP5176847B2 true JP5176847B2 (en) 2013-04-03

Family

ID=42253398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258639A Active JP5176847B2 (en) 2008-10-03 2008-10-03 Low yield ratio low temperature steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP5176847B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842359B2 (en) * 2010-10-28 2016-01-13 Jfeスチール株式会社 Non-tempered low yield ratio high tensile steel sheet and method for producing the same
JP5720592B2 (en) * 2012-01-31 2015-05-20 新日鐵住金株式会社 Welded joint
JP6459556B2 (en) * 2015-01-27 2019-01-30 新日鐵住金株式会社 Low yield ratio steel sheet for construction and manufacturing method thereof
JP7440740B2 (en) * 2019-12-06 2024-02-29 日本製鉄株式会社 Steel plate for tanks

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090226A (en) * 1994-03-29 2000-07-18 Nippon Steel Corporation Steel plate excellent in brittle crack propagation arrest characteristics and low temperature toughness and process for producing same
JPH10102183A (en) * 1996-09-25 1998-04-21 Nippon Steel Corp Thick steel plate excellent in brittle crack arrest property and toughness at low temperature, and its production
JP3526740B2 (en) * 1998-04-09 2004-05-17 新日本製鐵株式会社 Low yield ratio high strength steel excellent in weldability and low temperature toughness and method for producing the same
JP3922805B2 (en) * 1998-06-22 2007-05-30 新日本製鐵株式会社 Manufacturing method of high-tensile steel with excellent low-temperature toughness
JP3894148B2 (en) * 2003-03-31 2007-03-14 住友金属工業株式会社 Low yield ratio low temperature steel and method for producing the same
JP4767590B2 (en) * 2005-06-01 2011-09-07 新日本製鐵株式会社 Production method of low yield ratio high strength steel and low yield ratio high strength steel
JP4605117B2 (en) * 2006-07-25 2011-01-05 住友金属工業株式会社 Steel used for tanks for LPG / ammonia carrier

Also Published As

Publication number Publication date
JP2010090406A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
EP2484792B1 (en) Steel plate with low yield ratio, high strength, and high toughness and process for producing same
JP5494167B2 (en) Cryogenic steel plate and manufacturing method thereof
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP4957556B2 (en) Cryogenic steel
JP6149368B2 (en) Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP2012062557A (en) High-strength hot rolled steel sheet having excellent toughness and method for producing the same
JP2012172256A (en) Low yield ratio high strength hot rolled steel sheet having excellent low temperature toughness and method for manufacturing the same
JP2011219848A (en) Thick steel plate for ultra-low temperature and method for producing the same
JP6834550B2 (en) Steel materials for tanks and their manufacturing methods
JP5124854B2 (en) Steel plate for line pipe, method for producing the same, and line pipe
JP5741260B2 (en) Cryogenic steel material excellent in CTOD characteristics after imparting strain and method for producing the same
JP6492862B2 (en) Low temperature thick steel plate and method for producing the same
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP6056235B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more
JP6398452B2 (en) Steel for tank
JP5432565B2 (en) Thick steel plate with excellent brittle crack propagation stopping properties and fatigue crack growth inhibition properties
JP5432548B2 (en) Thick steel plate with excellent brittle crack propagation stop properties
JP5176847B2 (en) Low yield ratio low temperature steel and method for producing the same
JP2009287081A (en) High-tension steel and producing method therefor
JP5200600B2 (en) Manufacturing method of high strength and low yield ratio steel
JP5812193B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP3737300B2 (en) Non-tempered low yield ratio high tensile strength steel plate with excellent weldability
JP6123734B2 (en) Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R151 Written notification of patent or utility model registration

Ref document number: 5176847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350