JP7160213B2 - Steel material for transportation and storage of liquid ammonia, and method for producing steel material for transportation and storage of liquid ammonia - Google Patents

Steel material for transportation and storage of liquid ammonia, and method for producing steel material for transportation and storage of liquid ammonia Download PDF

Info

Publication number
JP7160213B2
JP7160213B2 JP2021558203A JP2021558203A JP7160213B2 JP 7160213 B2 JP7160213 B2 JP 7160213B2 JP 2021558203 A JP2021558203 A JP 2021558203A JP 2021558203 A JP2021558203 A JP 2021558203A JP 7160213 B2 JP7160213 B2 JP 7160213B2
Authority
JP
Japan
Prior art keywords
steel material
less
liquid ammonia
steel
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021558203A
Other languages
Japanese (ja)
Other versions
JPWO2021100336A1 (en
Inventor
至 寒澤
純二 嶋村
聡 伊木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2021100336A1 publication Critical patent/JPWO2021100336A1/ja
Application granted granted Critical
Publication of JP7160213B2 publication Critical patent/JP7160213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、液体アンモニア環境下で使用されるパイプライン、プラントやタンクなどといった大型構造物の構造用部材に好適な液体アンモニア輸送用及び貯蔵用鋼材、および、液体アンモニア輸送用及び貯蔵用鋼材の製造方法に関するものである。 The present invention provides steel materials for transporting and storing liquid ammonia suitable for structural members of large structures such as pipelines, plants and tanks used in a liquid ammonia environment, and steel materials for transporting and storing liquid ammonia. It relates to a manufacturing method.

アンモニアは、主に硝酸などの基礎化学品や、肥料の原料用途として、広く製造、流通している化合物である。一方で、アンモニアは取扱いが難しく、特に、液体アンモニアを取り扱う炭素鋼製の配管や貯槽、タンク車、ラインパイプにおいて、アンモニアによる応力腐食割れ(以下、アンモニアSCC(Stress Corrosion Cracking)ともいう)が発生することが知られている。 Ammonia is a compound that is widely manufactured and distributed mainly as basic chemicals such as nitric acid and as a raw material for fertilizers. On the other hand, ammonia is difficult to handle, and stress corrosion cracking due to ammonia (hereinafter also referred to as ammonia SCC (Stress Corrosion Cracking)) occurs especially in carbon steel pipes, storage tanks, tank cars, and line pipes that handle liquid ammonia. known to do.

このため、従来から、液体アンモニア環境下で使用される構造物については、応力腐食割れに対する感受性の低い鋼材の適用、および、アンモニアSCCを抑制する操業上の措置が講ぜられてきた。 For this reason, conventionally, for structures used in a liquid ammonia environment, application of steel materials with low susceptibility to stress corrosion cracking and operational measures to suppress ammonia SCC have been taken.

例えば、アンモニアSCCの発生については、経験的に、材料の強度と相関があることが知られている。炭素鋼の使用にあたっては、その強度に上限を設けること、および、溶接部に対して応力除去焼鈍を施すことにより、アンモニアSCCの抑制が図られている。 For example, it is empirically known that the generation of ammonia SCC has a correlation with the strength of the material. When carbon steel is used, ammonia SCC is suppressed by setting an upper limit on its strength and by subjecting welds to stress-relief annealing.

また、液体アンモニア環境では、液体アンモニアと共存する水が応力腐食割れの発生を抑制する作用を示す。このため、液体アンモニアの品質に支障がないレベルで水を添加するという予防措置がとられる場合もある。 In addition, in a liquid ammonia environment, water coexisting with liquid ammonia exhibits an effect of suppressing the occurrence of stress corrosion cracking. For this reason, a precautionary measure is sometimes taken to add water at a level that does not affect the quality of the liquid ammonia.

ところで、近年、液体アンモニアの用途拡大を背景に、世界的にその需要が増加しており、設備の大型化、および、流通・製造でのコスト低減が志向されている。これに伴い、上記のようなアンモニアSCCの抑制対策や予防措置を行うことが困難となっている。 By the way, in recent years, against the background of the expansion of the use of liquid ammonia, the demand is increasing worldwide, and there is a desire to increase the size of facilities and reduce the cost in distribution and manufacturing. Along with this, it is difficult to take measures to suppress and prevent ammonia SCC as described above.

例えば、溶接部に応力除去焼鈍を施すことは製造工程を増やすこととなるので、特に大型設備において、その適用は現実的とは言えない。また、液体アンモニアへの水の添加は、液体アンモニア中の水分濃度を適切に管理する必要がある。設備の大型化に伴って、その濃度管理は困難となる。さらに、近年需要が高まっている高純度の液体アンモニアについては、そもそも水の添加による予防措置を講ずることはできない。 For example, applying stress-relief annealing to welds increases the number of manufacturing processes, so its application is not realistic, especially in large-scale facilities. Also, when adding water to liquid ammonia, it is necessary to appropriately manage the concentration of water in the liquid ammonia. Concentration control becomes more difficult as the equipment becomes larger. Furthermore, with regard to high-purity liquid ammonia, for which demand has been increasing in recent years, it is impossible to take preventive measures by adding water in the first place.

そのため、液体アンモニアを取り扱うプラントやタンクなどの構造用部材に適用して好適な耐アンモニアSCC性に優れた鋼材の開発が望まれている。 Therefore, there is a demand for the development of a steel material having excellent ammonia SCC resistance suitable for application to structural members such as plants and tanks handling liquid ammonia.

液体アンモニア環境で使用される鋼材に関する技術として、例えば、特許文献1には、重量%で、C:0.15%以下、Si:0.15~0.40%、Mn:0.80~2.00%、P:0.020%以下、S:0.005%以下、Alsol0.015~0.050%を含有し、さらにCu:0.35%以下、Ni:1.00%以下、Cr:0.50%以下、Mo:0.25%以下、V:0.05%以下、Nb:0.05%以下及びTi:0.05%以下のいずれかを1種類以上含有し、残部Fe及び不可避的不純物からなるスラブを熱間圧延後、オーステナイト化温度に加熱し空冷以下の冷却速度で冷却した後、さらに2相域温度(Ac1~Ac3)に加熱焼入れし、続いて焼戻し処理を施すことを特徴とする耐アンモニア割れ性に優れた高張力鋼の製造法が開示されている。 As a technology related to steel materials used in a liquid ammonia environment, for example, Patent Document 1 discloses, in weight %, C: 0.15% or less, Si: 0.15 to 0.40%, Mn: 0.80 to 2 .00%, P: 0.020% or less, S: 0.005% or less, Alsol 0.015 to 0.050%, Cu: 0.35% or less, Ni: 1.00% or less, Cr : 0.50% or less, Mo: 0.25% or less, V: 0.05% or less, Nb: 0.05% or less, and Ti: 0.05% or less, and the balance is Fe After hot rolling the slab consisting of and inevitable impurities, it is heated to the austenitizing temperature, cooled at a cooling rate lower than air cooling, further heated and quenched to the two-phase region temperature (Ac1 to Ac3), and then tempered. Disclosed is a method for producing high-strength steel with excellent ammonia cracking resistance characterized by:

また、特許文献2には、重量%でC:0.06~0.14%、Si:0.50%以下、Mn:0.30~1.80%、P:0.025%以下、S:0.020%以下、V:0.01~0.10%、Al:0.010~0.10%、N:0.0050%以下、残部鉄及び不可避的不純物よりなり、且つ、PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B(%)とするとき、PCM≦0.24%である鋼片を所定の板厚に圧延した後、焼入れ処理加熱の前に1100~1300℃の温度に加熱し、C≦0.05%である厚さ0.5mm以上の脱炭層を鋼板表面部に形成し、次いで、焼入れ焼戻し処理を施すことを特徴とする耐硫化物応力腐食割れ性及び耐アンモニア応力腐食割れ性のすぐれた調質60kgf/mm級高張力鋼板の製造方法が開示されている。In addition, in Patent Document 2, C: 0.06 to 0.14%, Si: 0.50% or less, Mn: 0.30 to 1.80%, P: 0.025% or less, S : 0.020% or less, V: 0.01 to 0.10%, Al: 0.010 to 0.10%, N: 0.0050 % or less, the balance being iron and unavoidable impurities, and PCM =C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+ 5B (%), after rolling a billet with PCM ≤ 0.24% to a predetermined plate thickness, before quenching and heating Heating to a temperature of 1100 to 1300 ° C., forming a decarburized layer with a thickness of 0.5 mm or more where C ≤ 0.05% on the surface of the steel plate, and then performing quenching and tempering treatment. A method for manufacturing a tempered 60 kgf/mm class 2 high-strength steel sheet with excellent stress corrosion cracking resistance and ammonia stress corrosion cracking resistance is disclosed.

さらに、特許文献3には、アンモニアタンク用鋼板の製造方法において、前記鋼板素材の表面から0.3mm以内のC含有量が母材C量の50%以下になるように表面脱炭する工程と、前記表面脱炭鋼板を焼入れ温度に加熱した後前記脱炭表面の冷却速度を800~500℃の温度範囲で150℃/sec以下になるように冷却する工程と、を有して成ることを特徴とする耐アンモニア割れ特性のすぐれた調質鋼板の製造方法が開示されている。 Furthermore, in Patent Document 3, in a method for manufacturing a steel plate for an ammonia tank, a step of decarburizing the surface so that the C content within 0.3 mm from the surface of the steel plate material is 50% or less of the C content of the base material. , after heating the surface decarburized steel sheet to a quenching temperature, the decarburized surface is cooled at a cooling rate of 150°C/sec or less in a temperature range of 800 to 500°C. Disclosed is a method for producing a tempered steel sheet characterized by excellent ammonia cracking resistance.

特開平5-9571号公報JP-A-5-9571 特開昭61-279631号公報JP-A-61-279631 特開昭58-67830号公報JP-A-58-67830

しかしながら、特許文献1~3に開示される製造方法で得られる鋼材は、表面組織を制御することにより、耐アンモニアSCC性を担保するものである。そのため、実際の施工において、特許文献1~3の鋼材が加熱加工を受けた場合、表面組織が変質する可能性がある。このため、必ずしも十分な耐アンモニアSCC性が得られるとは言えない。 However, the steel materials obtained by the production methods disclosed in Patent Documents 1 to 3 guarantee ammonia SCC resistance by controlling the surface texture. Therefore, in actual construction, when the steel materials of Patent Documents 1 to 3 are subjected to heat processing, the surface structure may be altered. Therefore, it cannot be said that sufficient ammonia SCC resistance is necessarily obtained.

また、特許文献1~3の製造方法ではいずれも、熱間圧延工程以降に、焼き戻し等の熱処理を行うことが不可欠であり、製造コスト、及び、リードタイムを含めた製造工程における負荷は極めて大きくなる。さらに、熱処理設備のサイズ制約によって、大型構造物を構成する部材を供給する上では、不利となる。 In addition, in all of the manufacturing methods of Patent Documents 1 to 3, it is essential to perform heat treatment such as tempering after the hot rolling process, and the load in the manufacturing process including the manufacturing cost and lead time is extremely high. growing. Furthermore, size restrictions on heat treatment facilities are disadvantageous in terms of supplying members that constitute large-scale structures.

本発明は、上記の現状に鑑み開発されたものであって、液体アンモニア環境下で使用されるプラントやタンクなどといった大型構造物の構造用部材に適用して好適であり、また製造性の面でも有利な耐アンモニアSCC性に優れた液体アンモニア輸送用及び貯蔵用鋼材、および、液体アンモニア輸送用及び貯蔵用鋼材の製造方法を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention has been developed in view of the above-mentioned current situation, and is suitable for application to structural members of large structures such as plants and tanks used in a liquid ammonia environment. However, it is an object of the present invention to provide a steel material for transporting and storing liquid ammonia excellent in ammonia SCC resistance, and a method for manufacturing the steel material for transporting and storing liquid ammonia.

本発明者らは、上記の課題を解決すべく、種々検討を重ねた。 The inventors of the present invention conducted various studies in order to solve the above problems.

まず、本発明者らは、液体アンモニア環境下におけるアンモニアSCCの発生メカニズムを詳細に検討したところ、以下の知見を得た。 First, the present inventors made a detailed study of the ammonia SCC generation mechanism in a liquid ammonia environment, and obtained the following findings.

液体アンモニア環境では、以下の腐食反応が生じる。
アノード反応:2Fe→2Fe2++4e
カソード反応:O+2NH +4e→2OH+2NH
ただし、鋼材表面には、上記の腐食反応に伴い、不活性な酸化被膜が形成される。このため、通常であれば、上記の腐食反応の総反応量は多くない。したがって、液体アンモニア環境は、本質的には厳しい腐食環境ではない。
In a liquid ammonia environment, the following corrosive reactions occur.
Anode reaction: 2Fe→2Fe 2+ +4e
Cathodic reaction: O 2 +2NH 4 + +4e →2OH +2NH 3
However, an inert oxide film is formed on the surface of the steel material due to the above-described corrosion reaction. For this reason, the total reaction amount of the above corrosion reaction is normally not large. Therefore, a liquid ammonia environment is not inherently a severely corrosive environment.

しかしながら、鋼材の残留応力や外部から加えられる応力によって、鋼材表面に新生面が生じると、酸化被膜が存在しない新生面をアノードサイトとした選択的な鉄溶解反応が進行し、亀裂を形成する。 However, when a new surface is generated on the surface of the steel material due to residual stress in the steel material or stress applied from the outside, a selective iron dissolution reaction proceeds with the new surface where the oxide film does not exist as an anode site, and cracks are formed.

亀裂は応力集中部となるため、亀裂先端での被膜破壊と、腐食反応とが加速度的に進行していき、最終的に鋼材を破断に至らしめる。なお、SCCにより亀裂がひとたび発生した場合、鋼材の寿命を決めるのは、鋼材のSCC亀裂伝播に対する耐性(アレスト性)である。したがって、鋼材のSCC耐性を確保するためには、SCC亀裂伝播耐性を高める必要がある。具体的には、亀裂先端でのアノード溶解感受性を低減する必要がある。 Since the crack becomes a stress concentration part, film breakage and corrosion reaction progress at an accelerated rate at the tip of the crack, eventually leading to fracture of the steel material. It should be noted that once a crack occurs due to SCC, the life of the steel material is determined by the resistance (arrest property) of the steel material to SCC crack propagation. Therefore, in order to ensure the SCC resistance of steel materials, it is necessary to increase the SCC crack propagation resistance. Specifically, there is a need to reduce anodic dissolution susceptibility at crack tips.

そこで、本発明者らは、上記の知見に基づき、液体アンモニア環境において、優れた耐アンモニアSCC性を示す鋼材の開発に向けて鋭意研究を重ねた。 Therefore, based on the above findings, the present inventors have made intensive studies to develop a steel material that exhibits excellent ammonia SCC resistance in a liquid ammonia environment.

その結果、耐アンモニアSCC性を向上させるためには、CuおよびSbを適正量添加することが有効であることを知見した。 As a result, the inventors have found that adding appropriate amounts of Cu and Sb is effective in improving the ammonia SCC resistance.

なお、アンモニアSCCの進展は、上述のように亀裂先端での被膜破壊と、腐食反応の進行により生じる局部腐食現象の一種である。したがって、亀裂部先端でのアノード溶解感受性を平均的に低減したとしても、先端近傍でのアノード溶解感受性に不均一性がある場合、その不均一性を駆動力として、局部腐食が進行してしまい、アンモニアSCCの進展抑制には至らない。すなわち、CuおよびSbの板厚方向での偏析(局部濃化)度を一定以下に制限することで、鋼材内でのアノード溶解感受性を均一化でき、耐アンモニアSCC性を大幅に向上できることを知見した。 The progress of ammonia SCC is a type of localized corrosion phenomenon caused by film breakage at crack tips and progress of corrosion reaction as described above. Therefore, even if the anodic dissolution susceptibility at the tip of the crack is reduced on average, if there is non-uniformity in the anodic dissolution susceptibility near the tip, the non-uniformity will serve as a driving force, and local corrosion will progress. , does not lead to suppression of the progress of ammonia SCC. That is, it was found that by limiting the degree of segregation (local enrichment) of Cu and Sb in the plate thickness direction to a certain level or less, the anode dissolution sensitivity in the steel material can be made uniform, and the ammonia SCC resistance can be greatly improved. did.

本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。すなわち、本発明の要旨構成は次のとおりである。
[1]質量%で、
C:0.50%以下、
Si:0.01~1.00%、
Mn:0.10~3.00%、
P:0.030%以下、
S:0.0100%以下、
N:0.0005~0.0100%、
Al:0.001~0.10%
を含有し、さらに
Cu:0.010~0.50%および
Sb:0.010~0.50%
のうちから選ばれる1種または2種を含有し、残部がFeおよび不可避的不純物からなる成分組成を有するとともに、
(Cu+Sb)偏析度が15未満である、液体アンモニア輸送用及び貯蔵用鋼材。
ここで、(Cu+Sb)偏析度は、次式(1)により定義される。
[(Cu+Sb)偏析度]=[偏析部の(Cu+Sb)濃度]/[平均の(Cu+Sb)濃度] (1)
[2]前記成分組成が、さらに質量%で、
Sn:0.01~0.50%、
Ni:0.01~3.00%、
Cr:0.01~3.00%
のうちから選ばれる1種以上を含有する[1]に記載の液体アンモニア輸送用及び貯蔵用鋼材。
[3]前記成分組成が、さらに質量%で、
Ca:0.0001~0.0100%、
Mg:0.0001~0.0200%および
REM:0.001~0.200%
のうちから選ばれる1種以上を含有する[1]または[2]に記載の液体アンモニア輸送用及び貯蔵用鋼材。
[4]前記成分組成が、さらに質量%で、
Ti:0.005~0.100%、
Zr:0.005~0.100%、
Nb:0.005~0.100%および
V:0.005~0.100%
のうちから選ばれる1種以上を含有する[1]~[3]のいずれかに記載の液体アンモニア輸送用及び貯蔵用鋼材。
[5]前記成分組成が、さらに質量%で、
Co:0.01~0.50%
を含有する[1]~[4]のいずれかに記載の液体アンモニア輸送用及び貯蔵用鋼材。
[6]前記成分組成が、さらに質量%で、
B:0.0001~0.0300%
を含有する[1]~[5]のいずれかに記載の液体アンモニア輸送用及び貯蔵用鋼材。
[7][1]~[6]のいずれかに記載された成分組成を有する鋼を、鋳造速度:0.3~2.8m/minで連続鋳造することにより鋼素材を製造し、
鋼素材を、再加熱温度:900~1350℃、再加熱時の800~950℃の温度範囲における滞在時間:8~150minの条件で再加熱し、
再加熱された鋼素材を仕上圧延終了温度:650℃以上で熱間圧延する液体アンモニア輸送用及び貯蔵用鋼材の製造方法。
The present invention was completed after further studies based on the above findings. That is, the gist and configuration of the present invention are as follows.
[1] % by mass,
C: 0.50% or less,
Si: 0.01 to 1.00%,
Mn: 0.10-3.00%,
P: 0.030% or less,
S: 0.0100% or less,
N: 0.0005 to 0.0100%,
Al: 0.001-0.10%
and further Cu: 0.010 to 0.50% and Sb: 0.010 to 0.50%
containing one or two selected from among, with the balance having a component composition consisting of Fe and unavoidable impurities,
(Cu+Sb) steel for transporting and storing liquid ammonia, having a degree of segregation of less than 15;
Here, the (Cu+Sb) segregation degree is defined by the following formula (1).
[(Cu + Sb) segregation degree] = [(Cu + Sb) concentration in segregation part] / [average (Cu + Sb) concentration] (1)
[2] The component composition is further mass %,
Sn: 0.01 to 0.50%,
Ni: 0.01 to 3.00%,
Cr: 0.01-3.00%
The steel material for transporting and storing liquid ammonia according to [1], containing one or more selected from among.
[3] The component composition is further mass %,
Ca: 0.0001 to 0.0100%,
Mg: 0.0001-0.0200% and REM: 0.001-0.200%
The steel material for transporting and storing liquid ammonia according to [1] or [2], containing one or more selected from among.
[4] The component composition is further mass %,
Ti: 0.005 to 0.100%,
Zr: 0.005 to 0.100%,
Nb: 0.005-0.100% and V: 0.005-0.100%
The steel material for transporting and storing liquid ammonia according to any one of [1] to [3], containing one or more selected from among.
[5] The component composition is further mass %,
Co: 0.01-0.50%
The steel material for transporting and storing liquid ammonia according to any one of [1] to [4] containing
[6] The component composition is further mass %,
B: 0.0001 to 0.0300%
The steel material for transporting and storing liquid ammonia according to any one of [1] to [5] containing
[7] A steel material is produced by continuously casting steel having the chemical composition described in any one of [1] to [6] at a casting speed of 0.3 to 2.8 m/min,
The steel material is reheated under the conditions of reheating temperature: 900 to 1350 ° C., residence time in the temperature range of 800 to 950 ° C. during reheating: 8 to 150 minutes,
A method for producing steel materials for transportation and storage of liquid ammonia, comprising hot-rolling a reheated steel material at a final rolling temperature of 650°C or higher.

本発明によれば、液体アンモニア環境下で使用されるパイプライン、プラントやタンクなどといった大型構造物の構造用部材に適用して好適な、液体アンモニア輸送用及び貯蔵用鋼材を得ることができる。また、本発明の鋼材は、熱間圧延後に、焼き戻しなどの熱処理を施さなくとも製造することができるので、製造性の面でも有利である。さらに、本発明の鋼材を、例えば、液体アンモニアの貯蔵タンクに適用する場合には、溶接部に対し応力除去焼鈍を施さなくとも、従来に比べてより長期間にわたる使用が可能となるので、産業上極めて有利である。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to obtain a steel material for transporting and storing liquid ammonia, which is suitable for structural members of large structures such as pipelines, plants and tanks used in a liquid ammonia environment. In addition, the steel material of the present invention can be manufactured without heat treatment such as tempering after hot rolling, which is advantageous in terms of manufacturability. Furthermore, when the steel material of the present invention is applied to, for example, a storage tank for liquid ammonia, it can be used for a longer period of time than before without subjecting the weld to stress-relief annealing. is extremely advantageous.

図1は、(Cu+Sb)偏析度を求める際の、測定する面領域を説明する模式図である。FIG. 1 is a schematic diagram for explaining the surface area to be measured when determining the degree of (Cu+Sb) segregation.

以下、本発明の実施形態について説明する。なお、成分組成における単位はいずれも「質量%」であり、以下、特に断らない限り単に「%」で示す。 Embodiments of the present invention will be described below. In addition, all the units in the component composition are "% by mass", and hereinafter, they are indicated simply by "%" unless otherwise specified.

C:0.50%以下
Cは、鋼の強度確保に有効な元素である。したがって、本発明においては、0.01%以上を含有することが好ましい。より好ましくは、0.02%以上である。一方、C含有量が0.50%を超えると、加工性および溶接性が大幅に劣化する。このため、C含有量は0.50%以下とする。好ましくは0.40%以下、より好ましくは0.30%以下、さらに好ましくは0.20%以下である。
C: 0.50% or less C is an effective element for ensuring the strength of steel. Therefore, in the present invention, it is preferable to contain 0.01% or more. More preferably, it is 0.02% or more. On the other hand, when the C content exceeds 0.50%, the workability and weldability deteriorate significantly. Therefore, the C content should be 0.50% or less. It is preferably 0.40% or less, more preferably 0.30% or less, and still more preferably 0.20% or less.

Si:0.01~1.00%
Siは、耐アンモニアSCC性向上に有効な元素である。すなわち、Siは、液体アンモニア環境での鋼材の腐食に伴って溶出し、鋼材表面に不活性なSiO被膜を形成する。これにより、亀裂先端での選択的なアノード溶解反応の進行が抑制され、鋼材のアンモニアSCC感受性が低減される。このような効果は、Si含有量を0.01%以上とすることで発現する。Si含有量は0.02%以上であることが好ましく、0.03%以上であることがより好ましく、0.05%以上であることがいっそう好ましい。一方、Si含有量が1.00%を超えると、靭性や溶接性が劣化する。このため、Si含有量は、1.00%以下とし、0.80%以下が好ましく、0.70%以下がより好ましく、0.60%以下であることがいっそう好ましい。なお、アンモニアのSCC亀裂伝播過程においては、亀裂が深く進展するため、亀裂先端での酸素濃度が低下して、SiO被膜が十分に形成されない。したがって、安定的に耐アンモニアSCC性の向上を図るためには、CuもしくはSb含有に加えて、後述する(Cu+Sb)偏析度を制御する必要がある。
Si: 0.01-1.00%
Si is an element effective in improving ammonia SCC resistance. That is, Si elutes as the steel corrodes in the liquid ammonia environment and forms an inert SiO 2 coating on the steel surface. This suppresses the progress of the selective anodic dissolution reaction at the crack tip and reduces the ammonia SCC susceptibility of the steel material. Such an effect is exhibited by setting the Si content to 0.01% or more. The Si content is preferably 0.02% or more, more preferably 0.03% or more, and still more preferably 0.05% or more. On the other hand, when the Si content exceeds 1.00%, toughness and weldability deteriorate. Therefore, the Si content is 1.00% or less, preferably 0.80% or less, more preferably 0.70% or less, and even more preferably 0.60% or less. In addition, in the SCC crack propagation process of ammonia, since the crack grows deep, the oxygen concentration at the tip of the crack decreases and the SiO 2 film is not sufficiently formed. Therefore, in order to stably improve the ammonia SCC resistance, it is necessary to control the degree of (Cu+Sb) segregation, which will be described later, in addition to the content of Cu or Sb.

Mn:0.10~3.00%
Mnは、強度および靭性を改善する元素である。ここで、Mn含有量が0.10%未満では、その効果が十分でないのでMn含有量は0.10%以上とし、0.20%以上であることが好ましく、0.50%以上であることがさらに好ましい。一方、Mn含有量が3.00%を超えると、溶接性が劣化するので、Mn含有量は3.00%以下とし、2.00%以下であることが好ましい。
Mn: 0.10-3.00%
Mn is an element that improves strength and toughness. Here, if the Mn content is less than 0.10%, the effect is not sufficient, so the Mn content is 0.10% or more, preferably 0.20% or more, and 0.50% or more. is more preferred. On the other hand, if the Mn content exceeds 3.00%, the weldability deteriorates, so the Mn content is 3.00% or less, preferably 2.00% or less.

P:0.030%以下
Pは、靭性及び溶接性を劣化させるため、P含有量は0.030%以下とする。好ましくは0.025%以下である。
P: 0.030% or less P deteriorates toughness and weldability, so the P content is made 0.030% or less. Preferably, it is 0.025% or less.

S:0.0100%以下
Sは、鋼の靭性および溶接性を劣化させる有害元素であるので、極力低減することが望ましい。特に、S含有量が0.0100%を超えると、母材靭性および溶接部靭性の劣化が大きくなる。そのため、S含有量は0.0100%以下とする。好ましくは0.0080%以下、さらに好ましくは0.0060%以下である。
S: 0.0100% or less S is a harmful element that deteriorates the toughness and weldability of steel, so it is desirable to reduce it as much as possible. In particular, when the S content exceeds 0.0100%, the toughness of the base material and the toughness of the weld zone are greatly deteriorated. Therefore, the S content should be 0.0100% or less. It is preferably 0.0080% or less, more preferably 0.0060% or less.

N:0.0005~0.0100%
Nは、靭性を低下させる有害な元素であるので、極力低減させることが望ましい。特に、N量が0.0100%を超えると、靭性の低下が大きくなる。したがって、N量は0.0100%以下とする。好ましくは0.0080%である。より好ましくは0.0070%である。一方、製鋼工程における精錬コストが過度に増加することを避けるため、N量は0.0005%以上とし、0.0010%以上であることが好ましい。
N: 0.0005 to 0.0100%
N is a harmful element that lowers the toughness, so it is desirable to reduce it as much as possible. In particular, when the amount of N exceeds 0.0100%, the toughness is greatly reduced. Therefore, the amount of N is set to 0.0100% or less. Preferably it is 0.0080%. More preferably, it is 0.0070%. On the other hand, in order to avoid an excessive increase in refining costs in the steelmaking process, the amount of N is set to 0.0005% or more, preferably 0.0010% or more.

Al:0.001~0.10%
Alは、脱酸剤として添加される元素であり、Al量は0.001%以上とし、0.003%以上であることが好ましい。しかし、Al量が0.10%を超えると、鋼の靭性が低下する。このため、Al量は0.10%以下とし、0.08%以下であることが好ましい。
Al: 0.001-0.10%
Al is an element added as a deoxidizing agent, and the amount of Al is set to 0.001% or more, preferably 0.003% or more. However, when the amount of Al exceeds 0.10%, the toughness of the steel is lowered. Therefore, the Al content is set to 0.10% or less, preferably 0.08% or less.

Cu:0.010~0.50%およびSb:0.010~0.50%のうちから選ばれる1種または2種
CuおよびSbは、耐アンモニアSCC性向上のために重要な元素であり、このうちの1種または2種を含有させる必要がある。すなわち、CuおよびSbは、液体アンモニア環境中において鋼材のアノード溶出に伴って速やかに、それぞれ、難溶性のメタルCuとメタルSbとして表面に濃化する。これら難溶性金属の表面濃化の結果として、亀裂先端でのアノード溶解感受性が低下する。その結果、応力腐食割れの亀裂先端でのアノード反応が抑制され、亀裂進展速度が低下する。このような効果を得るため、Cuを含有させる場合にはCu含有量を0.010%以上に、また、Sbを含有させる場合にはSb含有量を0.010%以上に、それぞれする必要がある。一方、CuおよびSbを過剰に含有させると、溶接性や靱性が劣化し、コストの観点からも不利になる。このため、Cu含有量およびSb含有量はそれぞれ0.50%以下とする。好ましくはそれぞれ0.40%以下であり、より好ましくはそれぞれ0.30%以下である。
One or two selected from Cu: 0.010 to 0.50% and Sb: 0.010 to 0.50% Cu and Sb are important elements for improving ammonia SCC resistance, One or two of these must be contained. That is, Cu and Sb quickly concentrate on the surface as poorly soluble metal Cu and metal Sb, respectively, as the steel material is eluted from the anode in a liquid ammonia environment. Surface enrichment of these refractory metals results in reduced anodic dissolution susceptibility at the crack tip. As a result, the anodic reaction at the crack tip of stress corrosion cracking is suppressed, and the crack growth rate decreases. In order to obtain such an effect, it is necessary to set the Cu content to 0.010% or more when Cu is contained, and the Sb content to 0.010% or more when Sb is contained. be. On the other hand, if Cu and Sb are contained excessively, weldability and toughness deteriorate, which is disadvantageous from the viewpoint of cost. Therefore, the Cu content and the Sb content are each set to 0.50% or less. Each is preferably 0.40% or less, more preferably 0.30% or less.

以上、基本成分について説明したが、必要に応じて、以下の元素を適宜含有させてもよい。 Although the basic components have been described above, the following elements may be included as appropriate, if necessary.

Sn:0.01~0.50%、Ni:0.01~3.00%、Cr:0.01~3.00%のうちから選ばれる1種以上
Sn、NiおよびCrは、耐アンモニアSCC性を一層向上させる元素であり、このうちの1種以上を含有させてもよい。これらの元素はいずれも、鋼材の耐酸性を高める元素であり、亀裂先端での選択的なアノード溶解の結果、過剰にpHが低下した場合に、加速度的に進行する腐食反応を抑制する働きを有する。このような効果は、これらの元素を0.01%以上含有させることで発現するので、0.01%以上含有させることが好ましく、0.02%以上含有させることがより好ましい。しかし、いずれの元素も多量に含有させると、溶接性や靱性を劣化させ、コストの観点からも不利になる。したがって、これらの元素を含有させる場合、Snの含有量は0.50%以下が好ましく、0.35%以下がより好ましい。Niの含有量は3.00%以下が好ましく、2.00%以下がより好ましい。Crの含有量は3.00%以下が好ましく、2.00%以下がより好ましい。
One or more selected from Sn: 0.01 to 0.50%, Ni: 0.01 to 3.00%, and Cr: 0.01 to 3.00% Sn, Ni, and Cr are ammonia-resistant SCC It is an element that further improves the properties, and one or more of these elements may be contained. All of these elements are elements that increase the acid resistance of steel materials, and as a result of selective anodic dissolution at crack tips, when the pH drops excessively, they work to suppress the corrosion reaction that progresses at an accelerated rate. have. Such an effect is exhibited by containing these elements in an amount of 0.01% or more. Therefore, the content is preferably 0.01% or more, and more preferably 0.02% or more. However, if any element is included in a large amount, the weldability and toughness are deteriorated, which is disadvantageous from the viewpoint of cost. Therefore, when these elements are contained, the Sn content is preferably 0.50% or less, more preferably 0.35% or less. The Ni content is preferably 3.00% or less, more preferably 2.00% or less. The Cr content is preferably 3.00% or less, more preferably 2.00% or less.

Ca:0.0001~0.0100%、Mg:0.0001~0.0200%およびREM:0.001~0.200%のうちから選ばれる1種以上
Ca、MgおよびREMはいずれも、溶接部の靱性を確保する目的で、このうちの1種以上を含有させてもよい。しかし、いずれの元素も多量に含有させると、溶接部の靱性劣化やコストの増加を招く。したがって、これらの元素を含有させる場合、その含有量はCa:0.0001~0.0100%、Mg:0.0001~0.0200%およびREM:0.001~0.200%の範囲とすることが好ましい。
One or more selected from Ca: 0.0001 to 0.0100%, Mg: 0.0001 to 0.0200% and REM: 0.001 to 0.200% Ca, Mg and REM are all welded For the purpose of ensuring the toughness of the part, one or more of these may be contained. However, if any element is included in a large amount, the toughness of the weld zone deteriorates and the cost increases. Therefore, when these elements are contained, the contents are Ca: 0.0001 to 0.0100%, Mg: 0.0001 to 0.0200%, and REM: 0.001 to 0.200%. is preferred.

Ti:0.005~0.100%、Zr:0.005~0.100%、Nb:0.005~0.100%およびV:0.005~0.100%のうちから選ばれる1種以上
Ti、Zr、NbおよびVは、所望とする強度を確保するために、このうちの1種または2種以上を含有させてもよい。しかし、いずれの元素も多量に含有させると、靱性や溶接性を劣化させる。したがって、これらの元素を含有させる場合、その含有量はいずれも0.005~0.100%の範囲とすることが好ましく、より好ましくは0.005~0.050%の範囲である。
One selected from Ti: 0.005 to 0.100%, Zr: 0.005 to 0.100%, Nb: 0.005 to 0.100% and V: 0.005 to 0.100% Above Ti, Zr, Nb and V may be contained in one or more of them in order to ensure the desired strength. However, if any element is included in a large amount, it deteriorates toughness and weldability. Therefore, when these elements are contained, the content is preferably in the range of 0.005 to 0.100%, more preferably in the range of 0.005 to 0.050%.

Co:0.01~0.50%
Coは、鋼材の強度を高める元素であり、必要に応じて含有させてもよい。このような効果を得るためには、Coを0.01%以上含有させることが好ましい。しかし、Co含有量が0.50%を超えると、靱性や溶接性が劣化する。したがって、Coを含有させる場合、その含有量は0.01~0.50%の範囲とすることが好ましく、より好ましくは0.01~0.30%の範囲である。
Co: 0.01-0.50%
Co is an element that increases the strength of steel materials, and may be contained as necessary. In order to obtain such effects, it is preferable to contain 0.01% or more of Co. However, if the Co content exceeds 0.50%, toughness and weldability deteriorate. Therefore, when Co is contained, the content is preferably in the range of 0.01 to 0.50%, more preferably in the range of 0.01 to 0.30%.

B:0.0001~0.0300%
Bは、鋼材の焼入性を向上させる元素であり、鋼材の強度を確保する目的で必要に応じて含有させてもよい。このような効果を得るためには、Bを0.0001%以上含有させることが好ましく、0.0003%以上含有させることがより好ましい。しかし、B含有量が0.0300%を超えると、靱性の大幅な劣化を招く。したがって、Bを含有させる場合、その含有量は0.0300%以下とすることが好ましく、0.0020%以下とすることがより好ましい。
B: 0.0001 to 0.0300%
B is an element that improves the hardenability of the steel material, and may be contained as necessary for the purpose of ensuring the strength of the steel material. In order to obtain such an effect, the B content is preferably 0.0001% or more, more preferably 0.0003% or more. However, when the B content exceeds 0.0300%, a large deterioration in toughness is caused. Therefore, when B is contained, the content is preferably 0.0300% or less, more preferably 0.0020% or less.

上記以外の成分はFeおよび不可避的不純物である。 Components other than the above are Fe and unavoidable impurities.

以上、本発明の液体アンモニア輸送用及び貯蔵用鋼材の成分組成について説明したが、本発明の液体アンモニア輸送用及び貯蔵用鋼材では、(Cu+Sb)偏析度を次のように制御することが極めて重要である。 The chemical composition of the steel material for transporting and storing liquid ammonia of the present invention has been described above. In the steel material for transporting and storing liquid ammonia of the present invention, it is extremely important to control the degree of (Cu+Sb) segregation as follows. is.

(Cu+Sb)偏析度:15未満
CuとSbの偏析によって、偏析部と非偏析部での耐アノード溶解性の差は大きくなる。この耐アノード溶解性の差は、選択的なアノード溶解の駆動力となり、アノード溶解支配型であるアンモニアSCCの亀裂伝播を助長する。すなわち、アンモニアSCCの亀裂伝播過程においては、亀裂が深く進展するため、亀裂先端での酸素濃度が低下して、SiO被膜が十分に形成されない。したがって、CuとSbを含有する成分組成において優れた耐アンモニアSCC特性を確保するには、前述したCuもしくはSbの含有に加えて、CuとSbの偏析を抑制して鋼材内でのアノード溶解感受性差を抑制することが重要である。このような観点から、(Cu+Sb)偏析度は15未満とする。好ましくは14未満である。より好ましくは12以下である。下限については特に限定されるものではないが、1.5以上とすることが好ましい。
(Cu+Sb) segregation degree: less than 15 The segregation of Cu and Sb increases the difference in anodic dissolution resistance between the segregated portion and the non-segregated portion. This difference in resistance to anodic dissolution serves as a driving force for selective anodic dissolution, and promotes crack propagation of ammonia SCC, which is anodic dissolution-dominated. That is, in the crack propagation process of the ammonia SCC, the crack grows deep, so the oxygen concentration at the crack tip decreases and the SiO 2 film is not sufficiently formed. Therefore, in order to ensure excellent ammonia SCC resistance in a chemical composition containing Cu and Sb, in addition to containing Cu or Sb described above, the segregation of Cu and Sb is suppressed to increase the susceptibility to anode dissolution in the steel material. It is important to limit the difference. From this point of view, the (Cu+Sb) segregation degree is set to less than 15. Preferably less than 14. It is more preferably 12 or less. Although the lower limit is not particularly limited, it is preferably 1.5 or more.

なお、ここでいう(Cu+Sb)偏析度とは、鋼材の圧延方向と平行に切断した断面(鋼材表面に垂直な断面)において、電子線マイクロアナライザ(Electron Probe Microanalyzer、以下、EPMAと示す)の線分析により得られる平均の(Cu+Sb)濃度に対する偏析部の(Cu+Sb)濃度の比である。ここで、(Cu+Sb)濃度とは、Cu濃度とSb濃度との和である。(Cu+Sb)偏析度の求め方は、具体的には、鋼材の厚さをt(mm)、幅(鋼材の圧延方向および厚さ方向と直角の方向)をW(mm)としたとき、まず、鋼材の圧延方向と平行、かつ鋼材表面に垂直な断面(鋼材表面に垂直な断面)の鋼材の圧延方向:1mm、全板厚方向(板表裏面最表層0.05mmを除く):(t-0.1)mmの面領域において、鋼材の厚さ方向にビーム径:20μm、ピッチ:50μmの条件で、CuおよびSbのEPMA線分析を実施する。なお、CuとSbのEPMA面分析は、一方の幅端部から、W/4の位置と、3W/4の位置の2断面における、任意の1mm×(t-0.1)mmの面領域にて実施する(図1参照)。そして、測定ラインごとにCuおよびSbの濃度の和である(Cu+Sb)濃度(質量濃度)の最大値を求め、これらの平均値を偏析部の(Cu+Sb)濃度とする。この偏析部の(Cu+Sb)濃度を、測定ラインの全測定値のCuおよびSbの濃度の和の算術平均値である平均の(Cu+Sb)濃度で除した値を、(Cu+Sb)偏析度とする。すなわち、(Cu+Sb)偏析度は、次式(1)により定義される。
[(Cu+Sb)偏析度]=[偏析部の(Cu+Sb)濃度]/[平均の(Cu+Sb)濃度] (1)
上述したように、本発明の液体アンモニア輸送用及び貯蔵用鋼材は、耐SCC性を確保する観点から、CuとSbの偏析を抑制する、すなわち、CuとSbの偏析の度合いを示す(Cu+Sb)偏析度を所定値以下に制御することが極めて重要である。ここで、(Cu+Sb)偏析度は、成分組成が同じであっても、製造条件によって大きく変化する。このため、CuとSbの偏析を抑制するには、後述する鋼材の製造方法を適切に制御することが非常に重要である。
The degree of (Cu + Sb) segregation referred to here means the line of an electron probe microanalyzer (hereinafter referred to as EPMA) in a cross section cut parallel to the rolling direction of the steel material (cross section perpendicular to the surface of the steel material). It is the ratio of the (Cu+Sb) concentration in the segregation part to the average (Cu+Sb) concentration obtained by analysis. Here, the (Cu+Sb) concentration is the sum of the Cu concentration and the Sb concentration. Specifically, when the thickness of the steel material is t (mm) and the width (direction perpendicular to the rolling direction and thickness direction of the steel material) is W (mm), first , The rolling direction of the steel material in a section parallel to the rolling direction of the steel material and perpendicular to the surface of the steel material (cross section perpendicular to the surface of the steel material): 1 mm, all plate thickness directions (excluding the outermost surface layer 0.05 mm on the front and back surfaces of the plate): (t EPMA line analysis of Cu and Sb is performed in a surface area of -0.1) mm under the conditions of a beam diameter of 20 μm and a pitch of 50 μm in the thickness direction of the steel material. In addition, the EPMA surface analysis of Cu and Sb is an arbitrary 1 mm × (t-0.1) mm surface area in two cross sections at a position of W / 4 and a position of 3 W / 4 from one width end. (See FIG. 1). Then, the maximum value of the (Cu+Sb) concentration (mass concentration), which is the sum of the concentrations of Cu and Sb, is obtained for each measurement line, and the average value of these is taken as the (Cu+Sb) concentration of the segregation part. The value obtained by dividing the (Cu + Sb) concentration in this segregation part by the average (Cu + Sb) concentration, which is the arithmetic mean value of the sum of the Cu and Sb concentrations of all the measured values of the measurement line, is the (Cu + Sb) segregation degree. That is, the (Cu+Sb) segregation degree is defined by the following formula (1).
[(Cu + Sb) segregation degree] = [(Cu + Sb) concentration in segregation part] / [average (Cu + Sb) concentration] (1)
As described above, the steel material for transporting and storing liquid ammonia of the present invention suppresses the segregation of Cu and Sb from the viewpoint of ensuring SCC resistance. It is extremely important to control the degree of segregation to a predetermined value or less. Here, the (Cu+Sb) segregation degree varies greatly depending on the manufacturing conditions even if the chemical composition is the same. Therefore, in order to suppress the segregation of Cu and Sb, it is very important to appropriately control the method of manufacturing the steel material, which will be described later.

次に、本発明の液体アンモニア輸送用及び貯蔵用鋼材の好適な製造方法について説明する。 Next, a preferred method for producing the steel material for transporting and storing liquid ammonia of the present invention will be described.

本発明の鋼材は、上記した成分組成に調整した鋼を、転炉や電気炉、真空脱ガス等、公知の精錬プロセスを用いて溶製し、連続鋳造法あるいは造塊-分塊圧延法で鋼素材(スラブ)とし、ついでこの鋼素材を必要に応じて再加熱してから熱間圧延することにより、鋼板または形鋼等とすることで製造することができる。 The steel material of the present invention is produced by melting steel adjusted to the above-described chemical composition using a known refining process such as a converter, an electric furnace, and vacuum degassing, and then by a continuous casting method or an ingot making-blooming rolling method. It can be manufactured by using a steel material (slab), then reheating this steel material as necessary, and then hot-rolling it into a steel plate or shaped steel.

ここで、連続鋳造の場合、本発明では鋳造速度(引抜速度)を0.3~2.8m/minとすることが好ましい。鋳造速度が0.3m/min未満では、操業効率が悪くなるので、0.3m/min以上であることが好ましく、0.4m/min以上であることがより好ましい。一方、鋳造速度が2.8m/minを超えると、表面温度ムラが生じ、また、鋳片内部への溶鋼供給が不十分になって、CuおよびSbの偏析が促されるので、2.8m/min以下であることが好ましい。CuおよびSbの偏析を抑制する観点からは、鋳造速度は2.6m/min以下であることがより好ましく、2.2m/min以下であることがさらに好ましい。 Here, in the case of continuous casting, the casting speed (drawing speed) is preferably 0.3 to 2.8 m/min in the present invention. If the casting speed is less than 0.3 m/min, the operating efficiency will be poor, so it is preferably 0.3 m/min or more, more preferably 0.4 m/min or more. On the other hand, if the casting speed exceeds 2.8 m/min, the surface temperature becomes uneven, and the supply of molten steel to the inside of the slab becomes insufficient, which promotes the segregation of Cu and Sb. min or less is preferable. From the viewpoint of suppressing the segregation of Cu and Sb, the casting speed is more preferably 2.6 m/min or less, and even more preferably 2.2 m/min or less.

また、未凝固層を有する凝固末期の鋳片を、凝固収縮量と熱収縮量との和に相当する程度の圧下総量及び圧下速度で、圧下ロール群によって徐々に圧下しながら鋳造する軽圧下法を行うことが好ましい。軽圧下法を行うことにより、未凝固層を有する凝固末期の鋳片に対して軽圧下を実施することにより、鋳片の厚さ方向中心部における、CuとSbの中心偏析を軽減することができる。このため、最終的に得られる鋼材においても(Cu+Sb)偏析度を低位に制御することができ、耐アンモニアSCC性を向上させるうえで有効である。軽圧下の条件は特に限定されるものではないが、軽圧下を実施する場合には、たとえば、鋳片の厚さ方向中心部の固相率が0.3~0.7の状態において0.5~2.0mm/minの圧下を加えることが好ましい。 In addition, a light reduction method in which a cast piece having an unsolidified layer in the final stage of solidification is cast while being gradually reduced by a group of reduction rolls at a total reduction amount and reduction rate corresponding to the sum of the amount of solidification shrinkage and the amount of thermal shrinkage. It is preferable to By performing the soft reduction method, the center segregation of Cu and Sb at the center in the thickness direction of the slab can be reduced by performing the soft reduction on the slab at the final stage of solidification having an unsolidified layer. can. Therefore, the degree of (Cu+Sb) segregation can be controlled to a low level even in the finally obtained steel material, which is effective in improving the ammonia SCC resistance. The conditions for the light reduction are not particularly limited. It is preferable to apply a reduction of 5 to 2.0 mm/min.

次に、上記の鋼素材(鋼スラブ)を所望の寸法形状に熱間圧延する際には、スラブ再加熱温度を900~1350℃として再加熱することが好ましい。スラブ再加熱温度が900℃未満では変形抵抗が大きく、熱間圧延が難しくなる。一方、スラブ再加熱温度が1350℃を超えると、鋼材表面に部分溶融相が生じるため表面痕が発生したり、スケールロスや燃料原単位が増加したりする。 Next, when the steel material (steel slab) is hot-rolled into a desired size and shape, it is preferable to reheat the slab at a reheating temperature of 900 to 1350°C. If the slab reheating temperature is less than 900° C., the deformation resistance is large and hot rolling becomes difficult. On the other hand, if the slab reheating temperature exceeds 1350° C., a partial melting phase occurs on the surface of the steel material, resulting in surface scratches, scale loss, and increased fuel consumption.

また、CuとSbの偏析度は、加熱条件の影響を受けるため、加熱条件を適切に制御することが耐アンモニアSCC性確保の観点から好ましい。具体的には、800~950℃のスラブ再加熱温度範囲において、CuとSbは急速に拡散し、この800~950℃までの温度範囲における滞在時間(前記温度域における滞在時間の和)を8~150minの範囲とすることが好ましい。滞在時間が8min未満では、拡散が不十分となり、耐アンモニアSCC性の確保が困難となるおそれがあるので、8min以上であることが好ましく、10min以上であることがより好ましい。さらに好ましくは15min以上である。また、加熱滞在時間が150minを超えると、鋼表面での鉄の選択酸化が過度に進行することとなり、結果として、同じく表層近傍でCuおよびSbの偏析相が新たに形成されてしまい、耐アンモニアSCC性が劣化するおそれがあるので、150min以下であることが好ましく、120min以下であることがより好ましい。さらに好ましくは100min以下である。 In addition, since the degree of segregation of Cu and Sb is affected by the heating conditions, it is preferable to appropriately control the heating conditions from the viewpoint of ensuring the ammonia SCC resistance. Specifically, in the slab reheating temperature range of 800 to 950 ° C., Cu and Sb diffuse rapidly, and the residence time in this temperature range up to 800 to 950 ° C. A range of up to 150 min is preferable. If the residence time is less than 8 minutes, the diffusion may be insufficient and it may become difficult to ensure the ammonia SCC resistance. More preferably, it is 15 min or more. Further, if the heating residence time exceeds 150 minutes, the selective oxidation of iron on the steel surface will proceed excessively, and as a result, a new segregation phase of Cu and Sb will be newly formed near the surface layer, and the ammonia resistance will be reduced. Since the SCC property may deteriorate, it is preferably 150 min or less, more preferably 120 min or less. More preferably, it is 100 min or less.

なお、本発明に係る鋼材の製造方法において、鋼素材(スラブ)を再加熱して熱間圧延するプロセスに代えて、連続鋳造法あるいは造塊-分塊圧延法により製造された鋼素材(スラブ)を900℃未満の温度域に冷却することなく、そのまま再加熱せずに熱間圧延することが可能である。この場合、熱間圧延前の鋼素材(スラブ)においてCuおよび/またはSbは容易に拡散可能なので、スラブを冷却した場合のような偏析は顕在化せず、問題とならない。このため、この場合には、鋼素材(スラブ)を再加熱する場合に規定される特定温度域において特定時間滞在させるという、Cuおよび/またはSbの偏析軽減のための処置は不要である。また、熱間圧延後に得られた熱延鋼板に、再加熱処理、酸洗、冷間圧延を施し、所定板厚の冷延鋼板としてもよい。 In the steel material manufacturing method according to the present invention, instead of the process of reheating the steel material (slab) and hot rolling, the steel material (slab) manufactured by the continuous casting method or the ingot casting-slabbing rolling method ) can be hot-rolled without cooling to a temperature range of less than 900° C. and without reheating. In this case, since Cu and/or Sb can easily diffuse in the steel material (slab) before hot rolling, the segregation that occurs when the slab is cooled does not occur and poses no problem. Therefore, in this case, there is no need to take measures to reduce the segregation of Cu and/or Sb, such as keeping the steel material (slab) in a specific temperature range for a specific period of time when reheating the steel material (slab). Alternatively, a hot-rolled steel sheet obtained after hot rolling may be reheated, pickled, and cold-rolled to obtain a cold-rolled steel sheet having a predetermined thickness.

熱間圧延では、仕上圧延終了温度を650℃以上とすることが好ましい。仕上圧延終了温度が650℃未満では、変形抵抗の増大により圧延荷重が増加し、圧延の実施が困難となる。なお、仕上圧延終了温度は950℃以下とすることが好ましい。圧延終了温度が950℃を超えると、未再結晶温度域における圧下が十分には確保できず、最終的に得られる鋼板の強度と靭性が低下する。 In hot rolling, it is preferable to set the finishing temperature of finish rolling to 650° C. or higher. If the finish rolling end temperature is less than 650°C, the rolling load increases due to an increase in deformation resistance, making it difficult to carry out rolling. In addition, it is preferable that finish rolling finish temperature shall be 950 degrees C or less. If the rolling end temperature exceeds 950° C., the rolling reduction in the non-recrystallization temperature range cannot be sufficiently ensured, and the strength and toughness of the finally obtained steel sheet are lowered.

熱間圧延後の冷却は、空冷、加速冷却のいずれの方法でもよいが、より高い強度を得たい場合には、加速冷却を行うことが好ましい。ここで、加速冷却を行う場合には、冷却速度を2~100℃/s、冷却停止温度を700~400℃とするのが好ましい。すなわち、冷却速度が2℃/s未満、および/または冷却停止温度が700℃超では、加速冷却の効果が小さく、十分な高強度化が達成されない場合がある。一方、冷却速度が100℃/s超、および/または冷却停止温度が400℃未満では、鋼材の靭性が低下したり、鋼材の形状に歪が発生する場合がある。 Cooling after hot rolling may be performed by either air cooling or accelerated cooling, but accelerated cooling is preferred when higher strength is desired. Here, when accelerated cooling is performed, it is preferable to set the cooling rate to 2 to 100°C/s and the cooling stop temperature to 700 to 400°C. That is, when the cooling rate is less than 2° C./s and/or the cooling stop temperature is more than 700° C., the effect of accelerated cooling is small, and sufficient high strength may not be achieved. On the other hand, if the cooling rate exceeds 100° C./s and/or the cooling stop temperature is lower than 400° C., the toughness of the steel material may decrease or the shape of the steel material may be distorted.

本発明においては、耐アンモニアSCC性の観点からは、圧延後に冷却された鋼板に対して熱処理を行う必要がない。なお、鋼板にひずみが発生した場合にその矯正を目的とした熱処理を施すことが可能であり、その場合には、200~700℃まで加熱することが好ましい。 In the present invention, from the viewpoint of ammonia SCC resistance, it is not necessary to heat-treat the steel sheet that has been cooled after rolling. If the steel sheet is distorted, heat treatment can be applied to correct the distortion. In this case, heating to 200 to 700° C. is preferable.

また、本発明において、製造条件における温度はいずれも鋼板平均温度とする。鋼板平均温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められる。例えば、差分法を用い、板厚方向の温度分布を計算することにより、鋼板の平均温度が求められる。 Moreover, in the present invention, the temperature in the manufacturing conditions is the steel sheet average temperature. The steel plate average temperature is obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like. For example, the average temperature of the steel sheet can be obtained by calculating the temperature distribution in the sheet thickness direction using the finite difference method.

次に、本発明の実施例について説明する。なお、本発明はこれらの実施例のみに限定されるものではない。 Next, examples of the present invention will be described. In addition, the present invention is not limited only to these examples.

表1に示す成分組成の鋼(残部はFeおよび不可避的不純物である)を、転炉で溶製して、表2に示す条件の連続鋳造により鋼スラブとした。連続鋳造工程において、No.11、No.53およびNo.59においては、軽圧下を実施した。具体的には、鋳片の厚さ方向中心部の固相率が0.3~0.7の状態において0.5~2.0mm/minの圧下を加えた。これに対して、ほかの場合には軽圧下を実施しなかった。これらの鋼スラブを1130℃に再加熱後、表2に示す条件で保持し、仕上圧延終了温度:800℃の熱間圧延を施し、板厚:25mmの鋼材を得た。なお、熱間圧延後の冷却は、冷却速度:10℃/s、冷却停止温度:550℃の水冷(加速冷却)とした。 A steel having the chemical composition shown in Table 1 (the balance being Fe and unavoidable impurities) was melted in a converter and continuously cast under the conditions shown in Table 2 to obtain a steel slab. In the continuous casting process, No. 11, No. 53 and no. In 59, a light reduction was performed. Specifically, a rolling reduction of 0.5 to 2.0 mm/min was applied in a state in which the solid fraction at the center in the thickness direction of the slab was 0.3 to 0.7. In contrast, no soft reduction was performed in other cases. After reheating these steel slabs to 1130° C., they were held under the conditions shown in Table 2 and subjected to hot rolling at a final rolling temperature of 800° C. to obtain steel materials with a thickness of 25 mm. The cooling after hot rolling was water cooling (accelerated cooling) at a cooling rate of 10°C/s and a cooling stop temperature of 550°C.

そして、上記した方法により、得られた鋼材における(Cu+Sb)偏析度を求めた。また、SCC亀裂伝播特性の観点から低歪速度試験(SSRT:Slow Strain Rate Test)法による耐アンモニアSCC性の評価を行った。SSRTは常に一定の歪速度にて鋼材に歪みが加わる試験であり、SCCの発生過程は考慮されない。したがって、SCCの亀裂伝播特性を反映したSCC特性評価試験法と言える。具体的には以下の手順で実施した。 Then, the degree of (Cu+Sb) segregation in the obtained steel material was obtained by the method described above. In addition, from the viewpoint of SCC crack propagation characteristics, the ammonia SCC resistance was evaluated by a slow strain rate test (SSRT) method. SSRT is a test in which strain is applied to the steel material at a constant strain rate, and the SCC generation process is not considered. Therefore, it can be said that this is an SCC characteristic evaluation test method that reflects the crack propagation characteristic of SCC. Specifically, the procedure was as follows.

鋼材を、130mm×6.35mmφの丸棒に加工し、両端にねじ切り加工を施すと共に、丸棒の中心部から両端に向けて12.7mmずつを3.81mmφに加工し、長さ25.4mmの平行部を設けた。本試験材を、アセトン中で超音波脱脂を5分間行い、SSRT試験機に取り付けた。試験材を覆うセル中へ、カルバミン酸アンモニウム12.5gと液体アンモニア1Lとを混合した溶液を、充填した条件と充填しない条件で、それぞれ乾燥空気雰囲気下、1×10-6/sの歪み速度で歪みを加えた。そして、破断に至るまでの全伸びの比率({溶液を充填した時の全伸び/溶液を充填しない時の全伸び}×100)を算出し、以下の基準で耐アンモニアSCC性を評価した。なお、○もしくは◎であれば、十分な耐アンモニアSCC特性を有していると判定される。
◎(優):90%以上
○(良):80%以上90%未満
×(不十分):80%未満
得られた結果を表2に示す。
A steel material is processed into a round bar of 130 mm × 6.35 mmφ, both ends are threaded, and each 12.7 mm from the center of the round bar is processed to 3.81 mmφ from the center toward both ends, and the length is 25.4 mm. A parallel part was provided. This test material was subjected to ultrasonic degreasing in acetone for 5 minutes and attached to the SSRT tester. A solution of 12.5 g of ammonium carbamate and 1 L of liquid ammonia was filled into the cell covering the test material, and the strain rate was 1 × 10 -6 /s under a dry air atmosphere under conditions of filling and unfilling, respectively. to add distortion. Then, the ratio of total elongation until breakage ({total elongation when filled with solution/total elongation when not filled with solution}×100) was calculated, and ammonia SCC resistance was evaluated according to the following criteria. If it is ◯ or ⊚, it is judged to have sufficient ammonia SCC resistance.
⊚ (excellent): 90% or more ○ (good): 80% or more and less than 90% × (insufficient): less than 80% Table 2 shows the obtained results.

Figure 0007160213000001
Figure 0007160213000001

Figure 0007160213000002
Figure 0007160213000002

表2に示したとおり、発明例は全て優れた耐アンモニアSCC性を有している。これに対して、比較例はいずれも耐アンモニアSCC性が不十分であり、液体アンモニア輸送用及び貯蔵用鋼材として不適である。 As shown in Table 2, all invention examples have excellent ammonia SCC resistance. On the other hand, all of the comparative examples have insufficient ammonia SCC resistance, and are unsuitable as steel materials for transporting and storing liquid ammonia.

Claims (7)

質量%で、
C:0.50%以下、
Si:0.01~1.00%、
Mn:0.10~3.00%、
P:0.030%以下、
S:0.0100%以下、
N:0.0005~0.0100%、
Al:0.001~0.10%
を含有し、さらに
Cu:0.010~0.50%および
Sb:0.010~0.50%
のうちから選ばれる1種または2種を含有し、残部がFeおよび不可避的不純物からなる成分組成を有するとともに、
(Cu+Sb)偏析度が15未満である、液体アンモニア輸送用及び貯蔵用鋼材。
ここで、(Cu+Sb)偏析度は、次式(1)により定義される。
[(Cu+Sb)偏析度]=[偏析部の(Cu+Sb)濃度]/[平均の(Cu+Sb)濃度] (1)
in % by mass,
C: 0.50% or less,
Si: 0.01 to 1.00%,
Mn: 0.10-3.00%,
P: 0.030% or less,
S: 0.0100% or less,
N: 0.0005 to 0.0100%,
Al: 0.001-0.10%
and further Cu: 0.010 to 0.50% and Sb: 0.010 to 0.50%
containing one or two selected from among, with the balance having a component composition consisting of Fe and unavoidable impurities,
(Cu+Sb) steel for transporting and storing liquid ammonia, having a degree of segregation of less than 15;
Here, the (Cu+Sb) segregation degree is defined by the following formula (1).
[(Cu + Sb) segregation degree] = [(Cu + Sb) concentration in segregation part] / [average (Cu + Sb) concentration] (1)
前記成分組成が、さらに質量%で、
Sn:0.01~0.50%、
Ni:0.01~3.00%、
Cr:0.01~3.00%
のうちから選ばれる1種以上を含有する請求項1に記載の液体アンモニア輸送用及び貯蔵用鋼材。
The component composition is further mass %,
Sn: 0.01 to 0.50%,
Ni: 0.01 to 3.00%,
Cr: 0.01-3.00%
The steel material for transporting and storing liquid ammonia according to claim 1, containing one or more selected from
前記成分組成が、さらに質量%で、
Ca:0.0001~0.0100%、
Mg:0.0001~0.0200%および
REM:0.001~0.200%
のうちから選ばれる1種以上を含有する請求項1または2に記載の液体アンモニア輸送用及び貯蔵用鋼材。
The component composition is further mass %,
Ca: 0.0001 to 0.0100%,
Mg: 0.0001-0.0200% and REM: 0.001-0.200%
3. The steel material for transporting and storing liquid ammonia according to claim 1 or 2, containing one or more selected from among.
前記成分組成が、さらに質量%で、
Ti:0.005~0.100%、
Zr:0.005~0.100%、
Nb:0.005~0.100%および
V:0.005~0.100%
のうちから選ばれる1種以上を含有する請求項1~3のいずれかに記載の液体アンモニア輸送用及び貯蔵用鋼材。
The component composition is further mass %,
Ti: 0.005 to 0.100%,
Zr: 0.005 to 0.100%,
Nb: 0.005-0.100% and V: 0.005-0.100%
The steel material for transporting and storing liquid ammonia according to any one of claims 1 to 3, containing one or more selected from.
前記成分組成が、さらに質量%で、
Co:0.01~0.50%
を含有する請求項1~4のいずれかに記載の液体アンモニア輸送用及び貯蔵用鋼材。
The component composition is further mass %,
Co: 0.01-0.50%
The steel material for transporting and storing liquid ammonia according to any one of claims 1 to 4, containing
前記成分組成が、さらに質量%で、
B:0.0001~0.0300%
を含有する請求項1~5のいずれかに記載の液体アンモニア輸送用及び貯蔵用鋼材。
The component composition is further mass %,
B: 0.0001 to 0.0300%
The steel material for transporting and storing liquid ammonia according to any one of claims 1 to 5, containing
請求項1~6のいずれかに記載された成分組成を有する鋼を、鋳造速度:0.3~2.8m/minで連続鋳造することにより鋼素材を製造し、
鋼素材を、再加熱温度:900~1350℃、再加熱時の800~950℃の温度範囲における滞在時間:8~150minの条件で再加熱し、
再加熱された鋼素材を仕上圧延終了温度:650℃以上で熱間圧延する液体アンモニア輸送用及び貯蔵用鋼材の製造方法。
A steel material is produced by continuously casting steel having the chemical composition according to any one of claims 1 to 6 at a casting speed of 0.3 to 2.8 m / min,
The steel material is reheated under the conditions of reheating temperature: 900 to 1350 ° C., residence time in the temperature range of 800 to 950 ° C. during reheating: 8 to 150 minutes,
A method for producing steel materials for transportation and storage of liquid ammonia, comprising hot-rolling a reheated steel material at a final rolling temperature of 650°C or higher.
JP2021558203A 2019-11-22 2020-10-02 Steel material for transportation and storage of liquid ammonia, and method for producing steel material for transportation and storage of liquid ammonia Active JP7160213B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019210978 2019-11-22
JP2019210978 2019-11-22
PCT/JP2020/037648 WO2021100336A1 (en) 2019-11-22 2020-10-02 Steel material for liquid ammonia transport and storage, and manufacturing method for steel material for liquid ammonia transport and storage

Publications (2)

Publication Number Publication Date
JPWO2021100336A1 JPWO2021100336A1 (en) 2021-05-27
JP7160213B2 true JP7160213B2 (en) 2022-10-25

Family

ID=75979995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021558203A Active JP7160213B2 (en) 2019-11-22 2020-10-02 Steel material for transportation and storage of liquid ammonia, and method for producing steel material for transportation and storage of liquid ammonia

Country Status (4)

Country Link
JP (1) JP7160213B2 (en)
KR (1) KR20220084138A (en)
CN (1) CN114729430B (en)
WO (1) WO2021100336A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143555A (en) 2002-10-25 2004-05-20 Jfe Steel Kk Method for manufacturing steel product for low temperature use having excellent stress corrosion cracking resistance
JP2004300493A (en) 2003-03-31 2004-10-28 Sumitomo Metal Ind Ltd Low yield ratio steel for low temperature use, and method for producing the same
JP2006336065A (en) 2005-06-01 2006-12-14 Nippon Steel Corp Low yield-ratio high tensile-strength steel, and method for producing low yield-ratio high tensile-strength steel
JP2015167965A (en) 2014-03-06 2015-09-28 新日鐵住金株式会社 Continuous casting method for slab

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149421A (en) * 1981-03-10 1982-09-16 Kawasaki Steel Corp Manufacture of surface decarburized steel excellent in resistance to stress corrosion cracking by sulfide and ammonium
JPS5867830A (en) 1981-10-17 1983-04-22 Kawasaki Steel Corp Preparation of tempered steel excellent in ammonia crack resistant characteristics
JPS61279631A (en) 1985-06-03 1986-12-10 Kobe Steel Ltd Manufacture of tempered 60kgf/mm2 class high tension steel plate superior in sulfide and ammonia stress corrosion cracking resistance
JPH08269537A (en) * 1995-04-03 1996-10-15 Nippon Steel Corp Production of high tensile strength steel plate for liquefied ammonia tank
JP4041194B2 (en) * 1997-10-23 2008-01-30 株式会社神戸製鋼所 Low yield ratio low temperature steel sheet with excellent ammonia stress corrosion cracking resistance and toughness of heat affected zone in high heat input welding
JP3267545B2 (en) * 1997-12-25 2002-03-18 川崎製鉄株式会社 Continuous casting method
JP2002003983A (en) * 2000-04-21 2002-01-09 Nippon Steel Corp Low yielding ratio, high-tensile steel excellent in weldability and toughness at low temperature, and its manufacturing method
JP4605117B2 (en) * 2006-07-25 2011-01-05 住友金属工業株式会社 Steel used for tanks for LPG / ammonia carrier
JP5487892B2 (en) * 2009-11-12 2014-05-14 新日鐵住金株式会社 Manufacturing method of low yield ratio high strength steel sheet with excellent low temperature toughness
CN109844153B (en) * 2016-10-06 2021-02-02 杰富意钢铁株式会社 Steel for crude oil tanker and crude oil tanker
KR20190060801A (en) * 2016-10-06 2019-06-03 제이에프이 스틸 가부시키가이샤 Steels and vessels for coal and coal / ore combined
JP6705484B2 (en) * 2017-11-24 2020-06-03 Jfeスチール株式会社 Steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143555A (en) 2002-10-25 2004-05-20 Jfe Steel Kk Method for manufacturing steel product for low temperature use having excellent stress corrosion cracking resistance
JP2004300493A (en) 2003-03-31 2004-10-28 Sumitomo Metal Ind Ltd Low yield ratio steel for low temperature use, and method for producing the same
JP2006336065A (en) 2005-06-01 2006-12-14 Nippon Steel Corp Low yield-ratio high tensile-strength steel, and method for producing low yield-ratio high tensile-strength steel
JP2015167965A (en) 2014-03-06 2015-09-28 新日鐵住金株式会社 Continuous casting method for slab

Also Published As

Publication number Publication date
KR20220084138A (en) 2022-06-21
WO2021100336A1 (en) 2021-05-27
CN114729430B (en) 2023-12-22
CN114729430A (en) 2022-07-08
JPWO2021100336A1 (en) 2021-05-27

Similar Documents

Publication Publication Date Title
RU2583194C2 (en) High-strength dip-galvanised steel sheet and high-strength alloyed and dip-galvanised steel sheet of fine mouldability and low material anisotropy with rupture strength of 980 mpa or higher, and method of their production
JP7244720B2 (en) Galvanized steel sheet with excellent spot weldability and its manufacturing method
JP5233346B2 (en) High-strength cold-rolled steel sheet excellent in chemical conversion treatment and post-coating corrosion resistance and method for producing the same
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
JP5949253B2 (en) Hot dip galvanized steel sheet and its manufacturing method
JP4951997B2 (en) A method for producing a high-tensile steel sheet having a tensile strength of 550 MPa or more.
US20170211164A1 (en) High strength galvanized steel sheet and production method therefor
JP2009052136A (en) Hot-rolled shaped steel for ships, and method for production of the same
WO2015107863A1 (en) High-strength steel sheet and process for producing same
WO2008084838A1 (en) Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
JP6475840B2 (en) High-strength hot-dip galvanized steel sheet excellent in surface quality, plating adhesion, and formability, and its manufacturing method
JP5838708B2 (en) Steel sheet with excellent surface properties and method for producing the same
JP2014019928A (en) High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
EP3521474B1 (en) High-strength coated steel sheet and method for manufacturing the same
JP6052145B2 (en) Bake-hardening hot-dip galvanized steel sheet
JP6705484B2 (en) Steel
JP4605117B2 (en) Steel used for tanks for LPG / ammonia carrier
EP2990498A1 (en) H-shaped steel and method for producing same
JPH0747797B2 (en) Steel plate for enamel having excellent scabbing resistance, bubble resistance, black spot defect resistance and press formability, and method for producing the same
JP2009235499A (en) Method for manufacturing hollow stabilizer
JP7160213B2 (en) Steel material for transportation and storage of liquid ammonia, and method for producing steel material for transportation and storage of liquid ammonia
JP2023507960A (en) High-strength hot-dip galvanized steel sheet with excellent surface quality and electric resistance spot weldability and its manufacturing method
JP4432725B2 (en) Cr-containing high-strength cold-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP4899885B2 (en) Thin-walled tempered high-strength steel sheet with excellent toughness and brittle crack propagation stopping characteristics and method for producing the same
JP2006307326A (en) High ductility and high strength alloyed hot-dip galvanized steel sheet having excellent surface property and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7160213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150