JP2004143555A - Method for manufacturing steel product for low temperature use having excellent stress corrosion cracking resistance - Google Patents

Method for manufacturing steel product for low temperature use having excellent stress corrosion cracking resistance Download PDF

Info

Publication number
JP2004143555A
JP2004143555A JP2002311591A JP2002311591A JP2004143555A JP 2004143555 A JP2004143555 A JP 2004143555A JP 2002311591 A JP2002311591 A JP 2002311591A JP 2002311591 A JP2002311591 A JP 2002311591A JP 2004143555 A JP2004143555 A JP 2004143555A
Authority
JP
Japan
Prior art keywords
temperature
steel
corrosion cracking
stress corrosion
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002311591A
Other languages
Japanese (ja)
Other versions
JP3906779B2 (en
Inventor
Shinichi Suzuki
鈴木 伸一
Nobuyuki Ishikawa
石川 信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002311591A priority Critical patent/JP3906779B2/en
Publication of JP2004143555A publication Critical patent/JP2004143555A/en
Application granted granted Critical
Publication of JP3906779B2 publication Critical patent/JP3906779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently manufacture steel products for low temperature use used for steel structures for which stress corrosion cracking resistance is demanded, such as tanks and refining plants used for storage and transportation of various liquefied gases like liquefied ammonia, at low cost. <P>SOLUTION: The steel containing, by mass %, 0.02 to 0.12% C, 0.05 to 0.5% Si, and 0.6 to ≤1.8% Mn, is heated to a temperature range from 1,000 to 1,200°C and is then subjected to hot rolling at a draft ≥50% in a recrystallization temperature region and at a draft ≥30% in a non-recystallization temperature. The steel is cooled down to a temperature region from 400 to 600°C in average temperature in succession after the end of the rolling and is thereafter heated to a temperature range from a surface temperature of ≥500 to ≤Acl+50°C by using an induction heater of a frequency of 200 to 2,000 Hz and is then air cooled. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、耐応力腐食割れ性に優れた低温用鋼材の製造方法、特に、液化アンモニア等の各種液化ガスの貯蔵や運搬に用いられるタンクや精製プラント等、耐応力腐食割れ性が要求される鋼構造物に用いられる低温用鋼材の製造方法に関するものである。
【0002】
【従来の技術】
各種の液化ガスの貯蔵、運搬に用いられるタンクや精製プラント等の鋼構造物においては、共用時に低温になるため低温靭性が要求される。さらに、近年増加している混載型のタンクでは、液化アンモニアを積載する場合もあり、低温靭性に加え、液化アンモニアによる応力腐食割れ防止対策も必要となる。
【0003】
応力腐食割れを防止するための指針としては、鋼材のNi量を制限することや、降伏強度や表層部硬度を抑制すること等が知られており、特に、液化アンモニアによる応力腐食割れに対しては、鋼材の降伏強度を440N/mm以下とすることや、鋼材の表面硬度をビッカース硬さ(HV)220以下とすることで防止可能であることが知られている(「液体アンモニアによる鋼の応力腐食割れ」、鉄と鋼、Vol.65(1979)、p.402)。
【0004】
表層部硬度の低減方法については、これまでに多くの検討が行われており、例えば、特開平10−130721号公報および特開平10−168516号公報には、圧延後に二相域再加熱焼入れ・焼戻しを行うことにより低降伏比を達成する方法、特開平4−17613号公報には、焼入れを行った鋼板表面部に高密度エネルギー熱源による照射を行い表層部を軟化させる方法、特開2001−240936号公報には、Ac1−50℃以下の温度域で圧延を行った後、二相域に加熱して表層部に粗粒フェライト層を生成させる方法等が開示されている。
【0005】
【特許文献1】
特開平10−130721号公報
【特許文献2】
特開平10−168516号公報
【特許文献3】
特開平4−17613号公報
【特許文献4】
特開2001−240936号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特開平10−130721号公報および特開平10−168516号公報に開示の方法では、再加熱焼入れ、焼戻しが必要であると共に、高価な成分元素であるNiの添加が必須であり、生産性や製造コストの面で難点がある。また、特開平4−17613号公報に開示の方法では、鋼板表面のみからの加熱であるため、表層から数mm程度の範囲で硬度が上昇している場合には、硬度低下の効果が十分でなく、また、焼入性が高い成分系では、表面温度がAc1変態点を超えると、冷却時に再焼入れされ硬度が再び上昇して耐応力腐食割れ性が劣化する。また、特開2001−240936号公報に開示の方法では、通常の鋼板圧延の後、さらに、室温もしくは温間での圧延が必要であるため圧延負荷が大きく、また、形鋼等の複雑な断面形状を有する鋼材には適用し難い。
【0007】
従って、この発明の目的は、上述の問題点を解消し、液化アンモニアの貯蔵や運搬に用いられる混載型のタンクや精製プラント等、耐応力腐食割れ性が要求される鋼構造物に用いられる低温用鋼を安価で効率よく製造する方法を提供することにある。
【0008】
【課題を解決するための手段】
請求項1記載の発明は、質量%で、C:0.02〜0.12%、Si:0.05〜0.5%、Mn:0.6〜1.8%以下を含有する鋼を、1000℃以上1200℃以下の温度範囲に加熱後、再結晶温度域において圧下率50%以上、未再結晶温度域で圧下率30%以上の熱間圧延を行い、圧延終了後、引き続き2℃/秒以上の冷却速度で、平均温度が400℃以上600℃以下の温度域まで冷却した後、周波数200Hz以上2000Hz以下の誘導加熱装置を用いて表面温度500℃以上Ac1+50℃以下の温度範囲まで加熱してから空冷することに特徴を有するものである。
【0009】
請求項2記載の発明は、前記鋼が、さらに、質量%で、Cu:0.05〜1.0%、Ni:0.05〜1.0%、Cr:0.05〜1.0%、Mo:0.01〜1.0%のうちの少なくとも1種を含有することに特徴を有するものである。
【0010】
請求項3記載の発明は、前記鋼が、さらに、質量%で、Nb:0.005〜0.1%、V:0.005〜0.1%およびTi:0.005〜0.03%のうちの少なくとも1種を含有することに特徴を有するものである。
【0011】
【発明の実施の形態】
本発明者等は、複雑な圧延・熱処理工程を経たり、高価な合金元素を添加したりすることなく、耐応力腐食割れ性に優れた低温用鋼材の製造方法を得るべく鋭意検討を重ねた。この結果、制御圧延に引き続く加速冷却後、高周波誘導加熱を行うことにより表層部を軟化させれば、低温靭性および耐応力腐食割れ性の両立を図ることが可能であるという知見を得た。
【0012】
表1に示す鋼種Aからなる鋼板を1100℃に加熱した後、図1に示すように、熱間圧延機3により圧延終了温度800℃の条件で圧延し、次いで、このようにして圧延した板厚25mmの鋼板2Aを、加速冷却装置4により780℃から25℃/秒の冷却速度で500℃まで水冷し、次いで、水冷された鋼板2Bを誘導加熱装置5により種々の温度に加熱し、そして、ホットレベラー6により形状矯正して、鋼板2Cを調製した。なお、図1において、1は、圧延ラインを示す。
【0013】
図2に、このようにして調製した鋼板2Cの表面加熱温度と表層部硬度および引張強さとの関係を、誘導加熱装置5に代えて雰囲気炉により鋼板2Bを加熱した場合の結果と併せて示す。
【0014】
図2から明らかなように、雰囲気炉(○)を用いた場合は、表面加熱温度の上昇に伴い引張強さが低下し、高張力鋼としての490N/mm以上の引張強度が得られないのに対し、誘導加熱装置(●)を用いて表層部を500℃からAc1+50℃(鋼Aの場合は759℃)の温度範囲に加熱した場合には、鋼板の引張強さを確保しつつ表層部の硬度低下を図ることができることが分かる。
【0015】
以上の知見に基づき、本発明者は、鋼組成、圧延・加速冷却および表層再加熱条件を制御して、耐応力腐食割れ性に優れた低温用鋼材の製造方法を見出し、この発明を完成させた。
【0016】
この発明によれば、液化アンモニア等の各種液化ガスの貯蔵や運搬に用いられるタンクや精製プラント等、耐応力腐食割れ性が要求される鋼構造物に用いられる低温用鋼を安価で効率よく製造することができる。
【0017】
以下、この発明の成分添加理由、成分限定理由および製造条件の限定範囲について説明する。
【0018】
(1)成分組成範囲
C:0.02〜0.12%
Cは、鋼の強度を確保するために0.02%以上添加するが、0.12%を超えて多量に含有させると低温靭性あるいは溶接性が劣化する。従って、C添加量は、0.02〜0.12%の範囲内とする。
【0019】
Si:0.05〜0.5%
Siは、脱酸のために0.05%以上の添加が必要であるが、0.5%を超えるとHAZ靭性および溶接性が劣化する。従って、Si添加量は、0.05〜0.5%の範囲内とする。
【0020】
Mn:0.6〜1.8%
Mnは、鋼材の強度・靭性の向上ならびにFeSの生成抑制のため0.6%以上は必要であるが、1.8%を超える多量の添加は鋼の焼き入れ性の増加を引き起こし、溶接時に硬化層が生成して割れ感受性が高くなる。従って、Mn添加量は、0.6〜1.8%の範囲内とする。
【0021】
この発明は、以上を基本成分とし、以下の選択成分群の1種または2種以上を添加する。
【0022】
Cu:0.05〜1.0%
Cuは、強度上昇および靭性改善に非常に有効な元素であるが、含有量が0.05%未満では十分な効果が発揮されず、一方、1.0%を超えると析出硬化が著しくまた圧延時に鋼材表面に割れが生じやすい。従って、Cuを添加する場合には、その範囲は、0.05〜1.0%とする。
【0023】
Ni:0.05〜1.0%
Niは、母材の強度ならびに靭性を向上させる効果を有するが、その含有量が0.05%未満では十分な効果が得られず、一方、1.0%を超える添加は焼入性を上昇させて表層加熱後の硬度が高くなり耐応力腐食割れ性を劣化させると共に、コストアップにつながる。従って、Niを添加する場合には、その範囲を0.05〜1.0%とする。
【0024】
Cr:0.05〜1.0%
Crは、焼入性向上に有効な元素であるが、その含有量が0.05%未満では効果が小さく、一方、1.0%を超えると溶接性やHAZ靭性を劣化させる。従って、Crを添加する場合には、その範囲を0.05〜1.0%とする。
【0025】
Mo:0.05〜1.0%
Moは、焼入性を高めると共に、焼き戻し軟化抵抗を高め、強度上昇に有効であるが、その含有量が0.05%未満ではその効果が十分に発揮されず、一方、1.0%を超えると溶接性を劣化させると共に、炭化物の析出により降伏比が上昇する。従って、Moを添加する場合には、その範囲を0.05〜1.0%とする。
【0026】
Nb:0.005〜0.1%
Nbは、少量の添加により焼入性を向上させ、また微細炭窒化物の析出効果により強度上昇に有効に作用する元素であるが、その含有量が0.005%未満では効果が発揮されず、0.1%以上の添加は溶接継手部の靭性を劣化させる。従って、Nbを添加する場合には、その範囲を0.005〜0.1%とする。
【0027】
V:0.01〜0.1%
Vは、少量の添加により焼入性を向上させ、また微細炭窒化物の析出効果により強度上昇に有効に作用する元素であるが、その含有量が0.01%未満ではその効果が十分に発揮されず、一方、0.1%を超えて添加すると溶接性を劣化させる。従って、Vを添加する場合には、その範囲を0.01〜0.1%とする。
【0028】
Ti:0.005〜0.03%
Tiは、TiNを形成して溶接HAZ部の組織粗大化を抑制して溶接継手部の靱性向上に寄与する元素である。0.005%未満のTi添加では継手靱性向上効果が発揮されない。一方、0.03%を超えて添加すると、溶接の冷却過程でTiCが析出し、HAZ靱性の劣化を招く。従って、Tiを添加する場合には、その範囲を0.005%〜0.03%の範囲とする。
【0029】
以上、何れも質量%である。
【0030】
(2)製造方法
上記の成分組成範囲に調整した鋼を、1000〜1200℃の温度範囲に加熱後、再結晶温度域において圧下率50%以上、未再結晶温度域で圧下率30%以上の熱間圧延を行い、圧延終了後引き続き2℃/秒以上の冷却速度で平均温度が400〜600℃の温度域まで冷却した後、周波数200〜2000Hzの誘導加熱装置を用いて表面温度500〜Ac1+50℃の温度範囲まで加熱してから空冷する。
【0031】
(a)鋼の加熱温度:1000〜1200℃
1000℃未満の加熱では、良好な熱間加工性が得られない。一方、1200℃を超える加熱では、オーステナイト粒が過度に粗大化し、圧延後に良好な低温靭性を得がたい。従って、鋼の加熱温度は、1000〜1200℃の範囲内とする。
【0032】
(b)再結晶温度域での圧下率:50%以上
再結晶温度域での圧下率が50%未満の場合は、加熱時に粗大化したオーステナイトの再結晶が十分に行われず、良好な低温靭性を得がたい。従って、再結晶温度域での圧下率は、50%以上とする。
【0033】
(c)未再結晶温度域での圧下率:30%以上
未再結晶温度域での圧下率が30%未満の場合は、フェライト変態時の核生成サイトが十分に導入されず、変態後の組織の細粒効果が小さいため、良好な低温靭性が得がたい。従って、未再結晶温度域での圧下率は、30%以上とする。
【0034】
(d)加速冷却速度:2℃/秒以上
フェライト変態時の粒成長を抑制し低温靭性を向上させると共に、フェライト・ベイナイト混合組織として低成分系で強度を確保するため、圧延終了後に加速冷却を行う。加速冷却速度が2℃/秒未満では、これらの効果が十分に得られず、良好な強度、靭性が得がたい。従って、加速冷却速度は、2℃/秒以上とする。
【0035】
(e)加速冷却停止温度:400〜600℃
加速冷却停止温度が400℃未満では、加速冷却時にマルテンサイトが生成し、短時間の表層加熱では板厚中心部の焼戻しが十分に行われないため、靭性が劣化する。一方、加速冷却の停止温度が600℃を超えた場合、ベイナイト変態が十分に進行しないため十分な強度・靭性の確保が難しくなる。従って、加速冷却停止温度は、400〜600℃の範囲内とする。
【0036】
(f)誘導加熱の周波数:200〜2000Hz
加速冷却された鋼材は、表面から数mm程度の範囲で硬度が上昇しているため、硬度低下のためには、誘導加熱時の浸透深さ(発熱領域の深さ)が重要である。誘導加熱時の周波数が200Hz未満であると、浸透深さが深くなり板厚中心部まで加熱されるため、鋼板全体の強度が低下して、高張力鋼としての強度が得られない。一方、誘導加熱時の周波数が2000Hzを超えると浸透深さが浅くなり、極表層部しか加熱されないため、硬度上昇した部分全体の軟化ができず、耐応力腐食割れ性が劣る。従って、誘導加熱の周波数は200〜2000Hzの範囲内とする。
【0037】
(g)誘導加熱時の表面温度:500〜Ac1+50℃
誘導加熱時の表面温度が500℃未満であると、表層硬度軟化の効果がほとんど表れない。一方、Ac1+50℃を超えると表層部組織が冷却時にフェライト−パーライトとなる部分が増加し靭性が劣化すると共に、鋼板内部での熱伝達により板厚中心部まで温度が上昇し強度低下が大きくなる。従って、誘導加熱時の表面温度は500〜Ac1+50℃の範囲内とする。
【0038】
なお、熱間圧延の終了温度は、Ar1変態点以上、Ar1変態点未満のいずれでもよく、低温靭性等の要求特性に応じて選択可能であるが、表層硬度が上昇しやすいAr1変態点以上からの冷却時に本発明の技術が特に有効である。また、加速冷却後の誘導加熱開始温度は、加速冷却停止後の空冷によりベイナイト変態がある程度進行した後であれば特に限定しない。また、表層部の軟化が目的であるため、表層加熱時の保持は必ずしも必要ではない。また、本技術は誘導加熱コイルの形状を変更することにより、鋼板のみならず形鋼にも適用可能である。
【0039】
以上により、耐応力腐食割れ性が要求される鋼構造物に用いられる低温用鋼材を安価で効率よく製造することができる。
【0040】
【実施例】
以下、この発明を実施例によりさらに詳細に説明する。
【0041】
成分系ならびに圧延、冷却、誘導加熱条件を変えて製造した鋼材の引張特性、シャルピー衝撃特性を調べた。
【0042】
表1に供試鋼の化学成分およびAc1変態点を示す。各鋼種とも本発明の範囲内であり、鋼種A〜Cは、490N/mm級、鋼種D、Eは、570N/mm級の鋼種である。なお、Ac1変態点は、表1欄外に示す式により求めた。
【0043】
表2に供試鋼の製造条件および引張試験、シャルピー衝撃試験ならびに表層部硬度測定の結果を示す。引張特性は、圧延方向と直交する方向から採取した全厚引張試験片、シャルピー衝撃特性は、板厚1/4位置より採取した2mmVノッチ試験片により求めた。また、表層部最高硬さは、鋼板の板厚方向断面を1mmピッチで測定し、その表層部での最高値を最高硬さとした。
【0044】
【表1】

Figure 2004143555
【0045】
【表2】
Figure 2004143555
【0046】
表2から明らかなように、製造条件が本発明の範囲内である鋼番1〜10は、490N/mm以上もしくは570N/mm以上の十分な引張強さ、脆性−延性破面遷移温度(vTrs)が−50℃以下の良好な低温靭性、および、HV220以下の表層部硬度を有していた。
【0047】
これに対して、表層部の加熱方法が本発明と異なる鋼番11および誘導加熱の周波数が本発明の範囲よりも低い鋼番15は、何れも、引張強度が不足していた。
【0048】
スラブ加熱温度が本発明の範囲よりも高い鋼番12、再結晶域での圧下率が本発明の範囲よりも低い鋼番13、加速冷却停止温度が本発明の範囲よりも低い鋼番18および未再結晶域での圧下率が本発明の範囲よりも低い鋼番19は、何れも、靭性が不足していた。
【0049】
誘導加熱の周波数が本発明の範囲よりも高い鋼番14および表面加熱温度が本発明の範囲よりも低い鋼番20は、何れも、表層部硬度が高く、耐効力腐食割れ特性が劣っていた。
【0050】
圧延後の冷却速度が本発明の範囲よりも低い鋼番16および表面加熱温度が本発明の範囲よりも高い鋼番17は、何れも、引張強度が低くかつ靭性が劣っていた。
【0051】
【発明の効果】
以上説明したように、この発明によれば、液化アンモニア等の各種液化ガスの貯蔵や運搬に用いられるタンクや精製プラント等、耐応力腐食割れ性が要求される鋼構造物に用いられる低温用鋼材を安価で効率よく製造することができるといった有用な効果がもたらされる。
【図面の簡単な説明】
【図1】熱処理鋼板の製造方法を示す工程図である。
【図2】引張強度および表層部硬さに及ぼす表面加熱温度の影響を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
This invention requires a method for producing a low-temperature steel material having excellent stress corrosion cracking resistance, in particular, stress corrosion cracking resistance, such as tanks and purification plants used for storage and transportation of various liquefied gases such as liquefied ammonia. The present invention relates to a method for producing a low-temperature steel material used in a steel structure.
[0002]
[Prior art]
Steel structures such as tanks and refining plants used for storage and transportation of various liquefied gases require low temperature toughness because they become low temperature when used in common. Furthermore, in a mixed type tank that has been increasing in recent years, liquefied ammonia may be loaded, and in addition to low temperature toughness, measures to prevent stress corrosion cracking due to liquefied ammonia are required.
[0003]
As a guideline for preventing stress corrosion cracking, it is known to limit the amount of Ni in the steel material, to suppress the yield strength and surface layer hardness, etc., especially against stress corrosion cracking due to liquefied ammonia. Is known to be able to be prevented by setting the yield strength of the steel material to 440 N / mm 2 or less, or by setting the surface hardness of the steel material to Vickers hardness (HV) 220 or less (“steel with liquid ammonia”). Stress corrosion cracking ", iron and steel, Vol. 65 (1979), p. 402).
[0004]
Many methods have been studied for reducing the surface layer hardness so far. For example, in JP-A-10-130721 and JP-A-10-168516, two-phase region reheating quenching is performed after rolling. A method for achieving a low yield ratio by tempering, Japanese Patent Application Laid-Open No. 4-17613 discloses a method for softening a surface layer part by irradiating a quenched steel sheet surface with a high-density energy heat source, Japanese Patent No. 240936 discloses a method in which rolling is performed in a temperature range of Ac1-50 ° C. or lower, and then a two-phase region is heated to form a coarse ferrite layer in the surface layer portion.
[0005]
[Patent Document 1]
JP-A-10-130721 [Patent Document 2]
Japanese Patent Laid-Open No. 10-168516 [Patent Document 3]
JP-A-4-17613 [Patent Document 4]
Japanese Patent Laid-Open No. 2001-240936
[Problems to be solved by the invention]
However, in the methods disclosed in JP-A-10-130721 and JP-A-10-168516, reheating and quenching and tempering are necessary, and addition of Ni, which is an expensive component element, is essential. There are also disadvantages in terms of manufacturing costs. Further, in the method disclosed in Japanese Patent Laid-Open No. 4-17613, since the heating is performed only from the surface of the steel sheet, when the hardness is increased in the range of several mm from the surface layer, the effect of decreasing the hardness is sufficient. In addition, in a component system having high hardenability, when the surface temperature exceeds the Ac1 transformation point, it is re-quenched during cooling, the hardness is increased again, and the stress corrosion cracking resistance is deteriorated. Further, in the method disclosed in Japanese Patent Application Laid-Open No. 2001-240936, after normal steel plate rolling, further rolling at room temperature or warm is necessary, so that the rolling load is large, and a complicated section such as a section steel is used. It is difficult to apply to steel materials having a shape.
[0007]
Accordingly, an object of the present invention is to solve the above-mentioned problems and to be used in a steel structure requiring stress corrosion cracking resistance such as a mixed tank or refinery plant used for storing and transporting liquefied ammonia. An object of the present invention is to provide a cheap and efficient method for producing steel for use.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is a steel containing, by mass%, C: 0.02 to 0.12%, Si: 0.05 to 0.5%, Mn: 0.6 to 1.8% or less. , After heating to a temperature range of 1000 ° C. or more and 1200 ° C. or less, hot rolling is performed at a reduction rate of 50% or more in the recrystallization temperature region and a reduction rate of 30% or more in the non-recrystallization temperature region. After cooling to a temperature range of 400 ° C. or more and 600 ° C. or less with an average temperature of 400 ° C. or more at a cooling rate of / sec or more, heating to a temperature range of 500 ° C. or more and Ac1 + 50 ° C. or less using an induction heating device having a frequency of 200 Hz to 2000 Hz Then, it is characterized by air cooling.
[0009]
The invention according to claim 2 is characterized in that the steel further comprises, in mass%, Cu: 0.05 to 1.0%, Ni: 0.05 to 1.0%, Cr: 0.05 to 1.0%. Mo: It is characterized by containing at least one of 0.01 to 1.0%.
[0010]
According to a third aspect of the present invention, the steel further comprises, in mass%, Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.03%. It has the characteristics in containing at least 1 sort (s) of these.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention have made extensive studies in order to obtain a method for producing a low-temperature steel material having excellent stress corrosion cracking resistance without going through complicated rolling and heat treatment steps or adding expensive alloy elements. . As a result, it has been found that if the surface layer is softened by high-frequency induction heating after accelerated cooling subsequent to controlled rolling, both low temperature toughness and stress corrosion cracking resistance can be achieved.
[0012]
After heating the steel plate which consists of the steel type A shown in Table 1 to 1100 degreeC, as shown in FIG. 1, it rolls on the conditions of rolling completion temperature 800 degreeC with the hot rolling mill 3, and then rolled in this way The steel plate 2A having a thickness of 25 mm is water cooled from 780 ° C. to 500 ° C. at a cooling rate of 25 ° C./second by the accelerated cooling device 4, and then the water cooled steel plate 2B is heated to various temperatures by the induction heating device 5, and The shape was corrected by a hot leveler 6 to prepare a steel plate 2C. In addition, in FIG. 1, 1 shows a rolling line.
[0013]
FIG. 2 shows the relationship between the surface heating temperature, the surface layer hardness, and the tensile strength of the steel plate 2C thus prepared, together with the results when the steel plate 2B is heated by an atmospheric furnace instead of the induction heating device 5. .
[0014]
As is apparent from FIG. 2, when the atmospheric furnace (◯) is used, the tensile strength decreases as the surface heating temperature rises, and a tensile strength of 490 N / mm 2 or more as high-tensile steel cannot be obtained. On the other hand, when the surface layer portion is heated to a temperature range of 500 ° C. to Ac1 + 50 ° C. (759 ° C. for steel A) using an induction heating device (●), the surface layer is secured while ensuring the tensile strength of the steel plate. It turns out that the hardness reduction of a part can be aimed at.
[0015]
Based on the above knowledge, the present inventor found a method for producing a low-temperature steel material excellent in stress corrosion cracking resistance by controlling the steel composition, rolling / accelerated cooling and surface layer reheating conditions, and completed the present invention. It was.
[0016]
According to this invention, low-temperature steel used for steel structures that require stress corrosion cracking resistance, such as tanks and refining plants used for storage and transportation of various liquefied gases such as liquefied ammonia, can be produced efficiently at low cost. can do.
[0017]
Hereinafter, the reason for adding the component, the reason for limiting the component, and the limited range of the manufacturing conditions will be described.
[0018]
(1) Component composition range C: 0.02 to 0.12%
C is added in an amount of 0.02% or more in order to ensure the strength of the steel, but if it is contained in a large amount exceeding 0.12%, the low temperature toughness or weldability deteriorates. Therefore, the amount of C added is in the range of 0.02 to 0.12%.
[0019]
Si: 0.05-0.5%
Si needs to be added in an amount of 0.05% or more for deoxidation, but if it exceeds 0.5%, the HAZ toughness and weldability deteriorate. Therefore, the Si addition amount is set in the range of 0.05 to 0.5%.
[0020]
Mn: 0.6 to 1.8%
Mn is required to be 0.6% or more in order to improve the strength and toughness of the steel material and to suppress the formation of FeS. However, a large amount of addition exceeding 1.8% causes an increase in the hardenability of the steel. A hardened layer is formed and cracking sensitivity is increased. Therefore, the amount of Mn added is in the range of 0.6 to 1.8%.
[0021]
In the present invention, the above is the basic component, and one or more of the following selected component groups are added.
[0022]
Cu: 0.05 to 1.0%
Cu is a very effective element for increasing the strength and improving the toughness. However, if the content is less than 0.05%, sufficient effects cannot be exhibited. Sometimes the surface of steel tends to crack. Therefore, when adding Cu, the range is made 0.05 to 1.0%.
[0023]
Ni: 0.05-1.0%
Ni has an effect of improving the strength and toughness of the base material, but if its content is less than 0.05%, a sufficient effect cannot be obtained, while addition over 1.0% increases the hardenability. This increases the hardness after heating the surface layer and degrades the stress corrosion cracking resistance, leading to an increase in cost. Therefore, when adding Ni, the range is made 0.05 to 1.0%.
[0024]
Cr: 0.05-1.0%
Cr is an element effective for improving the hardenability, but its effect is small when its content is less than 0.05%, while it degrades weldability and HAZ toughness when its content exceeds 1.0%. Therefore, when adding Cr, the range is made 0.05 to 1.0%.
[0025]
Mo: 0.05-1.0%
Mo enhances hardenability, increases temper softening resistance, and is effective in increasing the strength. However, if its content is less than 0.05%, the effect is not sufficiently exhibited, while 1.0% Exceeding will degrade the weldability and increase the yield ratio due to the precipitation of carbides. Therefore, when adding Mo, the range is made 0.05 to 1.0%.
[0026]
Nb: 0.005 to 0.1%
Nb is an element that improves hardenability by addition of a small amount and effectively acts to increase the strength due to the precipitation effect of fine carbonitride, but if its content is less than 0.005%, the effect is not exhibited. Addition of 0.1% or more deteriorates the toughness of the welded joint. Therefore, when adding Nb, the range is made 0.005 to 0.1%.
[0027]
V: 0.01 to 0.1%
V is an element that improves hardenability by adding a small amount and effectively acts to increase the strength due to the precipitation effect of fine carbonitrides, but if its content is less than 0.01%, the effect is sufficient. On the other hand, if it exceeds 0.1%, weldability is deteriorated. Therefore, when adding V, the range is made 0.01 to 0.1%.
[0028]
Ti: 0.005 to 0.03%
Ti is an element that forms TiN and suppresses the coarsening of the welded HAZ part and contributes to the improvement of the toughness of the welded joint part. When Ti is added to less than 0.005%, the joint toughness improving effect is not exhibited. On the other hand, if added over 0.03%, TiC precipitates during the cooling process of welding, leading to degradation of HAZ toughness. Therefore, when adding Ti, the range is made 0.005% to 0.03%.
[0029]
As mentioned above, all are mass%.
[0030]
(2) Manufacturing method After heating the steel adjusted to the above component composition range to a temperature range of 1000 to 1200 ° C., the reduction rate is 50% or more in the recrystallization temperature range, and the reduction rate is 30% or more in the non-recrystallization temperature range. Hot rolling is performed, and after the rolling is finished, the average temperature is cooled to a temperature range of 400 to 600 ° C. at a cooling rate of 2 ° C./second or more, and then a surface temperature of 500 to Ac1 + 50 using an induction heating device having a frequency of 200 to 2000 Hz. Heat to the temperature range of ° C and then air cool.
[0031]
(A) Steel heating temperature: 1000 to 1200 ° C
When the temperature is lower than 1000 ° C., good hot workability cannot be obtained. On the other hand, when heating exceeds 1200 ° C., austenite grains become excessively coarse and it is difficult to obtain good low temperature toughness after rolling. Therefore, the heating temperature of steel shall be in the range of 1000-1200 degreeC.
[0032]
(B) Reduction rate in the recrystallization temperature range: When the reduction rate in the recrystallization temperature range is less than 50%, the austenite coarsened during heating is not sufficiently recrystallized, and good low temperature toughness Hard to get. Therefore, the rolling reduction in the recrystallization temperature range is 50% or more.
[0033]
(C) Reduction ratio in the non-recrystallization temperature range: 30% or more When the reduction ratio in the non-recrystallization temperature range is less than 30%, nucleation sites during ferrite transformation are not sufficiently introduced, and Good low-temperature toughness is difficult to obtain because the fine grain effect of the structure is small. Therefore, the rolling reduction in the non-recrystallization temperature range is 30% or more.
[0034]
(D) Accelerated cooling rate: 2 ° C./sec or more In order to suppress grain growth during ferrite transformation and improve low-temperature toughness, and to ensure strength in a low component system as a ferrite-bainite mixed structure, accelerated cooling is performed after the end of rolling. Do. If the accelerated cooling rate is less than 2 ° C./second, these effects cannot be obtained sufficiently, and it is difficult to obtain good strength and toughness. Therefore, the accelerated cooling rate is 2 ° C./second or more.
[0035]
(E) Accelerated cooling stop temperature: 400-600 ° C
If the accelerated cooling stop temperature is less than 400 ° C., martensite is generated during accelerated cooling, and tempering of the central portion of the plate thickness is not sufficiently performed by heating the surface layer for a short time, so that the toughness is deteriorated. On the other hand, when the stop temperature of accelerated cooling exceeds 600 ° C., the bainite transformation does not proceed sufficiently, and it becomes difficult to ensure sufficient strength and toughness. Therefore, the accelerated cooling stop temperature is set within a range of 400 to 600 ° C.
[0036]
(F) Induction heating frequency: 200 to 2000 Hz
Since the steel material accelerated and cooled has an increased hardness within a range of several millimeters from the surface, the penetration depth at the time of induction heating (the depth of the heat generation region) is important for reducing the hardness. If the frequency during induction heating is less than 200 Hz, the penetration depth becomes deep and the plate thickness is heated to the center, so that the strength of the entire steel plate is lowered and the strength as high-tensile steel cannot be obtained. On the other hand, when the frequency during induction heating exceeds 2000 Hz, the penetration depth becomes shallow, and only the extreme surface layer portion is heated, so that the entire portion with increased hardness cannot be softened and the stress corrosion cracking resistance is poor. Therefore, the frequency of induction heating is in the range of 200 to 2000 Hz.
[0037]
(G) Surface temperature during induction heating: 500 to Ac1 + 50 ° C.
If the surface temperature during induction heating is less than 500 ° C., the effect of softening the surface hardness hardly appears. On the other hand, when the temperature exceeds Ac1 + 50 ° C., the portion of the surface layer structure that becomes ferrite-pearlite at the time of cooling is increased and the toughness is deteriorated. Therefore, the surface temperature at the time of induction heating is set within a range of 500 to Ac1 + 50 ° C.
[0038]
The end temperature of hot rolling may be any of Ar1 transformation point or higher and lower than Ar1 transformation point, and can be selected according to required characteristics such as low temperature toughness, but from the Ar1 transformation point or higher where surface layer hardness tends to increase. The technique of the present invention is particularly effective during the cooling process. Further, the induction heating start temperature after accelerated cooling is not particularly limited as long as the bainite transformation has progressed to some extent by air cooling after stopping accelerated cooling. Further, since the purpose is to soften the surface layer portion, it is not always necessary to hold the surface layer during heating. Moreover, this technique is applicable not only to a steel plate but to a shaped steel by changing the shape of the induction heating coil.
[0039]
As described above, a low-temperature steel material used for a steel structure requiring stress corrosion cracking resistance can be efficiently manufactured at low cost.
[0040]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0041]
The tensile properties and Charpy impact properties of steel materials manufactured by changing the component system, rolling, cooling, and induction heating conditions were investigated.
[0042]
Table 1 shows the chemical composition and Ac1 transformation point of the test steel. Each steel type is within the scope of the present invention, and steel types A to C are 490 N / mm grade 2 , steel types D and E are 570 N / mm grade 2 steel types. The Ac1 transformation point was determined by the formula shown outside Table 1.
[0043]
Table 2 shows the production conditions of the test steel and the results of the tensile test, Charpy impact test, and surface layer hardness measurement. Tensile properties were obtained with full-thickness tensile specimens taken from the direction perpendicular to the rolling direction, and Charpy impact characteristics were obtained with 2 mm V notch specimens taken from the 1/4 position of the plate thickness. Moreover, the surface layer part maximum hardness measured the board thickness direction cross section of the steel plate at 1 mm pitch, and made the maximum value in the surface layer part the maximum hardness.
[0044]
[Table 1]
Figure 2004143555
[0045]
[Table 2]
Figure 2004143555
[0046]
As apparent from Table 2, the steel No. 1 to 10 manufacturing conditions are within the scope of the present invention, 490 N / mm 2 or more, or 570N / mm 2 or more sufficient tensile strength, brittle - ductile fracture transition temperature (VTrs) had good low temperature toughness of −50 ° C. or lower and surface layer hardness of HV220 or lower.
[0047]
On the other hand, steel No. 11 whose surface layer heating method is different from that of the present invention and steel No. 15 whose induction heating frequency is lower than the range of the present invention are insufficient in tensile strength.
[0048]
Steel No. 12 having a slab heating temperature higher than the range of the present invention, Steel No. 13 having a reduction rate in the recrystallization region lower than the range of the present invention, Steel No. 18 having an accelerated cooling stop temperature lower than the range of the present invention, and Steel No. 19 having a rolling reduction in the non-recrystallized region lower than the range of the present invention was insufficient in toughness.
[0049]
Steel No. 14 having a frequency of induction heating higher than the range of the present invention and Steel No. 20 having a surface heating temperature lower than the range of the present invention both had high surface layer hardness and poor resistance to effective corrosion cracking. .
[0050]
Steel No. 16 having a cooling rate after rolling lower than the range of the present invention and Steel No. 17 having a surface heating temperature higher than the range of the present invention had low tensile strength and poor toughness.
[0051]
【The invention's effect】
As described above, according to the present invention, steel materials for low temperature used in steel structures that require stress corrosion cracking resistance, such as tanks and refining plants used for storage and transportation of various liquefied gases such as liquefied ammonia. Can be produced inexpensively and efficiently.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a method for producing a heat-treated steel sheet.
FIG. 2 is a graph showing the influence of surface heating temperature on tensile strength and surface layer hardness.

Claims (3)

質量%で、C:0.02〜0.12%、Si:0.05〜0.5%、Mn:0.6〜1.8%以下を含有する鋼を、1000℃以上1200℃以下の温度範囲に加熱後、再結晶温度域において圧下率50%以上、未再結晶温度域で圧下率30%以上の熱間圧延を行い、圧延終了後、引き続き2℃/秒以上の冷却速度で、平均温度が400℃以上600℃以下の温度域まで冷却した後、周波数200Hz以上2000Hz以下の誘導加熱装置を用いて表面温度500℃以上Ac1+50℃以下の温度範囲まで加熱してから空冷することを特徴とする、耐応力腐食割れ性に優れた低温用鋼材の製造方法。Steel containing, in mass%, C: 0.02 to 0.12%, Si: 0.05 to 0.5%, Mn: 0.6 to 1.8% or less After heating to the temperature range, hot rolling is performed at a reduction rate of 50% or more in the recrystallization temperature range and a reduction rate of 30% or more in the non-recrystallization temperature range. After cooling to an average temperature of 400 ° C. or more and 600 ° C. or less, and using an induction heating device with a frequency of 200 Hz or more and 2000 Hz or less, the surface temperature is heated to a temperature range of 500 ° C. or more and Ac1 + 50 ° C. or less and then air-cooled. A method for producing a low-temperature steel material having excellent stress corrosion cracking resistance. 前記鋼が、さらに、質量%で、Cu:0.05〜1.0%、Ni:0.05〜1.0%、Cr:0.05〜1.0%、Mo:0.01〜1.0%のうちの少なくとも1種を含有することを特徴とする、請求項1に記載の、耐応力腐食割れ性に優れた低温用鋼材の製造方法。The steel is further in mass%, Cu: 0.05-1.0%, Ni: 0.05-1.0%, Cr: 0.05-1.0%, Mo: 0.01-1 The method for producing a low-temperature steel material excellent in stress corrosion cracking resistance according to claim 1, comprising at least one of 0.0%. 前記鋼が、さらに、質量%で、Nb:0.005〜0.1%、V:0.005〜0.1%およびTi:0.005〜0.03%のうちの少なくとも1種を含有することを特徴とする、請求項1または2に記載の、耐応力腐食割れ性に優れた低温用鋼材の製造方法。The steel further contains at least one of Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.03% by mass%. The manufacturing method of the steel material for low temperature excellent in the stress corrosion cracking resistance of Claim 1 or 2 characterized by performing.
JP2002311591A 2002-10-25 2002-10-25 Manufacturing method of low temperature steel with excellent stress corrosion cracking resistance Expired - Lifetime JP3906779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311591A JP3906779B2 (en) 2002-10-25 2002-10-25 Manufacturing method of low temperature steel with excellent stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311591A JP3906779B2 (en) 2002-10-25 2002-10-25 Manufacturing method of low temperature steel with excellent stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JP2004143555A true JP2004143555A (en) 2004-05-20
JP3906779B2 JP3906779B2 (en) 2007-04-18

Family

ID=32456768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311591A Expired - Lifetime JP3906779B2 (en) 2002-10-25 2002-10-25 Manufacturing method of low temperature steel with excellent stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JP3906779B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009109A (en) * 2004-06-28 2006-01-12 Kobe Steel Ltd Steel sheet having excellent low temperature toughness in welded joint part
WO2006009299A1 (en) * 2004-07-21 2006-01-26 Nippon Steel Corporation Steel for welded structure excellent in low temperature toughness of heat affected zone of welded part, and method for production thereof
JP2007016302A (en) * 2005-06-08 2007-01-25 Jfe Steel Kk Method for producing high tensile strength steel sheet having excellent ssc resistance
JP2007177318A (en) * 2005-03-28 2007-07-12 Jfe Steel Kk High-tension steel sheet and method for producing the same
JP2007204771A (en) * 2006-01-31 2007-08-16 Jfe Steel Kk Method for manufacturing high-tensile steel sheet superior in ssc resistance
JP2008121036A (en) * 2006-11-09 2008-05-29 Jfe Steel Kk Method for producing high-strength and high-toughness steel sheet
JP2008189973A (en) * 2007-02-02 2008-08-21 Jfe Steel Kk Method for producing high-toughness and high-tension steel sheet excellent in strength-elongation balance
JP2008208439A (en) * 2007-02-27 2008-09-11 Jfe Steel Kk Method for producing high toughness high tensile strength steel sheet excellent in strength-elongation balance
JP2010229528A (en) * 2009-03-30 2010-10-14 Jfe Steel Corp High tensile strength steel sheet having excellent ductility and method for producing the same
JP2012107332A (en) * 2010-10-28 2012-06-07 Jfe Steel Corp Steel for storing high-pressure hydrogen
EP2799584A1 (en) * 2011-12-27 2014-11-05 JFE Steel Corporation High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
JP2015190010A (en) * 2014-03-28 2015-11-02 Jfeスチール株式会社 Thermal-refined high tensile strength thick steel plate and method for producing the same
JP2018115389A (en) * 2017-01-16 2018-07-26 新日鐵住金株式会社 Thick steel sheet and method for producing the same
JPWO2021100336A1 (en) * 2019-11-22 2021-05-27

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4637516B2 (en) * 2004-06-28 2011-02-23 株式会社神戸製鋼所 Steel sheet with excellent low temperature toughness of welded joints
JP2006009109A (en) * 2004-06-28 2006-01-12 Kobe Steel Ltd Steel sheet having excellent low temperature toughness in welded joint part
WO2006009299A1 (en) * 2004-07-21 2006-01-26 Nippon Steel Corporation Steel for welded structure excellent in low temperature toughness of heat affected zone of welded part, and method for production thereof
EP1777315A1 (en) * 2004-07-21 2007-04-25 Nippon Steel Corporation Steel for welded structure excellent in low temperature toughness of heat affected zone of welded part, and method for production thereof
EP1777315A4 (en) * 2004-07-21 2008-05-07 Nippon Steel Corp Steel for welded structure excellent in low temperature toughness of heat affected zone of welded part, and method for production thereof
US7857917B2 (en) 2004-07-21 2010-12-28 Nippon Steel Corporation Method of production of steel for welded structures excellent in low temperature toughness of weld heat affected zone
JP2007177318A (en) * 2005-03-28 2007-07-12 Jfe Steel Kk High-tension steel sheet and method for producing the same
JP2007016302A (en) * 2005-06-08 2007-01-25 Jfe Steel Kk Method for producing high tensile strength steel sheet having excellent ssc resistance
JP2007204771A (en) * 2006-01-31 2007-08-16 Jfe Steel Kk Method for manufacturing high-tensile steel sheet superior in ssc resistance
JP2008121036A (en) * 2006-11-09 2008-05-29 Jfe Steel Kk Method for producing high-strength and high-toughness steel sheet
JP2008189973A (en) * 2007-02-02 2008-08-21 Jfe Steel Kk Method for producing high-toughness and high-tension steel sheet excellent in strength-elongation balance
JP2008208439A (en) * 2007-02-27 2008-09-11 Jfe Steel Kk Method for producing high toughness high tensile strength steel sheet excellent in strength-elongation balance
JP2010229528A (en) * 2009-03-30 2010-10-14 Jfe Steel Corp High tensile strength steel sheet having excellent ductility and method for producing the same
JP2012107332A (en) * 2010-10-28 2012-06-07 Jfe Steel Corp Steel for storing high-pressure hydrogen
EP2799584A1 (en) * 2011-12-27 2014-11-05 JFE Steel Corporation High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
EP2799584A4 (en) * 2011-12-27 2015-01-07 Jfe Steel Corp High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
JP2015190010A (en) * 2014-03-28 2015-11-02 Jfeスチール株式会社 Thermal-refined high tensile strength thick steel plate and method for producing the same
JP2018115389A (en) * 2017-01-16 2018-07-26 新日鐵住金株式会社 Thick steel sheet and method for producing the same
JP7006154B2 (en) 2017-01-16 2022-02-10 日本製鉄株式会社 Manufacturing method of thick steel plate and thick steel plate
JPWO2021100336A1 (en) * 2019-11-22 2021-05-27
WO2021100336A1 (en) * 2019-11-22 2021-05-27 Jfeスチール株式会社 Steel material for liquid ammonia transport and storage, and manufacturing method for steel material for liquid ammonia transport and storage
JP7160213B2 (en) 2019-11-22 2022-10-25 Jfeスチール株式会社 Steel material for transportation and storage of liquid ammonia, and method for producing steel material for transportation and storage of liquid ammonia

Also Published As

Publication number Publication date
JP3906779B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
JP5303856B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness and small strength anisotropy
EP2484792A1 (en) Steel plate with low yield ratio, high strength, and high toughness and process for producing same
JP3711896B2 (en) Manufacturing method of steel sheets for high-strength line pipes
JP3906779B2 (en) Manufacturing method of low temperature steel with excellent stress corrosion cracking resistance
JP2006291349A (en) Line pipe steel sheet having high deformation performance and its manufacturing method
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JP2010106287A (en) High-tension steel excellent in fatigue characteristic, and producing method thereof
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP6519024B2 (en) Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP4156889B2 (en) Composite steel sheet with excellent stretch flangeability and method for producing the same
JP4264177B2 (en) Method for producing a steel material having a coarse ferrite layer on the surface layer
JP2002327212A (en) Method for manufacturing sour resistant steel sheet for line pipe
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JPH07331328A (en) Production of high tensile strength steel excellent in toughness at low temperature
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
KR101677350B1 (en) Multiple heat treatment steel having excellent low temperature toughness for energyand manufacturing method thereof
JPH09209037A (en) Production of high strength steel plate for line pipe excellent in hic resistance
JP4311226B2 (en) Manufacturing method of high-tensile steel sheet
JP2598357B2 (en) Manufacturing method of high strength steel sheet with excellent low temperature toughness
JP3894148B2 (en) Low yield ratio low temperature steel and method for producing the same
JPH09324216A (en) Manufacture of high strength steel or line pipe, excellent in hic resistance
JPH09324217A (en) Manufacture of high strength steel for line pipe, excellent in hic resistance
JPH05148539A (en) Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070108

R150 Certificate of patent or registration of utility model

Ref document number: 3906779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term