JP2012107332A - Steel for storing high-pressure hydrogen - Google Patents

Steel for storing high-pressure hydrogen Download PDF

Info

Publication number
JP2012107332A
JP2012107332A JP2011235739A JP2011235739A JP2012107332A JP 2012107332 A JP2012107332 A JP 2012107332A JP 2011235739 A JP2011235739 A JP 2011235739A JP 2011235739 A JP2011235739 A JP 2011235739A JP 2012107332 A JP2012107332 A JP 2012107332A
Authority
JP
Japan
Prior art keywords
steel
hydrogen
less
pressure hydrogen
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011235739A
Other languages
Japanese (ja)
Other versions
JP5849609B2 (en
Inventor
Nobuyuki Ishikawa
信行 石川
Hitoshi Sueyoshi
仁 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011235739A priority Critical patent/JP5849609B2/en
Publication of JP2012107332A publication Critical patent/JP2012107332A/en
Application granted granted Critical
Publication of JP5849609B2 publication Critical patent/JP5849609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel having high strength of ≥550 MPa tensile strength, which is excellent in toughness and suitable to be used in a high-pressure hydrogen environment, such as a hydrogen storing vessel and an accumulator installed in a hydrogen station or the like.SOLUTION: This steel contains, by mass, 0.05-0.12% C, 0.01-0.50% Si, >0.6 and ≤1.8% Mn, ≤0.02% P, ≤0.003% S, 0.01-0.08% Al, optionally ≤0.3% Cr, optionally ≤0.3% Mo, and optionally one or two or more kinds selected from Cu, Ni, Nb, V, Ti, B and Ca, with the remainder comprising Fe and incidental impurities, wherein a metal structure is a structure mainly composed of bainite whose area fraction is ≥90%, and cementite having an average particle size of ≤50 nm and an average aspect ratio of ≤3 is dispersed and deposited in the bainite.

Description

本発明は、水素ステーション等に設置される水素貯蔵容器や蓄圧器など、高圧水素環境で使用される鋼材であり、特に引張強度550MPa以上の高強度でかつ靱性の優れた鋼材に関する。   The present invention relates to a steel material used in a high-pressure hydrogen environment such as a hydrogen storage container or a pressure accumulator installed in a hydrogen station or the like, and particularly to a steel material having a high tensile strength of 550 MPa or more and excellent toughness.

地球温暖化防止のため、燃焼によるCOの発生がない水素エネルギーの利用技術が近年盛んに検討されており、燃料電池や水素貯蔵・輸送・供給システムの開発が国家プロジェクトで進められている。その中の大きな技術的課題は、必要十分な量の水素を供給するために、35MPa以上、特に70MPa程度以上の高圧下で水素を安全に貯蔵、供給することとされ、そのための貯蔵容器には高圧水素雰囲気より鋼中に侵入する水素によって材質が劣化しない、すなわち延性の低下や靱性の劣化が生じにくい材料を用いることが要求される。 In order to prevent global warming, technology for utilizing hydrogen energy that does not generate CO 2 due to combustion has been actively studied in recent years, and development of fuel cells and hydrogen storage, transport, and supply systems has been promoted in national projects. In order to supply a necessary and sufficient amount of hydrogen, a major technical problem is to store and supply hydrogen safely under a high pressure of 35 MPa or more, particularly about 70 MPa or more. It is required to use a material that does not deteriorate in quality due to hydrogen that penetrates into the steel from a high-pressure hydrogen atmosphere, that is, does not easily deteriorate ductility or toughness.

従来から低圧の水素貯蔵容器にはCr−Mo鋼が広く使用されているが、Cr−Mo鋼をはじめとする多くの低合金鋼は水素による材質劣化が著しいため、35MPa程度以上の高圧の水素貯蔵容器用の材料は水素による材質劣化の少ないSUS316等のオーステナイト系ステンレス鋼に限定されている。   Conventionally, Cr-Mo steel has been widely used for low-pressure hydrogen storage containers, but many low-alloy steels including Cr-Mo steel are significantly deteriorated by hydrogen, so high-pressure hydrogen of about 35 MPa or more. The material for the storage container is limited to austenitic stainless steel such as SUS316, which has little material deterioration due to hydrogen.

しかし、SUS316等のステンレス鋼は強度が低く、例えば水素圧を70MPaまで高める場合、貯蔵容器の肉厚が極めて厚くなり、容器重量が増大する。そのため、貯蔵容器の大きさが制限され貯蔵する水素量に限界があるだけでなく、素材コストが大きくなり過ぎ経済性に劣るという問題があった。   However, stainless steel such as SUS316 has low strength. For example, when the hydrogen pressure is increased to 70 MPa, the thickness of the storage container becomes extremely thick and the container weight increases. For this reason, there is a problem that not only the size of the storage container is limited and the amount of hydrogen to be stored is limited, but also the material cost becomes too high and the economy is inferior.

このような高圧水素貯蔵用材料として、従来のオーステナイト系ステンレス鋼の代わりに、素材コストのより低い低合金鋼を適用するため多くの研究がなされている。特許文献1では、鋼中水素のトラップサイトとして、MnSやCa系介在物、またはVCを活用して非拡散性水素とし、拡散性水素による脆化を抑制する高圧水素環境用鋼が提案されている。   As such a high-pressure hydrogen storage material, many studies have been made to apply a low alloy steel having a lower material cost instead of the conventional austenitic stainless steel. Patent Document 1 proposes a steel for high pressure hydrogen environment that uses MnS, Ca-based inclusions, or VC as non-diffusible hydrogen as a hydrogen trap site in steel and suppresses embrittlement due to diffusible hydrogen. Yes.

特許文献2、3では、Cr−Mo鋼の調質処理において比較的高い温度で焼戻し処理をすることで引張強度を900〜950MPaの極めて狭い範囲に制御した、耐高圧水素環境脆化特性に優れた低合金高強度鋼が提案されている。   In Patent Documents 2 and 3, the tensile strength is controlled to an extremely narrow range of 900 to 950 MPa by tempering at a relatively high temperature in the tempering treatment of Cr—Mo steel, and it has excellent high-pressure hydrogen environment embrittlement resistance. Low alloy high strength steels have been proposed.

特許文献4では、V−Mo系炭化物を活用し、焼戻し温度を高めることで耐水素環境脆化特性を向上した、高圧水素環境用低合金鋼が提案され、特許文献5では、MoとVを多量に添加し、鋼板製造時に焼準処理の後に長時間の応力除去焼鈍を施すことで、(Mo,V)Cを多量に析出させた耐水素性に優れた高圧水素ガス貯蔵容器用鋼が提案されている。   Patent Document 4 proposes a low-alloy steel for high-pressure hydrogen environment in which V-Mo-based carbides are utilized and the tempering temperature is increased to improve hydrogen embrittlement resistance, and in Patent Document 5, Mo and V are combined. Proposed steel for high-pressure hydrogen gas storage vessel with excellent hydrogen resistance by adding a large amount and applying stress-relief annealing for a long time after the normalizing treatment during steel plate production. Has been.

特開2005−2386号公報Japanese Patent Laying-Open No. 2005-2386 特開2009−46737号公報JP 2009-46737 A 特開2009−275249号公報JP 2009-275249 A 特開2009−74122号公報JP 2009-74122 A 特開2010−37655号公報JP 2010-37655 A

しかしながら、特許文献1で提案された鋼材は、MnSやCa系介在物などを多量に含有するため、拡散性水素は低減できるものの、構造用鋼材の基本特性として必要な母材靱性に劣ることが容易に予想され、高圧水素貯蔵容器などの高い安全性が要求される部品へは適していない。   However, since the steel material proposed in Patent Document 1 contains a large amount of MnS, Ca-based inclusions, etc., although diffusible hydrogen can be reduced, it may be inferior in the base material toughness required as a basic characteristic of structural steel materials. It is not suitable for parts that are expected easily and require high safety such as high-pressure hydrogen storage containers.

特許文献2、3で提案された低合金鋼は従来のSUS316等に比べて低コストでかつ高強度であるが、鋼材の引張強度を極めて厳格に管理する必要があり、量産時の合金成分や熱処理温度のバラツキによって強度外れとなる確率が大きく、歩留まり低下によって生産性が劣ることが懸念される。   The low alloy steels proposed in Patent Documents 2 and 3 are lower in cost and higher in strength than conventional SUS316 and the like, but it is necessary to manage the tensile strength of the steel material very strictly. There is a high probability that the strength will be lost due to variations in the heat treatment temperature, and there is a concern that productivity will be inferior due to a decrease in yield.

特許文献4で提案された低合金鋼は、Mo−V炭化物を活用するため多量のMoとVの添加が必要で、素材コストが高くなるだけでなく、高温での焼戻し処理により粗大なMo−V炭化物が多量に生成して母材靱性が劣化する。また、特許文献5で提案された鋼材も、特許文献4と同様のMo−V炭化物を活用するため、母材靱性が劣るだけでなく、長時間の応力除去焼鈍が必要で生産性に劣る。   The low alloy steel proposed in Patent Document 4 requires the addition of a large amount of Mo and V in order to utilize Mo-V carbide, which not only increases the raw material cost but also increases the coarse Mo- A large amount of V carbide is generated and the toughness of the base material deteriorates. Further, the steel material proposed in Patent Document 5 also uses the same Mo—V carbide as in Patent Document 4, so that not only the base material toughness is inferior, but also long-time stress relief annealing is required and the productivity is inferior.

本発明は上記事情に鑑みなされたもので、70MPa程度の高圧水素貯蔵容器への使用に適した、高強度・高靱性でかつ水素侵入による材質劣化の小さな低合金鋼を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a low-alloy steel suitable for use in a high-pressure hydrogen storage container of about 70 MPa and having high strength and high toughness and little material deterioration due to hydrogen penetration. To do.

本発明者らは、高圧水素による鋼中への水素侵入挙動及び鋼材の延性低下現象と鋼材の微視的な組織形態の関係を詳細に調査することで、以下の知見を得るに至った。
(1)高圧水素雰囲気下では鋼中に水素が侵入し鋼材の脆化や延性低下を招くため、鋼材表面から鋼中に侵入する水素量を抑制することが重要である。
(2)鋼中に侵入する水素量は、鋼材の微視的な組織形態によって大きく変化し、析出強化によく利用されるNb、Ti、V等の炭窒化物はNaCl構造の整合析出物のため水素吸収能力が高く高圧水素中でより多くの水素を吸収する。そのため、高圧水素中での脆化を抑制するためには、Nb、Ti、Vの添加を一定量以下に抑制することが重要である。
(3)一方、セメンタイトは非整合析出物であり、NaCl型炭窒化物よりも水素吸収能力が低いが、その粒径を一定サイズ以下でかつアスペクト比の低い、より球形に近い形状にすることで水素侵入量をさらに抑制することが可能となり、水素による脆化や延性低下を抑制することが可能となる。
(4)図1に70MPa高圧水素中に500時間暴露したときの鋼中への水素侵入量を、昇温脱離分析によって測定した結果を示す。供試鋼は図2に示す組織を有する2種類の鋼(a)、鋼(b)で、アスペクト比が小さく微細なセメンタイトが分散している鋼(a)は高圧水素化での水素吸収量が低く、セメンタイトが粗大化し、さらにアスペクト比が大きくなる鋼(b)では水素吸収量が増大していることがわかる。
(5)強度を向上させる場合に選択元素として添加するMoとCrはセメンタイトを粗大化させるので各添加量とそれらの総計を一定量以下に抑制する。セメンタイトの平均粒径を一定サイズ以下にすることで(すなわち、炭化物サイズを微細化)、高圧水素雰囲気からの水素侵入が抑制されるだけでなく、母材靱性が高められて水素による脆化が抑制される。
The present inventors have obtained the following knowledge by investigating in detail the relationship between the hydrogen intrusion behavior into steel by high-pressure hydrogen and the relationship between the ductility reduction phenomenon of the steel material and the microscopic microstructure of the steel material.
(1) In a high-pressure hydrogen atmosphere, hydrogen penetrates into the steel and causes embrittlement and ductility reduction of the steel material. Therefore, it is important to suppress the amount of hydrogen entering the steel from the steel material surface.
(2) The amount of hydrogen that penetrates into the steel varies greatly depending on the microscopic structure of the steel material, and Nb, Ti, V, and other carbonitrides often used for precipitation strengthening are NaCl-matched precipitates. Therefore, the hydrogen absorption capacity is high and more hydrogen is absorbed in high-pressure hydrogen. Therefore, in order to suppress embrittlement in high-pressure hydrogen, it is important to suppress the addition of Nb, Ti, V to a certain amount or less.
(3) On the other hand, cementite is an inconsistent precipitate, and its hydrogen absorption capacity is lower than that of NaCl-type carbonitride, but its particle size should be smaller than a certain size and have a lower aspect ratio and a more spherical shape. Thus, it is possible to further suppress the amount of hydrogen intrusion, and to suppress embrittlement and ductility reduction due to hydrogen.
(4) FIG. 1 shows the results of measuring the amount of hydrogen intrusion into steel when exposed to 70 MPa high-pressure hydrogen for 500 hours by thermal desorption analysis. The test steels are two types of steel (a) and steel (b) having the structure shown in FIG. 2, and steel (a) in which fine cementite is dispersed with a small aspect ratio is the amount of hydrogen absorbed by high-pressure hydrogenation. It can be seen that the amount of hydrogen absorption is increased in the steel (b) having a low C, low cementite, and a large aspect ratio.
(5) Since Mo and Cr added as selective elements when improving the strength coarsen cementite, the amount of each additive and the total amount thereof are suppressed to a certain amount or less. By making the average particle size of cementite below a certain size (that is, making the carbide size finer), not only hydrogen intrusion from the high-pressure hydrogen atmosphere is suppressed, but also the toughness of the base material is increased and hydrogen embrittlement is prevented. It is suppressed.

本発明は、上記知見をもとに、更に検討を加えてなされたもので、すなわち、
1.質量%で、C:0.05〜0.12%、Si:0.01〜0.50%、Mn:0.6超〜1.8%、P:0.02%以下、S:0.003%以下、Al:0.01〜0.08%を含有し、残部がFe及び不可避的不純物からなり、金属組織が面積分率90%以上のベイナイト主体組織で、ベイナイト中に平均粒径50nm以下、平均アスペクト比3以下のセメンタイトが分散析出していることを特徴とする高圧水素貯蔵用鋼材。
2. さらに質量%で、Cr:0.3%以下、Mo:0.3%以下、Cu:0.5%以下、Ni:1.0%以下、Nb:0.005〜0.05%、V:0.01〜0.10%、Ti:0.005〜0.03%、B:0.0005〜0.002%、Ca:0.0005〜0.005%の1種または2種以上を含有することを特徴とする1に記載の高圧水素貯蔵用鋼材である。
The present invention has been made on the basis of the above findings and further studies, that is,
1. In mass%, C: 0.05 to 0.12%, Si: 0.01 to 0.50%, Mn: more than 0.6 to 1.8%, P: 0.02% or less, S: 0.0. 003% or less, Al: 0.01 to 0.08%, the balance is Fe and inevitable impurities, the metal structure is a bainite main structure with an area fraction of 90% or more, and the average particle size is 50 nm in bainite. Hereinafter, a steel material for high-pressure hydrogen storage, wherein cementite having an average aspect ratio of 3 or less is dispersed and precipitated .
2. Further, by mass%, Cr: 0.3% or less, Mo: 0.3% or less, Cu: 0.5% or less, Ni: 1.0% or less, Nb: 0.005 to 0.05%, V: 0.01-0.10%, Ti: 0.005-0.03%, B: 0.0005-0.002%, Ca: 0.0005-0.005%, one or more 2. The steel material for high-pressure hydrogen storage according to 1, which contains

本発明によれば、水素ステーション等に設置される水素貯蔵容器や蓄圧器など、高圧水素環境で使用される鋼材として必要な高強度・高靱性でかつ水素による材質劣化の小さな鋼材が得られ、産業上極めて有用である。   According to the present invention, a steel material with high strength and toughness required as a steel material used in a high-pressure hydrogen environment, such as a hydrogen storage container or a pressure accumulator installed in a hydrogen station or the like, and a small material deterioration due to hydrogen can be obtained, It is extremely useful in industry.

70MPa高圧水素中に500時間暴露したときの鋼中への水素侵入量を、昇温脱離分析によって測定した結果を示す図。The figure which shows the result of having measured the hydrogen penetration | invasion amount into steel when it exposes to 70 Mpa high pressure hydrogen for 500 hours by temperature-programmed desorption analysis. 図1に示す結果を得た2種類のミクロ組織を示し、アスペクト比が小さく微細なセメンタイトが分散している鋼(a)と、セメンタイトが粗大化し、さらにアスペクト比が大きくなる鋼(b)のミクロ組織を示す図。FIG. 1 shows two types of microstructures obtained from the results shown in FIG. 1; a steel (a) in which fine cementite is dispersed with a small aspect ratio and a steel (b) in which cementite is coarsened and the aspect ratio is increased. The figure which shows a microstructure.

本発明では、鋼の化学成分と金属組織を規定する。 In the present invention, the chemical composition and metal structure of steel are defined.

1.化学成分
説明において成分%は全て質量%を意味する。
1. In the description of chemical components, all of the component% means mass%.

C:0.05〜0.12%
Cは、鋼材の強度を高めるために必要な元素であり、セメンタイトとして鋼中に微細に分散させることで、高圧水素雰囲気からの水素侵入による脆化を抑制すると同時に、母材靱性を向上させる。しかし、0.05%未満では十分な強度が確保できず、0.12%を超えるとセメンタイトの量が増加し水素侵入による脆化を生じ、母材靱性の低下も招くため、0.05〜0.12%とする。より安定した性能を得るためには、0.05〜0.10%とすることが好ましい。
C: 0.05 to 0.12%
C is an element necessary for increasing the strength of the steel material, and is finely dispersed in the steel as cementite, thereby suppressing embrittlement due to hydrogen intrusion from the high-pressure hydrogen atmosphere and at the same time improving the base material toughness. However, if it is less than 0.05%, sufficient strength cannot be ensured, and if it exceeds 0.12%, the amount of cementite increases, resulting in embrittlement due to hydrogen intrusion, leading to a decrease in base material toughness. 0.12%. In order to obtain more stable performance, the content is preferably 0.05 to 0.10%.

Si:0.01〜0.50%
Siは脱酸のために添加する。この効果は0.01%以上で発揮されるが、一方、0.50%を超えると靭性が劣化するようになるため0.01〜0.50%とする。
Si: 0.01 to 0.50%
Si is added for deoxidation. This effect is exhibited at 0.01% or more. On the other hand, if it exceeds 0.50%, the toughness deteriorates, so the content is made 0.01 to 0.50%.

Mn:0.6超〜1.8%
Mnは鋼の強度および靭性の向上のため添加する。0.6%以下ではその効果が十分ではなく、一方、1.8%を超えると靱性が劣化するようになるため、0.6超〜1.8%とする。
Mn: more than 0.6 to 1.8%
Mn is added to improve the strength and toughness of the steel. If it is 0.6% or less, the effect is not sufficient. On the other hand, if it exceeds 1.8%, the toughness deteriorates.

P:0.02%以下
Pは不可避的不純物元素であり、鋼材の強度には大きな影響を及ぼさないが、靱性を劣化させる元素であるため0.02%以下とする。好ましくは,0.015%以下とする。
P: 0.02% or less P is an unavoidable impurity element, which does not have a great influence on the strength of the steel material, but is an element that deteriorates toughness, so is 0.02% or less. Preferably, it is 0.015% or less.

S:0.003%以下
Sは不可避的不純物元素であり、鋼中においては一般にMnS系の介在物となり、靱性の劣化、特にシャルピー吸収エネルギーの低下を招くため、0.003%以下とする。より高い性能が要求される場合は、S量をさらに低下することが有効であり、好ましくは0.002%以下とする。
S: 0.003% or less S is an unavoidable impurity element, and generally becomes a MnS-based inclusion in steel, leading to deterioration of toughness, particularly a decrease in Charpy absorbed energy. When higher performance is required, it is effective to further reduce the amount of S, preferably 0.002% or less.

Al:0.01〜0.08%
Alは脱酸剤として添加する。この効果は0.01%以上で発揮されるが、0.08%を超えると清浄度の低下により延性を劣化させるようになるので、0.01〜0.08%とする。
Al: 0.01 to 0.08%
Al is added as a deoxidizer. This effect is exhibited at 0.01% or more, but if it exceeds 0.08%, the ductility is deteriorated due to a decrease in cleanliness, so 0.01 to 0.08%.

以上が本発明の基本成分組成であるが、更に所望の特性を向上させるため、以下の元素を選択元素として添加することができる。   The above is the basic component composition of the present invention. In order to further improve desired characteristics, the following elements can be added as selective elements.

Cr:0.3%以下
Crは、鋼材の焼入れ性を高め強度上昇に極めて有効な元素であるが、0.3%を超えて添加すると、セメンタイトが粗大化し高圧水素雰囲気での水素侵入量が増加するため、水素による脆化が促進される。よって、Crを添加する場合は0.3%以下とする。好ましくは0.2%以下とする。
Cr: 0.3% or less Cr is an element that is extremely effective in increasing the hardenability of steel and increasing the strength. However, if added over 0.3%, cementite becomes coarse and the amount of hydrogen intrusion in a high-pressure hydrogen atmosphere increases. The increase increases the embrittlement due to hydrogen. Therefore, when adding Cr, it is 0.3% or less. Preferably it is 0.2% or less.

Mo:0.3%以下
MoもCrと同様に、鋼材の焼入れ性を高め強度上昇に極めて有効な元素であるが、0.3%を超えて添加すると、セメンタイトが粗大化し高圧水素雰囲気での水素侵入量が増加するため、水素による脆化が促進される。よって、Moを添加する場合は0.3%以下とする。好ましくは0.2%以下とする。
Mo: 0.3% or less Mo, like Cr, is an element that increases the hardenability of steel materials and is extremely effective for increasing the strength. However, if added over 0.3%, cementite becomes coarser in a high-pressure hydrogen atmosphere. Since the amount of hydrogen intrusion increases, embrittlement by hydrogen is promoted. Therefore, when adding Mo, it is 0.3% or less. Preferably it is 0.2% or less.

CrとMoを同時に添加する場合は、それらの合計の添加量が多いとセメンタイトの粗大化が促進されるため高圧水素化での靱性劣化を招く場合がある。より安定した高圧水素中性能を得るためには、CrとMoの添加量の合計を0.5%以下とすることが好ましい。   When Cr and Mo are added at the same time, if the total amount of these added is large, cementite coarsening is promoted, which may result in toughness deterioration during high-pressure hydrogenation. In order to obtain more stable performance in high-pressure hydrogen, the total amount of Cr and Mo is preferably 0.5% or less.

Cu:0.5%以下
Cuは、靭性の改善と強度の上昇に有効な元素であるが、0.5%を超えて添加すると鋳造時の鋳片の表面割れを生じる。従って、Cuを添加する場合は0.5%以下とする。
Cu: 0.5% or less Cu is an element effective for improving toughness and increasing strength, but if added over 0.5%, surface cracks of the slab during casting occur. Therefore, when adding Cu, it is 0.5% or less.

Ni:1.0%以下
Niは、靭性の改善と強度の上昇に有効な元素であるが、1.0%を超えて添加すると素材コストが上昇するだけでなく、鋳造時の割れの原因ともなる。従って、Niを添加する場合は1.0%以下とする。
Ni: 1.0% or less Ni is an element effective for improving toughness and increasing strength, but if added over 1.0%, not only the material cost increases but also causes cracking during casting. Become. Therefore, when adding Ni, it is 1.0% or less.

Nb:0.005〜0.05%
Nbは、熱間圧延時の粒成長を抑制し、微細粒化により靭性を向上させる。さらに焼入れ性元素であり、強度上昇に極めて有効な元素である。0.005%未満ではそれらの効果が小さく、一方、0.05%を超えて添加しても強度上昇が飽和する。また、Nbは鋼中でNaCl構造の炭化物を形成する元素であり、過度のNbの添加はNaCl型炭化物の量を増加し高圧水素中での水素吸収量を増大することで水素脆化をまねく。従って、Nbを添加する場合は0.005〜0.05%とする。好ましくは、0.005〜0.035%とする。
Nb: 0.005 to 0.05%
Nb suppresses grain growth during hot rolling, and improves toughness by refinement. Furthermore, it is a hardenable element and is an extremely effective element for increasing the strength. If it is less than 0.005%, these effects are small. On the other hand, even if added over 0.05%, the increase in strength is saturated. Nb is an element that forms a carbide of NaCl structure in steel, and excessive addition of Nb increases the amount of NaCl-type carbide and increases hydrogen absorption in high-pressure hydrogen, leading to hydrogen embrittlement. . Therefore, when Nb is added, the content is made 0.005 to 0.05%. Preferably, the content is 0.005 to 0.035%.

V:0.01〜0.10%
Vは、Nbと同様に強度・靱性の改善に有効な元素である。それらの効果を得るには0.01%以上の添加が必要で、一方、0.10%を超えて添加すると強度の改善効果が飽和し、靱性の劣化が生じるようになる。また、VもNbと同様に鋼中でNaCl構造の炭化物を形成する元素であり、過度のVの添加により高圧水素中での脆化をまねく。従って、Vを添加する場合は0.01〜0.10%とする。好ましくは、0.01〜0.05%とする。
V: 0.01-0.10%
V is an element effective for improving strength and toughness in the same manner as Nb. To obtain these effects, addition of 0.01% or more is necessary. On the other hand, addition exceeding 0.10% saturates the effect of improving the strength and causes deterioration of toughness. Similarly to Nb, V is an element that forms a NaCl-structure carbide in steel, and excessive addition of V causes embrittlement in high-pressure hydrogen. Therefore, when adding V, it is 0.01 to 0.10%. Preferably, it is 0.01 to 0.05%.

Ti:0.005〜0.03%
Tiは複合炭窒化物を形成してスラブ加熱時の結晶粒粗大化を防止し、組織を微細化し靱性向上に大きく寄与する。しかし、0.005%未満ではその効果が十分でなく、一方、0.03%を超えると粗大なTiNが増加し靭性が劣化する。また、TiもNb、Vと同様に鋼中でNaCl構造の炭化物を形成する元素であり、過度のTiの添加により高圧水素中での脆化をまねく。従って、Tiを添加する場合は0.005〜0. 03%とする。好ましくは、0.005〜0.02%とする。
Ti: 0.005 to 0.03%
Ti forms a composite carbonitride to prevent coarsening of crystal grains during slab heating, and contributes to the improvement of toughness by refining the structure. However, if it is less than 0.005%, the effect is not sufficient. On the other hand, if it exceeds 0.03%, coarse TiN increases and toughness deteriorates. Ti, like Nb and V, is an element that forms a carbide having a NaCl structure in steel, and excessive addition of Ti causes embrittlement in high-pressure hydrogen. Therefore, when Ti is added, the content is made 0.005 to 0.03%. Preferably, the content is 0.005 to 0.02%.

B:0.0005〜0.002%
Bは焼入れ性を高め、強度上昇に極めて有効な元素である。その効果を得るためには、0.0005%以上の添加が必要であるが、0.002%を超えて添加してもその効果が飽和する。従って、Bを添加する場合は0.0005〜0.002%とする。
B: 0.0005 to 0.002%
B is an element that enhances hardenability and is extremely effective in increasing strength. In order to obtain the effect, addition of 0.0005% or more is necessary, but even if added over 0.002%, the effect is saturated. Therefore, when adding B, it is made into 0.0005 to 0.002%.

Ca:0.0005〜0.005%
Caは硫化物系介在物の形態を制御し、延性を改善するために有効な元素である。その効果を得るためには、0.0005%以上の添加が必要であるが、0.005%を超えて添加してもその効果が飽和し、むしろ清浄度の低下により靱性を劣化させる。従って、Caを添加する場合は、0.0005〜0.005%の範囲とする。
Ca: 0.0005 to 0.005%
Ca is an effective element for controlling the form of sulfide inclusions and improving ductility. In order to obtain the effect, addition of 0.0005% or more is necessary, but even if added over 0.005%, the effect is saturated, but rather the toughness is deteriorated due to a decrease in cleanliness. Therefore, when adding Ca, it is set as 0.0005 to 0.005% of range.

なお、本発明鋼の残部はFeおよび不可避的不純物である。   The balance of the steel of the present invention is Fe and inevitable impurities.

2.金属組織
ベイナイトの面積分率:90%以上
ベイナイトは鋼材の強度を得るために必要な金属組織であり、550MPa以上の引張強度を得るため、本発明鋼では金属組織を面積分率90%以上のベイナイト主体組織とする。ベイナイト以外の残余の金属組織として、フェライト、パーライト、マルテンサイト等を含有しても良い。
2. Metal structure Area fraction of bainite: 90% or more Bainite is a metal structure necessary for obtaining the strength of a steel material, and in order to obtain a tensile strength of 550 MPa or more, the steel of the present invention has an area fraction of 90% or more. A bainite-based organization is adopted. As the remaining metal structure other than bainite, ferrite, pearlite, martensite and the like may be contained.

セメンタイトの平均粒径:50nm以下、且つ平均アスペクト比:3以下
ベイナイト組織中に析出生成するセメンタイトは本発明で極めて重要な組織因子であり、その平均粒径を50nm以下にすることで、高圧水素雰囲気からの水素の侵入量を抑制し、さらに、強度靱性の向上に寄与する。しかし、セメンタイトの平均粒径が50nmを超えると、水素侵入量が増え水素による靱性低下を招く。よって、セメンタイトの平均粒径を50nm以下に規定する。より安定した性能を得るためには、好ましくは30nm以下とする。
Cementite average particle size: 50 nm or less, and average aspect ratio: 3 or less Cementite that precipitates and forms in the bainite structure is an extremely important structure factor in the present invention. By setting the average particle size to 50 nm or less, high pressure hydrogen It suppresses the amount of hydrogen entering from the atmosphere and contributes to the improvement of strength and toughness. However, when the average particle size of cementite exceeds 50 nm, the amount of hydrogen penetration increases and the toughness due to hydrogen decreases. Therefore, the average particle diameter of cementite is specified to be 50 nm or less. In order to obtain more stable performance, the thickness is preferably 30 nm or less.

セメンタイトは通常は非整合な析出物でありTiやNbの炭窒化物の整合析出物に比べ、水素吸収能力が小さいが、その形態が伸長した形態(アスペクト比が大きい)になると界面面積が増加し、水素吸収量が増大して靭性を低下させる。   Cementite is usually an inconsistent precipitate and has a smaller hydrogen absorption capacity than Ti and Nb carbonitride matched precipitates, but the interface area increases when the form is elongated (the aspect ratio is large). However, the amount of hydrogen absorption increases and the toughness decreases.

そのため、本発明では、水素吸収量を低くし、高圧水素化での靱性低下を抑制するようにセメンタイトの平均アスペクト比を3以下に規定する。より安定した性能を得るためには、好ましくは2以下とする。平均粒径と平均アスペクト比の求め方は後述する。   Therefore, in the present invention, the average aspect ratio of cementite is specified to be 3 or less so as to reduce the hydrogen absorption amount and suppress the decrease in toughness during high-pressure hydrogenation. In order to obtain more stable performance, it is preferably 2 or less. The method for obtaining the average particle size and the average aspect ratio will be described later.

本発明は、上述した化学成分と金属組織を有することで、高圧水素雰囲気下での靱性低下が抑制されると共に、引張強度550MPa以上が得られ、高圧水素貯蔵容器などへの適用が可能となる。   By having the above-described chemical components and metal structure, the present invention suppresses toughness reduction under a high-pressure hydrogen atmosphere, and a tensile strength of 550 MPa or more is obtained, which can be applied to a high-pressure hydrogen storage container or the like. .

本発明に係る高圧水素貯蔵用鋼材は製造条件を制限することなく任意の製造方法が適用可能であるが、シームレスプロセスでの鋼管製造や熱間圧延プロセスでの鋼板製造の場合は、以下の条件で製造することが望ましい。   The steel material for high-pressure hydrogen storage according to the present invention can be applied to any production method without restricting the production conditions, but in the case of steel pipe production in a seamless process or steel plate production in a hot rolling process, the following conditions are used. It is desirable to manufacture with.

鋳片の加熱温度:1000〜1250℃
ビレットやスラブ等の鋳片加熱温度は、1000℃未満ではミクロ偏析しているCやP、S等の不純物元素の拡散が不十分で均質な材質が得られず、1250℃を超えると、結晶粒が粗大化しすぎ靱性が劣化する。従って、スラブ加熱温度は1000〜1250℃とすることが好ましい。
Heating temperature of slab: 1000-1250 ° C
If the slab heating temperature of billets, slabs, etc. is less than 1000 ° C., diffusion of impurity elements such as C, P, S, etc., which are microsegregated is insufficient, and a homogeneous material cannot be obtained. The grains become too coarse and the toughness deteriorates. Therefore, the slab heating temperature is preferably 1000 to 1250 ° C.

熱間圧延終了温度:Ar温度以上
鋳片を再加熱した後、所望の管厚または板厚まで熱間で圧延を行うが、熱間圧延の終了温度は、フェライト生成温度であるAr温度以上とすることが好ましい。熱間圧延後に直接焼入れを行うプロセス(DQプロセス)の場合、軟質なフェライト相の生成により強度低下を招くためである。
Hot rolling end temperature: Ar 3 temperature or higher After the slab is reheated, hot rolling is performed to a desired tube thickness or plate thickness. The hot rolling end temperature is the Ar 3 temperature, which is the ferrite formation temperature. The above is preferable. This is because in the case of a process (DQ process) in which direct quenching is performed after hot rolling, strength is reduced due to the formation of a soft ferrite phase.

Ar温度は鋼の合金成分によって変化するため、それぞれの鋼で実験によって変態温度を測定して求めてもよいが、成分から下式(1)で求めることもできる。
Ar(℃)=910−310C(%)−80Mn(%)−20Cu(%)−15Cr(%)−55Ni(%)−80Mo(%)・・・・・(1)
各合金元素は含有量(質量%)とする。
Since the Ar 3 temperature varies depending on the alloy component of the steel, the transformation temperature may be measured by experiment for each steel, but it can also be obtained from the component by the following formula (1).
Ar 3 (° C.) = 910-310C (%)-80Mn (%)-20Cu (%)-15Cr (%)-55Ni (%)-80Mo (%) (1)
Each alloy element has a content (mass%).

焼入れ温度:900℃以上
熱間圧延後に再加熱して焼入れ処理(RhQプロセス)を行う場合は、900℃以上に加熱することが好ましい。熱間圧延後に直接焼入れするプロセス(DQプロセス)では、上述のAr温度以上で圧延を終了し、直ちに焼入れ処理を行う。
Quenching temperature: 900 ° C. or higher When performing the quenching process (RhQ process) by reheating after hot rolling, it is preferable to heat to 900 ° C. or higher. In the process of directly quenching after hot rolling (DQ process), the rolling is finished at the Ar 3 temperature or higher, and a quenching process is immediately performed.

焼戻し温度:500〜720℃
上述の焼入れ処理によるマルテンサイト変態またはベイナイト変態によって導入された格子歪(転位)を回復し、過飽和に固溶したCをセメンタイトとして分散析出させて必要な母材靱性を得るために、焼入れ後の焼戻し処理が不可欠である。焼戻し温度が500℃未満では十分な靱性回復効果が得られず、また、720℃を超えるとフェライトを生成して強度低下を招くため、焼戻し温度は500〜720℃の範囲とすることが好ましい。
Tempering temperature: 500-720 ° C
In order to recover the lattice strain (dislocation) introduced by the martensitic transformation or bainite transformation by the above quenching treatment and to disperse and precipitate C dissolved in supersaturation as cementite to obtain the necessary base material toughness, Tempering is essential. If the tempering temperature is less than 500 ° C, a sufficient toughness recovery effect cannot be obtained. If the tempering temperature exceeds 720 ° C, ferrite is generated and the strength is reduced, so the tempering temperature is preferably in the range of 500 to 720 ° C.

焼戻し時の昇温速度:1℃/sec以上
焼戻し処理での加熱方法は特に限定しないが、平均粒径が50nm以下の微細なセメンタイトを得るため、1℃/sec以上の昇温速度で加熱することが好ましい。セメンタイトを微細とするためには、焼戻し時の昇温速度を3℃/sec以上とすることが好ましく、加熱方法として誘導加熱装置を用いることが適している。
Heating rate during tempering: 1 ° C./sec or higher The heating method in the tempering treatment is not particularly limited, but heating is performed at a temperature rising rate of 1 ° C./sec or more in order to obtain fine cementite having an average particle size of 50 nm or less. It is preferable to do. In order to make cementite fine, it is preferable to set the temperature rising rate during tempering to 3 ° C./sec or more, and it is suitable to use an induction heating apparatus as a heating method.

誘導加熱装置は誘導加熱コイルの形状を被加熱材の形状に応じて設定できるため、鋼管、鋼板でも生産性を落とすことなく急速な加熱処理を行うことが可能である。   Since the induction heating device can set the shape of the induction heating coil in accordance with the shape of the material to be heated, it is possible to perform a rapid heat treatment without reducing productivity even with a steel pipe or a steel plate.

表1に示す化学成分の鋼(鋼種A〜J)を連続鋳造法または真空溶解により鋳片とした後、熱間圧延により板厚16〜25mmの厚鋼板を製造し、鋼板の金属組織および機械的性質(強度)を調査した。鋼種A〜Fの鋼板はいずれも、熱間圧延後、直接焼入れを行い、その後誘導加熱によって600〜680℃で焼戻しを行った。また、鋼種Gの鋼板は、熱間圧延後に630℃まで加速冷却を行い、その後、630℃で2時間の等温加熱処理を行った。鋼種H及び鋼種IはJIS・SCM435及びJIS・SUS316Lに相当する鋼材である。鋼種Jは700℃で熱間圧延を終了し、その後620℃で2時間の等温加熱処理を行い、その後空冷した。   Steel having the chemical composition shown in Table 1 (steel types A to J) was made into a slab by continuous casting or vacuum melting, and then a steel plate having a thickness of 16 to 25 mm was manufactured by hot rolling, and the metal structure and machine of the steel plate Physical properties (strength) were investigated. All the steel types A to F were directly quenched after hot rolling and then tempered at 600 to 680 ° C. by induction heating. Further, the steel sheet of steel type G was subjected to accelerated cooling to 630 ° C. after hot rolling, and then subjected to isothermal heating treatment at 630 ° C. for 2 hours. Steel type H and steel type I are steel materials corresponding to JIS / SCM435 and JIS / SUS316L. Steel type J finished hot rolling at 700 ° C., then was subjected to isothermal heat treatment at 620 ° C. for 2 hours, and then air-cooled.

高圧水素中脆化特性は、これらの鋼板から丸棒引張試験片を採取し、水素圧力が70MPaの高圧水素中での10−6低歪速度の引張試験と大気中での同じ条件の低歪速度の引張試験を実施し、大気中での絞り値に対する高圧水素中での絞り値の比で評価した。これらの試験は常温で行った。高圧水素中の引張試験は、高圧チャンバー内に試験片をセットした後に水素ガスを導入し、70MPaに到達した後直ちに引張試験を開始し、試験中は水素圧力が一定になるようにして試験を実施した。以上の試験において、本発明範囲を大気中での絞り値に対する高圧水素中での絞り値の比:90%以上、大気中での降伏強度≧480MPa、引張強度≧550MPaとした。 The embrittlement characteristics in high-pressure hydrogen were obtained by collecting round bar tensile test specimens from these steel sheets, 10-6 low strain rate tensile test in high-pressure hydrogen with a hydrogen pressure of 70 MPa, and low strain under the same conditions in the atmosphere. A speed tensile test was carried out and evaluated by the ratio of the drawing value in high-pressure hydrogen to the drawing value in air. These tests were performed at room temperature. In the tensile test in high-pressure hydrogen, hydrogen gas is introduced after setting the test piece in the high-pressure chamber, and the tensile test is started immediately after reaching 70 MPa, and the test is performed so that the hydrogen pressure is constant during the test. Carried out. In the above tests, the range of the present invention was set to a ratio of the drawing value in high-pressure hydrogen to the drawing value in the atmosphere: 90% or more, the yield strength in the atmosphere ≧ 480 MPa, and the tensile strength ≧ 550 MPa.

金属組織は光学顕微鏡により主体となる組織を同定し、セメンタイトのサイズ及び形状として平均粒径と平均アスペクト比を透過電子顕微鏡観察による複数視野の写真から、画像解析により求めた。なお、セメンタイト粒径は円相当径として求めた。   As the metal structure, the main structure was identified by an optical microscope, and the average particle size and the average aspect ratio as the size and shape of cementite were obtained from images of multiple fields of view by transmission electron microscope observation and analyzed by image analysis. The cementite particle size was determined as the equivalent circle diameter.

表2に金属組織の観察結果と引張特性及び高圧水素中脆化特性を示す。本発明例である鋼種A〜Eはいずれも、高圧水素中での絞り値の低下がほとんど見られず、水素による脆化が少なく靭性に優れている。   Table 2 shows the observation results of the metal structure, the tensile properties, and the embrittlement properties in high-pressure hydrogen. All of the steel types A to E, which are examples of the present invention, show almost no decrease in the drawing value in high-pressure hydrogen, are less brittle due to hydrogen, and are excellent in toughness.

一方,鋼種Fはセメンタイトが粗大化し、セメンタイトの平均粒径が本発明の範囲を超えているため、高圧水素中での絞り値が低下した。鋼種G及びJは金属組織がフェライト主体となり、Nb、V及びTi等の炭化物が析出するために高強度は得られているが、高圧水素中で絞り値の低下が見られた。   On the other hand, in the steel type F, the cementite was coarsened, and the average particle size of the cementite exceeded the range of the present invention, so that the drawing value in high-pressure hydrogen decreased. In steel types G and J, the metal structure is mainly composed of ferrite, and high strength is obtained because carbides such as Nb, V, and Ti are precipitated, but a reduction in drawing value was observed in high-pressure hydrogen.

鋼種HはSCM435であり、化学成分及び金属組織が本発明範囲外で、高圧水素中で絞り値の低下が見られる。また、鋼種IはSUS316Lであり、高圧水素中での絞り値の低下は見られないが、引張強度が本発明の目標とする550MPaを下回っている。   The steel type H is SCM435, the chemical composition and the metal structure are outside the scope of the present invention, and the reduction of the drawing value is observed in high-pressure hydrogen. Steel type I is SUS316L, and the reduction of the drawing value in high-pressure hydrogen is not observed, but the tensile strength is below the target 550 MPa of the present invention.

Claims (2)

質量%で、C:0.05〜0.12%、Si:0.01〜0.50%、Mn:0.6超〜1.8%、P:0.02%以下、S:0.003%以下、Al:0.01〜0.08%を含有し、残部がFe及び不可避的不純物からなり、金属組織が面積分率90%以上のベイナイト主体組織で、ベイナイト中に平均粒径50nm以下で、平均アスペクト比3以下のセメンタイトが分散析出していることを特徴とする高圧水素貯蔵用鋼材。   In mass%, C: 0.05 to 0.12%, Si: 0.01 to 0.50%, Mn: more than 0.6 to 1.8%, P: 0.02% or less, S: 0.0. 003% or less, Al: 0.01 to 0.08%, the balance is Fe and inevitable impurities, the metal structure is a bainite main structure with an area fraction of 90% or more, and the average particle size is 50 nm in bainite. In the following, a steel material for high-pressure hydrogen storage, wherein cementite having an average aspect ratio of 3 or less is dispersed and precipitated. さらに質量%で、Cr:0.3%以下、Mo:0.3%以下、Cu:0.5%以下、Ni:1.0%以下、Nb:0.005〜0.05%、V:0.01〜0.10%、Ti:0.005〜0.03%、B:0.0005〜0.002%、Ca:0.0005〜0.005%の1種または2種以上を含有することを特徴とする請求項1に記載の高圧水素貯蔵用鋼材。   Furthermore, in mass%, Cr: 0.3% or less, Mo: 0.3% or less, Cu: 0.5% or less, Ni: 1.0% or less, Nb: 0.005 to 0.05%, V: Contains one or more of 0.01 to 0.10%, Ti: 0.005 to 0.03%, B: 0.0005 to 0.002%, Ca: 0.0005 to 0.005% The steel material for high-pressure hydrogen storage according to claim 1, wherein:
JP2011235739A 2010-10-28 2011-10-27 Steel for high-pressure hydrogen storage Active JP5849609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011235739A JP5849609B2 (en) 2010-10-28 2011-10-27 Steel for high-pressure hydrogen storage

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010242129 2010-10-28
JP2010242129 2010-10-28
JP2011235739A JP5849609B2 (en) 2010-10-28 2011-10-27 Steel for high-pressure hydrogen storage

Publications (2)

Publication Number Publication Date
JP2012107332A true JP2012107332A (en) 2012-06-07
JP5849609B2 JP5849609B2 (en) 2016-01-27

Family

ID=46493224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011235739A Active JP5849609B2 (en) 2010-10-28 2011-10-27 Steel for high-pressure hydrogen storage

Country Status (1)

Country Link
JP (1) JP5849609B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156187A1 (en) 2013-03-29 2014-10-02 Jfeスチール株式会社 Steel material and hydrogen container as well as manufacturing methods therefor
WO2014156188A1 (en) 2013-03-29 2014-10-02 Jfeスチール株式会社 Steel structure for hydrogen, and method for manufacturing pressure accumulator for hydrogen and line pipe for hydrogen
KR20170117149A (en) 2015-03-16 2017-10-20 제이에프이 스틸 가부시키가이샤 Composite container Accumulator liner steel material, composite container Accumulator liner steel pipe and composite container Accumulator liner
CN108026619A (en) * 2015-09-17 2018-05-11 杰富意钢铁株式会社 The excellent hydrogen steel structure of hydrogen embrittlement resistance in high pressure hydrogen and its manufacture method
WO2020137812A1 (en) 2018-12-26 2020-07-02 Jfeスチール株式会社 Steel for high pressure hydrogen gas environments, steel structure for high pressure hydrogen gas environments, and method for producing steel for high pressure hydrogen gas environments
US11168375B2 (en) 2016-09-21 2021-11-09 Jfe Steel Corporation Steel pipe or tube for pressure vessels, method of producing steel pipe or tube for pressure vessels, and composite pressure vessel liner
WO2022209896A1 (en) 2021-03-30 2022-10-06 Jfeスチール株式会社 Steel pipe for high-pressure hydrogen, container for high-pressure hydrogen, and method for manufacturing said steel pipe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059132A (en) * 1999-08-19 2001-03-06 Nkk Corp 60 kilo class direct-quenched and tempered steel excellent in weldability and toughness after strain aging
JP2004143555A (en) * 2002-10-25 2004-05-20 Jfe Steel Kk Method for manufacturing steel product for low temperature use having excellent stress corrosion cracking resistance
JP2005002386A (en) * 2003-06-10 2005-01-06 Sumitomo Metal Ind Ltd Steel for use in high-pressure hydrogen environment, steel tube made thereof, and manufacturing method therefor
JP2009242840A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp High-tensile steel excellent in bending workability and low-temperature toughness, and method for manufacturing the same
JP2010236047A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Steel sheet having high toughness and high tensile strength and excellent strength-elongation balance, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059132A (en) * 1999-08-19 2001-03-06 Nkk Corp 60 kilo class direct-quenched and tempered steel excellent in weldability and toughness after strain aging
JP2004143555A (en) * 2002-10-25 2004-05-20 Jfe Steel Kk Method for manufacturing steel product for low temperature use having excellent stress corrosion cracking resistance
JP2005002386A (en) * 2003-06-10 2005-01-06 Sumitomo Metal Ind Ltd Steel for use in high-pressure hydrogen environment, steel tube made thereof, and manufacturing method therefor
JP2009242840A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp High-tensile steel excellent in bending workability and low-temperature toughness, and method for manufacturing the same
JP2010236047A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Steel sheet having high toughness and high tensile strength and excellent strength-elongation balance, and method for manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10106875B2 (en) 2013-03-29 2018-10-23 Jfe Steel Corporation Steel material, hydrogen container, method for producing the steel material, and method for producing the hydrogen container
WO2014156188A1 (en) 2013-03-29 2014-10-02 Jfeスチール株式会社 Steel structure for hydrogen, and method for manufacturing pressure accumulator for hydrogen and line pipe for hydrogen
EP2980247A4 (en) * 2013-03-29 2016-05-11 Jfe Steel Corp Steel structure for hydrogen, and method for manufacturing pressure accumulator for hydrogen and line pipe for hydrogen
AU2014245562B2 (en) * 2013-03-29 2017-02-02 Jfe Steel Corporation Steel structure for hydrogen gas, method for producing hydrogen storage tank, and method for producing hydrogen line pipe
KR101752173B1 (en) 2013-03-29 2017-06-29 제이에프이 스틸 가부시키가이샤 Steel structure for hydrogen gas, method for producing hydrogen storage tank, and method for producing hydrogen line pipe
WO2014156187A1 (en) 2013-03-29 2014-10-02 Jfeスチール株式会社 Steel material and hydrogen container as well as manufacturing methods therefor
US10697036B2 (en) 2015-03-16 2020-06-30 Jfe Steel Corporation Steel material for composite pressure vessel liner and steel pipe or tube for composite pressure vessel liner
KR20170117149A (en) 2015-03-16 2017-10-20 제이에프이 스틸 가부시키가이샤 Composite container Accumulator liner steel material, composite container Accumulator liner steel pipe and composite container Accumulator liner
CN108026619A (en) * 2015-09-17 2018-05-11 杰富意钢铁株式会社 The excellent hydrogen steel structure of hydrogen embrittlement resistance in high pressure hydrogen and its manufacture method
KR20200038327A (en) 2015-09-17 2020-04-10 제이에프이 스틸 가부시키가이샤 Steel structure for hydrogen gas with excellent hydrogen embrittlement resistance in high pressure hydrogen gas and method of producing the same
US11168375B2 (en) 2016-09-21 2021-11-09 Jfe Steel Corporation Steel pipe or tube for pressure vessels, method of producing steel pipe or tube for pressure vessels, and composite pressure vessel liner
WO2020137812A1 (en) 2018-12-26 2020-07-02 Jfeスチール株式会社 Steel for high pressure hydrogen gas environments, steel structure for high pressure hydrogen gas environments, and method for producing steel for high pressure hydrogen gas environments
KR20210094029A (en) 2018-12-26 2021-07-28 제이에프이 스틸 가부시키가이샤 Steel for high-pressure hydrogen gas environment, steel structure for high-pressure hydrogen gas environment, and method for manufacturing steel for high-pressure hydrogen gas environment
WO2022209896A1 (en) 2021-03-30 2022-10-06 Jfeスチール株式会社 Steel pipe for high-pressure hydrogen, container for high-pressure hydrogen, and method for manufacturing said steel pipe
KR20230145592A (en) 2021-03-30 2023-10-17 제이에프이 스틸 가부시키가이샤 Steel pipe for high-pressure hydrogen, container for high-pressure hydrogen, and manufacturing method of the steel pipe

Also Published As

Publication number Publication date
JP5849609B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
JP5842537B2 (en) High-strength steel for high-pressure hydrogen storage containers
JP6064955B2 (en) Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking
JP5494167B2 (en) Cryogenic steel plate and manufacturing method thereof
JP6589535B2 (en) Low temperature thick steel plate and method for producing the same
JP5849609B2 (en) Steel for high-pressure hydrogen storage
JP5958450B2 (en) Low-alloy high-strength seamless steel pipe with excellent resistance to sulfide stress corrosion cracking and its manufacturing method
JP5494166B2 (en) Cryogenic steel plate and manufacturing method thereof
WO2010087511A1 (en) Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
WO2017047099A1 (en) Steel structure for hydrogen which exhibits excellent hydrogen embrittlement resistance properties in high-pressure hydrogen gas, and method for producing same
EP2128294B1 (en) Base metal for clad steel plate having high strength and excellent toughness in welding heat-affected zone, and method of producing the same
JP5499731B2 (en) Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same
JP2017155300A (en) Thick steel sheet for low temperature and manufacturing method therefor
WO2020137812A1 (en) Steel for high pressure hydrogen gas environments, steel structure for high pressure hydrogen gas environments, and method for producing steel for high pressure hydrogen gas environments
JP6160574B2 (en) High-strength hot-rolled steel sheet excellent in strength-uniform elongation balance and method for producing the same
JP6492862B2 (en) Low temperature thick steel plate and method for producing the same
CA3094517C (en) A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
JP4344919B2 (en) High strength steel plate excellent in weldability without preheating, its manufacturing method and welded steel structure
JP5176847B2 (en) Low yield ratio low temperature steel and method for producing the same
JP6225795B2 (en) Manufacturing method of thick high-strength seamless steel pipe for line pipe with excellent resistance to sulfide stress corrosion cracking
JP4507730B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JPWO2021117382A1 (en) Steel plate and its manufacturing method
JP6519025B2 (en) Low alloy high strength seamless steel pipe for oil well
WO2023162571A1 (en) Steel plate and method for manufacturing same
WO2023162507A1 (en) Steel sheet and method for producing same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5849609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250