JP6160574B2 - High-strength hot-rolled steel sheet excellent in strength-uniform elongation balance and method for producing the same - Google Patents
High-strength hot-rolled steel sheet excellent in strength-uniform elongation balance and method for producing the same Download PDFInfo
- Publication number
- JP6160574B2 JP6160574B2 JP2014155733A JP2014155733A JP6160574B2 JP 6160574 B2 JP6160574 B2 JP 6160574B2 JP 2014155733 A JP2014155733 A JP 2014155733A JP 2014155733 A JP2014155733 A JP 2014155733A JP 6160574 B2 JP6160574 B2 JP 6160574B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- hot
- strength
- phase
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 91
- 239000010959 steel Substances 0.000 title claims description 91
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 229910001566 austenite Inorganic materials 0.000 claims description 65
- 238000001816 cooling Methods 0.000 claims description 43
- 230000000717 retained effect Effects 0.000 claims description 37
- 239000000203 mixture Substances 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 25
- 238000005098 hot rolling Methods 0.000 claims description 19
- 229910052759 nickel Inorganic materials 0.000 claims description 18
- 229910001563 bainite Inorganic materials 0.000 claims description 16
- 229910052802 copper Inorganic materials 0.000 claims description 16
- 238000005096 rolling process Methods 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 15
- 229910052804 chromium Inorganic materials 0.000 claims description 14
- 229910001568 polygonal ferrite Inorganic materials 0.000 claims description 14
- 229910052748 manganese Inorganic materials 0.000 claims description 13
- 229910052750 molybdenum Inorganic materials 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 229910000734 martensite Inorganic materials 0.000 claims description 11
- 229910001562 pearlite Inorganic materials 0.000 claims description 11
- 229910052720 vanadium Inorganic materials 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 8
- 230000035945 sensitivity Effects 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 230000000694 effects Effects 0.000 description 15
- 230000009466 transformation Effects 0.000 description 13
- 229910000859 α-Fe Inorganic materials 0.000 description 12
- 239000013078 crystal Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 229910001567 cementite Inorganic materials 0.000 description 4
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000005336 cracking Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910000794 TRIP steel Inorganic materials 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- -1 Mo: 0.5% or less Substances 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005279 austempering Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、溶接構造物、とくに優れた耐震性が要求される建築構造物、海洋構造物、パイプライン等の溶接構造物部材用として好適な、高強度熱延鋼板に係り、とくに優れた溶接性と高変形能とを具備する高強度熱延鋼板に関する。 The present invention relates to a high-strength hot-rolled steel sheet suitable for use in welded structures, particularly welded structures such as building structures, marine structures, and pipelines that require excellent earthquake resistance, and particularly excellent welding. The present invention relates to a high-strength hot-rolled steel sheet having high properties and high deformability.
近年、建築構造物、海洋構造物、パイプライン等の使途に用いられる溶接構造用鋼材には、高強度化、高靭性化が強く要求されてきた。さらに最近では、強度・靭性の向上に加えて、耐震性向上という観点から、鋼材には、降伏比の低減や均一伸びの向上が要求されるようになっている。 In recent years, high strength and high toughness have been strongly demanded for steel materials for welded structures used for building structures, offshore structures, pipelines and the like. In recent years, in addition to improving strength and toughness, steel materials have been required to reduce yield ratio and improve uniform elongation from the viewpoint of improving earthquake resistance.
このような要求に対し、例えば、特許文献1には、質量%で、C:0.03〜0.08%、Si:0.01〜0.5%、Mn:1.2〜2.0%、Mo:0.05〜0.4%、Cu+Ni:0.1%以上、Ti:0.005〜0.04%、Nb:0.005〜0.07%、Al:0.08%以下を含む組成の鋼を、1000〜1300℃の温度に加熱し、Ar3温度以上の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で500〜650℃まで加速冷却を行い、その後0.5℃/s以上の昇温速度で550〜750℃まで再加熱を行い、金属組織がフェライトとベイナイトと島状マルテンサイトの3相組織であり、体積分率が3〜15%の島状マルテンサイトと体積分率が2%以上の残留オーステナイトを含む組織で、長手方向の一様伸びが12%以上である鋼板とする、低降伏比高強度高靭性鋼板の製造方法が記載されている。特許文献1に記載された技術によれば、溶接熱影響部靭性を劣化させたり、多量の合金元素を添加することなく、高い一様伸びを備えた低降伏比高強度高靭性鋼板を得ることができるとしている。 In response to such a requirement, for example, Patent Document 1 includes mass%, C: 0.03-0.08%, Si: 0.01-0.5%, Mn: 1.2-2.0%, Mo: 0.05-0.4%, Cu + Ni: 0.1. %, Ti: 0.005 to 0.04%, Nb: 0.005 to 0.07%, Al: Steel containing 0.08% or less is heated to a temperature of 1000 to 1300 ° C and hot at the rolling end temperature of Ar 3 or higher. After rolling, accelerated cooling to 500 to 650 ° C at a cooling rate of 5 ° C / s or higher, and then reheating to 550 to 750 ° C at a heating rate of 0.5 ° C / s or higher, the metal structure becomes ferrite and bainite. Is a three-phase structure of island martensite, a structure containing island martensite with a volume fraction of 3-15% and residual austenite with a volume fraction of 2% or more, with a uniform elongation of 12% in the longitudinal direction. The manufacturing method of the low yield ratio high strength high toughness steel plate which is the above steel plate is described. According to the technique described in Patent Document 1, it is possible to obtain a low yield ratio high strength high toughness steel sheet having a high uniform elongation without deteriorating the weld heat affected zone toughness or adding a large amount of alloying elements. I can do it.
また、特許文献2には、質量%で、C:0.02〜0.15%、Si:0.1〜2.0%、Mn:0.5〜2.5%、Al:0.01〜0.1%、N:0.01%以下を含み、Nb:0.01%以下、V:0.1%以下、Ti:0.1%以下の1種または2種以上を含む組成のスラブを、1050℃以上に加熱後、再結晶温度以上で粗圧延を行い、その後、Ar3以上900℃以下で累積圧下量が65%以上の仕上圧延を行ない、Ar3以上の温度から5℃/s以上で冷却し、Ts=780−270×C−90×Mn−37×Ni−70×Cr−83×Moで表されるTsと関連して、Ts−50℃〜Ts+100℃の範囲で30〜300s保持したのち、20℃/s以上で350〜450℃の温度まで冷却し、放冷した鋼板を、冷間成形し中空形状とし、シーム溶接して、平均結晶粒径が10μm以下、面積率で70〜90%のフェライトと残部が残留オーステナイト、ベイナイトおよびマルテンサイトからなるミクロ組織を有し、残留オーステナイトが体積分率で5〜15%である高強度鋼管とする高強度鋼管の製造方法が記載されている。特許文献2に記載された技術によれば、圧縮および曲げによる耐座屈特性に優れ、かつ低温靭性にも優れた高強度鋼管が得られるとしている。 Patent Document 2 includes, in mass%, C: 0.02 to 0.15%, Si: 0.1 to 2.0%, Mn: 0.5 to 2.5%, Al: 0.01 to 0.1%, N: 0.01% or less, Nb: A slab having a composition containing one or more of 0.01% or less, V: 0.1% or less, Ti: 0.1% or less is heated to 1050 ° C. or higher, and then roughly rolled at a recrystallization temperature or higher, and then Ar 3 Finish rolling with a cumulative reduction of 65% or more at a temperature of 900 ° C or less, cooling at a temperature of 5 ° C / s or more from a temperature of Ar 3 or more, and Ts = 780−270 × C−90 × Mn−37 × Ni−70 In relation to Ts represented by × Cr−83 × Mo, hold for 30 to 300 s in the range of Ts-50 ° C to Ts + 100 ° C, then cool to 350 ° C to 450 ° C at 20 ° C / s or more and release. A cold steel sheet is cold formed into a hollow shape, and seam welded to form a microstructure composed of ferrite with an average crystal grain size of 10 μm or less and an area ratio of 70 to 90% and the balance of retained austenite, bainite, and martensite. Yes , The method of producing a high strength steel pipe retained austenite and high strength steel pipe is 5-15% by volume fraction is described. According to the technique described in Patent Document 2, a high-strength steel pipe excellent in buckling resistance due to compression and bending and excellent in low-temperature toughness is obtained.
また、非特許文献1には、残留オーステナイトを活用したTRIP(加工誘起変態塑性)鋼板についての報告が記載されている。 Non-Patent Document 1 describes a report on a TRIP (work-induced transformation plasticity) steel sheet utilizing retained austenite.
非特許文献1に記載された技術では、C:0.2%、Si:1.5%、Mn:1.5%、Nb:0.05%を含み、さらにNi、Cr、Moを添加した組成のベイニティックフェライト鋼をオーステナイト化したのち、急冷しMs〜Mf間で保持する(オーステンパーする)ことにより、HV430までの硬さ増加が認められ、さらにNi、Cr、Moの添加により残留オーステナイト量が増加し、しかも歪に対してTRIP効果を得るに十分な安定性を有しているとしている。 In the technology described in Non-Patent Document 1, bainitic ferritic steel having a composition containing C: 0.2%, Si: 1.5%, Mn: 1.5%, Nb: 0.05% and further adding Ni, Cr, and Mo is used. After austenitizing, quenching and holding between Ms and Mf (austempering) increases the hardness up to HV430, and addition of Ni, Cr, Mo increases residual austenite and strain. It is said that it has sufficient stability to obtain the TRIP effect.
特許文献1に記載された技術では、金属組織を、軟質相であるフェライト組織中に、ベイナイト相と島状マルテンサイト相とを分散させた3相組織とし、島状マルテンサイトの体積分率を3〜15%とすることにより、低降伏比と高均一伸びを達成している。しかしながら、特許文献1の実施例で示されるように、得られる、引張強さ−均一伸びバランス(TS×uEL)の値は、高々9000MPa%程度以下である。 In the technique described in Patent Document 1, the metal structure is a three-phase structure in which a bainite phase and an island martensite phase are dispersed in a ferrite structure that is a soft phase, and the volume fraction of island martensite is determined. By setting the content to 3 to 15%, a low yield ratio and a high uniform elongation are achieved. However, as shown in the Examples of Patent Document 1, the obtained tensile strength-uniform elongation balance (TS × uEL) value is at most about 9000 MPa% or less.
また、非特許文献1に記載された技術では、0.2%C−1.5%Si−1.5%Mn−0.05%Nb系鋼でのNi、Cr、Moの添加は歪に対する安定性に影響することなく残留オーステナイト量の増加に寄与するとしているが、しかし、非特許文献1に記載された鋼材は、CやSiが高い組成で、溶接割れ感受性指数PCMが0.25%を超えており、溶接性に問題を残していた。さらに、非特許文献1に記載された技術では、等温保持と急冷を組み合わせた工程を施す必要があり、熱延ラインにおけるような実操業では、ライン構成上、十分な等温保持時間を確保できないため、冷却過程で生成した残留オーステナイトが、コイル状に巻き取ったのちにパーライトやベイナイトへと分解しやすく、所望の金属組織を確保できにくいという問題があった。 In addition, in the technique described in Non-Patent Document 1, addition of Ni, Cr, and Mo in 0.2% C-1.5% Si-1.5% Mn-0.05% Nb-based steel remains without affecting the stability against strain. While a contributing to an increase in the amount of austenite, however, the steel described in non-Patent Document 1 is a C or Si is higher composition, weld cracking sensitivity index P CM is above 0.25%, a problem in weldability Was leaving. Furthermore, in the technique described in Non-Patent Document 1, it is necessary to perform a process combining isothermal holding and rapid cooling, and in an actual operation such as in a hot rolling line, a sufficient isothermal holding time cannot be ensured on the line configuration. In addition, there is a problem that the retained austenite generated in the cooling process is easily decomposed into pearlite or bainite after being wound in a coil shape, and it is difficult to secure a desired metal structure.
また、特許文献2に記載された技術では、等温保持と急冷とを組み合わせた工程とする必要があり、非特許文献1に記載された技術と同様に、熱延ラインにおけるような実操業では、ライン構成上、十分な等温保持時間を確保できないため、冷却過程で生成した残留オーステナイトが、コイル状に巻き取ったのちにパーライトやベイナイトへと分解しやすく、所望の金属組織を確保できにくいという問題があった。 Moreover, in the technique described in Patent Document 2, it is necessary to set a process that combines isothermal holding and rapid cooling. Like the technique described in Non-Patent Document 1, in the actual operation as in the hot rolling line, Due to the line configuration, because sufficient isothermal holding time cannot be secured, the retained austenite generated during the cooling process is easily decomposed into pearlite and bainite after being wound in a coil shape, making it difficult to secure the desired metal structure. was there.
本発明は、かかる従来技術の問題を有利に解決し、溶接性に優れ溶接構造用鋼材として適用できる、強度−均一伸びバランスに優れた高強度熱延鋼板およびその製造方法を提供することを目的とする。 It is an object of the present invention to provide a high-strength hot-rolled steel sheet excellent in strength-uniform elongation balance and a method for producing the same, which advantageously solves the problems of the prior art and can be applied as a steel material for welded structures with excellent weldability. And
なお、ここでいう「高強度」とは、引張強さTS:500MPa以上である場合をいう。また、ここでいう「高変形能」とは、不均一変形に至るまでの変形エネルギー吸収能が高いことを指し、具体的には、引張強さ(TS)と均一伸び(uEL)の積(強度−均一伸びバランス)TS×uELが12000MPa%以上である場合を言う。 Here, “high strength” refers to a case where the tensile strength TS is 500 MPa or more. The term “high deformability” as used herein refers to a high ability to absorb deformation energy up to non-uniform deformation. Specifically, the product of tensile strength (TS) and uniform elongation (uEL) ( (Strength-uniform elongation balance) This is the case where TS x uEL is 12000 MPa% or more.
また、「優れた溶接性を有する」とは、PCM(= C + Si/30 + Mn/20 + Cu/20 + Ni/60 + Cr/20 + Mo/15 + V/10 + 5B)が0.25以下である場合をいう。 Also, "having excellent weldability", P CM (= C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B) is The case where it is 0.25 or less.
本発明者らは、上記した目的を達成するために、製造効率に優れる熱延ラインの適用を前提として、強度−均一伸びバランスに及ぼす、組成および製造条件の影響について鋭意研究した。その結果、従来のTRIP鋼並みに優れた強度−均一伸びバランスを確保するためには、残留オーステナイト量を所定範囲内に調整しておく必要があることを知見した。 In order to achieve the above-mentioned object, the present inventors diligently studied the influence of the composition and production conditions on the strength-uniform elongation balance on the premise of application of a hot rolling line excellent in production efficiency. As a result, it has been found that it is necessary to adjust the retained austenite amount within a predetermined range in order to ensure a strength-uniform elongation balance as good as that of conventional TRIP steel.
強度−均一伸びバランスと残留オーステナイト量との関係を図1に示す。図1から、TS×uELが目標とする12000MPa%以上を確保するためには、残留オーステナイト量は3〜20%の範囲に調整することが好ましいことがわかる。 The relationship between the strength-uniform elongation balance and the amount of retained austenite is shown in FIG. FIG. 1 shows that the retained austenite amount is preferably adjusted to a range of 3 to 20% in order to ensure TS × uEL of 12000 MPa% or more.
このような残留オーステナイト量を、熱延ラインを使用し、しかも鋼板冷却工程での中間保持プロセスを省略して確保するためには、母材組織(面積率で70%以上の占有率を有する主相)として、ポリゴナルフェライトとすることがよいことに思い至った。ポリゴナルフェライトは、鋼板冷却工程での中間保持プロセスを省略しても生成でき、しかも、(圧延方向の結晶粒平均長さ)/(板厚方向の結晶粒平均長さ)で表されるアスペクト比が1.40以下となる母材組織とすることにより、図2に示すように、残留オーステナイトが安定して確保できることも見出した。 In order to secure such a retained austenite amount by using a hot rolling line and omitting the intermediate holding process in the steel plate cooling step, the base material structure (main area having an occupation ratio of 70% or more in area ratio) is obtained. As a phase), it has been thought that it is better to use polygonal ferrite. Polygonal ferrite can be produced even if the intermediate holding process in the steel sheet cooling step is omitted, and the aspect expressed by (average grain length in the rolling direction) / (average grain length in the plate thickness direction). It has also been found that residual austenite can be stably secured as shown in FIG.
このようなポリゴナルフェライトは、拡散を伴いながら生成する高温変態フェライトであり、変態が進行する過程でCが未変態オーステナイトへと排出される。しかも、温度低下により、新たな核生成や変態の更なる進行も可能であり、未変態オーステナイトへのC濃縮が進行し、未変態オーステナイトを安定化させることができる。一方、ベイニティックフェライトやベイナイトは低温で変態するため、中間保持プロセスを省略すると、変態に伴うC排出と未変態オーステナイトへのC濃縮が不十分となり、未変態オーステナイトは安定せず、冷却後の巻取工程でパーライトもしくはベイナイトへ変態し、安定した残留オーステナイト量を確保することができなくなる。 Such polygonal ferrite is high-temperature transformation ferrite that is produced with diffusion, and C is discharged into untransformed austenite in the process of transformation. In addition, new nucleation and further progress of transformation are possible due to the temperature decrease, and C concentration to untransformed austenite proceeds to stabilize untransformed austenite. On the other hand, bainitic ferrite and bainite are transformed at low temperatures, so if the intermediate holding process is omitted, the C emission accompanying transformation and C concentration to untransformed austenite become insufficient, and untransformed austenite is not stable, and after cooling In this winding process, it is transformed into pearlite or bainite, and a stable amount of retained austenite cannot be secured.
また、本発明者らは、このようなポリゴナルフェライト変態を促進するという観点から、従来、利用されていたSiの多量含有に代えて、フェライト形成元素であるCrを活用し、さらにMnやMoなど鋼の焼入性を高める元素を組み合わせることが有効であることを見出した。 In addition, from the viewpoint of promoting such polygonal ferrite transformation, the present inventors utilized Cr, which is a ferrite forming element, instead of a large amount of Si conventionally used, and further Mn and Mo It has been found effective to combine elements that enhance the hardenability of steel.
本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.04〜0.15%、Si:0.10〜0.50%、Mn:1.0〜2.2%、P:0.050%以下、S:0.005%以下、Cr:0.2〜1.0%、Ti:0.005〜0.030%、Al:0.010〜0.050%を、次(1)式
PCM=C + Si/30 + Mn/20 + Cu/20 + Ni/60 + Cr/20 + Mo/15 + V/10 + 5B‥‥(1)
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%))
で定義される溶接割れ感受性指数PCMが0.25%以下を満足するように調整して含み、残部Fe及び不可避的不純物からなる組成と、ポリゴナルフェライト相を主相とし、該主相と、面積率で3〜20%の残留オーステナイト相と、残部が面積率で10%以下(0%を含む)のマルテンサイト相、ベイナイト相、パーライトのうちの1種又は2種以上とからなり、主相および他の相を含む平均粒径が5μm以上で、アスペクト比が1.40以下である組織と、を有し、強度−均一伸びバランスに優れることを特徴とする高強度熱延鋼板。
(2)(1)において、前記組成に加えてさらに、質量%で、Mo:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、Co:1.0%以下のうちから選ばれた1種または2種以上を含むことを特徴とする高強度熱延鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Nb:0.10%以下、V:0.10%以下のうちから選ばれた1種または2種を含むことを特徴とする高強度熱延鋼板。
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.0005〜0.0050%を含むことを特徴とする高強度熱延鋼板。
(5)鋼素材に、熱間圧延を施して熱延板としたのち冷却を施す熱延鋼板の製造方法であって、前記鋼素材を、質量%で、C:0.04〜0.15%、Si:0.10〜0.50%、Mn:1.0〜2.2%、P:0.050%以下、S:0.005%以下、Cr:0.2〜1.0%、Ti:0.005〜0.030%、Al:0.010〜0.050%を、次(1)式
PCM = C + Si/30 + Mn/20 + Cu/20 + Ni/60 + Cr/20 + Mo/15 + V/10 + 5B‥‥(1)
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%))
で定義される溶接割れ感受性指数PCMが0.25%以下を満足するように調整して含み、残部Fe及び不可避的不純物からなる組成を有する鋼素材とし、前記熱間圧延を、前記鋼素材を加熱温度:1100〜1250℃の範囲の温度に加熱したのち行う圧延とし、前記冷却を、前記熱間圧延の圧延最終パスを出た時刻を起点(零)として起点から20〜80sの間のいずれかの時間で、前記熱延板の温度が板厚中央部で750℃〜650℃の範囲内にあり、前記起点から80sを経過する以前に前記熱延板の温度が板厚中央部で650℃を下回り、冷却停止温度:600〜450℃の温度域の温度で冷却停止する冷却とし、該冷却後、コイル状に巻き取り、ポリゴナルフェライト相を主相とし、該主相と、面積率で3〜20%の残留オーステナイト相と、残部が面積率で10%以下(0%を含む)のマルテンサイト相、ベイナイト相、パーライトのうちの1種又は2種以上とからなり、主相および他の相を含む平均粒径が5μm以上で、アスペクト比が1.40以下である組織を有する熱延鋼板とすることを特徴とする強度−均一伸びバランスに優れた高強度熱延鋼板の製造方法。
(6)(5)において、前記組成に加えてさらに、質量%で、Mo:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、Co:1.0%以下のうちから選ばれた1種または2種以上を含むことを特徴とする高強度熱延鋼板の製造方法。
(7)(5)または(6)において、前記組成に加えてさらに、質量%で、Nb:0.10%以下、V:0.10%以下のうちから選ばれた1種または2種を含むことを特徴とする高強度熱延鋼板の製造方法。
(8)(5)ないし(7)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.0005〜0.0050%を含むことを特徴とする高強度熱延鋼板の製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.04 to 0.15%, Si: 0.10 to 0.50%, Mn: 1.0 to 2.2%, P: 0.050% or less, S: 0.005% or less, Cr: 0.2 to 1.0%, Ti: 0.005 ~ 0.030%, Al: 0.010 ~ 0.050%, the following formula (1)
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: Content of each element (mass%))
In comprising Adjust so defined as weld crack sensitivity index P CM satisfies 0.25% or less, and a composition comprising the balance Fe and unavoidable impurities, the polygonal ferrite phase as a main phase, a main phase, the area The main phase is composed of 3-20% residual austenite phase and the balance is 10% or less (including 0%) of martensite phase, bainite phase, or pearlite. and an average particle size including another phase 5μm or more, has a tissue aspect ratio of below 1.40 or less, the strength - high-strength hot-rolled steel sheet, characterized in that excellent uniform elongation balance.
(2) In (1), in addition to the above-mentioned composition, by mass%, Mo: 0.5% or less, Cu: 0.5% or less, Ni: 1.0% or less, Co: 1.0% or less Alternatively, a high-strength hot-rolled steel sheet comprising two or more types.
(3) In (1) or (2), in addition to the above-mentioned composition, the composition further comprises one or two selected from Nb: 0.10% or less and V: 0.10% or less in mass%. High strength hot rolled steel sheet.
(4) In any one of (1) to (3), a high-strength hot-rolled steel sheet containing Ca: 0.0005 to 0.0050% by mass% in addition to the above composition.
(5) A method for producing a hot-rolled steel sheet, in which a steel material is hot-rolled into a hot-rolled sheet and then cooled, and the steel material is, in mass%, C: 0.04 to 0.15%, Si: 0.10 to 0.50%, Mn: 1.0 to 2.2%, P: 0.050% or less, S: 0.005% or less, Cr: 0.2 to 1.0%, Ti: 0.005 to 0.030%, Al: 0.010 to 0.050%, (1) formula
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: Content of each element (mass%))
In comprising Adjust so defined as weld crack sensitivity index P CM satisfies 0.25% or less, and a steel material having a composition the balance being Fe and unavoidable impurities, said hot rolling, heating the steel material Temperature: Rolling is performed after heating to a temperature in the range of 1100 to 1250 ° C., and the cooling is any time between 20 to 80 s from the starting point, starting from the time when the final pass of the hot rolling is taken (zero) The temperature of the hot-rolled sheet is in the range of 750 ° C. to 650 ° C. at the central part of the thickness, and the temperature of the hot-rolled sheet is 650 ° C. at the central part of the thickness before 80 seconds from the starting point. the below, the cooling stop temperature: 600 to 450 and cooled to cooling stop at a temperature of temperature range ° C., after the cooling, Ri taken up into a coil shape, and a polygonal ferrite phase as a main phase, a main phase, the area ratio 3-20% residual austenite phase and the balance is 10% or less (including 0%) A hot-rolled steel sheet comprising one or more of an incite phase, a bainite phase, and pearlite, and having a structure in which an average grain size including a main phase and other phases is 5 μm or more and an aspect ratio is 1.40 or less strength and said to Rukoto - the method of producing a high-strength hot-rolled steel sheet excellent in uniform elongation balance.
(6) In (5), in addition to the above composition, in addition to mass, Mo: 0.5% or less, Cu: 0.5% or less, Ni: 1.0% or less, Co: 1.0% or less Or the manufacturing method of the high intensity | strength hot-rolled steel plate characterized by including 2 or more types.
(7) In (5) or (6), in addition to the above-mentioned composition, the composition further includes one or two selected from Nb: 0.10% or less and V: 0.10% or less in mass%. A method for producing a high-strength hot-rolled steel sheet.
(8) The method for producing a high-strength hot-rolled steel sheet according to any one of (5) to (7), further including Ca: 0.0005 to 0.0050% by mass% in addition to the above composition.
本発明によれば、溶接性に優れ溶接構造用鋼材として適用できる、引張強さTS:500MPa以上で、かつ強度−均一伸びバランスTS×uELが12000MPa%以上となる、高変形能を有する高強度熱延鋼板を、容易にしかも安価に製造でき、産業上格段の効果を奏する。 According to the present invention, it is excellent in weldability and can be applied as a steel material for welded structures. Tensile strength TS: 500 MPa or more and strength-uniform elongation balance TS × uEL is 12000 MPa% or more. A hot-rolled steel sheet can be manufactured easily and inexpensively, and has a remarkable industrial effect.
まず、本発明熱延鋼板の組成限定理由について説明する。以下、組成における質量%は、単に%で記す。 First, the reasons for limiting the composition of the hot-rolled steel sheet of the present invention will be described. Hereinafter, the mass% in the composition is simply expressed as%.
本発明熱延鋼板は、C:0.04〜0.15%、Si:0.10〜0.50%、Mn:1.0〜2.2%、P:0.050%以下、S:0.005%以下、Cr:0.2〜1.0%、Ti:0.005〜0.030%、Al:0.010〜0.050%を、次(1)式
PCM= C + Si/30 + Mn/20 + Cu/20 + Ni/60 + Cr/20 + Mo/15 + V/10 + 5B‥‥(1)
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%))
で定義される溶接割れ感受性指数PCMが0.25%以下を満足するように調整して含み、残部Fe及び不可避的不純物からなる組成を有する。
The hot-rolled steel sheet of the present invention is C: 0.04-0.15%, Si: 0.10-0.50%, Mn: 1.0-2.2%, P: 0.050% or less, S: 0.005% or less, Cr: 0.2-1.0%, Ti: 0.005 ~ 0.030%, Al: 0.010 ~ 0.050%, the following formula (1)
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: Content of each element (mass%))
In weld crack sensitivity index P CM defined includes adjusted so as to satisfy the following 0.25%, having a composition the balance being Fe and unavoidable impurities.
C:0.04〜0.15%
Cは、固溶してオーステナイトの安定化に寄与する元素であり、残留オーステナイトを得るために必須の元素である。Cは、高温からの冷却時におけるオーステナイトからフェライトへの変態に際し、フェライトから未変態オーステナイトへ排出される。排出されたCが、未変態オーステナイトを安定化して、少なくとも常温で、残留オーステナイトとして安定に存在させる。このような効果を得るためには、0.04%以上の含有を必要とする。一方、0.15%を超えて含有すると、溶接性が低下する。このため、Cは0.04〜0.15%の範囲に限定した。なお、好ましくは0.06〜0.12%、より好ましくは0.08〜0.12%である。
C: 0.04-0.15%
C is an element that contributes to the stabilization of austenite by forming a solid solution, and is an essential element for obtaining retained austenite. C is discharged from ferrite to untransformed austenite during the transformation from austenite to ferrite during cooling from a high temperature. The discharged C stabilizes the untransformed austenite and stably exists as retained austenite at least at room temperature. In order to obtain such an effect, a content of 0.04% or more is required. On the other hand, if it exceeds 0.15%, the weldability decreases. For this reason, C was limited to the range of 0.04 to 0.15%. In addition, Preferably it is 0.06 to 0.12%, More preferably, it is 0.08 to 0.12%.
Si:0.10〜0.50%
Siは、脱酸剤として作用するとともに、熱間圧延時のスケール形成を抑制し、スケールオフ量の低減に寄与する元素である。このような効果を得るためには、0.10%以上の含有を必要とする。一方、0.50%を超える含有は、靭性を低下させる。このため、Siは0.10〜0.50%の範囲に限定した。なお、好ましくは0.10〜0.30%である。また、Siは、セメンタイト析出を抑制して、残留オーステナイトの生成に大きく寄与する元素で、従来は1.0%以上含有して、所望の残留オーステナイト量を確保して、所望の特性(加工誘起変態塑性)を確保していた。しかし、本発明では、低温靭性、溶接性の向上という観点から、Siのこのような効果を利用することはない。
Si: 0.10 to 0.50%
Si is an element that acts as a deoxidizer, suppresses scale formation during hot rolling, and contributes to a reduction in scale-off amount. In order to obtain such an effect, the content of 0.10% or more is required. On the other hand, the content exceeding 0.50% lowers toughness. For this reason, Si was limited to the range of 0.10 to 0.50%. In addition, Preferably it is 0.10 to 0.30%. Si is an element that suppresses cementite precipitation and greatly contributes to the formation of retained austenite. Conventionally, it is contained at 1.0% or more to ensure the desired amount of retained austenite and to achieve desired properties (work-induced transformation plasticity). ) Was secured. However, in the present invention, such an effect of Si is not utilized from the viewpoint of improving low temperature toughness and weldability.
Mn:1.0〜2.2%
Mnは、オーステナイトの安定性を高め、オーステナイトのパーライトやベイナイトへの分解を抑制する元素であり、このような効果を確保するためには、Mnを1.0%以上含有する必要がある。一方、2.2%を超える過度の含有は、オーステナイトが安定化し、高温変態フェライトの生成が抑制され、Cの未変態オーステナイトへの排出・濃縮が妨げられる。このようなことから、Mnは1.0〜2.2%の範囲に限定した。なお、好ましくは1.2〜1.6%である。
Mn: 1.0-2.2%
Mn is an element that enhances the stability of austenite and suppresses the decomposition of austenite into pearlite or bainite. In order to secure such an effect, it is necessary to contain 1.0% or more of Mn. On the other hand, an excessive content exceeding 2.2% stabilizes austenite, suppresses the formation of high-temperature transformed ferrite, and prevents C from being discharged and concentrated into untransformed austenite. For these reasons, Mn is limited to a range of 1.0 to 2.2%. In addition, Preferably it is 1.2 to 1.6%.
P:0.050%以下
Pは、粒界に偏析して靭性を低下させる元素であり、本発明では不純物としてできるだけ低減することが望ましいが、0.050%までは許容できる。このため、Pは0.050%以下に限定した。なお、好ましくは0.030%以下である。一方、過度のP低減は、精錬コストの高騰を招く。このため、0.002%以上とすることが好ましい。
P: 0.050% or less
P is an element that segregates at the grain boundary and lowers the toughness. In the present invention, P is preferably reduced as much as possible, but it is acceptable up to 0.050%. For this reason, P was limited to 0.050% or less. In addition, Preferably it is 0.030% or less. On the other hand, excessive P reduction leads to an increase in refining costs. For this reason, it is preferable to set it as 0.002% or more.
S:0.005%以下
Sは、鋼中では通常、MnSとして存在するが、MnSは、熱間圧延工程で薄く延伸され、延性、靭性に悪影響を及ぼす。このため、本発明ではSはできるだけ低減することが望ましいが、0.005%までは許容できる。このため、Sは0.005%以下に限定した。なお、好ましくは0.003%以下である。一方、過度のS低減は、精錬コストの高騰を招くため、0.0002%以上とすることがより好ましい。
S: 0.005% or less
S is usually present as MnS in steel, but MnS is stretched thinly in the hot rolling process, which adversely affects ductility and toughness. Therefore, in the present invention, it is desirable to reduce S as much as possible, but up to 0.005% is acceptable. For this reason, S was limited to 0.005% or less. In addition, Preferably it is 0.003% or less. On the other hand, excessive S reduction leads to an increase in refining costs, so 0.0002% or more is more preferable.
Cr:0.2〜1.0%
Crは、未変態オーステナイト中のセメンタイトの析出を抑制する働きがあり、残留オーステナイトの生成に大きく寄与する元素で、本発明では重要な元素である。このような効果を得るためには、0.2%以上含有する必要がある。一方、1.0%を超える過度の含有は、溶接性を低下させる。このため、Crは0.2〜1.0%の範囲に限定した。なお、好ましくは0.2〜0.8%で、より好ましくは0.2〜0.5%である。
Cr: 0.2-1.0%
Cr has a function of suppressing precipitation of cementite in untransformed austenite and is an element that greatly contributes to the formation of retained austenite and is an important element in the present invention. In order to acquire such an effect, it is necessary to contain 0.2% or more. On the other hand, excessive content exceeding 1.0% reduces weldability. For this reason, Cr was limited to the range of 0.2 to 1.0%. In addition, Preferably it is 0.2 to 0.8%, More preferably, it is 0.2 to 0.5%.
Ti:0.005〜0.030%
Tiは、Nと結合してTiNとして、鋼の靭性を著しく悪化させるNを固定し無害化する作用を有する元素であり、このような効果を得るためには0.005%以上の含有を必要とする。一方、0.030%を超える含有は、Feのへき開面に沿って析出するTi炭窒化物の量が増加し、鋼の靭性を低下させる。このため、Tiは0.005〜0.030%の範囲に限定した。なお、好ましくは0.005〜0.025%である。
Ti: 0.005-0.030%
Ti is an element that combines with N to form TiN, which has the effect of fixing and detoxifying N, which significantly deteriorates the toughness of the steel. To obtain such an effect, it must contain 0.005% or more. . On the other hand, the content exceeding 0.030% increases the amount of Ti carbonitride precipitated along the cleaved surface of Fe, and decreases the toughness of the steel. For this reason, Ti was limited to 0.005 to 0.030% of range. In addition, Preferably it is 0.005-0.025%.
Al:0.010〜0.050%
Alは、強力な脱酸剤として作用する元素で、このような効果を得るためには、0.010%以上含有する必要がある。また、Alは、セメンタイト析出を抑制し残留オーステナイトの生成に大きく寄与する元素でもある。しかし、0.050%を超えてAlが多くなると、Al酸化物が鋼中に介在物として残存しやすくなり、鋼の清浄度が低下する。このため、Alは0.010〜0.050%の範囲に限定した。なお、好ましくは0.010〜0.040%である。
Al: 0.010 to 0.050%
Al is an element that acts as a strong deoxidizing agent. In order to obtain such an effect, it is necessary to contain 0.010% or more. Al is also an element that suppresses cementite precipitation and greatly contributes to the formation of retained austenite. However, if Al exceeds 0.050% and Al increases, Al oxide tends to remain as inclusions in the steel, and the cleanliness of the steel decreases. For this reason, Al was limited to the range of 0.010 to 0.050%. In addition, Preferably it is 0.010 to 0.040%.
本発明熱延鋼板では、上記した成分を上記した範囲で、PCMが0.25%以下を満足するように調整して含有する。 In the present invention hot-rolled steel sheet, the above-mentioned components in the range described above, containing Adjust so P CM satisfies 0.25% or less.
PCMは、溶接割れ感受性を表す指数で、次(1)式で定義される値である。なお、PCMの算出にあたっては、(1)式に記載された元素を含有しない場合には「零」として計算するものとする。 P CM is the index representing the weld cracking sensitivity is a value defined by the following equation (1). Note that in the calculation of P CM, shall be calculated as "zero" if it does not contain elemental described in (1).
PCM= C + Si/30 + Mn/20 + Cu/20 + Ni/60 + Cr/20 + Mo/15 + V/10 + 5B‥‥(1)
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%))
PCM値が高くなると、溶接割れ感受性が高くなる。したがって、鋼板の溶接性を高めるためには、PCM値ができるだけ低い値となるように、各成分の含有量を調整する必要がある。本発明では、PCMが0.25%以下を満足するように調整するものとする。PCMが0.25%以下であれば、入熱:5kJ/cm〜20kJ/cm程度の溶接時の低温割れを回避できる。
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: Content of each element (mass%))
When P CM value is increased, the welding crack sensitivity is increased. Therefore, in order to improve the weldability of the steel sheet, so that P CM value is as low as possible, it is necessary to adjust the content of each component. In the present invention, shall be adjusted so that P CM satisfies 0.25% or less. If P CM is 0.25% or less, heat input: 5kJ / cm~20kJ / cm of about avoids cold cracking during welding.
なお、PCM値を、(1)式を用いて算出する際には、(1)式中に記載された元素で含有しないものは零として、計算するものとする。 When calculating the PCM value using the equation (1), the elements not included in the elements described in the equation (1) are assumed to be zero.
上記した成分が基本の成分であり、本発明では基本の組成に加えて、さらに選択元素として必要に応じて、Mo:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、Co:1.0%以下のうちから選ばれた1種または2種以上、および/または、Nb:0.10%以下、V:0.10%以下のうちから選ばれた1種または2種、および/または、Ca:0.0005〜0.0050%、を含有できる。 The above-described components are basic components. In the present invention, in addition to the basic composition, Mo: 0.5% or less, Cu: 0.5% or less, Ni: 1.0% or less, Co: 1.0 as necessary as a selective element. % Or less, and / or Nb: 0.10% or less, V: 0.10% or less, and / or Ca: 0.0005- 0.0050% can be contained.
Mo:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、Co:1.0%以下のうちから選ばれた1種または2種以上
Mo、Cu、Ni、Coはいずれも、オーステナイトの安定性を高める作用を有し、残留オーステナイトの生成に有効に寄与する元素であり、必要に応じて選択して1種または2種以上を含有できる。このような効果を得るためには、Mo:0.05%以上、Cu:0.05%以上、Ni:0.05%以上、Co:0.05%以上、それぞれ含有することが望ましい。一方、Mo:0.5%、Cu:0.5%、Ni:1.0%、Co:1.0%をそれぞれ超えて含有すると、上記した効果が飽和するうえ、溶接性を低下させる。このため、含有する場合には、Mo:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、Co:1.0%以下に限定した。
One or more selected from Mo: 0.5% or less, Cu: 0.5% or less, Ni: 1.0% or less, Co: 1.0% or less
Mo, Cu, Ni, and Co are elements that have the effect of enhancing the stability of austenite and contribute effectively to the formation of retained austenite. Select one or more if necessary. it can. In order to obtain such effects, it is desirable to contain Mo: 0.05% or more, Cu: 0.05% or more, Ni: 0.05% or more, Co: 0.05% or more. On the other hand, if the content exceeds Mo: 0.5%, Cu: 0.5%, Ni: 1.0%, and Co: 1.0%, the above effects are saturated and weldability is reduced. For this reason, when it contained, it limited to Mo: 0.5% or less, Cu: 0.5% or less, Ni: 1.0% or less, Co: 1.0% or less.
Nb:0.10%以下、V:0.10%以下のうちから選ばれた1種または2種
Nb、Vはいずれも、炭窒化物として微細析出し、析出強化を通して鋼の強度向上に寄与する元素であり、必要に応じて選択して1種または2種を含有できる。このような効果を得るためには、Nb:0.01%以上、V:0.01%以上含有することが望ましい。一方、Nb:0.10%、V:0.10%をそれぞれ超えて含有すると、粗大な析出物が形成され、母材靭性、溶接性が低下する。このため、含有する場合には、Nb:0.10%以下、V:0.10%以下に限定した。
One or two selected from Nb: 0.10% or less, V: 0.10% or less
Nb and V are elements that finely precipitate as carbonitrides and contribute to improving the strength of the steel through precipitation strengthening, and can be selected as necessary to contain one or two kinds. In order to obtain such an effect, it is desirable to contain Nb: 0.01% or more and V: 0.01% or more. On the other hand, when it contains exceeding Nb: 0.10% and V: 0.10% respectively, a coarse precipitate will be formed and base material toughness and weldability will fall. For this reason, when it contained, it limited to Nb: 0.10% or less and V: 0.10% or less.
Ca:0.0005〜0.0050%
Caは、圧延方向に長く伸びるMnS等の硫化物を球状の硫化物とする硫化物形態制御を介して、鋼板の靭性向上に寄与する元素であり、必要に応じて含有できる。このような効果を得るためには、0.0005%以上含有する必要があるが、0.0050%を超えて含有すると、鋼中にCa酸化物クラスターが形成され靭性が低下する。このため、含有する場合にはCaは0.0005〜0.0050%の範囲に限定した。
Ca: 0.0005 to 0.0050%
Ca is an element that contributes to improving the toughness of the steel sheet through sulfide morphology control in which sulfides such as MnS that extend long in the rolling direction are spherical sulfides, and can be contained as necessary. In order to acquire such an effect, it is necessary to contain 0.0005% or more, but when it contains exceeding 0.0050%, Ca oxide cluster will be formed in steel and toughness will fall. For this reason, when it contained, Ca was limited to 0.0005 to 0.0050% of range.
上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、N:0.005%以下、O(酸素):0.005%以下、が許容できる。 The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include N: 0.005% or less and O (oxygen): 0.005% or less.
次に、本発明熱延鋼板の組織限定理由について説明する。 Next, the reason for limiting the structure of the hot-rolled steel sheet of the present invention will be described.
本発明熱延鋼板は、主相であるポリゴナルフェライト相と、面積率で3〜20%の残留オーステナイト相と、残部が面積率で10%以下(0%を含む)の、マルテンサイト相、ベイナイト相、パーライトのうちの1種又は2種以上からなる組織を有する。なお、ここでいう「主相」とは、面積率で70%以上を占有する相をいう。 The hot-rolled steel sheet of the present invention comprises a polygonal ferrite phase as a main phase, a retained austenite phase with an area ratio of 3 to 20%, and a martensite phase with the balance being 10% or less (including 0%) in area ratio, It has a structure composed of one or more of bainite phase and pearlite. Here, the “main phase” refers to a phase that occupies 70% or more in area ratio.
主相であるポリゴナルフェライト相は、拡散を伴いながら生成する高温変態フェライト相であり、変態に際し、未変態オーステナイトへCを排出し、未変態オーステナイトを安定化し残留オーステナイトとして残留しやすくする。ポリゴナルフェライト相が、面積率で70%未満では、未変態オーステナイトへのC排出量が不足し、所望量の残留オーステナイト相を確保できにくくなる。 The polygonal ferrite phase, which is the main phase, is a high-temperature transformed ferrite phase that is produced while being diffused. During transformation, C is discharged to untransformed austenite, and the untransformed austenite is stabilized and easily retained as retained austenite. If the polygonal ferrite phase is less than 70% in area ratio, the amount of C discharged to untransformed austenite is insufficient, and it becomes difficult to secure a desired amount of retained austenite phase.
主相以外の第二相としては、面積率で3〜20%の残留オーステナイト相とする。 The second phase other than the main phase is a retained austenite phase with an area ratio of 3 to 20%.
残留オーステナイト相は、従来のTRIP鋼並みの強度-均一伸びバランスTS×uELを確保するために必須の相である。TS×uEL:12000MPa%超えの高変形能を確保するためには、残留オーステナイトは3%以上の含有を必要となる。一方、20%を超えると、残留オーステナイトに含まれる炭素濃度が減少し、残留オーステナイトが変形に対して不安定になり、そのため、均一伸びが低下し、強度−均一伸びバランスが著しく低下する。このようなことから、残留オーステナイトは体積率で3〜20%の範囲に限定した。なお、好ましくは3〜15%である。 The retained austenite phase is an indispensable phase for securing the strength-uniform elongation balance TS × uEL comparable to that of conventional TRIP steel. TS × uEL: In order to secure a high deformability exceeding 12000 MPa%, the retained austenite needs to contain 3% or more. On the other hand, if it exceeds 20%, the carbon concentration contained in the retained austenite decreases, and the retained austenite becomes unstable with respect to deformation, so that the uniform elongation is lowered and the strength-uniform elongation balance is significantly lowered. For this reason, the retained austenite was limited to a range of 3 to 20% by volume. In addition, Preferably it is 3 to 15%.
また、本発明熱延鋼板では、主相および第二相以外の残部は、面積率で10%以下(0%を含む)のマルテンサイト相、ベイナイト相、パーライトのうちの1種又は2種以上である。主相、残留オーステナイト相以外の相が、面積率で10%を超えて多くなると、所望の強度−均一伸びバランスを確保できなくなる。 In the hot-rolled steel sheet of the present invention, the balance other than the main phase and the second phase is one or more of martensite phase, bainite phase, and pearlite having an area ratio of 10% or less (including 0%). It is. If the phase other than the main phase and the retained austenite phase exceeds 10% in terms of area ratio, a desired strength-uniform elongation balance cannot be ensured.
また、本発明熱延鋼板では、主相および他の相を含む平均の粒径が5μm以上となる組織を有する。平均粒径が5μm未満では、主としてCの拡散を伴わない低温変態相となり、所望の残留オーステナイト相を確保できず、変形能が低下する。 The hot-rolled steel sheet of the present invention has a structure in which the average particle size including the main phase and other phases is 5 μm or more. When the average particle size is less than 5 μm, a low-temperature transformation phase mainly without C diffusion occurs, and a desired retained austenite phase cannot be secured, resulting in a decrease in deformability.
また、本発明熱延鋼板では、上記した平均の結晶粒径を有し、さらに、(圧延方向の結晶粒直径)/(板厚方向の結晶粒直径)で定義されるアスペクト比が1.40以下である組織を有する。アスペクト比が1.40を超えると、図2に示すように、残留オーステナイト相の生成量が少なく、所望の強度−均一伸びバランスを確保できなくなり、所望の高変形能を具備できなくなる。 In the hot-rolled steel sheet of the present invention, the aspect ratio defined by (crystal grain diameter in the rolling direction) / (crystal grain diameter in the plate thickness direction) has the above-described average crystal grain size and is 1.40 or less. Have an organization. When the aspect ratio exceeds 1.40, as shown in FIG. 2, the amount of retained austenite phase is small, the desired strength-uniform elongation balance cannot be ensured, and the desired high deformability cannot be achieved.
つぎに、本発明熱延鋼板の製造方法について説明する。 Below, the manufacturing method of this invention hot rolled sheet steel is demonstrated.
本発明では、上記した組成を有する、スラブ等の鋼素材を、加熱温度:1100〜1250℃の範囲の温度に加熱する。 In the present invention, a steel material such as a slab having the above composition is heated to a temperature in the range of heating temperature: 1100 to 1250 ° C.
なお、鋼素材の製造方法はとくに、限定する必要はない。通常の鋼素材の製造方法がいずれも適用できる。たとえば、転炉等の溶製方法で、上記した組成の溶鋼を溶製し、連続鋳造法でスラブ等の鋼素材とすることが好ましい。造塊−分塊圧延して鋼片等の鋼素材としてもよいことはいうまでもない。 In addition, the manufacturing method of the steel material is not particularly limited. Any of the usual methods for manufacturing steel materials can be applied. For example, it is preferable to melt the molten steel having the above-described composition by a melting method such as a converter and to obtain a steel material such as a slab by a continuous casting method. Needless to say, the ingot-splitting rolling may be used as a steel material such as a steel piece.
鋼素材の加熱温度が1100℃未満では、鋳造時に生成した粗大炭窒化物や偏析帯を消失させることができず、所望の析出強化や、靭性の向上を達成できなくなる。一方、1250℃を超える高温に加熱すると、結晶粒の粗大化が顕著となり、靭性の低下が著しくなり、材質制御上の利点もなくなる。また、スケールオフ量が増加し、歩留りが低下し、エネルギー原単位が上昇して、経済的にも不利となる。このようなことから、鋼素材の加熱温度は1100〜1250℃の範囲に限定した。なお、この温度は加熱炉の炉内設定温度とする。 If the heating temperature of the steel material is less than 1100 ° C., the coarse carbonitride and segregation zone generated during casting cannot be lost, and desired precipitation strengthening and toughness improvement cannot be achieved. On the other hand, when heated to a high temperature exceeding 1250 ° C., the coarsening of crystal grains becomes remarkable, the toughness is remarkably lowered, and the material control advantage is lost. In addition, the scale-off amount increases, the yield decreases, the energy intensity increases, and this is economically disadvantageous. For this reason, the heating temperature of the steel material was limited to the range of 1100 to 1250 ° C. This temperature is the set temperature in the furnace.
加熱された鋼素材は、ついで熱間圧延を施される。 The heated steel material is then subjected to hot rolling.
本発明では、熱間圧延の圧延条件はとくに限定する必要はなく、所定の寸法形状の熱延板とすることができる条件であればよい。なお、熱間圧延の圧延終了温度は、特に限定しないが、750℃以上の温度とすることが板厚方向の組織均一性という観点から好ましい。 In the present invention, the rolling conditions for hot rolling are not particularly limited as long as the hot rolled sheet having a predetermined size and shape can be obtained. In addition, although the rolling completion temperature of hot rolling is not specifically limited, it is preferable to set it as the temperature of 750 degreeC or more from a viewpoint of the structure uniformity of a plate | board thickness direction.
本発明では、熱間圧延終了後の冷却条件をつぎのように調整する。 In the present invention, the cooling conditions after the end of hot rolling are adjusted as follows.
本発明では、熱間圧延終了後の冷却は、熱間圧延の最終パスを出た時刻を起点(零s)として、起点(零s)から20〜80sの間のいずれかの時間で、熱延板の温度が板厚中央部で750℃〜650℃の範囲内で、80sを経過する以前に熱延板の温度が板厚中央部で650℃を下回るように、水冷等の冷却条件を調整して冷却する。 In the present invention, the cooling after the end of hot rolling is performed at any time between 20 to 80 s from the starting point (zero s), starting from the time when the final pass of the hot rolling is started (zero s). Cooling conditions such as water cooling are set so that the temperature of the hot-rolled sheet falls below 650 ° C at the center of the plate thickness before the 80s elapses within the range of 750 ° C to 650 ° C at the center of the plate thickness. Adjust and cool.
熱延板の板厚中心部の温度が、上記した、起点(零s)から20〜80sの間の時間内で、上記した、750〜650℃の範囲内であれば、ポリゴナルフェライトが生成し、ポリゴナルフェライト相を主相とする組織とすることができる。一方、起点(零s)から20s未満の時間に、650℃を下回るように冷却すると、ベイニティックフェライト相もしくはベイナイト相を主体とする組織となる。 Polygonal ferrite is generated if the temperature at the center of the thickness of the hot-rolled sheet is within the above-mentioned range of 750 to 650 ° C. within the time period between 20 and 80 s from the starting point (zero s). And it can be set as the structure | tissue which has a polygonal ferrite phase as a main phase. On the other hand, when it is cooled below 650 ° C. in the time less than 20 s from the starting point (zero s), it becomes a structure mainly composed of bainitic ferrite phase or bainite phase.
一方、起点から80sを経過しても、熱延板の板厚中心部の温度が、上記した750〜650℃の温度範囲にある場合には、フェライト変態と同時に炭窒化物やセメンタイトの析出が起こりやすくなり、その結果、未変態オーステナイトへのC濃縮が生じにくくなる。そのため、本発明では、起点から80sを経過する以前に、熱延板の板厚中心部の温度を、上記した、650℃を下回るように冷却し、未変態オーステナイトへのC濃縮を生じやすくする。 On the other hand, if the temperature at the center of the thickness of the hot-rolled sheet is within the above-mentioned temperature range of 750 to 650 ° C even after 80 s from the starting point, carbonitride and cementite are precipitated simultaneously with the ferrite transformation. This tends to occur, and as a result, C concentration to untransformed austenite is less likely to occur. Therefore, in the present invention, the temperature at the center of the thickness of the hot-rolled sheet is cooled to be lower than 650 ° C. before elapse of 80 s from the starting point, thereby facilitating C concentration to untransformed austenite. .
さらに、本発明では、ランナウトテーブル上での水冷等の冷却手段を用いて、上記した冷却条件を満足するように冷却し、冷却停止温度として600〜450℃の温度域の温度で、冷却を停止し、コイル状に巻き取る。 Furthermore, in the present invention, cooling is performed so as to satisfy the above-described cooling conditions using cooling means such as water cooling on the run-out table, and cooling is stopped at a temperature range of 600 to 450 ° C. as a cooling stop temperature. And take up in a coil.
冷却停止温度:600〜450℃
冷却停止温度が、600℃より高温である場合には、巻取後に、未変態オーステナイトの一部がパーライトもしくはベイナイト変態し、所望の残留オーステナイト量を確保できなくなる。一方、冷却停止温度が、450℃未満である場合には、未変態オーステナイトの一部がマルテンサイト変態し、所望の残留オーステナイト量を確保できなくなる。このため、冷却停止温度は600〜450℃の範囲の温度に限定した。
Cooling stop temperature: 600 ~ 450 ℃
When the cooling stop temperature is higher than 600 ° C., a part of untransformed austenite undergoes pearlite or bainite transformation after winding, and the desired retained austenite amount cannot be secured. On the other hand, when the cooling stop temperature is less than 450 ° C., a part of untransformed austenite undergoes martensitic transformation, and a desired retained austenite amount cannot be secured. For this reason, the cooling stop temperature was limited to a temperature in the range of 600 to 450 ° C.
なお、参考のために、上記した冷却の冷却曲線の一例を、図3に模式的に示す。冷却曲線a、bともに本発明の範囲を満足する冷却曲線である。 For reference, an example of the cooling curve of the above cooling is schematically shown in FIG. Both the cooling curves a and b are cooling curves that satisfy the scope of the present invention.
なお、ここでいう「水冷」とは、ランナウトテーブルに連続的に配置された水冷ゾーンから熱延板上下面に冷却水を噴射して冷却する方法を言う。ここで、水冷ゾーンの配列間隔や水量密度などには、特に制限を設けない。また、鋼板温度は、表面温度計で測定した温度をもとに伝熱解析により求めた鋼板板厚中心部の温度とする。 Here, “water cooling” refers to a method of cooling by injecting cooling water onto the upper and lower surfaces of the hot-rolled plate from a water cooling zone continuously arranged on the run-out table. Here, there is no particular limitation on the arrangement interval of the water cooling zones, the water density, and the like. The steel plate temperature is the temperature at the center of the steel plate thickness obtained by heat transfer analysis based on the temperature measured with a surface thermometer.
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブ(鋼素材:肉厚220mm)とした。得られた鋼素材を、表2に示す加熱温度に加熱したのち、表2に示す圧延終了温度で熱間圧延を終了し、表2に示す冷却条件で冷却し、コイル状に巻き取り、板厚:16mmの熱延鋼板とした。 Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (steel material: wall thickness 220 mm) by a continuous casting method. After the obtained steel material is heated to the heating temperature shown in Table 2, the hot rolling is finished at the rolling end temperature shown in Table 2, cooled under the cooling conditions shown in Table 2, wound in a coil shape, Thickness: 16 mm hot-rolled steel sheet.
得られた熱延鋼板から、試験片を採取し、組織観察と引張試験を実施した。試験方法はつぎの通りとした。
(1)組織観察
得られた熱延鋼板から、観察面が圧延方向断面(L断面)となるように、組織観察用試験片を採取し、研磨、腐食(ナイタール腐食)して、光学顕微鏡(倍率:400倍)と走査型電子顕微鏡SEM(倍率:2000倍)を用いて、板厚1/2位置における組織を観察し、各5視野撮像し組織写真を得た。得られた組織写真について、画像解析装置を用いて、組織の同定、および組織分率を算出した。さらに、JIS G 0551の規定に準拠して切断法で主相および他の相を含む平均結晶粒径を求めた。また、ポリゴナルフェライトの圧延方向の結晶粒径および板厚方向の結晶粒径を測定し、(圧延方向の結晶粒径)/(板厚方向の結晶粒径)で定義されるアスペクト比を求めた。
なお、残留オーステナイトは、目視での判別は難しいため、SEM/EBSD法によりfcc相の面積分率を求めて、残留オーステナイト量とした。
From the obtained hot-rolled steel sheet, a test piece was collected and subjected to a structure observation and a tensile test. The test method was as follows.
(1) Microstructure observation From the obtained hot-rolled steel sheet, a microstructural specimen was taken, polished and corroded (nitrite corrosion) so that the observation surface was a cross section in the rolling direction (L cross section), and an optical microscope ( Using a scanning electron microscope SEM (magnification: 2000 times) and the structure at the position of the plate thickness 1/2, the structure was photographed by taking 5 fields of view. About the obtained structure | tissue photograph, the identification of the structure | tissue and the tissue fraction were computed using the image-analysis apparatus. Furthermore, the average grain size including the main phase and other phases was determined by a cutting method in accordance with the provisions of JIS G 0551. In addition, the crystal grain size in the rolling direction and the crystal grain size in the plate thickness direction of polygonal ferrite are measured, and the aspect ratio defined by (crystal grain size in the rolling direction) / (crystal grain size in the plate thickness direction) is obtained. It was.
Since retained austenite is difficult to discriminate visually, the area fraction of the fcc phase was obtained by the SEM / EBSD method and used as the amount of retained austenite.
(2)引張試験
得られた熱延鋼板から、引張方向が圧延方向なるように、JIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(引張強さTS、均一伸びuEl)を測定し、強度-均一伸びバランスTS×uElを求めた。
得られた結果を表3に示す。
(2) Tensile test From the obtained hot-rolled steel sheet, a JIS No. 5 tensile test piece was collected so that the tensile direction would be the rolling direction, and a tensile test was performed in accordance with the provisions of JIS Z 2241. Tensile strength TS and uniform elongation uEl) were measured to obtain a strength-uniform elongation balance TS × uEl.
The obtained results are shown in Table 3.
本発明例はいずれも、PCM:0.25%以下で溶接性に優れるうえ、引張強さTS:500MPa以上の高強度と、強度-均一伸びバランスTS×uEl:12000MPa%以上の高変形能を有する熱延鋼板となっている。一方、本発明の範囲を外れる比較例は、強度が低下しているか、強度-均一伸びバランスTS×uEl:12000MPa%未満で、所望の強度-伸びバランスを確保できていない。 Both Examples present invention, P CM: terms of excellent weldability with 0.25% or less, tensile strength TS: and 500MPa or more high strength, strength - uniform elongation balance TS × UEL: having 12000 MPa% or more high deformability It is a hot-rolled steel sheet. On the other hand, in the comparative examples that are out of the scope of the present invention, the strength is reduced or the strength-uniform elongation balance TS × uEl: less than 12000 MPa%, and the desired strength-elongation balance cannot be secured.
Claims (8)
C :0.04〜0.15%、 Si:0.10〜0.50%、
Mn:1.0〜2.2%、 P :0.050%以下、
S :0.005%以下、 Cr:0.2〜1.0%、
Ti:0.005〜0.030%、 Al:0.010〜0.050%
を、下記(1)式で定義される溶接割れ感受性指数PCMが0.25%以下を満足するように調整して含み、残部Fe及び不可避的不純物からなる組成と、
ポリゴナルフェライト相を主相とし、該主相と、面積率で3〜20%の残留オーステナイト相と、残部が面積率で10%以下(0%を含む)のマルテンサイト相、ベイナイト相、パーライトのうちの1種又は2種以上とからなり、主相および他の相を含む平均粒径が5μm以上で、アスペクト比が1.40以下である組織と、
を有し、強度−均一伸びバランスに優れることを特徴とする高強度熱延鋼板。
記
PCM= C + Si/30 + Mn/20 + Cu/20 + Ni/60 + Cr/20 + Mo/15 + V/10 + 5B‥‥(1)
ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%) % By mass
C: 0.04 to 0.15%, Si: 0.10 to 0.50%,
Mn: 1.0-2.2%, P: 0.050% or less,
S: 0.005% or less, Cr: 0.2-1.0%,
Ti: 0.005-0.030%, Al: 0.010-0.050%
And a composition which comprises by adjusting as follows (1) weld crack sensitivity index P CM defined by the equation satisfies 0.25% or less, the balance being Fe and unavoidable impurities,
The main phase is the polygonal ferrite phase, the retained austenite phase with an area ratio of 3 to 20%, and the remaining martensite phase, bainite phase, and pearlite with an area ratio of 10% or less (including 0%). It consists of a one or more of the average particle diameter including a main phase and other phases in the 5μm or more, the tissue aspect ratio of below 1.40 or less,
A high-strength hot-rolled steel sheet characterized by having an excellent balance between strength and uniform elongation.
Record
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: Content of each element (mass%)
前記鋼素材を、質量%で、
C :0.04〜0.15%、 Si:0.10〜0.50%、
Mn:1.0〜2.2%、 P :0.050%以下、
S :0.005%以下、 Cr:0.2〜1.0%、
Ti:0.005〜0.030%、 Al:0.010〜0.050%
を、下記(1)式で定義される溶接割れ感受性指数PCMが0.25%以下を満足するように調整して含み、残部Fe及び不可避的不純物からなる組成を有する鋼素材とし、
前記熱間圧延を、前記鋼素材を加熱温度:1100〜1250℃の範囲の温度に加熱したのち行う圧延とし、
前記冷却を、前記熱間圧延の圧延最終パスを出た時刻を起点として20〜80sの間では、前記熱延板の温度が板厚中央部で750℃〜650℃の範囲内にあり、前記時刻から80sを経過する以前に前記熱延板の温度が板厚中央部で650℃を下回り、冷却停止温度:600〜450℃の温度域の温度で冷却停止する冷却とし、
該冷却後、コイル状に巻き取り、ポリゴナルフェライト相を主相とし、該主相と、面積率で3〜20%の残留オーステナイト相と、残部が面積率で10%以下(0%を含む)のマルテンサイト相、ベイナイト相、パーライトのうちの1種又は2種以上とからなり、主相および他の相を含む平均粒径が5μm以上で、アスペクト比が1.40以下である組織を有する熱延鋼板とすることを特徴とする強度−均一伸びバランスに優れた高強度熱延鋼板の製造方法。
記
PCM= C + Si/30 + Mn/20 + Cu/20 + Ni/60 + Cr/20 + Mo/15 + V/10 + 5B‥‥(1)
ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、B:各元素の含有量(質量%) A method of manufacturing a hot-rolled steel sheet, which is subjected to hot rolling on a steel material to form a hot-rolled sheet and then cooled,
The steel material in mass%,
C: 0.04 to 0.15%, Si: 0.10 to 0.50%,
Mn: 1.0-2.2%, P: 0.050% or less,
S: 0.005% or less, Cr: 0.2-1.0%,
Ti: 0.005-0.030%, Al: 0.010-0.050%
And wherein by adjusting as follows (1) weld crack sensitivity index P CM defined by the equation satisfies the following 0.25%, and a steel material having a composition the balance being Fe and unavoidable impurities,
The hot rolling is a rolling performed after heating the steel material to a temperature in the range of 1100 to 1250 ° C,
In the cooling, the temperature of the hot-rolled sheet is in the range of 750 ° C. to 650 ° C. at the central portion of the plate thickness for 20 to 80 seconds starting from the time when the final pass of the hot rolling is taken. Before 80 seconds from the time, the temperature of the hot-rolled sheet is lower than 650 ° C. at the center of the thickness, and the cooling stop temperature is cooling to stop at a temperature in the temperature range of 600 to 450 ° C.
After the cooling, Ri taken up into a coil shape, and a polygonal ferrite phase as a main phase, a main phase, and 3-20% residual austenite phase at an area ratio, the balance being at an area ratio of 10% or less (0% 1) or more of the martensite phase, bainite phase, and pearlite (including the main phase and other phases), and the average particle size including the main phase and other phases is 5 μm or more and the aspect ratio is 1.40 or less. intensity and wherein the hot-rolled steel sheet and to Rukoto - the method of producing a high-strength hot-rolled steel sheet excellent in uniform elongation balance.
Record
P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (1)
Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, B: Content of each element (mass%)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014155733A JP6160574B2 (en) | 2014-07-31 | 2014-07-31 | High-strength hot-rolled steel sheet excellent in strength-uniform elongation balance and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014155733A JP6160574B2 (en) | 2014-07-31 | 2014-07-31 | High-strength hot-rolled steel sheet excellent in strength-uniform elongation balance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016033236A JP2016033236A (en) | 2016-03-10 |
JP6160574B2 true JP6160574B2 (en) | 2017-07-12 |
Family
ID=55452260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014155733A Active JP6160574B2 (en) | 2014-07-31 | 2014-07-31 | High-strength hot-rolled steel sheet excellent in strength-uniform elongation balance and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6160574B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6610520B2 (en) * | 2016-11-30 | 2019-11-27 | Jfeスチール株式会社 | Steel sheet pile and manufacturing method thereof |
KR101917453B1 (en) | 2016-12-22 | 2018-11-09 | 주식회사 포스코 | Steel plate having excellent ultra low-temperature toughness and method for manufacturing same |
KR101917454B1 (en) | 2016-12-22 | 2018-11-09 | 주식회사 포스코 | Steel plate having excellent high-strength and high-toughness and method for manufacturing same |
CN110546289A (en) * | 2017-06-22 | 2019-12-06 | 日本制铁株式会社 | Rolled electric resistance welded steel pipe for line pipe and hot-rolled steel plate |
JP7230561B2 (en) * | 2019-02-13 | 2023-03-01 | 日本製鉄株式会社 | Steel continuous casting method |
JP7230562B2 (en) * | 2019-02-13 | 2023-03-01 | 日本製鉄株式会社 | Continuous casting method for Ni-containing low alloy steel |
CN116043122B (en) * | 2023-01-18 | 2024-01-16 | 马鞍山钢铁股份有限公司 | 600 MPa-grade acid-pickled dual-phase steel with high reaming performance and capable of being directly hot-packed and production method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10204576A (en) * | 1997-01-22 | 1998-08-04 | Nkk Corp | High tensile strength hot rolled steel plate excellent in workability and toughness at low temperature, and its production |
JP4484070B2 (en) * | 2005-07-15 | 2010-06-16 | 住友金属工業株式会社 | High-tensile hot-rolled steel sheet and manufacturing method thereof |
JP4476923B2 (en) * | 2005-12-15 | 2010-06-09 | 株式会社神戸製鋼所 | Steel sheet with excellent impact absorption and base metal toughness |
JP4957185B2 (en) * | 2006-10-31 | 2012-06-20 | Jfeスチール株式会社 | Hot rolled steel sheet for high tough ERW steel pipe with low yield ratio after coating and method for producing the same |
-
2014
- 2014-07-31 JP JP2014155733A patent/JP6160574B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016033236A (en) | 2016-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6160574B2 (en) | High-strength hot-rolled steel sheet excellent in strength-uniform elongation balance and method for producing the same | |
JP5679114B2 (en) | Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same | |
JP6107437B2 (en) | Manufacturing method of low-alloy high-strength seamless steel pipe for oil wells with excellent resistance to sulfide stress corrosion cracking | |
JP5644982B1 (en) | ERW welded steel pipe | |
JP5476763B2 (en) | High tensile steel plate with excellent ductility and method for producing the same | |
JP5521444B2 (en) | High-strength cold-rolled steel sheet with excellent workability and method for producing the same | |
JP6809524B2 (en) | Ultra-low yield ratio high-strength thick steel sheet and its manufacturing method | |
JP6988836B2 (en) | Ultra-low yield ratio high-strength thick steel sheet and its manufacturing method | |
JP6492862B2 (en) | Low temperature thick steel plate and method for producing the same | |
JP2017115239A (en) | Thick steel sheet excellent in ultra low temperature toughness | |
JP5786720B2 (en) | High tensile thick steel plate having a tensile strength of 780 MPa or more and method for producing the same | |
JP2013104124A (en) | Directly quenched and tempered high tensile strength steel sheet having excellent bendability and method for producing the same | |
JP6519024B2 (en) | Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness | |
JP2016079443A (en) | High strength extra thick h-shaped steel excellent in toughness and production method therefor | |
JP2016509129A (en) | High strength steel plate and manufacturing method thereof | |
JP2019199649A (en) | Non-tempered low yield ratio high tensile thick steel sheet and its production method | |
JP5509654B2 (en) | High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same | |
JP6398452B2 (en) | Steel for tank | |
JP2007138289A (en) | Thick high strength hot rolled steel plate and its production method | |
JP2017106107A (en) | Non-heat-treated steel sheet having high yield strength in which degradation of low-temperature toughness of weld heat-affected zone and hardness of weld heat-affected zone are suppressed | |
JP5200600B2 (en) | Manufacturing method of high strength and low yield ratio steel | |
JP2008189973A (en) | Method for producing high-toughness and high-tension steel sheet excellent in strength-elongation balance | |
JP2005281842A (en) | Production method of low temperature service low yield ratio steel material having excellent weld zone toughness | |
JP7493138B2 (en) | Ultra-low yield ratio high tensile steel plate and its manufacturing method | |
JP5176847B2 (en) | Low yield ratio low temperature steel and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170516 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170529 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6160574 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |