JP2008121036A - Method for producing high-strength and high-toughness steel sheet - Google Patents

Method for producing high-strength and high-toughness steel sheet Download PDF

Info

Publication number
JP2008121036A
JP2008121036A JP2006303667A JP2006303667A JP2008121036A JP 2008121036 A JP2008121036 A JP 2008121036A JP 2006303667 A JP2006303667 A JP 2006303667A JP 2006303667 A JP2006303667 A JP 2006303667A JP 2008121036 A JP2008121036 A JP 2008121036A
Authority
JP
Japan
Prior art keywords
steel sheet
strength
less
temperature
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006303667A
Other languages
Japanese (ja)
Other versions
JP5092358B2 (en
Inventor
Nobuyuki Ishikawa
信行 石川
Toyohisa Shingu
豊久 新宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006303667A priority Critical patent/JP5092358B2/en
Publication of JP2008121036A publication Critical patent/JP2008121036A/en
Application granted granted Critical
Publication of JP5092358B2 publication Critical patent/JP5092358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength and high-toughness steel sheet having tensile strength of ≥570 MPa, and excellent basic material and HAZ toughness and further, excellent formability by reducing variance in strength in the steel sheet, and a method for producing this steel sheet. <P>SOLUTION: In the method for producing the high-strength and high-toughness steel sheet, the steel containing, by mass, 0.06-0.12% C, ≤0.5% Si, 0.5-2.5% Mn, ≤0.08% Al, 0.005-0.025% Ti and the balance Fe with inevitable impurities, is heated to 1,000-1,200°C and after applying a hot-rolling, an accelerating cooling is performed on condition that the cooling-start temperature is ≤(Ar<SB>3</SB>+10°C) as the steel sheet surface temperature and the cooling-stop temperature is 300-550°C as the steel sheet average temperature, and successively, this steel sheet is heated to 500-700°C as the steel sheet surface temperature and <580°C as the steel sheet average temperature, with an induction-heating. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ラインパイプや海洋構造物、造船、建築、土木、建設機械、等の分野で使用される、高強度高靱性鋼板とその製造方法に関するものであり、特に、冷間成形時の成形性に優れた材質ばらつきの小さな高強度高靱性鋼板とその製造方法に関する。   The present invention relates to a high-strength, high-toughness steel sheet used in the fields of line pipes, offshore structures, shipbuilding, construction, civil engineering, construction machinery, and the like, and a method for producing the same, and in particular, forming during cold forming. The present invention relates to a high-strength, high-toughness steel sheet with excellent material properties and a small material variation, and a method for producing the same.

近年、パイプラインやその他の鋼構造物においては、施工コストの削減のため高強度の鋼材が要求されているだけでなく、寒冷地の開発が進んでいることから、母材および溶接部の靭性が優れた鋼材が必要とされている。さらに、これらの要求に加え、鋼管の円周溶接の作業効率を高めたり、また高精度の構造設計を行ったりするためには、寸法精度の高い鋼管や鋼部材が要求されている。UOE鋼管等冷間成形によって製造される鋼管や、切断や冷間成形など様々な加工を受けて製造される鋼部材の寸法精度は、それに用いる鋼板の材質ばらつきや残留応力の影響を強く受けるため、強度や延性などの材質ばらつきや残留応力の小さな鋼板を用いることが、寸法精度を向上するためにきわめて有効である。   In recent years, pipelines and other steel structures require not only high-strength steel materials to reduce construction costs, but also the development of cold regions. There is a need for excellent steel. Furthermore, in addition to these requirements, steel pipes and steel members with high dimensional accuracy are required in order to increase the work efficiency of circumferential welding of steel pipes and to perform highly accurate structural design. The dimensional accuracy of steel pipes manufactured by cold forming, such as UOE steel pipes, and steel members manufactured by various processes such as cutting and cold forming are strongly affected by material variations and residual stresses of the steel sheets used therefor. In order to improve the dimensional accuracy, it is extremely effective to use a steel plate having a small material variation such as strength and ductility and a small residual stress.

材質ばらつきの低減に対しては、従来、鋼板製造条件の厳格管理等、生産管理面での対応がなされており、大量製造した場合の材質ばらつき、特に強度のばらつき低減が計られているが、上述の寸法精度向上のためには、個々の鋼板の板内においても材質ばらつきを低減することが必要である。   Conventionally, reduction of material variation has been dealt with in terms of production management, such as strict management of steel plate manufacturing conditions, and material variation when mass-produced, especially variation in strength has been reduced, In order to improve the dimensional accuracy described above, it is necessary to reduce material variations even within the individual steel plates.

一般に、引張強度が570MPa以上の高強度鋼板は加速冷却によって製造されており、鋼板の長手方向端部が過冷却されやすく、長手方向端部の強度が中央部に比較して高くなりやすい。また、圧延前の加熱炉でスラブの長手方向端部が過加熱されたことに起因して、長手方向端部の強度が中央部に比較して高くなる場合もある。   In general, a high-strength steel plate having a tensile strength of 570 MPa or more is manufactured by accelerated cooling, and the longitudinal end portion of the steel plate is easily supercooled, and the strength of the longitudinal end portion is likely to be higher than that of the central portion. Further, due to the fact that the longitudinal end portion of the slab is overheated in the heating furnace before rolling, the strength of the longitudinal end portion may be higher than that of the central portion.

これらのバラツキを低減するための対策としては、特許文献1には、加速冷却を2段階に分けて加速冷却を行い、前段と後段の冷却の間に空冷区間を設けることで、温度ムラを低減する方法が開示されている。この方法は、材質ばらつき低減に対して一定の効果があるものの、後段の冷却では依然として板長方向の温度ムラを生じるため、材質ばらつきは十分に解消することはできない。   As a measure to reduce these variations, Patent Document 1 discloses that accelerated cooling is divided into two stages and accelerated cooling is performed, and an air cooling section is provided between the preceding stage and the subsequent stage to reduce temperature unevenness. A method is disclosed. Although this method has a certain effect on the reduction of material variation, the subsequent cooling still causes temperature unevenness in the plate length direction, and thus the material variation cannot be sufficiently eliminated.

そのため、加速冷却によって製造した鋼板の強度ばらつき低減、特に鋼板の長手方向端部で強度が高すぎた部分を軟化させる方法として、従来から、加速冷却後に焼戻しを行う方法がとられていた。この焼戻し処理は、鋼板をガス燃焼炉に装入してバッチ処理するか、トンネル炉に通板させることにより実施されている。この方法では、一般に焼戻し前の強度が高い部分の方が焼戻しによる軟化量が大きいので、焼戻し後の強度の差が縮まるが、焼戻す必要のない部分の強度も低下するという問題があり、さらに、焼戻し処理に時間を要するため、炭化物が粗大化し靱性の劣化、特にDWTT性能の劣化を生じていた。   Therefore, conventionally, a method of tempering after accelerated cooling has been employed as a method for reducing the strength variation of a steel plate manufactured by accelerated cooling, particularly for softening a portion where the strength is too high at the longitudinal end of the steel plate. This tempering treatment is carried out by charging a steel plate into a gas combustion furnace and batch-processing it or passing it through a tunnel furnace. In this method, since the amount of softening due to tempering is generally larger in the portion with higher strength before tempering, the difference in strength after tempering is reduced, but there is a problem that the strength of the portion that does not need to be tempered also decreases. Since the tempering process takes time, the carbides are coarsened, resulting in deterioration of toughness, particularly deterioration of DWTT performance.

靱性を劣化させない焼戻し方法としては、特許文献2に加速冷却装置と同一の製造ライン上に設置された誘導加熱装置を用いて急速加熱焼戻しを行う方法が開示されている。この方法によれば、焼戻し時に生成する炭化物が微細になるため、高靱性の鋼板を得ることが可能であるが、鋼板を均一に加熱するために、板内の強度ばらつきの低減に関しては効果がない。また、加速冷却過程での冷却停止温度を200℃程度以下の温度として、誘導加熱前のミクロ組織をマルテンサイトとすることで、急速加熱焼戻しによる炭化物微細化が図られるが、冷却停止温度が高くベイナイト主体の組織となる場合は、焼戻しによって炭化物が粗大化し、靱性が劣化する場合がある。   As a tempering method that does not degrade toughness, Patent Document 2 discloses a method of performing rapid heating and tempering using an induction heating device installed on the same production line as the accelerated cooling device. According to this method, since the carbides generated during tempering become fine, it is possible to obtain a high toughness steel plate. However, in order to uniformly heat the steel plate, there is an effect in reducing the strength variation in the plate. Absent. Also, by setting the cooling stop temperature in the accelerated cooling process to about 200 ° C. or less and making the microstructure before induction heating martensite, carbide refinement can be achieved by rapid heating and tempering, but the cooling stop temperature is high. In the case of a bainite-based structure, the carbide may be coarsened by tempering and the toughness may be deteriorated.

また上記の問題を解決するため、特許文献3には、加速冷却後の焼戻しを高周波誘導加熱で行う際に、鋼板の長手方向に加熱方法を変化させる焼戻し方法が提案されている。この方法により、鋼板の長手方向端部などの強度が高すぎる部分のみの強度を低減できるため、強度ばらつきの大幅な低減が可能となる。しかしながら、その効果を十分に得るためには加速冷却後の鋼板板長方向の強度分布を正確に予測して、強度が高い部分のみを適切な温度に加熱する必要があり、強度ばらつきの小さな鋼板を安定的に得ることは困難であった。   In order to solve the above problem, Patent Document 3 proposes a tempering method in which the heating method is changed in the longitudinal direction of the steel sheet when tempering after accelerated cooling is performed by high-frequency induction heating. By this method, the strength of only the portion where the strength is too high, such as the longitudinal end portion of the steel plate, can be reduced, so that the strength variation can be greatly reduced. However, in order to obtain the effect sufficiently, it is necessary to accurately predict the strength distribution in the length direction of the steel plate after accelerated cooling, and to heat only the high strength part to an appropriate temperature. It has been difficult to stably obtain.

誘導加熱装置を適用した鋼板の製造方法として、特許文献4や特許文献5には、加速冷却後に鋼板表面を内部より高い温度に加熱する耐サワーラインパイプ用鋼板の製造方法が開示されている。これらの方法によれば加速冷却によって硬化した表層部の硬度が低減でき、鋼板の板厚方向の硬さ分布が平準化されるが、耐サワー性能に優れるベイナイト主体の組織とするために、比較的高い温度域から加速冷却を開始する必要があり、鋼板の長手方向の強度ばらつきは改善されないままであった。
特開昭62−47426号公報 特開平4−358022号公報 特開2003−27136号公報 特開2002−327212号公報 特開2003−13138号公報
As a method for manufacturing a steel plate to which an induction heating device is applied, Patent Document 4 and Patent Document 5 disclose a method for manufacturing a steel plate for a sour line pipe that heats the steel plate surface to a temperature higher than the inside after accelerated cooling. According to these methods, the hardness of the surface layer portion hardened by accelerated cooling can be reduced, and the hardness distribution in the thickness direction of the steel sheet is leveled, but in order to obtain a bainite-based structure that is excellent in sour resistance performance, a comparison is made. Therefore, it was necessary to start accelerated cooling from a particularly high temperature range, and the longitudinal strength variation of the steel sheet remained unimproved.
JP 62-47426 A JP-A-4-358822 JP 2003-27136 A JP 2002-327212 A JP 2003-13138 A

本発明は上記事情に鑑みなされたもので、引張強度が570MPa以上の強度と優れた母材及びHAZ靱性を有し、さらに鋼板内の強度のバラツキを低減することで優れた成形性を有する高強度高靱性鋼板及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has a tensile strength of 570 MPa or more, an excellent base material and HAZ toughness, and a high formability with excellent formability by reducing the strength variation in the steel sheet. An object of the present invention is to provide a high-strength, high-toughness steel plate and a method for producing the same.

発明者等は、加速冷却によって生じる鋼板内の材質ばらつきの要因を、そのミクロ組織変化の観点から詳細に調査した結果、以下の知見を得るに至った。加速冷却時の鋼板長手方向端部の強度上昇は、上述の通り過冷却、すなわち冷却終了温度の低下によるが、このとき、鋼板内部より鋼板表層部の温度低下が大きくなるため、鋼板表層部が島状マルテンサイト(MA)を含んだ組織となり、表層部の硬度が大幅に上昇する。   As a result of detailed investigations on the causes of material variations in the steel sheet caused by accelerated cooling from the viewpoint of changes in the microstructure, the inventors have obtained the following knowledge. As described above, the increase in strength at the longitudinal end of the steel plate during accelerated cooling is due to supercooling, i.e., due to the decrease in the cooling end temperature. It becomes a structure containing island martensite (MA), and the hardness of the surface layer portion is significantly increased.

図1に0.07%C−1.7%Mnを含有する鋼板の加速冷却後の板厚方向硬度分布を鋼板長手方向の端部と中央部で測定した例を示す。長手方向端部は中央部に比べ表層部の硬度が高くなっており、そのため、鋼板の全厚強度も上昇する結果となっている。   FIG. 1 shows an example in which the thickness distribution in the thickness direction after accelerated cooling of a steel sheet containing 0.07% C-1.7% Mn is measured at the end and center in the longitudinal direction of the steel sheet. The end portion in the longitudinal direction has a higher hardness in the surface layer portion than in the central portion, and as a result, the total thickness strength of the steel plate also increases.

図2は表層部を2段エッチングにより腐食し、SEMによって観察した結果であるが、表層部は島状マルテンサイトを含んだ組織となっている。一方、鋼板の板厚中心部は島状マルテンサイトがみられるもののその体積分率は小さく、鋼板内のミクロ組織の不均一性が、鋼板材質ばらつきの原因の一つであるといえる。   FIG. 2 shows the result of corrosion of the surface layer portion by two-stage etching and observation by SEM. The surface layer portion has a structure including island martensite. On the other hand, although the island-shaped martensite is seen in the central part of the plate thickness of the steel sheet, the volume fraction is small, and it can be said that the unevenness of the microstructure in the steel sheet is one of the causes of the steel sheet material variation.

上述のミクロ組織の不均一性、具体的には鋼板表層部の島状マルテンサイトの量を抑制することで、材質ばらつきの小さな鋼板を得ることが可能であるが、そのためには、加速冷却によって表層部に生成した島状マルテンサイトを焼戻すことが有効である。しかし、一般的な燃焼炉による焼戻しや、特許文献2に開示された誘導加熱による焼戻しでは、鋼板の板厚方向中心部まで加熱されるため、前述のように強度の高い鋼板長手方向端部以外の強度も低下するため、鋼板の強度ばらつきは十分に低減されない。   By suppressing the non-uniformity of the microstructure described above, specifically, the amount of island-like martensite in the steel sheet surface layer portion, it is possible to obtain a steel plate with small material variations. It is effective to temper the island martensite generated in the surface layer. However, in the tempering by a general combustion furnace and the tempering by induction heating disclosed in Patent Document 2, the steel plate is heated up to the central portion in the thickness direction of the steel plate. Therefore, the strength variation of the steel sheet is not sufficiently reduced.

この問題を解決するためには、加速冷却後の鋼板を焼戻す際に、鋼板表層部の焼戻し温度を、鋼板の板厚方向中央部に比べ高くすればよく、加熱温度を鋼板表層部と板厚方向中央部の最適な範囲にコントロールすることで、鋼板の板厚方向でミクロ組織変化が小さな鋼板を得ることが可能となり、これによって鋼板内の材質ばらつきの低減が可能となる。上記のように鋼板表層部と内部とで異なる温度の加熱を行うためには、高周波誘導加熱を用いることが効果的である。   In order to solve this problem, when tempering the steel sheet after accelerated cooling, the tempering temperature of the steel sheet surface layer portion should be higher than that of the central portion in the plate thickness direction of the steel plate, and the heating temperature is set to the steel plate surface layer portion and the plate. By controlling to the optimum range in the central portion in the thickness direction, it is possible to obtain a steel plate having a small microstructure change in the thickness direction of the steel plate, thereby reducing material variations in the steel plate. In order to perform heating at different temperatures between the steel sheet surface layer and the inside as described above, it is effective to use high-frequency induction heating.

図3は図1と同様の成分系で、ほぼ同様の圧延−加速冷却を行った後、誘導加熱により鋼板表面の最高加熱温度を550℃、鋼板平均加熱温度を440℃に加熱を行った鋼板の板厚方向硬度分布を示す。また、このときの鋼板表層部のミクロ組織を図4に示す。図2の加速冷却ままの鋼板表層部で見られるような島状マルテンサイト組織は見られず、鋼板表層部と板厚方向中央部で均一なミクロ組織が得られている。そして、図3に示すように、鋼板の長手方向端部と長手方向中央部のいずれも、表層部と板厚方向中央部との硬度の差が小さくなっている。また、鋼板の板厚方向中央部の加熱温度を制限することで、鋼板全体の強度低下を抑制することができ、板長手方向の強度ばらつき低減か可能となる。   FIG. 3 shows the same component system as in FIG. 1, and the steel sheet heated to about 550 ° C. and the average heating temperature of the steel sheet to 440 ° C. by induction heating after almost the same rolling-accelerated cooling. The thickness direction hardness distribution of is shown. Moreover, the microstructure of the steel plate surface layer part at this time is shown in FIG. The island-like martensite structure as seen in the steel sheet surface layer portion in the accelerated cooling state of FIG. 2 is not seen, and a uniform microstructure is obtained in the steel sheet surface layer portion and the central portion in the plate thickness direction. And as shown in FIG. 3, the difference of the hardness of a surface layer part and a plate | board thickness direction center part is small in both the longitudinal direction edge part and longitudinal direction center part of a steel plate. Further, by limiting the heating temperature at the central portion in the plate thickness direction of the steel plate, it is possible to suppress the strength reduction of the entire steel plate, and to reduce the strength variation in the plate longitudinal direction.

また、鋼板の板長手方向の強度ばらつきだけでなく、板厚方向の硬度差が小さいため、冷間成形時の曲げ加工性がよく、さらには加速冷却で導入される内部歪に起因する残留応力が、その後の誘導加熱によって低減されるため、冷間成形性がよく、成形後の寸法精度が大幅に改善されるものである。   Also, not only the strength variation in the longitudinal direction of the steel sheet but also the difference in hardness in the thickness direction is small, so the bending workability during cold forming is good, and the residual stress due to internal strain introduced by accelerated cooling However, since it is reduced by subsequent induction heating, the cold formability is good, and the dimensional accuracy after molding is greatly improved.

本発明は、上記の知見に基づきなされたもので、
第一の発明は、質量%で、C:0.06〜0.12%、Si:0.5%以下、Mn:0.5〜2.5%、Al:0.08%以下、Nb:0.005〜0.025%、Ti:0.005〜0.025%を含有し、残部がFe及び不可避的不純物からなる鋼を、1000〜1200℃に加熱し、熱間圧延を行った後、冷却開始温度が鋼板表面温度で(Ar3+10℃)以下、冷却停止温度が鋼板平均温度で300〜550℃となる加速冷却を行い、次いで誘導加熱により鋼板表面温度で500〜700℃、鋼板平均温度で580℃未満に加熱することを特徴とする高強度高靱性鋼板の製造方法である。
The present invention has been made based on the above findings,
1st invention is the mass%, C: 0.06-0.12%, Si: 0.5% or less, Mn: 0.5-2.5%, Al: 0.08% or less, Nb: After steel containing 0.005 to 0.025%, Ti: 0.005 to 0.025%, the balance being Fe and unavoidable impurities is heated to 1000 to 1200 ° C. and hot-rolled The cooling start temperature is the steel sheet surface temperature (Ar 3 + 10 ° C.) or less, the cooling stop temperature is 300 to 550 ° C. with the steel sheet average temperature, and then the steel sheet surface temperature is 500 to 700 ° C. by induction heating. A method for producing a high-strength, high-toughness steel plate, characterized by heating to a steel plate average temperature of less than 580 ° C.

第二の発明は、さらに質量%で、Cu:0.5%以下、Ni:1%以下、Cr:0.5%以下、Mo:0.5%以下、V:0.1%以下、Ca:0.001〜0.003%の中から選ばれる1種または2種以上を含有することを特徴とする第一の発明に記載の高強度高靱性鋼板の製造方法である。   The second invention is further in terms of mass%, Cu: 0.5% or less, Ni: 1% or less, Cr: 0.5% or less, Mo: 0.5% or less, V: 0.1% or less, Ca : One or more selected from 0.001 to 0.003%. The method for producing a high-strength, high-toughness steel sheet according to the first invention.

第三の発明は、第一の発明または第二の発明に記載の方法で製造された、引張強度570MPa以上の鋼板であって、鋼板表層部の金属組織が、島状マルテンサイトの体積分率は3%以下、残部はベイナイトまたはベイナイトとフェライトの混合組織であることを特徴とする高強度高靱性鋼板である。   The third invention is a steel plate having a tensile strength of 570 MPa or more manufactured by the method described in the first invention or the second invention, wherein the metal structure of the steel plate surface layer portion is the volume fraction of island martensite. Is a high-strength, high-toughness steel sheet characterized by being 3% or less and the balance being bainite or a mixed structure of bainite and ferrite.

本発明によれば、引張強度570MPa以上の高強度と高い溶接部靭性を有し、かつ鋼板長手方向の強度バラツキ大幅に低減でき、さらに板厚方向の硬さのバラツキも低減できるため冷間成形性の優れた鋼板が得られる   According to the present invention, it has a high strength of a tensile strength of 570 MPa or more and a high welded portion toughness, and can greatly reduce the strength variation in the longitudinal direction of the steel sheet, and can also reduce the hardness variation in the thickness direction of the steel sheet, so that cold forming Steel sheet with excellent properties can be obtained

以下に本発明の各構成要件の限定理由について説明する。
1.化学成分について
はじめに本発明の高強度高靱性鋼板が含有する化学成分の限定理由を説明する。なお、成分%は全て質量%を意味する。
The reasons for limiting the respective constituent requirements of the present invention will be described below.
1. About Chemical Components First, the reasons for limiting the chemical components contained in the high-strength, high-toughness steel sheet of the present invention will be described. In addition, all component% means the mass%.

C:0.06〜0.12%
Cは、加速冷却によって製造される鋼板の強度を高めるために最も有効な元素である。しかし、0.06%未満では十分な強度を確保できず、0.12%を超えると靱性や溶接性を劣化させる。従って、C量は0.06〜0.12%の範囲とする。
C: 0.06 to 0.12%
C is the most effective element for increasing the strength of the steel sheet produced by accelerated cooling. However, if it is less than 0.06%, sufficient strength cannot be secured, and if it exceeds 0.12%, toughness and weldability are deteriorated. Accordingly, the C content is in the range of 0.06 to 0.12%.

Si:0.5%以下
Siは脱酸のために添加するが、0.5%を越えると靭性や溶接性を劣化させる。従ってSi量は0.5%以下の範囲とする。
Si: 0.5% or less Si is added for deoxidation, but if it exceeds 0.5%, toughness and weldability are deteriorated. Therefore, the Si amount is set to a range of 0.5% or less.

Mn:0.5〜2.5%
Mnは鋼の強度および靭性の向上のため添加するが、0.5%未満ではその効果が十分ではなく、2.5%を越えると溶接性が劣化する。従って、Mn量は0.5〜2.5%の範囲とする。
Mn: 0.5 to 2.5%
Mn is added to improve the strength and toughness of the steel, but if it is less than 0.5%, the effect is not sufficient, and if it exceeds 2.5%, the weldability deteriorates. Therefore, the amount of Mn is made 0.5 to 2.5%.

Al:0.08%以下
Alは脱酸剤として添加されるが、0.08%を超えると清浄度の低下により延性を劣化させる。従って、Al量は0.08%以下とする。
Al: 0.08% or less Al is added as a deoxidizer, but if it exceeds 0.08%, ductility is deteriorated due to a decrease in cleanliness. Therefore, the Al content is 0.08% or less.

Nb:0.005〜0.025%
Nbは、圧延時の粒成長を抑制し、微細粒化により靭性を向上させる。しかし、Nb量が0.005%未満ではその効果がなく、0.025%を超えると溶接熱影響部の靭性が劣化する。従って、Nb量は0.005〜0.025%の範囲とする。
Nb: 0.005 to 0.025%
Nb suppresses grain growth during rolling, and improves toughness by making fine grains. However, if the Nb content is less than 0.005%, the effect is not obtained, and if it exceeds 0.025%, the toughness of the weld heat affected zone deteriorates. Therefore, the Nb content is in the range of 0.005 to 0.025%.

Ti:0.005〜0.025%
Tiは、TiNを形成してスラブ加熱時の粒成長を抑制するだけでなく、溶接熱影響部の粒成長を抑制し、母材及び溶接熱影響部の微細粒化により靭性を向上させる。しかし、Ti量が0.005%未満ではその効果がなく、0.025%を越えると靭性を劣化させる。従って、Ti量は0.005〜0.025%の範囲とする。
本発明では上記の化学成分の他に、以下の元素を選択元素として添加することができる。
Ti: 0.005-0.025%
Ti not only suppresses grain growth during slab heating by forming TiN, but also suppresses grain growth in the weld heat affected zone and improves toughness by making the base material and the weld heat affected zone finer. However, if the amount of Ti is less than 0.005%, the effect is not obtained, and if it exceeds 0.025%, the toughness is deteriorated. Therefore, the Ti amount is set in the range of 0.005 to 0.025%.
In the present invention, in addition to the above chemical components, the following elements can be added as selective elements.

Cu:0.5%以下
Cuは、靭性の改善と強度の上昇に有効な元素であるが、0.5%を超えて添加すると溶接性が劣化する。従って、Cuを添加する場合は0.5%以下とする。
Cu: 0.5% or less Cu is an element effective for improving toughness and increasing strength, but if added over 0.5%, weldability deteriorates. Therefore, when adding Cu, it is 0.5% or less.

Ni:1%以下
Niは、靭性の改善と強度の上昇に有効な元素であるが、1%を超えて添加すると溶接性が劣化する。従って、Niを添加する場合は1.0%以下とする。
Ni: 1% or less Ni is an element effective for improving toughness and increasing strength, but if it exceeds 1%, weldability deteriorates. Therefore, when adding Ni, it is 1.0% or less.

Cr:0.5%以下
Crは、焼き入れ性を高めることで強度の上昇に有効な元素であるが、0.5%を超えて添加すると溶接性を劣化させる。従って、Crを添加する場合は0.5%以下とする。
Cr: 0.5% or less Cr is an element effective for increasing the strength by improving the hardenability, but if added over 0.5%, the weldability is deteriorated. Therefore, when adding Cr, it is 0.5% or less.

Mo:0.5%以下
Moは、靭性の改善と強度の上昇に有効な元素であるが、0.5%を超えて添加すると溶接性が劣化する。従って、Moを添加する場合は0.5%以下とする。
Mo: 0.5% or less Mo is an element effective for improving toughness and increasing strength, but if added over 0.5%, weldability deteriorates. Therefore, when adding Mo, it is 0.5% or less.

V:0.1%以下
Vは靭性を劣化させずに強度を上昇させる元素であるが、0.1%を超えて添加すると溶接性を著しく損なう。従って、Vを添加する場合は、0.1%以下とする。
V: 0.1% or less V is an element that increases strength without deteriorating toughness, but if added over 0.1%, weldability is significantly impaired. Therefore, when V is added, the content is made 0.1% or less.

Ca:0.001〜0.005%
Caは硫化物系介在物の形態を制御し、延性を改善するために有効な元素であるが、0.001%未満ではその効果がなく、0.005%を超えて添加しても効果が飽和し、むしろ清浄度の低下により靱性を劣化させる。従って、Ca量は0.001〜0.005%の範囲とする。
不純物元素として含まれるP,Sは特に規定されないが、より高い靱性を得るためには以下の範囲とすることが望ましい。
Ca: 0.001 to 0.005%
Ca is an element effective for controlling the form of sulfide inclusions and improving ductility, but if it is less than 0.001%, there is no effect, and even if added over 0.005%, it is effective. Saturates, but rather deteriorates toughness due to reduced cleanliness. Therefore, the Ca content is in the range of 0.001 to 0.005%.
P and S contained as impurity elements are not particularly defined, but in order to obtain higher toughness, the following ranges are desirable.

P:0.02%以下
Pは不可避的不純物として含まれるが、Pの含有量が増えると靭性及び溶接性を劣化させるため、P量の上限は0.02%とする。
P: 0.02% or less P is included as an inevitable impurity. However, if the P content increases, the toughness and weldability deteriorate, so the upper limit of the P content is 0.02%.

S:0.003%以下
Sも不可避的不純物として含まれるが、Sの含有量が増えると靱性及び延性を劣化させるため、S量の上限は0.003%とする。
S: 0.003% or less S is also included as an inevitable impurity. However, when the S content increases, the toughness and ductility deteriorate, so the upper limit of the S amount is set to 0.003%.

なお、本発明の鋼の残部は実質的にFeであり、上記以外の元素及び不可避不純物については、本発明の効果を損なわない限り含有することができる。   The balance of the steel of the present invention is substantially Fe, and elements other than the above and inevitable impurities can be contained unless the effects of the present invention are impaired.

2.製造条件について
本発明は、上述した化学成分を含有する鋼スラブを、加熱し熱間圧延を行った後、加速冷却を施し、引き続いて誘導加熱による焼戻しを行う製造方法である。以下に、鋼板の製造条件の限定理由について説明する。
2. Manufacturing Conditions The present invention is a manufacturing method in which the steel slab containing the above-described chemical components is heated and hot-rolled, then subjected to accelerated cooling, and subsequently tempered by induction heating. Below, the reason for limitation of the manufacturing conditions of a steel plate is demonstrated.

スラブ加熱温度:1000〜1200℃
スラブ加熱温度は、1000℃未満では十分な強度が得られず、1200℃を越えると、靱性やDWTT特性が劣化する。従って、スラブ加熱温度は1000〜1200℃の範囲とする。
Slab heating temperature: 1000-1200 ° C
When the slab heating temperature is less than 1000 ° C., sufficient strength cannot be obtained, and when it exceeds 1200 ° C., toughness and DWTT characteristics are deteriorated. Therefore, the slab heating temperature is in the range of 1000 to 1200 ° C.

熱間圧延工程において、高い母材靱性を得るには圧延終了温度は低いほどよいが、その反面圧延能率が低下するため、圧延終了温度は必要な母材靱性と圧延能率を鑑みて任意に設定できる。また,高い母材靱性を得るためには未再結晶温度域での圧下率を60%以上とすることが望ましい。   In the hot rolling process, the lower the rolling end temperature, the better, in order to obtain high base metal toughness, but the rolling efficiency decreases, so the rolling end temperature is arbitrarily set in view of the necessary base material toughness and rolling efficiency. it can. In order to obtain high base metal toughness, it is desirable that the rolling reduction in the non-recrystallization temperature range be 60% or more.

冷却開始時の鋼板表面温度:(Ar3+10℃)以下
熱間圧延後に加速冷却を行うが、冷却開始時の鋼板表面温度が(Ar3+10℃)を超えると、表層部の硬度が上昇し成形性が劣化するだけでなく、板長手方向の強度バラツキが大きくなりやすい。よって、冷却開始時の鋼板表面温度は(Ar3+10℃)以下とする。
ここで、Ar3温度は鋼の成分から、下記式(1)で与えられる。
Steel plate surface temperature at the start of cooling: (Ar 3 + 10 ° C) or less Accelerated cooling is performed after hot rolling. If the steel plate surface temperature at the start of cooling exceeds (Ar 3 + 10 ° C), the hardness of the surface layer will be Not only does it rise and the formability deteriorates, but the strength variation in the longitudinal direction of the plate tends to increase. Therefore, the steel sheet surface temperature at the start of cooling is set to (Ar 3 + 10 ° C.) or less.
Here, the Ar 3 temperature is given by the following formula (1) from the steel components.

Ar3(℃)=910-310C(%)-80Mn(%)-20Cu(%)-15Cr(%)-55Ni(%)-80Mo(%)・・・・・(1)
なお、冷却開始温度の下限は特に規定しないが、加速冷却の開始温度が低くなりすぎると、フェライトの面積率が高くなり強度低下をまねくため、冷却開始温度は600℃以上とすることが望ましい。
Ar 3 (° C) = 910-310C (%)-80Mn (%)-20Cu (%)-15Cr (%)-55Ni (%)-80Mo (%) (1)
The lower limit of the cooling start temperature is not particularly defined, but if the accelerated cooling start temperature becomes too low, the area ratio of ferrite increases and the strength decreases, so the cooling start temperature is preferably 600 ° C. or higher.

冷却停止時の鋼板平均温度:300〜550℃
加速冷却は,ベイナイト変態によって高強度を得るために重要なプロセスである。しかし、冷却停止時の鋼板平均温度が550℃を超えると、ベイナイト変態が不十分であり、十分な強度が得られない。また,冷却停止時の鋼板平均温度が300℃未満では,鋼板表層部の硬度が高くなりすぎるだけでなく、鋼板に歪みを生じやすくなり成形性が劣化する。よって、冷却停止時の鋼板平均温度は300〜550℃の範囲とする。
Steel plate average temperature at cooling stop: 300-550 ° C
Accelerated cooling is an important process for obtaining high strength by bainite transformation. However, if the average temperature of the steel sheet when cooling is stopped exceeds 550 ° C., the bainite transformation is insufficient and sufficient strength cannot be obtained. Further, if the average temperature of the steel plate when cooling is stopped is less than 300 ° C., not only the hardness of the surface portion of the steel plate becomes too high, but also the steel plate tends to be distorted and formability deteriorates. Therefore, the steel plate average temperature at the time of cooling stop shall be 300-550 ° C.

本発明は加速冷却に引き続き、誘導加熱による焼戻しを行う。ここで、誘導加熱装置を用いるのは、急速な加熱が可能で、さらに本発明の重要な要件である鋼板の加熱温度を、鋼板表層部と板厚中央部とで変化させることが可能であるためである。   In the present invention, tempering by induction heating is performed following accelerated cooling. Here, the use of the induction heating device enables rapid heating, and furthermore, the heating temperature of the steel sheet, which is an important requirement of the present invention, can be changed between the steel sheet surface layer part and the plate thickness central part. Because.

誘導加熱装置により鋼板を加熱した場合の、鋼板表面温度と鋼板中心温度の時間による変化の様子を、図5に模式図で示す。誘導加熱は鋼材の表層部が誘導電流により発熱し、熱伝導によって鋼板内部の温度が上昇する。そのため、誘導加熱中は鋼板中心部に比べ鋼板表層部が大きく温度上昇するが、誘導加熱が終了すると熱伝導によって表層部の温度が急激に低下し、鋼板中心部の温度は上昇してくる。そして、誘導加熱を終了し、数秒で鋼板表面と鋼板中心の温度がほぼ等しくなる。   FIG. 5 is a schematic diagram showing how the steel plate surface temperature and the steel plate center temperature change with time when the steel plate is heated by an induction heating device. In the induction heating, the surface layer portion of the steel material generates heat due to the induction current, and the temperature inside the steel plate rises due to heat conduction. For this reason, during induction heating, the temperature of the steel sheet surface layer increases greatly compared to the center of the steel sheet, but when induction heating ends, the temperature of the surface layer decreases rapidly due to heat conduction, and the temperature of the steel sheet center increases. And induction heating is complete | finished and the temperature of a steel plate surface and a steel plate center will become substantially equal in several seconds.

本発明においては,誘導加熱時の鋼板表面温度は、誘導加熱終了直後の鋼板表面温度の実測値とする。また、鋼板平均加熱温度は誘導加熱終了後で、鋼板中心温度と鋼板表面温度がほぼ等しくなったときの、鋼板表面温度の実測値とする。   In the present invention, the steel sheet surface temperature at the time of induction heating is an actual measurement value of the steel sheet surface temperature immediately after the induction heating is completed. Further, the steel plate average heating temperature is an actual measured value of the steel plate surface temperature when the steel plate center temperature and the steel plate surface temperature become substantially equal after the end of induction heating.

なお、本願特許は、誘導加熱により鋼板表層部を鋼板中心部より高い温度に加熱することが特徴であるが、鋼板の板厚が薄くなると、表層部と中心部の温度差が小さくなるため、期待される効果が得られない。よって、鋼板の板厚は12mm以上とすることが望ましい。   In addition, the patent of this application is characterized by heating the steel sheet surface layer part to a temperature higher than the steel sheet center part by induction heating, but when the sheet thickness of the steel sheet becomes thin, the temperature difference between the surface layer part and the center part becomes small, The expected effect cannot be obtained. Therefore, the thickness of the steel sheet is desirably 12 mm or more.

以下に、誘導加熱による加熱条件の限定理由を説明する。   Below, the reason for limitation of the heating conditions by induction heating is demonstrated.

鋼板表面温度:500〜700℃
鋼板表層部の加熱によって、加速冷却によって生成した島状マルテンサイトが分解され、表層部の硬度が低減される。しかし、表面温度が500℃未満では島状マルテンサイトの分解が十分でないため、硬度低下が不十分であり、また、700℃を超えると、鋼板中央部の加熱温度も上昇するため大きな強度低下をまねく。よって、誘導加熱での鋼板表面温度は500〜700℃の範囲とする。
Steel plate surface temperature: 500-700 ° C
By heating the steel plate surface layer portion, the island martensite generated by accelerated cooling is decomposed, and the hardness of the surface layer portion is reduced. However, when the surface temperature is less than 500 ° C., the island-like martensite is not sufficiently decomposed, so that the hardness is not sufficiently lowered. Much. Therefore, the steel plate surface temperature in induction heating is set to a range of 500 to 700 ° C.

鋼板平均加熱温度:580℃未満
誘導加熱によって鋼板中央部が加熱されると、焼戻しによる強度低下を招くため、鋼板中央部の加熱温度は低いほどよい。しかし、580℃未満の温度なら大きな強度低下を生じないため、鋼板平均加熱温度は580℃未満とする。
Steel plate average heating temperature: less than 580 ° C. When the steel plate central portion is heated by induction heating, strength reduction due to tempering is caused. However, if the temperature is lower than 580 ° C., the strength is not greatly reduced.

3.金属組織について
本発明では加速冷却後の加熱処理によって鋼板表面部の硬度が低下し,板厚方向の硬度分布が平滑化されるが,鋼板表層部の金属組織は以下のように規定する。
3. Regarding the metal structure In the present invention, the hardness of the steel plate surface portion is reduced by the heat treatment after accelerated cooling, and the hardness distribution in the plate thickness direction is smoothed. The metal structure of the steel plate surface layer portion is defined as follows.

表層部の島状マルテンサイトの体積分率:3%以下
島状マルテンサイト(MA)は加速冷却によって生成する組織であり、島状マルテンサイトが生成することで硬度が大きく上昇する。しかし、体積分率で3%未満なら鋼板中央部との硬度差が十分小さくなるので、島状マルテンサイトの体積分率の上限は3%とする。
Volume fraction of island martensite in the surface layer: 3% or less Island martensite (MA) is a structure generated by accelerated cooling, and the hardness increases greatly when island martensite is generated. However, if the volume fraction is less than 3%, the difference in hardness from the center of the steel sheet is sufficiently small, so the upper limit of the volume fraction of island martensite is 3%.

表1に示す化学成分の鋼(鋼種A〜K)を連続鋳造法によりスラブとし、これを用いて板厚20mm,または30mmの厚鋼板(No.1〜22)を製造した。   Steel of chemical composition shown in Table 1 (steel types A to K) was made into a slab by a continuous casting method, and a steel plate (No. 1 to 22) having a plate thickness of 20 mm or 30 mm was produced using this.

加熱したスラブを熱間圧延により圧延した。熱間圧延後の鋼板の長さは,板厚20mmの場合は38m,板厚30mmの場合は25mとした。熱間圧延後直ちに水冷型の加速冷却設備を用いて冷却を行い、加速冷却設備と同一ライン上に設置した誘導加熱炉を用いて再加熱を行った。また,一部の鋼板は比較のため再加熱を行わなかった。各鋼板(No.1〜22)の製造条件を表2に示す。   The heated slab was rolled by hot rolling. The length of the steel sheet after hot rolling was 38 m for a plate thickness of 20 mm and 25 m for a plate thickness of 30 mm. Immediately after hot rolling, cooling was performed using a water-cooled accelerated cooling facility, and reheating was performed using an induction heating furnace installed on the same line as the accelerated cooling facility. Some steel plates were not reheated for comparison. Table 2 shows the production conditions of each steel plate (No. 1 to 22).

以上のようにして製造した鋼板の引張特性は、圧延垂直方向の全厚試験片を引張試験片として引張試験を行い、引張強度を測定した。引張強度570MPa以上を本発明に必要な強度とした。ここで,鋼板内の強度のバラツキを確認するため,鋼板の長手方向端部及び長手方向中央部から引張試験片を採取し、その差を強度バラツキとした。   As for the tensile properties of the steel sheet produced as described above, a tensile test was performed using a full thickness test piece in the rolling direction as a tensile test piece, and the tensile strength was measured. The tensile strength of 570 MPa or more was determined as the strength required for the present invention. Here, in order to confirm the variation in strength in the steel plate, tensile test pieces were collected from the longitudinal direction end and the longitudinal center of the steel plate, and the difference was used as the strength variation.

さらに鋼板長手方向中央部について、鋼板の金属組織の観察及び硬さを測定した。鋼板表層部の組織は、ナイタールエッチング後、電解エッチングを行い(2段エッチング)島状マルテンサイト(MA)の面積分率を測定した。硬さ試験は荷重10kgのビッカース硬度計を用いて、鋼板表層部(表面下1mm)及び板厚中央部の硬さを測定した。そして、その差を硬さのバラツキとした。ここで、引張強度のバラツキが20MPa以下、及び硬さのバラツキがHV40以下のものを本発明例とした。   Furthermore, about the steel plate longitudinal direction center part, the observation and hardness of the metal structure of the steel plate were measured. The structure of the steel sheet surface layer portion was subjected to electrolytic etching after nital etching (two-stage etching), and the area fraction of island martensite (MA) was measured. In the hardness test, the hardness of the steel plate surface layer portion (1 mm below the surface) and the plate thickness center portion was measured using a Vickers hardness tester with a load of 10 kg. And the difference was made into the variation in hardness. Here, the examples of the present invention were those in which the variation in tensile strength was 20 MPa or less and the variation in hardness was HV 40 or less.

溶接熱影響部(HAZ)靭性については、再現熱サイクル装置によって入熱40kJ/cmに相当する熱履歴を加えた試験片を用いて種々の温度でシャルピー試験を行った。そして、脆性破面率50%となる温度を破面遷移温度(vTrs)として求めた。そして、vTrsが0℃以下を本発明の範囲とした。   For the weld heat affected zone (HAZ) toughness, Charpy tests were performed at various temperatures using test pieces to which a thermal history corresponding to a heat input of 40 kJ / cm was added by a reproducible thermal cycle apparatus. The temperature at which the brittle fracture surface ratio was 50% was determined as the fracture surface transition temperature (vTrs). The range of the present invention is that vTrs is 0 ° C. or less.

表2において、本発明例であるNo.1〜10はいずれも、化学成分および製造方法及びミクロ組織が本発明の範囲内であり、引張強度570MPa以上の高強度でかつ鋼板内の強度バラツキが20MPa以下と小さい。さらに,板厚方向の硬さのバラツキも小さいため冷間成形時の曲げ加工性がきわめて良好といえる。そして,溶接熱影響部靭性も良好であった。   In Table 2, all of Nos. 1 to 10, which are examples of the present invention, have chemical components, production methods, and microstructures within the scope of the present invention, high strength of a tensile strength of 570 MPa or more, and strength variation in the steel sheet. As small as 20 MPa or less. Furthermore, since the variation in hardness in the thickness direction is small, it can be said that the bending workability during cold forming is very good. The weld heat-affected zone toughness was also good.

一方,No.11〜19は、化学成分は本発明の範囲内であるので溶接部靭性に優れているが、製造方法が本発明の範囲外であるため強度が不足するか、または、表層部の島状マルテンサイト(MA)量が本発明の範囲を超えるため、強度や硬さのバラツキが大きい。No.20〜23は化学成分が本発明の範囲外であるので、十分な強度が得られないか、溶接熱影響部靭性が劣っていた。   On the other hand, Nos. 11 to 19 are excellent in welded portion toughness because the chemical components are within the scope of the present invention, but the manufacturing method is outside the scope of the present invention, so that the strength is insufficient, or the surface layer portion. Since the amount of island martensite (MA) exceeds the range of the present invention, the variation in strength and hardness is large. No. 20 to 23 had chemical components outside the scope of the present invention, so that sufficient strength could not be obtained or welding heat affected zone toughness was inferior.

本発明によれば、引張強度570MPa以上の高強度と高い溶接部靭性を有し、かつ冷間成形性の優れた鋼板が得られるので、強度靱性と高い材質均質性と冷間成型後の寸法精度が必要とされるラインパイプや鋼構造物へ適用することができる。   According to the present invention, a steel sheet having a high tensile strength of 570 MPa or more, high weld toughness and excellent cold formability can be obtained, so that strength toughness, high material homogeneity, and dimensions after cold forming are obtained. It can be applied to line pipes and steel structures where accuracy is required.

加速冷却後の板厚方向硬度分布を説明する図である。It is a figure explaining the thickness direction hardness distribution after accelerated cooling. 加速冷却後の鋼板表層部のSEM観察写真である。It is a SEM observation photograph of the steel sheet surface layer part after accelerated cooling. 誘導加熱後の板厚方向硬度分布を説明する図である。It is a figure explaining the thickness direction hardness distribution after induction heating. 誘導加熱後の鋼板表層部のSEM観察写真である。It is a SEM observation photograph of the steel plate surface layer part after induction heating. 誘導加熱時の鋼板表面と鋼板中心部の温度履歴を説明する模式図である。It is a schematic diagram explaining the temperature history of the steel plate surface at the time of induction heating, and a steel plate center part.

Claims (3)

質量%で、C:0.06〜0.12%、Si:0.5%以下、Mn:0.5〜2.5%、Al:0.08%以下、Nb:0.005〜0.025%、Ti:0.005〜0.025%を含有し、残部がFe及び不可避的不純物からなる鋼を、1000〜1200℃に加熱し、熱間圧延を行った後、冷却開始温度が鋼板表面温度で(Ar3+10℃)以下、冷却停止温度が鋼板平均温度で300〜550℃となる加速冷却を行い、次いで誘導加熱により鋼板表面温度で500〜700℃、鋼板平均温度で580℃未満に加熱することを特徴とする高強度高靱性鋼板の製造方法。 In mass%, C: 0.06-0.12%, Si: 0.5% or less, Mn: 0.5-2.5%, Al: 0.08% or less, Nb: 0.005-0. Steel containing 025%, Ti: 0.005 to 0.025%, the balance being Fe and inevitable impurities is heated to 1000 to 1200 ° C. and hot-rolled, and then the cooling start temperature is the steel plate. The surface temperature is (Ar 3 + 10 ° C.) or less, the cooling stop temperature is 300 to 550 ° C. at the steel plate average temperature, and then by induction heating, the steel plate surface temperature is 500 to 700 ° C., and the steel plate average temperature is 580 ° C. A method for producing a high-strength, high-toughness steel sheet, characterized by heating to less than さらに質量%で、Cu:0.5%以下、Ni:1%以下、Cr:0.5%以下、Mo:0.5%以下、V:0.1%以下、Ca:0.001〜0.003%の中から選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の高強度高靱性鋼板の製造方法。   Further, by mass%, Cu: 0.5% or less, Ni: 1% or less, Cr: 0.5% or less, Mo: 0.5% or less, V: 0.1% or less, Ca: 0.001 to 0 The method for producing a high-strength and high-toughness steel sheet according to claim 1, comprising one or more selected from 0.003%. 請求項1または請求項2に記載の方法で製造された、引張強度570MPa以上の鋼板であって、鋼板表層部の金属組織が、島状マルテンサイトの体積分率は3%以下、残部はベイナイトまたはベイナイトとフェライトの混合組織であることを特徴とする高強度高靱性鋼板。   A steel sheet produced by the method according to claim 1 or 2 having a tensile strength of 570 MPa or more, wherein the surface layer of the steel sheet has a volume fraction of island martensite of 3% or less and the balance is bainite. Or a high-strength, high-toughness steel sheet characterized by having a mixed structure of bainite and ferrite.
JP2006303667A 2006-11-09 2006-11-09 Manufacturing method of high strength and tough steel sheet Active JP5092358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303667A JP5092358B2 (en) 2006-11-09 2006-11-09 Manufacturing method of high strength and tough steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303667A JP5092358B2 (en) 2006-11-09 2006-11-09 Manufacturing method of high strength and tough steel sheet

Publications (2)

Publication Number Publication Date
JP2008121036A true JP2008121036A (en) 2008-05-29
JP5092358B2 JP5092358B2 (en) 2012-12-05

Family

ID=39506118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303667A Active JP5092358B2 (en) 2006-11-09 2006-11-09 Manufacturing method of high strength and tough steel sheet

Country Status (1)

Country Link
JP (1) JP5092358B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100903A (en) * 2008-10-24 2010-05-06 Jfe Steel Corp Thick high tensile strength steel plate having low yield ratio and brittle crack generation resistance, and method of producing the same
WO2011065579A1 (en) * 2009-11-25 2011-06-03 Jfeスチール株式会社 Welded steel pipe for linepipe with superior compressive strength, and process for producing same
WO2011065578A1 (en) * 2009-11-25 2011-06-03 Jfeスチール株式会社 Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
WO2011065582A1 (en) * 2009-11-25 2011-06-03 Jfeスチール株式会社 Welded steel pipe for linepipe with superior compressive strength and excellent sour resistance, and process for producing same
JP2012241274A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High strength linepipe superior in collapse resistance and sour resistance, and method for producing the same
JP2012241273A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High strength linepipe superior in collapse resistance and sour-resistance and method for producing the same
JP2012241272A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High strength linepipe superior in collapse resistance and toughness of weld heat-affected zone, and method for producing the same
JP2013112865A (en) * 2011-11-30 2013-06-10 Jfe Steel Corp High-strength and high-toughness thick steel plate having excellent material uniformity in the steel plate, and method for producing the same
JP2013112866A (en) * 2011-11-30 2013-06-10 Jfe Steel Corp High-strength and high-toughness thick steel plate having excellent material uniformity in the steel plate, and method for producing the same
WO2013099192A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 High-tension hot rolled steel sheet and method for manufacturing same
JP2014001702A (en) * 2012-06-20 2014-01-09 Toshiba Corp Steam valve device and manufacturing method of the same
EP2692875A1 (en) * 2011-03-30 2014-02-05 Nippon Steel & Sumitomo Metal Corporation Electroseamed steel pipe and process for producing same
JP2020056066A (en) * 2018-10-01 2020-04-09 日本製鉄株式会社 Steel plate for linepipe
CN114395730A (en) * 2021-12-16 2022-04-26 南阳汉冶特钢有限公司 Low-cost S460ML steel plate with thickness of 60-100mm and production method thereof
CN114875304A (en) * 2022-03-31 2022-08-09 新余钢铁股份有限公司 Quenched and tempered high-strength steel plate for SA537MCL2 pressure vessel and production method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112809A (en) * 1991-07-26 1993-05-07 Mitsubishi Nagasaki Kiko Kk Production of ultrahigh strength steel
JP2003013138A (en) * 2001-06-26 2003-01-15 Nkk Corp Method for manufacturing steel sheet for high-strength line pipe
JP2004143555A (en) * 2002-10-25 2004-05-20 Jfe Steel Kk Method for manufacturing steel product for low temperature use having excellent stress corrosion cracking resistance
JP2005060837A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk High-strength steel sheet superior in hic resistance and toughness in weld heat-affected zone for line pipe, and manufacturing method therefor
JP2005060825A (en) * 2003-06-12 2005-03-10 Jfe Steel Kk Steel sheet with low yield ratio, high strength and high toughness, and manufacturing method therefor
JP2005298963A (en) * 2004-03-16 2005-10-27 Jfe Steel Kk Method for manufacturing high-tensile steel sheet superior in workability
JP2007204771A (en) * 2006-01-31 2007-08-16 Jfe Steel Kk Method for manufacturing high-tensile steel sheet superior in ssc resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112809A (en) * 1991-07-26 1993-05-07 Mitsubishi Nagasaki Kiko Kk Production of ultrahigh strength steel
JP2003013138A (en) * 2001-06-26 2003-01-15 Nkk Corp Method for manufacturing steel sheet for high-strength line pipe
JP2004143555A (en) * 2002-10-25 2004-05-20 Jfe Steel Kk Method for manufacturing steel product for low temperature use having excellent stress corrosion cracking resistance
JP2005060825A (en) * 2003-06-12 2005-03-10 Jfe Steel Kk Steel sheet with low yield ratio, high strength and high toughness, and manufacturing method therefor
JP2005060837A (en) * 2003-07-31 2005-03-10 Jfe Steel Kk High-strength steel sheet superior in hic resistance and toughness in weld heat-affected zone for line pipe, and manufacturing method therefor
JP2005298963A (en) * 2004-03-16 2005-10-27 Jfe Steel Kk Method for manufacturing high-tensile steel sheet superior in workability
JP2007204771A (en) * 2006-01-31 2007-08-16 Jfe Steel Kk Method for manufacturing high-tensile steel sheet superior in ssc resistance

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100903A (en) * 2008-10-24 2010-05-06 Jfe Steel Corp Thick high tensile strength steel plate having low yield ratio and brittle crack generation resistance, and method of producing the same
EP2505682A1 (en) * 2009-11-25 2012-10-03 JFE Steel Corporation Welded steel pipe for linepipe with superior compressive strength, and process for producing same
WO2011065578A1 (en) * 2009-11-25 2011-06-03 Jfeスチール株式会社 Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
WO2011065582A1 (en) * 2009-11-25 2011-06-03 Jfeスチール株式会社 Welded steel pipe for linepipe with superior compressive strength and excellent sour resistance, and process for producing same
JP2011132599A (en) * 2009-11-25 2011-07-07 Jfe Steel Corp Welded steel pipe for linepipe with superior compressive strength, and process for producing same
CN102639734A (en) * 2009-11-25 2012-08-15 杰富意钢铁株式会社 Welded steel pipe for linepipe with superior compressive strength and excellent sour resistance, and process for producing same
WO2011065579A1 (en) * 2009-11-25 2011-06-03 Jfeスチール株式会社 Welded steel pipe for linepipe with superior compressive strength, and process for producing same
US9181609B2 (en) 2009-11-25 2015-11-10 Jfe Steel Corporation Welded steel pipe for linepipe having high compressive strength and excellent sour gas resistance and manufacturing method thereof
US9089919B2 (en) 2009-11-25 2015-07-28 Jfe Steel Corporation Welded steel pipe for linepipe with high compressive strength and manufacturing method thereof
EP2505681A4 (en) * 2009-11-25 2013-05-08 Jfe Steel Corp Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
EP2505682A4 (en) * 2009-11-25 2013-05-08 Jfe Steel Corp Welded steel pipe for linepipe with superior compressive strength, and process for producing same
EP2692875A1 (en) * 2011-03-30 2014-02-05 Nippon Steel & Sumitomo Metal Corporation Electroseamed steel pipe and process for producing same
EP2692875A4 (en) * 2011-03-30 2014-11-05 Nippon Steel & Sumitomo Metal Corp Electroseamed steel pipe and process for producing same
JP2012241274A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High strength linepipe superior in collapse resistance and sour resistance, and method for producing the same
JP2012241273A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High strength linepipe superior in collapse resistance and sour-resistance and method for producing the same
JP2012241272A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High strength linepipe superior in collapse resistance and toughness of weld heat-affected zone, and method for producing the same
JP2013112865A (en) * 2011-11-30 2013-06-10 Jfe Steel Corp High-strength and high-toughness thick steel plate having excellent material uniformity in the steel plate, and method for producing the same
JP2013112866A (en) * 2011-11-30 2013-06-10 Jfe Steel Corp High-strength and high-toughness thick steel plate having excellent material uniformity in the steel plate, and method for producing the same
JPWO2013099192A1 (en) * 2011-12-27 2015-04-30 Jfeスチール株式会社 High-tensile hot-rolled steel sheet and manufacturing method thereof
CN104011245A (en) * 2011-12-27 2014-08-27 杰富意钢铁株式会社 Hot rolled high tensile strength steel sheet and method for manufacturing same
WO2013099192A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 High-tension hot rolled steel sheet and method for manufacturing same
KR20140099321A (en) * 2011-12-27 2014-08-11 제이에프이 스틸 가부시키가이샤 Hot rolled high tensile strength steel sheet and method for manufacturing same
KR101664635B1 (en) * 2011-12-27 2016-10-10 제이에프이 스틸 가부시키가이샤 Hot rolled high tensile strength steel sheet and method for manufacturing same
JP2014001702A (en) * 2012-06-20 2014-01-09 Toshiba Corp Steam valve device and manufacturing method of the same
JP2020056066A (en) * 2018-10-01 2020-04-09 日本製鉄株式会社 Steel plate for linepipe
JP7115200B2 (en) 2018-10-01 2022-08-09 日本製鉄株式会社 Steel plate for line pipe
CN114395730A (en) * 2021-12-16 2022-04-26 南阳汉冶特钢有限公司 Low-cost S460ML steel plate with thickness of 60-100mm and production method thereof
CN114875304A (en) * 2022-03-31 2022-08-09 新余钢铁股份有限公司 Quenched and tempered high-strength steel plate for SA537MCL2 pressure vessel and production method thereof

Also Published As

Publication number Publication date
JP5092358B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5092358B2 (en) Manufacturing method of high strength and tough steel sheet
JP5223511B2 (en) Steel sheet for high strength sour line pipe, method for producing the same and steel pipe
JP6344538B1 (en) Steel pipe and steel plate
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP5900303B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5672916B2 (en) High-strength steel sheet for sour line pipes, method for producing the same, and high-strength steel pipe using high-strength steel sheets for sour line pipes
EP2505681A1 (en) Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
US10767250B2 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
EP2505682A1 (en) Welded steel pipe for linepipe with superior compressive strength, and process for producing same
JP4066905B2 (en) Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness
RU2677554C1 (en) Steel plates for construction pipes or tubes, steel plates for construction pipes or tubes manufacturing method, and construction pipes or tubes
JP6682785B2 (en) Steel plate having excellent sour resistance and method of manufacturing the same
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
KR101885234B1 (en) Steel material for highly deformable line pipes having superior strain aging resistance and superior hic resistance, method for manufacturing same, and welded steel pipe
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP2013139628A (en) High strength steel sheet of excellent material uniformity in steel sheet for use in line pipe, and method for producing the same
JP2009209443A (en) Steel sheet for line pipe, method for producing the same, and line pipe
JP6288288B2 (en) Steel plate for line pipe, manufacturing method thereof and steel pipe for line pipe
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
US20180057906A1 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP5991174B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP7163777B2 (en) Steel plate for line pipe
JP7472826B2 (en) Electric resistance welded steel pipe and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5092358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250