JP2001064749A - Hic-resisting non-heat treated high tensile strength steel product excellent in toughness in weld heat-affected zone - Google Patents

Hic-resisting non-heat treated high tensile strength steel product excellent in toughness in weld heat-affected zone

Info

Publication number
JP2001064749A
JP2001064749A JP24075299A JP24075299A JP2001064749A JP 2001064749 A JP2001064749 A JP 2001064749A JP 24075299 A JP24075299 A JP 24075299A JP 24075299 A JP24075299 A JP 24075299A JP 2001064749 A JP2001064749 A JP 2001064749A
Authority
JP
Japan
Prior art keywords
hic
toughness
acr
strength steel
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24075299A
Other languages
Japanese (ja)
Inventor
Masahiro Aoki
雅弘 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24075299A priority Critical patent/JP2001064749A/en
Publication of JP2001064749A publication Critical patent/JP2001064749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively improve toughness in weld heat-affected zone by a simplified process without deteriorating HIC resistance and welding efficiency by providing a specific composition in which Si content is regulated to values in a proper range and also ACR as an index to fixation of S is controlled to values in a specific range. SOLUTION: The HIC-resisting non-heat treated high tensile strength steel product has a composition which consists of, by weight, 0.03-0.08% C, 0.05-0.15% Si, 0.30-1.60% Mn, <=0.020% P, <=0.015% S, 0.01-0.10% Al, 0.005-0.06% Nb, 10-40 ppm Ca, <=0.007% N, further one or more kinds among 0.05-1.30% Cu, 0.05-10.0% Ni, 0.05-1.50% Cr, 0.03-0.50% Mo, 0.010-0.15% V, and 0.005-0.050% Ti, and the balance iron and in which the value of ACR defined by equation ACR =0.8×Ca-(130Ca+0.18)×O)/S} is regulated to 1.0 to 3.0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、氷点下の低温環境
で使用されるラインパイプや圧力容器、タンク等の用途
に用いられる引張強さが 500 MPa級以上の耐HIC 非調質
高張力鋼材、特に溶接HAZ 部の靱性に優れた耐HIC 非調
質高張力鋼材に関するものである。
TECHNICAL FIELD The present invention relates to a non-HIC non-refined high-strength steel material having a tensile strength of 500 MPa or more used for applications such as line pipes, pressure vessels and tanks used in low-temperature environments below freezing. In particular, it relates to a HIC-resistant non-tempered high-strength steel with excellent toughness in the welded HAZ.

【0002】[0002]

【従来の技術】通常、高張力鋼を溶接した場合、その溶
接熱影響部(HAZ)、特にBONDと称される溶接金属と接す
る部分は、その熱履歴によりγ変態しかつ粒成長するた
め、組織が大幅に粗大化する。このため、溶接HAZ 部の
低温靱性が母材に比較して大幅に低下し、脆性破壊の発
生を招く。
2. Description of the Related Art Normally, when welding high strength steel, the heat affected zone (HAZ), particularly the portion in contact with the weld metal called BOND, undergoes γ transformation and grain growth due to its heat history. The organization becomes significantly coarse. For this reason, the low-temperature toughness of the welded HAZ is significantly reduced as compared with the base metal, causing brittle fracture.

【0003】この問題の防止策として、従来、TiNやRE
M 系介在物を鋼中に微細に分布させ、その Pinning効果
によってγ粒の成長を抑制し、結果としてBOND部の組織
を微細化する方法が知られている。また、溶接方法に工
夫を加える、例えば溶接入熱を下げる等して、BOND部の
低温靱性の確保に努めていた。
[0003] As measures to prevent this problem, conventionally, TiN or RE
There is known a method in which M-based inclusions are finely distributed in steel, the growth of γ grains is suppressed by the Pinning effect, and as a result, the structure of the BOND portion is refined. In addition, efforts have been made to ensure the low-temperature toughness of the BOND portion by modifying the welding method, for example, by reducing the welding heat input.

【0004】その他、特開平8−165518号公報には、耐
サワー性を考慮した成分組成の鋼を、板厚方向温度差圧
延と各パス大圧下を組み合わせることによって板厚中心
部を強加工し、圧延後に加速冷却を適用することからな
る、耐HIC 特性および低温靱性に優れた耐サワー鋼板の
製造方法が提案されている。
[0004] In addition, Japanese Patent Application Laid-Open No. 8-165518 discloses that a steel having a component composition in consideration of sour resistance is subjected to a strong working at a central portion of a sheet thickness by combining temperature difference rolling in the thickness direction and large reduction in each pass. A method for producing a sour-resistant steel sheet having excellent HIC resistance and low-temperature toughness, which comprises applying accelerated cooling after rolling, has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、TiNを
利用する方法では、TiNが溶解する温度がBOND部におけ
る最高温度よりも低いため、十分な効果を挙げることが
できず、一方 REM系介在物を使用すると、それが HICの
起点となるため、耐 HIC特性が低下するという問題があ
った。また、溶接方法に頼る方法では、その溶接効率が
低下し、経済的でないという問題があった。さらに、特
開平8−165518号公報に開示の方法は、加熱後、2t以
上の厚みに圧延したのち、 950℃以上の温度から水量密
度が 0.5〜2.0m3/m2・min で水冷時間が10〜50sという
冷却を行い、その後 300s以内にパス回数の60%以上が
1パス当たりの圧下率が10%以上となる圧延を行う必要
がある等、製造工程が極めて煩雑なところに問題を残し
ていた。
However, in the method using TiN, since the temperature at which TiN dissolves is lower than the maximum temperature in the BOND portion, a sufficient effect cannot be obtained. If used, it becomes the starting point of HIC, and there is a problem that the HIC resistance is reduced. Further, the method relying on the welding method has a problem that the welding efficiency is reduced and the method is not economical. Further, the method disclosed in Japanese Patent Application Laid-Open No. 8-165518 discloses that, after heating, after rolling to a thickness of 2 t or more, the water density is 0.5 to 2.0 m 3 / m 2 · min at a temperature of 950 ° C. or more, and the water cooling time is Cooling of 10 to 50 s is performed, and after that, it is necessary to perform rolling in which the rolling reduction per pass is 10% or more for 60% or more of the number of passes within 300 s. I was

【0006】本発明は、上記の実情に鑑み開発されたも
ので、耐 HIC特性や溶接効率を劣化させることなく、ま
た簡便な工程で、溶接HAZ 部靱性を効果的に向上させる
ことができる、溶接HAZ 部の靱性に優れた耐HIC 非調質
高張力鋼材を提案することを目的とする。
The present invention has been developed in view of the above circumstances, and can effectively improve the toughness of a welded HAZ portion without deteriorating HIC resistance and welding efficiency and by a simple process. The purpose of this study is to propose a HIC-resistant non-tempered high-strength steel material with excellent toughness in the welded HAZ.

【0007】[0007]

【課題を解決するための手段】さて、発明者らは、上記
の目的を達成すべく種々実験を行った結果、溶接HAZ 部
における靱性の劣化は、BOND部での島状マルテンサント
の生成に起因することが判明した。そこで、次に、かよ
うな島状マルテンサントの生成を抑制すべく鋭意研究を
進めたところ、鋼材の成分調整とくにSi含有量を適正な
範囲に制限することによって、所期した目的が有利に達
成されることの知見を得た。また、上記の実験の過程
で、耐HIC 特性を確保するには、Sの固定に関する指標
であるACR を所定の範囲にコントロールすることが極め
て有効であることも併せて見出した。本発明は、上記の
知見に立脚するものである。
Means for Solving the Problems Now, the present inventors have conducted various experiments to achieve the above object, and as a result, the deterioration of the toughness in the welded HAZ portion is caused by the formation of island-like martensant in the BOND portion. It turned out to be due. Therefore, next, we conducted intensive research to suppress the formation of such island-like martensant, and the intended purpose was advantageously achieved by adjusting the composition of steel materials, especially by limiting the Si content to an appropriate range. The knowledge of what is achieved is obtained. In the course of the above experiment, it was also found that controlling the ACR, which is an index for fixing S, to a predetermined range is extremely effective in securing HIC resistance. The present invention is based on the above findings.

【0008】すなわち、本発明は、C:0.03〜0.08wt
%、Si:0.05〜0.15wt%、Mn:0.30〜1.60wt%、P:0.
020 wt%以下、S:0.0015wt%以下、Al:0.01〜0.10wt
%、Nb:0.005 〜0.06wt%、Ca:10〜40 ppmおよびN:
0.007 wt%以下を含有し、かつ次式(1) で規定されるAC
R が 1.0〜3.0 の範囲を満足し、 ACR = 0.8×{Ca−(130 Ca+0.18)×O)/S} --- (1) さらにCu:0.05〜1.30wt%、Ni:0.05〜10.0wt%、Cr:
0.05〜1.50wt%、Mo:0.03〜0.50wt%、V:0.010 〜0.
15wt%およびTi:0.005 〜0.050 wt%よりなる群から選
ばれる少なくとも1種を含有し、残部は鉄および不可避
的不純物の組成になることを特徴とする溶接HAZ 部の靱
性に優れた耐HIC 非調質高張力鋼材である。
That is, the present invention relates to a method for producing C: 0.03 to 0.08 wt.
%, Si: 0.05 to 0.15 wt%, Mn: 0.30 to 1.60 wt%, P: 0.
020 wt% or less, S: 0.0015 wt% or less, Al: 0.01 to 0.10 wt
%, Nb: 0.005 to 0.06 wt%, Ca: 10 to 40 ppm and N:
0.007 wt% or less and specified by the following formula (1)
R satisfies the range of 1.0 to 3.0, ACR = 0.8 × {Ca− (130 Ca + 0.18) × O) / S} (1) Further, Cu: 0.05 to 1.30 wt%, Ni: 0.05 to 10.0 wt%, Cr:
0.05-1.50 wt%, Mo: 0.03-0.50 wt%, V: 0.010-0.
15% by weight and at least one selected from the group consisting of 0.005 to 0.050% by weight of Ti, and the balance being iron and unavoidable impurities. Tempered high-tensile steel.

【0009】[0009]

【発明の実施の形態】以下、本発明を具体的に説明す
る。まず、本発明において、鋼材の成分組成を上記の範
囲に限定した理由について説明する。 C:0.03〜0.08wt% Cは、焼入性と強度を確保するために必要な元素であ
り、そのためには少なくとも0.03wt%の添加が必要であ
る。 しかしながら、添加量が0.08wt%を超えると耐HIC
特性が劣化するので、添加量は0.08wt%を上限とす
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, the reason why the composition of the steel material is limited to the above range in the present invention will be described. C: 0.03 to 0.08 wt% C is an element necessary for securing hardenability and strength, and therefore, it is necessary to add at least 0.03 wt%. However, if the added amount exceeds 0.08 wt%, HIC resistance
Since the characteristics are deteriorated, the upper limit of the amount of addition is 0.08 wt%.

【0010】Si:0.05〜0.15wt% Siは、本発明において特に重要な元素である。すなわ
ち、Siは、BOND部におけるの島状マルテンサントの生成
に関連し、添加量を低減することによって、靱性を低下
させる島状マルテンサイトの生成を抑制することがで
き、その結果、溶接HAZ 部の靱性の改善が可能となる。
図1に、 0.06wt%C-1.5wt%Mn-0.010wt%P-0.0009wt%S
-0.020wt%Al-0.015wt%Nb-200ppmCa-0.004wt%Nをベース
とした本発明の成分系において、Si含有量を種々に変化
させたときの、Si量と(BOND部の熱履歴をシミュレーシ
ョンした)再現熱サイクルシャルピー試験遷移温度との
関係について調べた結果を示す。同図に示したとおり、
Si含有量を0.15wt%以下(好ましくは0.11wt%以下)に
抑制することによってBOND部の靱性を格段に向上させる
ことができる。
Si: 0.05-0.15 wt% Si is a particularly important element in the present invention. That is, Si is related to the formation of island-like martensite in the BOND part, and by reducing the amount of addition, it is possible to suppress the formation of island-like martensite, which lowers the toughness. The toughness can be improved.
Figure 1 shows that 0.06wt% C-1.5wt% Mn-0.010wt% P-0.0009wt% S
In the component system of the present invention based on -0.020wt% Al-0.015wt% Nb-200ppmCa-0.004wt% N, when the Si content is variously changed, the Si content and the heat history of the BOND part are FIG. 9 shows the results of an investigation on the relationship between the simulated (reproduced) thermal cycle and the transition temperature of the Charpy test. As shown in the figure,
By suppressing the Si content to 0.15 wt% or less (preferably 0.11 wt% or less), the toughness of the BOND portion can be significantly improved.

【0011】また、耐HIC 特性を改善するには、後述す
るACR 値を所定の範囲にコントロールする必要がある
が、そのためには鋼中酸素量を低減することが重要であ
る。図2に、Si量と鋼中酸素量との関係について、図1
の場合と同じ鋼を用いて調べた結果を示す。ここに、か
ような脱酸の面からは、Si含有量が重要で、含有量が0.
05wt%未満では十分な脱酸が望み得ない。以上の理由に
より、Si含有量は0.05〜0.15wt%より好適には0.05〜0.
11wt%の範囲に限定した。
Further, in order to improve the HIC resistance, it is necessary to control the ACR value to be described later within a predetermined range. For this purpose, it is important to reduce the oxygen content in the steel. FIG. 2 shows the relationship between Si content and oxygen content in steel.
The result of the examination using the same steel as in the case of is shown. Here, from the viewpoint of such deoxidation, the Si content is important, and the content is 0.
If it is less than 05 wt%, sufficient deoxidation cannot be expected. For the above reasons, the Si content is preferably 0.05 to 0.15 wt%, more preferably 0.05 to 0.
It was limited to the range of 11 wt%.

【0012】Mn:0.30〜1.60wt% Mnは、靱性を損なうことなく強度を向上させるために有
効であり、このためには少なくとも0.30wt%の添加が必
要である。 しかしながら、過度の添加は耐HIC特性を劣
化させるため、上限を1.60wt%に定めた。
Mn: 0.30-1.60 wt% Mn is effective for improving the strength without impairing the toughness. For this purpose, at least 0.30 wt% must be added. However, an excessive addition deteriorates the HIC resistance, so the upper limit is set to 1.60 wt%.

【0013】P:0.020 wt%以下 Pは、連鋳中心偏析部に偏析し、組織を硬化させること
によって、耐HIC 特性を劣化させるため、低位に抑える
必要がある。 同様の機構により耐HIC 特性を劣化させ
るCやMnとのバランスによって、その許容値は変化する
が、上述したC,Mnの範囲では、許容上限は 0.020wt%
である。
P: not more than 0.020 wt% P segregates in the continuous segregation center segregation part and hardens the structure, thereby deteriorating the HIC resistance. The allowable value changes depending on the balance with C and Mn, which degrade the HIC resistance by the same mechanism. However, in the range of C and Mn described above, the allowable upper limit is 0.020 wt%.
It is.

【0014】S:0.0015wt%以下 Sは、主にMnと結合してMnS化合物を生成し、このMnS
が HICの起点となるため、その混入は極力抑制する必要
がある。このSは、Caの添加により HICに対して無害な
CaS化合物にすることが可能ではあるが、含有量が0.00
15wt%を超えるとCaが不足してMnSが発生するおそれが
あるので、S量は0.0015wt%以下に限定した。
S: 0.0015 wt% or less S mainly combines with Mn to form a MnS compound.
Is the starting point of HIC, so it is necessary to minimize its contamination. This S is harmless to HIC by addition of Ca
Although it is possible to make a CaS compound, the content is 0.00
If the content exceeds 15 wt%, there is a possibility that MnS may be generated due to insufficient Ca, so the S content was limited to 0.0015 wt% or less.

【0015】Al:0.01〜0.10wt% Alは、鋼の脱酸と組織の微細化のため、0.01wt%以上含
有させる必要があるが、必要以上に含有させると鋼中に
酸化物系介在物が多量に生成し、鋼の靱性が大幅に劣化
するので、本発明では、その上限を0.10wt%とした。
Al: 0.01 to 0.10 wt% Al must be contained in an amount of 0.01 wt% or more to deoxidize the steel and refine the structure. Is generated in a large amount and the toughness of the steel is greatly deteriorated. Therefore, in the present invention, the upper limit is set to 0.10 wt%.

【0016】Nb:0.005 〜0.06wt% Nbは、鋳片加熱時のオーステナイト粒の粗大化を防止
し、また圧延時の細粒化、強化等に有効な元素である。
これらの効果を発揮させるためには、 0.005wt%以上の
添加を必要とする。 しかしながら、0.06wt%を超える
添加は溶接HAZ 部の靱性を劣化させので、Nb量は 0.005
〜0.06wt%の範囲に限定した。
Nb: 0.005 to 0.06 wt% Nb is an element that prevents the austenite grains from becoming coarse during slab heating, and is effective in reducing the grain size and strengthening during rolling.
In order to exhibit these effects, 0.005 wt% or more is required. However, the addition of more than 0.06 wt% deteriorates the toughness of the welded HAZ, so the Nb content is 0.005%.
Limited to the range of ~ 0.06 wt%.

【0017】Ca:10〜40 ppm Caは、Sと結合して HICに対して無害なCaSを生成し、
これによりMnSの発生を抑えることができる。そして、
耐HIC 特性の確保のためには、 10ppm以上が必要であ
る。 しかしながら、過度の添加は酸化物系化合物の増
大を招き、耐HIC 特性を劣化させ、また耐火物の寿命も
極端に低下させるので、上限を40ppmとした。
Ca: 10 to 40 ppm Ca combines with S to form CaS harmless to HIC,
Thereby, generation of MnS can be suppressed. And
To ensure HIC resistance, 10 ppm or more is required. However, excessive addition causes an increase in the amount of oxide-based compounds, degrades HIC resistance and extremely reduces the life of refractories, so the upper limit was set to 40 ppm.

【0018】N:0.007 wt%以下 Nは、Alと結合してAlNとなり、鋳片加熱時に結晶粒の
粗大化を防止する効果を有する。しかしながら、多量に
含有された場合には溶接HAZ 部の靱性を劣化させるの
で、本発明ではN含有量を 0.007wt%以下とした。
N: 0.007 wt% or less N combines with Al to form AlN, and has an effect of preventing the crystal grains from becoming coarse during slab heating. However, if contained in a large amount, the toughness of the welded HAZ is deteriorated. Therefore, in the present invention, the N content is set to 0.007 wt% or less.

【0019】ACR [ 0.8×{Ca−(130 Ca+0.18)×
O)/S}]=1.0 〜3.0 上掲式で表される ACRは、 HICの割れ感受性を示す指標
であり、SをCaSとして固定するのに有効なCaの過不足
を表わしている。この指標が小さいと、MnSが生成して
HIC 割れ感受性が増大する。これを防ぐには、ACR を
1.0以上とする必要がある。 一方、この指標が大きいと
酸化物系介在物が増大し、ひいてはHIC 割れ感受性が増
大する。これを防ぐにはACR を 3.0以下にする必要があ
る。 よって、ACR 値は 1.0〜3.0 の範囲にコントロー
ルするものとした。
ACR [0.8 × ΔCa− (130 Ca + 0.18) ×
O) / S}] = 1.0 to 3.0 The ACR represented by the above formula is an index indicating the susceptibility of the HIC to cracking, and indicates the excess or deficiency of Ca effective for fixing S as CaS. If this index is small, MnS will be generated
HIC crack susceptibility increases. To prevent this, set the ACR
Must be at least 1.0. On the other hand, if this index is large, the amount of oxide inclusions increases, and as a result, the susceptibility to HIC cracking increases. To prevent this, the ACR must be less than 3.0. Therefore, the ACR value was controlled in the range of 1.0 to 3.0.

【0020】また、本発明では、上記の元素に加えてさ
らに、Cu, Ni, Cr, Mo, VおよびTiよりなる群から選ば
れる少なくとも1種を含有させる。 Cu:0.05〜1.30wt% Cuは、固溶強化および析出強化に有用な元素である。
前者の効果を得るためには0.05wt%以上の添加が必要で
有り、一方後者の効果を得るためには 0.5wt%以上の添
加が必要である。 しかしながら、1.3wt%を超えると、
いずれの強化もそれ以上の効果は望めず、むしろコスト
高となる。
In the present invention, in addition to the above elements, at least one selected from the group consisting of Cu, Ni, Cr, Mo, V and Ti is further contained. Cu: 0.05-1.30 wt% Cu is an element useful for solid solution strengthening and precipitation strengthening.
To obtain the former effect, it is necessary to add 0.05 wt% or more, while to obtain the latter effect, it is necessary to add 0.5 wt% or more. However, if it exceeds 1.3 wt%,
Neither enhancement can be expected to have any further effect, but rather is costly.

【0021】Ni:0.05〜10.0wt% Niは、靱性の改善に有用なだけでなく、延性・脆性遷移
温度を低温側へ移行させることによって低温用鋼を製造
するのに有効に寄与する。 これらの効果を得るために
は、0.10wt%以上の添加が必要である。しかしながら、
10.0wt%以上の添加を行っても、より有用な低温用鋼は
得られない。
Ni: 0.05-10.0 wt% Ni is useful not only for improving toughness but also for effectively producing low temperature steel by shifting the ductile / brittle transition temperature to a lower temperature side. In order to obtain these effects, it is necessary to add 0.10 wt% or more. However,
Even if more than 10.0 wt% is added, more useful low-temperature steel cannot be obtained.

【0022】Cr:0.05〜1.50wt% Crは、鋼の強度を確保するのに有用な元素であり、この
目的のためには0.05wt%の添加が必要である。しかしな
がら、過度の添加は溶接性を劣化させるため、上限を1.
50wt%とした。
Cr: 0.05-1.50 wt% Cr is an element useful for securing the strength of steel, and for this purpose, 0.05 wt% must be added. However, excessive addition degrades weldability, so the upper limit is 1.
50 wt%.

【0023】Mo:0.03〜0.50wt% Moは、少量の添加で鋼の強度と靱性を向上させるのに有
用な元素であり、その目的のためには、0.03wt%以上の
添加が必要である。 しかしながら、過度の添加は溶接
性の劣化を招くため、上限を0.50wt%とした。
Mo: 0.03 to 0.50 wt% Mo is an element useful for improving the strength and toughness of steel with a small amount of addition, and for that purpose, it is necessary to add 0.03 wt% or more. . However, excessive addition causes deterioration of weldability, so the upper limit was made 0.50 wt%.

【0024】V:0.010 〜0.15wt% Vは、析出強化による強度上昇に有用な元素である。
この効果を発揮させるためには、 0.010wt%以上の添加
を必要とする。 しかしながら、0.15wt%を超える添加
は、溶接性および溶接HAZ 部の靱性の劣化を招く。
V: 0.010 to 0.15 wt% V is an element useful for increasing the strength by precipitation strengthening.
In order to exhibit this effect, it is necessary to add 0.010 wt% or more. However, the addition exceeding 0.15 wt% causes deterioration of the weldability and the toughness of the welded HAZ.

【0025】Ti:0.005 〜0.050 wt% Tiは、溶接部の粗粒化防止に有用なだけでなく、析出強
化により強度の向上にも有効に寄与する。これらの効果
を発揮させるためには、少なくとも 0.005wt%の添加を
必要とするが、0.050 wt%を超えると靱性の劣化を招
く。
Ti: 0.005 to 0.050 wt% Ti is useful not only for preventing coarsening of the welded portion, but also for improving the strength by precipitation strengthening. To exert these effects, at least 0.005 wt% must be added, but if it exceeds 0.050 wt%, the toughness is deteriorated.

【0026】次に、本発明の好適製造条件について述べ
る。本発明では、鋼の圧延に際しては、Ar3点以上で圧
延を終了することが好ましい。というのは、Ar3点を下
回る温度で圧延を終了すると、析出したフェライトが加
工されるため転移密度が上昇し、それによりフェライト
の硬さが上昇して HICの割れ感受性が上昇するからであ
る。
Next, preferred production conditions of the present invention will be described. In the present invention, when rolling the steel, it is preferable to finish the rolling at three or more Ar points. This is because, when rolling is completed at a temperature lower than the Ar 3 point, the precipitated ferrite is processed to increase the transition density, thereby increasing the hardness of the ferrite and increasing the crack susceptibility of the HIC. .

【0027】また、上記の圧延が終了後、偏析部近傍に
おいては、析出したフェライトから固溶しきれないCが
吐き出され、未変態の偏析部(偏析部はC, Mn等が濃厚
偏析しているのでAr3変態点が低い)にCが移動し、偏
析部のC濃度が上昇して、偏析部の硬さが上昇する。圧
延終了後の冷却速度が遅い場合には、上記の現象が顕著
となって HIC感受性が上昇するため、圧延後、5℃/s以
上の速度で加速冷却することが好ましい。しかしなが
ら、冷却速度が速すぎてもマンテンサイト等の HIC感受
性の高い低温変態組織が生成するので、その上限は50℃
/s程度とするのが望ましい。
After the above-mentioned rolling is completed, in the vicinity of the segregated portion, C, which cannot be completely dissolved, is discharged from the precipitated ferrite, and the untransformed segregated portion (the segregated portion is such that C, Mn and the like are densely segregated). C is moved to a lower Ar 3 transformation point), the C concentration in the segregated portion increases, and the hardness of the segregated portion increases. If the cooling rate after the end of rolling is low, the above phenomenon becomes remarkable and the HIC sensitivity increases. Therefore, it is preferable to accelerate cooling at a rate of 5 ° C./s or more after rolling. However, even if the cooling rate is too high, a low-temperature transformed structure with high HIC sensitivity such as mantensite is formed.
/ s is desirable.

【0028】なお、上記の加速冷却において、引張強さ
が 500 MPa以上の高強度材を得るには、冷却停止温度は
650℃以下とすることが好ましい。とはいえ、冷却停止
温度が低すぎると、マンサイト等の HIC感受性の高い低
温変態組織が生成するため、その下限は350 ℃程度とす
るのが好ましい。
In order to obtain a high-strength material having a tensile strength of 500 MPa or more in the above-mentioned accelerated cooling, the cooling stop temperature must be
The temperature is preferably set to 650 ° C. or lower. Nevertheless, if the cooling stop temperature is too low, a low-temperature transformed structure having high HIC sensitivity such as mansite is generated, so the lower limit is preferably set to about 350 ° C.

【0029】[0029]

【実施例】表1に示す各成分組成になる鋼を、表2に示
す条件に従って熱間圧延した。かくして得られた各鋼板
からそれぞれ試験片を採取して引張試験、耐HIC 試験に
供した。また、各鋼板を用いて溶接継手を製作し、溶接
継手衝撃試験を実施した。得られた結果を表2に併記す
る。なお、引張試験は、鋼板の板幅1/4 のところから A
PI矩形試験片を圧延方向と直角方向に採取して、行っ
た。また、溶接継手衝撃試験は、溶接BOND部を挟んでJI
S 4 号試験片を採取し、BOND部に2mmVノッチ加工を施
した。溶接は、K開先にて SAW溶接法で入熱約40 kJ/cm
の条件で実施した。さらに、耐HIC 試験は、NACE規格TM
0284に規定された方法で実施した。試験片は、鋼板の板
幅1/4 のところから各3本採取し、試験溶液(A液)に
96Hr浸漬後、CLR(割れ長さ率)を測定して、耐HIC
特性を評価した。
EXAMPLES Steels having the composition shown in Table 1 were hot-rolled under the conditions shown in Table 2. Test pieces were taken from each of the steel sheets thus obtained and subjected to a tensile test and an HIC resistance test. In addition, a welded joint was manufactured using each steel plate, and a welded joint impact test was performed. The obtained results are also shown in Table 2. In the tensile test, A
PI rectangular test pieces were sampled in the direction perpendicular to the rolling direction and performed. In addition, the weld joint impact test was conducted using the JI
An S 4 test piece was sampled, and a 2 mm V notch was applied to the BOND portion. Welding is about 40 kJ / cm with SAW welding method at K groove
It carried out on condition of. Furthermore, the HIC resistance test is based on the NACE standard
The method was performed according to the method specified in [0284]. Three test pieces were collected from the steel plate at a width of 1/4, and the test solution (solution A) was used.
After immersion in 96Hr, measure CLR (crack length ratio) and measure HIC resistance
The properties were evaluated.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】表2に示したとおり、本発明に従う適合例
はいずれも、耐HIC 特性に優れ、溶接継手衝撃試験での
破面遷移温度(vTrs)も−31℃以下と優れた低温靱性を
示したのに対し、比較例では、耐HIC 特性と溶接継手部
の衝撃靱性を両立できるものはなかった。
As shown in Table 2, all of the conforming examples according to the present invention have excellent HIC resistance, and have excellent low-temperature toughness with a fracture transition temperature (vTrs) of -31 ° C or less in a welded joint impact test. On the other hand, none of the comparative examples was able to achieve both the HIC resistance and the impact toughness of the welded joint.

【0033】以上、実施例においては、主に引張強さが
600 MPa級の鋼材について説明したが、本発明はこれだ
けに限るものではなく引張強さが 500〜800 MPa 級の幅
広い鋼材に対して適用できることはいうまでもない。
As described above, in the examples, the tensile strength is mainly
Although a 600 MPa class steel material has been described, it goes without saying that the present invention is not limited to this, but can be applied to a wide range of steel materials having a tensile strength of 500 to 800 MPa class.

【0034】[0034]

【発明の効果】かくして、本発明によれば、耐HIC 特性
を確保しつつ、BOND部の靱性を効果的に改善することが
でき、その結果、溶接HAZ 部の低温靱性および耐HIC 特
性に優れた非調質高張力鋼板を得ることができる。
As described above, according to the present invention, it is possible to effectively improve the toughness of the BOND portion while securing the HIC resistance, and as a result, the weld HAZ has excellent low-temperature toughness and HIC resistance. A non-heat treated high-strength steel sheet can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 鋼中Si量とvTrsとの関係を示したグラフであ
る。
FIG. 1 is a graph showing the relationship between the amount of Si in steel and vTrs.

【図2】 鋼中Si量とO量との関係を示したグラフであ
る。
FIG. 2 is a graph showing the relationship between the amount of Si and the amount of O in steel.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】C:0.03〜0.08wt%、 Si:0.05〜0.15wt%、 Mn:0.30〜1.60wt%、 P:0.020 wt%以下、 S:0.0015wt%以下、 Al:0.01〜0.10wt%、 Nb:0.005 〜0.06wt%、 Ca:10〜40 ppmおよび N:0.007 wt%以下を含有し、かつ次式(1) で規定され
るACR が 1.0〜3.0 の範囲を満足し、 ACR = 0.8×{Ca−(130 Ca+0.18)×O)/S} --- (1) さらに Cu:0.05〜1.30wt%、 Ni:0.05〜10.0wt%、 Cr:0.05〜1.50wt%、 Mo:0.03〜0.50wt%、 V:0.010 〜0.15wt%および Ti:0.005 〜0.050 wt%よりなる群から選ばれる少なく
とも1種を含有し、残部は鉄および不可避的不純物の組
成になることを特徴とする溶接HAZ 部の靱性に優れた耐
HIC 非調質高張力鋼材。
1. C: 0.03 to 0.08 wt%, Si: 0.05 to 0.15 wt%, Mn: 0.30 to 1.60 wt%, P: 0.020 wt% or less, S: 0.0015 wt% or less, Al: 0.01 to 0.10 wt% , Nb: 0.005 to 0.06 wt%, Ca: 10 to 40 ppm, and N: 0.007 wt% or less, and the ACR defined by the following formula (1) satisfies the range of 1.0 to 3.0, and ACR = 0.8 × {Ca− (130 Ca + 0.18) × O) / S} --- (1) Cu: 0.05-1.30 wt%, Ni: 0.05-10.0 wt%, Cr: 0.05-1.50 wt%, Mo: 0.03 0.50 wt%, V: 0.010-0.15 wt% and Ti: at least one selected from the group consisting of 0.005-0.050 wt%, with the balance being a composition of iron and unavoidable impurities. Excellent HAZ toughness
HIC Non-heat treated high strength steel.
JP24075299A 1999-08-27 1999-08-27 Hic-resisting non-heat treated high tensile strength steel product excellent in toughness in weld heat-affected zone Pending JP2001064749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24075299A JP2001064749A (en) 1999-08-27 1999-08-27 Hic-resisting non-heat treated high tensile strength steel product excellent in toughness in weld heat-affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24075299A JP2001064749A (en) 1999-08-27 1999-08-27 Hic-resisting non-heat treated high tensile strength steel product excellent in toughness in weld heat-affected zone

Publications (1)

Publication Number Publication Date
JP2001064749A true JP2001064749A (en) 2001-03-13

Family

ID=17064193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24075299A Pending JP2001064749A (en) 1999-08-27 1999-08-27 Hic-resisting non-heat treated high tensile strength steel product excellent in toughness in weld heat-affected zone

Country Status (1)

Country Link
JP (1) JP2001064749A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186162A (en) * 2003-12-02 2005-07-14 Jfe Steel Kk High toughness thick welded steel tube excellent in sour-resistant characteristic
JP2007517139A (en) * 2003-12-30 2007-06-28 ザクリートエ・アクツィオネルノエ・オヴシェストヴォ・ナウチノ−プロイズボドゥストヴェンノエ・オビェジンニエイエ “ポリメタール” steel
JP2009120957A (en) * 2002-06-19 2009-06-04 Nippon Steel Corp Steel for crude oil tank, production method thereof, crude oil tank and method for preventing corrosion thereof
JP2012167336A (en) * 2011-02-15 2012-09-06 Sumitomo Metal Ind Ltd Steel sheet for high-strength steel pipe and high-strength steel pipe
CN102877007A (en) * 2012-10-18 2013-01-16 南京钢铁股份有限公司 Steel plate for low-crack sensitivity pressure container with thickness being more than or equal to 80mm and manufacture method of steel plate
WO2023103514A1 (en) * 2021-12-07 2023-06-15 江苏沙钢集团有限公司 Pipeline steel having excellent acid resistance property, and manufacturing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120957A (en) * 2002-06-19 2009-06-04 Nippon Steel Corp Steel for crude oil tank, production method thereof, crude oil tank and method for preventing corrosion thereof
JP2005186162A (en) * 2003-12-02 2005-07-14 Jfe Steel Kk High toughness thick welded steel tube excellent in sour-resistant characteristic
JP4631414B2 (en) * 2003-12-02 2011-02-16 Jfeスチール株式会社 High tough, thick welded steel pipe with excellent sour resistance
JP2007517139A (en) * 2003-12-30 2007-06-28 ザクリートエ・アクツィオネルノエ・オヴシェストヴォ・ナウチノ−プロイズボドゥストヴェンノエ・オビェジンニエイエ “ポリメタール” steel
JP2012167336A (en) * 2011-02-15 2012-09-06 Sumitomo Metal Ind Ltd Steel sheet for high-strength steel pipe and high-strength steel pipe
CN102877007A (en) * 2012-10-18 2013-01-16 南京钢铁股份有限公司 Steel plate for low-crack sensitivity pressure container with thickness being more than or equal to 80mm and manufacture method of steel plate
WO2023103514A1 (en) * 2021-12-07 2023-06-15 江苏沙钢集团有限公司 Pipeline steel having excellent acid resistance property, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP2001001148A (en) GAS SHIELD ARC WELDING OF THICK HIGH TENSILE STRENGTH STEEL PLATE OF AT LEAST 900 MPa CLASS
JP5151693B2 (en) Manufacturing method of high-strength steel
JP4949210B2 (en) Steel excellent in toughness of weld heat-affected zone and method for producing the same
JP3893921B2 (en) Low temperature Ni-containing steel and method for producing the same
JP2001064749A (en) Hic-resisting non-heat treated high tensile strength steel product excellent in toughness in weld heat-affected zone
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP3344305B2 (en) High-strength steel sheet for line pipe excellent in resistance to hydrogen-induced cracking and method for producing the same
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JPS647138B2 (en)
JP3220406B2 (en) Manufacturing method of high strength welded joint with excellent crack resistance
JP2002161330A (en) Wear resistant steel
JP2002339037A (en) High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
JP4105990B2 (en) High strength welded structural steel with excellent low temperature toughness of large heat input weld HAZ and method for producing the same
JP2000104116A (en) Production of steel excellent in strength and toughness
JP3444244B2 (en) High tensile strength steel excellent in toughness and method of manufacturing the same
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JP2527564B2 (en) Precipitation hardening type stainless steel with excellent welding strength and toughness
JP3503345B2 (en) High-tensile steel excellent in large heat input weldability, susceptibility to weld cracking and weather resistance and method for producing the same
JPH0813087A (en) Steel for welded steel pipe excellent in ssc resistance in seam zone
JPH10306348A (en) Ultrahigh strength steel pipe excellent in low temperature cracking resistance
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JP2001064745A (en) High tensile strength steel product excellent in economical efficiency and toughness
JPH05163527A (en) Manufacture of high tension steel superior in weldability