WO2009087944A1 - Steel plate exhibiting excellent bendability by line heating and process for production of the plate - Google Patents

Steel plate exhibiting excellent bendability by line heating and process for production of the plate Download PDF

Info

Publication number
WO2009087944A1
WO2009087944A1 PCT/JP2008/073928 JP2008073928W WO2009087944A1 WO 2009087944 A1 WO2009087944 A1 WO 2009087944A1 JP 2008073928 W JP2008073928 W JP 2008073928W WO 2009087944 A1 WO2009087944 A1 WO 2009087944A1
Authority
WO
WIPO (PCT)
Prior art keywords
yield strength
present
steel
linear heating
steel plate
Prior art date
Application number
PCT/JP2008/073928
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyotaka Nakashima
Masanori Minagawa
Naoki Oda
Kunitaka Masuda
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008283290A external-priority patent/JP4308312B1/en
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to CN2008800017768A priority Critical patent/CN101688272B/en
Priority to KR1020097014126A priority patent/KR101131209B1/en
Publication of WO2009087944A1 publication Critical patent/WO2009087944A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the present invention relates to a steel plate surface that is deformed and formed by linear heating of a steel plate frequently used in the shipbuilding field, in particular, in the field of welded steel structures such as shipbuilding, construction, bridges, and offshore structures, that is, a gas burner.
  • the present invention relates to a thick steel plate and a method of manufacturing the same that can greatly improve the work efficiency in the heat processing operation of a steel plate in which the back surface is linearly heated and the heated portion is subsequently cooled with water to bend and deform the steel plate.
  • Ship structures such as hulls in the shipbuilding field need to have a smooth curvature surface with a continuous outer surface in order to reduce water flow resistance during voyage.
  • a thick steel plate having a thickness of 10 to 30 mm is bent into a predetermined shape in advance, and then the end surfaces of the steel plates are welded to form a welded structure having a continuous smooth curvature surface.
  • This bending process by linear heating takes a long time to obtain a predetermined shape, and is therefore one of the bottlenecks in the shipbuilding process, which increases costs. For this reason, it will contribute to improving work efficiency.
  • a steel sheet is desired.
  • the thermal deformation of a steel sheet due to linear heating is a phenomenon in which when the heated part contracts due to cooling after thermal expansion, the heated part of the steel sheet yields due to restraint from the surrounding non-heated region and plastically deforms. For this reason, various techniques related to steel sheets have been proposed that aim to increase the amount of deformation caused by linear heating by controlling the yield strength of the steel sheet.
  • a technique related to a steel sheet having a high yield strength at high temperature is described in Japanese Patent Application Laid-Open No. 7-1 3 8 7 15.
  • Nb, Mo, etc. are added in combination, and appropriate hot rolling conditions are applied, so that the heat history of the linear heating operation is achieved.
  • the present invention relates to a steel sheet having high yield strength at high temperatures by precipitating Nb and Mo-containing carbonitrides.
  • a technique related to a steel sheet having a low yield strength at a high temperature is described in Japanese Patent Application Laid-Open No. 20 07-5 6 3 48.
  • the technology described in Japanese Patent Laid-Open No. 2007-0 5 6 3 4 8 contains 20 to 95% of a ferrite phase in which dislocations are introduced into the microstructure by processing or transformation strain. Yield strength at high temperature with yield stress at 0,0 ° C not more than 0.75 times the yield stress at room temperature, and yield stress at 600 ° C not more than 0,5 times the yield stress at room temperature This is related to a steel plate with a low slab. In order to obtain a ferrite phase with dislocations introduced, the steel plate manufacturing process requires two-phase rolling or accelerated cooling from the two-phase zone.
  • a technique related to a steel sheet having a low yield strength at room temperature is a technique described in Japanese Patent Application Laid-Open No. 2 0 06 1 2 0 5 1 8 1.
  • the technique described in Japanese Patent Laid-Open No. 20 0 6-2 0 5 1 8 1 has a ferrite fraction of 20% or less.
  • the present invention relates to a steel sheet in which the yield strength at room temperature is reduced by straightening the above steel sheet at a reduction rate of 0.1% to 0.5% at a temperature at which no aging occurs. Disclosure of the invention
  • the amount of deformation usually tends to increase as the maximum temperature reached by the linear heating part increases. This is because the region that undergoes thermal expansion and contraction widens as the maximum temperature reached by the linear heating section increases.
  • steel sheets with a large amount of bending deformation are required under conditions where the maximum temperature reached by the linear heating section is low. Under such conditions, it is possible to lower the yield strength of the steel sheet as described in Japanese Patent Application Laid-Open No. 2 0 0 7-5 6 3 4 8 or Japanese Patent Application Laid-Open No. 2 0 0 6-2 0 5 1 8 1. It is advantageous to increase the amount of bending deformation due to linear heating.
  • the final amount of deformation is greater for steel sheets with low reverse strength and low yield strength.
  • the technique described in Japanese Patent Application Laid-Open No. 2 0 0 7-5 6 3 4 8 is a useful technique for reducing the yield strength at 5 0 0 ° C and 6 0 0 ° C, Since the ferrite phase with dislocations is used, dislocation recovery is unlikely to occur under linear heating conditions where the temperature is lower than 500 and the heating time is short, and dislocation strengthening remains, resulting in high temperatures. It cannot be said that it is a technique for sufficiently lowering the yield strength at.
  • the interface with the ferrite phase in which dislocations are not introduced tends to be the starting point of brittle fracture, which causes a decrease in toughness.
  • the Charpy fracture surface transition temperature can be lowered. It is difficult to increase the Charpy average absorbed energy.
  • the technique described in Japanese Patent Laid-Open No. 2 0 06-2 0 5 1 8 1 can reduce the yield stress at room temperature due to the movable dislocation introduced by the rolling reduction, but in the low temperature range. When heated, it cannot be said to be a technique for sufficiently reducing the yield strength at low temperatures by so-called age hardening by fixing solid solution carbon to dislocations or depositing carbides on the dislocations.
  • the present invention has been made in consideration of the above circumstances.
  • the purpose is to improve the bending work efficiency by linear heating, that is, to shorten the heating time and to reduce the amount of bending deformation even at the low maximum temperature of the linear heating part. Is to obtain a thick steel plate (mainly 10 to 30 mm thick).
  • the present invention has been made as a result of intensive studies in order to solve the above-described problems, and the means thereof are as follows.
  • the balance is a steel plate whose chemical composition is composed of iron and inevitable impurities. Ferrite with an unprocessed microstructure is 90% or more in area ratio. The average grain size of the ferrite phase is 1%. In addition, cementite particles with an equivalent circle diameter of 0.5 xm or less are present in the ferrite grains in a number density of 1 000 000 mm 2 or more, and at room temperature. Yield strength at 2 35 MPa or higher, yield strength at 400 ° C or lower at 180 ° C, and Charpy average absorbed energy at 0 ° C or higher at 100 J or higher A thick steel plate with excellent bending workability by linear heating.
  • a steel slab having the chemical composition described in any one of (1) to (3) above is heated to 10:00 to 1300 ° C, and is heated above the Ar3 transformation point. Stennai ⁇ ⁇ Rolling at a cumulative reduction rate of 30% or more in the single-phase region to obtain the product sheet thickness, then the average sheet thickness from 7500 ° C to a cooling rate of 5 to 50 / s, 400 ° C.
  • the unprocessed ferrite phase in the present invention refers to a ferrite phase that has not been subjected to rolling by two-phase rolling below the Ar 3 transformation point.
  • the room temperature is the temperature range of 10 to 35 ° C, which is the test temperature range specified in the “Metal Material Tensile Test Method” of JISZ 2 2 4 1.
  • a thick steel plate (hereinafter, simply referred to as a steel plate) used for manufacturing a welded marine structure is bent by linear heating, as described above, using a heating source such as a gas burner.
  • a heating source such as a gas burner.
  • a predetermined region on the back surface is locally heated linearly, and when the heated region contracts by cooling after thermal expansion, the steel plate undergoes plastic deformation due to restraint from the surrounding non-heated region.
  • the steel sheet is processed into the desired processing shape.
  • the reason why the highest temperature during linear heating is set to 400 to 60 Ot is that if it is less than 400 ° C, the amount of thermal expansion and contraction is small and the amount of bending deformation is insufficient. This is because the processing time is required due to the increase in the number of times of linear heating up to. In other words, even if the heating time is short, the work efficiency is reduced. Also, if it exceeds 60: 0, the heating time becomes longer, which leads to an increase in machining time and lowers work efficiency.
  • the upper limit is preferably 3 55 MPa.
  • the yield strength at 40 0 In order to efficiently perform the linear heating work, as described above, it is necessary to perform the heating under the condition that the maximum temperature reaches 400 to 600 ° C. In order to increase the amount of bending deformation under these conditions, the yield strength at 40 0 must be 18 OMPa or less, and this is the upper limit. Considering temperature variations, the yield strength at 400 ° C. is preferably 16 OMPa or less. Also, the lower the yield strength at 400 ° C, the more the bending deformation increases. Since it is not easy to ensure the yield strength of temperature, the lower limit is preferably 80 MPa.
  • the Charpy-average absorbed energy at 0 ° C is more than 100 J because the risk of brittle smashing increases if the temperature is less than 100 J.
  • the lower limit was set to 100 J.
  • microstructure is mainly composed of an unprocessed ferrite phase. The reason why the microstructure is mainly composed of an unprocessed ferrite phase is to reduce the yield strength at 40 ° C. by utilizing the softest of the steel sheet structures.
  • the processed ferrite phase causes the steel sheet anisotropy to decrease the Charpy average absorbed energy, and in order to avoid this, the non-processed ferrite phase is mainly used.
  • the area ratio of the unprocessed ferrite phase was set to 90% or more.
  • the area ratio was less than 90%, hard low-temperature transformation structures other than ferrite phase, such as particulates, paynite, and martensite, were 1 This is because it is difficult to make the yield strength at more than 0% and 400 ° C less than 18 OMP a '.
  • the area ratio of the unprocessed ferrite phase is preferably 9 397%.
  • the reason for setting the average crystal grain size of the ferrite phase to 15 45 5 m is that if it is less than 15 m, it is difficult to make the yield strength at 400 0 m or less due to fine grain strengthening. However, if it exceeds 45 ⁇ m, the toughness deteriorates and it is difficult to increase the Charpy average absorbed energy to 100 J or more. Because it is difficult.
  • the particle size is less than 15, C can easily diffuse to the grain boundary, which makes it difficult to precipitate cementite particles in the ferrite particles as described below. This is one of the reasons why the lower limit is 15 m.
  • the average crystal grain size of the ferrite phase is 20 to 40 m.
  • the cementite particles having an equivalent circle diameter of 0.5 / m or less are present in the ferritite grains in a number density of 1 000 000 mm 2 or more.
  • the reason for this will be explained below.
  • the yield strength at 400 ° C. to 1800 MPa or less, and preferably 1 6 OMPa or less
  • Strengthening with a hard low temperature transformation structure and addition of alloying elements other than C are minimized, so solid solution strengthening and precipitation strengthening with alloying elements cannot be used. Therefore, it becomes extremely difficult to increase the yield strength at room temperature to 2 35 MPa or more.
  • cementite particles which are thermally unstable, were used to increase the yield strength at room temperature.
  • the cementite is relatively stable at room temperature and contributes to an increase in yield strength. However, at 400 t: or more, it easily agglomerates and coarsens in a short time, and hardly contributes to the increase in yield strength. In other words, if the cementite particles are appropriately controlled, the yield strength at room temperature is superimposed on the fine grain strengthening and particle dispersion strengthening, which contributes significantly to the increase in yield strength. Above ° C, the increase in yield strength hardly contributes to grain dispersion strengthening, and only the crystal grain size can be used as a controlling factor for strengthening.
  • Such dispersion strengthening by fine cementite particles within the grains is This is remarkable when the ferrite fraction is large, when the crystal grain size of the ferrite is relatively large, and when the cooling rate is large. In other words, this is because the addition of alloying elements increases the hardenability and the ferritic fraction is small and the second phase fraction is large. This is because it is difficult to secure the amount of cementite precipitation. Also, if the crystal grain size becomes extremely small, C diffuses easily to the grain boundary, making it difficult to disperse the cementite within the grain. If the cooling rate is further reduced,
  • C easily diffuses to the grain boundary, making it difficult to disperse the cementite within the grains, and consolidating and coarsening the cementite, contributing to enhanced particle dispersion. This is because it becomes difficult to control the size and the number density as possible.
  • the reason why the equivalent particle diameter of cementite particles is 0.5 m or less and the number density is 10 0 0 0 0 0 pieces / mm 2 or more is more than 0.5 m, or 10 If it is less than Zmm 2 , grain dispersion strengthening does not contribute, and it is difficult to make the yield strength at room temperature 2 3 5 MPa or more.
  • the lower limit of the equivalent circle diameter and the upper limit of the number density of the cementite particles are those that can tolerate a decrease in toughness due to enhanced cementite particle dispersion.
  • the lower limit of the equivalent circle diameter is 20 nm, and the upper limit of the number density is 10
  • the number is 0 0 0 0 0 0 pieces / mm 2 .
  • C is the most important element in the present invention.
  • 0.0 1% or more is necessary.
  • the second phase fraction such as perlite increases, resulting in an increase of 4 0 0 ° C.
  • the upper limit was set to 0.08%, but preferably 0.02 to 0.05%
  • P is an impurity element, and the yield strength at a high temperature is increased by solid solution strengthening, leading to deterioration of toughness. Therefore, P must be reduced as much as possible. However, at 0.05% or less, those adverse effects can be tolerated, so 0.05% is the upper limit.
  • S is also an impurity element, and it is desirable to reduce it as much as possible in order to degrade the toughness and ductility of steel.
  • the upper limit is set to 0.05%. .
  • a 1 is an important element in the present invention. Add mainly for deoxidation. For that purpose, 0.02% or more is necessary. However, if it exceeds 0.1%, alumina-based coarse oxides and their clusters are formed and the toughness is impaired, so the upper limit is 0.1%. Preferably, A 1: 0.0 1 to 0.0 7%.
  • N in a trace amount, forms fine nitrides when the steel slab is heated and refines the heated austenite grains, contributing to improved toughness. For that purpose, 0.0 0 1% or more is necessary. On the other hand, if it exceeds 0.08%, the toughness due to the coarsening of the nitride tends to deteriorate, and the yield strength at 400 ° C is increased by increasing the solid solution N content and strengthening the solid solution. Since it is difficult to make it OMPa or less, the force having an upper limit of 0.0 0 8%, preferably 0.0 0 1 to 0.0 0 5%.
  • Mg and REM may be mixed as inevitable impurities from raw materials and refractories. However, if it is within these ranges, it will have no adverse effect. In the present invention, it is acceptable as an inevitable impurity.
  • the above are the basic components of the steel sheet of the present invention, and it can be a steel sheet excellent in bending workability by linear heating, strength and toughness as shipbuilding steel, which is the object of the present invention.
  • Si, Mn, Cu, Ni, Cr, Mo, Nb, V, Ti, and B can be contained for the purpose of adjusting strength and toughness.
  • This upper limit is 0.5% for S i and M n respectively, and Cu, Ni and Cr are each
  • B was 0.0 0 3%.
  • S i and M n are each 0.3% or less
  • Cu, N i and Cr are each 0.1% or less
  • Mo is 0.05% or less
  • Nb is 0.0%.
  • V is 0.01% or less
  • T i is 0.01% or less
  • B is 0.00 1% or less. 0. 0
  • This value was made the lower limit because it contributes to strength and toughness improvement by crystal grain refinement, solid solution strengthening and precipitation strengthening.
  • C e Q obtained by the following formula is 0
  • C a 0.00 0 3 to 0.0 0 5%
  • M g 0.
  • R EM 0, 0 0 0 3 to 0.0 0 5% may be contained as a chemical component. Inclusion of these improves ductility and HAZ toughness.
  • the molten steel adjusted to the appropriate chemical composition described above is melted by a commonly known melting method such as a converter, and is made into a steel material by a generally known forging method such as continuous casting.
  • the steel material is heated to a temperature of 100 ° C. to 1300 ° C. to make an austenite single phase. If it is less than 100 ot :, the austenite single phase is insufficient, and if it exceeds 1300 ° C, the grain size of the heater becomes extremely coarse and it becomes difficult to obtain a fine structure after rolling. This is because toughness decreases.
  • the subsequent rolling process is the most important part of the present invention. In other words, it is necessary to perform rolling with a cumulative reduction of 30% or more in the austenite single phase region above the Ar 3 transformation point.
  • anisotropy of the steel sheet is increased, anisotropy also occurs in the bending workability due to linear heating, and it becomes difficult to perform processing so as to obtain a smooth curvature surface.
  • the reason why the cumulative rolling reduction ratio is set to 30% or more is that if it is less than 30%, the austenite is not sufficiently refined by recrystallization, and the crystal grain size is reduced within a predetermined range by subsequent accelerated cooling. This is because it becomes difficult to control it.
  • the rolling reduction ratio of rolling should be 50% or more after the above rolling, from 70 ° C or more to 40 ° C at a cooling rate of 5 to 50 ° CZ s in the cross-sectional average in the sheet thickness direction. It is necessary to perform accelerated cooling to a temperature below.
  • the reason for setting the cooling start temperature to 75 ° C. or higher is that if it is lower than 75 ° C., the ferrite transforms and grows before cooling, and it is difficult to reduce the average crystal grain size to 45 m or less. In addition, it is difficult to secure the precipitation amount of cementite due to a decrease in solid solution C in the ferrite, and further, cementite precipitates, agglomerates and coarsens to ensure yield strength at room temperature. It is difficult.
  • the cooling rate during accelerated cooling is 5 to 50 ° C
  • the reason for the above is that the average crystal grain size of ferrite is difficult to be 45 m or less at less than 5 ° C / s for the same reason as above, and that C can easily diffuse to the grain boundary. This is because it is difficult to disperse the cementite within the grains, and the cementite precipitates, aggregates and coarsens, making it difficult to secure yield strength at room temperature.
  • the temperature exceeds 50 ° CZ s the ferrite grain size becomes smaller than 15 and the yield strength at 40 ° C is less than 18 OMPa due to fine grain strengthening. Since it is difficult to do this, the upper limit was set to 5 OX: / s.
  • the cooling rate during accelerated cooling is more preferably 10 to 40 ° C. Zs in terms of the cross-sectional average in the thickness direction.
  • the reason for accelerated cooling to temperatures below 400 ° C is that when cooling is completed at 400 ° C or higher, cementite precipitates, aggregates, and coarsens, making it difficult to secure yield strength at room temperature. It is. In consideration of temperature variation, it is preferable to perform accelerated cooling to a temperature of 300 ° C. or lower.
  • the cementite After accelerated cooling, it can be tempered at a temperature of not less than 300 and not more than 400 ° C as necessary for the purpose of adjusting strength and toughness. In order to obtain this effect, it is necessary to set the temperature to 300 ° C or higher, but at 400 ° C or higher, the cementite aggregates and becomes coarse, and it becomes difficult to ensure the yield strength at room temperature.
  • the temperature should be less than 400 ° C, preferably not more than 35 ° C.
  • the amount of bending deformation is large under the conditions where the heating time is shortened, that is, under the condition where the maximum temperature reached in the linear heating part is low. It is possible to manufacture steel sheets that have sufficient yield strength and toughness as steel for shipbuilding and shipbuilding.
  • Table 1 shows the chemical composition.
  • steel types A to P satisfy the chemical component requirements of the present invention
  • steel types Q to X do not satisfy the chemical component requirements of the present invention.
  • Steel grades A to P that satisfy the chemical composition requirements of the present invention are S i ⁇ 0.0 2%, M n ⁇ 0.0 3%, C u ⁇ 0.0 3%, N i ⁇ 0.0 3%, C r ⁇ 0. 0 4%, M o ⁇ 0. 0 0 4%, N b ⁇ 0. 0 0 2%, V ⁇ 0. 0 0 2%, T i ⁇ 0. 0 0 2% , B ⁇ 0.
  • Table 3 shows the microstructure area ratio (%) of each steel sheet, the average crystal grain size (m) of ferrite phase, the equivalent circle diameter (zzm) and number density (pieces) of cementite grains in ferrite grains. Zmm 2 ). Each measured value is the thickness center position excluding the center segregation, and is the representative value of each steel plate.
  • Microstructure area ratio is 100 times or 500 times optical microscope image Measured by image analysis using true.
  • a ferrite having a length ratio (aspect ratio) of 1.5 mm or more in the thickness direction of the rolling direction stretched in the rolling direction is a machining ferrite, and a ferrite having an aspect ratio of less than 1.5.
  • the second phase refers to non-ferrite light, bainite, and martensite.
  • the average crystal grain size of the ferritic phase was measured in accordance with JISG 0 5 52 “Ferrata of steel ⁇ Grain size test method” using a photomicrograph obtained by measuring the microstructure area ratio.
  • the equivalent-circle diameter and number density of cementite particles in the ferrite particles were measured by image analysis using scanning electron micrographs of 100000 times to 500 00 times.
  • the test specimen at this time was the original plate thickness X 500 mm width X 500 mm length.
  • the center of the plate width was linearly heated with a gas burner in the length direction, and then water-cooled using a water-cooled torch placed behind the gas burner. This operation was repeated three times at the same position of the steel sheet, and the amount of steel sheet jumping was measured.
  • the linear heating conditions are as follows: ⁇ 2 gas pressure is 5 kg Z cm, flow rate is 50 l Zmin, C 2 H 2 gas pressure is 0.5 kg / cm, flow rate is 2 0 1 / min, gas
  • the distance between the burner and the steel sheet was 14 cm, and a cooling torch with a water volume of 61 / min was placed 90 mm away from the rear of the gas burner.
  • the gas burner and water-cooled torch were set on a speed-controllable table, and in the preliminary test, the temperature was measured with a thermocouple at a position 1 mm below the steel sheet surface, and the table speed conditions were determined so that the target temperature was achieved.
  • the temperature of l mm below the steel sheet surface is assumed to be 400, 50, 60, and the table speeds at that time are 6 40, 48 0, 28 0 cm / min, respectively.
  • the working efficiency was evaluated by determining the heating time to obtain the lapping amount lmm from the measured amount of bounce and table speed. Note that the value at this time is simply the time during linear heating, and does not take into account the setup time or the measurement time of the jump amount.
  • the amount of jump can be measured by placing the test piece on a flat table, fixing one end face of the test piece with a jig, and using a taper gauge on both ends and the center of the opposite end face. The average value was recorded.
  • Steel numbers 1 to 16 are the thick steel plates of the present invention. Since both the chemical composition and the production method satisfied the requirements of the present invention, the mechanical properties and the microstructure also satisfied the present invention requirements. Therefore, the bending deformation characteristics after linear heating are Compared with the comparative example, the amount of jumping was large, and the heating time for obtaining the amount of jumping lmm was shortened, which was extremely efficient.
  • steel numbers 17-3 are thick steel plates as comparative examples.
  • Steel Nos. 17 to 24 are comparative examples in which the chemical composition satisfies the requirements of the present invention, but the production method and the mouthpiece structure do not satisfy the requirements of the present invention.
  • Steel numbers 25 to 30 are comparative examples in which the manufacturing method satisfies the requirements of the present invention, but the chemical composition and the mouthpiece structure do not satisfy the requirements of the present invention.
  • Steel numbers 3 1 to 3 3 are comparative examples that do not satisfy the requirements of the present invention in terms of chemical composition, microstructure, and manufacturing method.
  • steel No. 17 is air cooled without performing water cooling after rolling, that is, the cooling rate is lower than the lower limit of the present invention. Therefore, since the average crystal grain size of ferrite exceeds the upper limit of the present invention, the Charpy average absorbed energy is also lower than the lower limit of the present invention. In addition, since the equivalent circle diameter of cementite particles exceeded the upper limit of the present invention and the number density fell below the lower limit of the present invention, the yield strength at room temperature was lower than the lower limit of the present invention. Since the yield strength at 400 ° C satisfies the requirements of the present invention, the deformation characteristics after linear heating are excellent, but it does not have the yield strength and toughness as shipbuilding steel.
  • Steel No. 18 is subjected to two-phase rolling in the production method, and the cooling start temperature is also below the lower limit of the present invention. Therefore, the additive-free ferrite area ratio is below the lower limit of the present invention, and the machining ferrite area ratio is increasing, so the yield strength at 400 ° C exceeds the upper limit of the present invention, and the Charpy average The absorbed energy is below the lower limit of the present invention. Therefore, the deformation characteristics after linear heating are inferior to the steel of the present invention, and it does not have the toughness necessary for shipbuilding steel.
  • Steel No. 19 has a tempering temperature exceeding the upper limit of the present invention in the production method.
  • the equivalent circle diameter of cementite particles exceeds the upper limit of the present invention, and the number density falls below the lower limit of the present invention, so that the yield strength at room temperature is lower than the lower limit of the present invention. Since the yield strength at 400 ° C satisfies the requirements of the present invention, the deformation characteristics after linear heating are excellent, but the yield strength necessary for shipbuilding steel is not obtained.
  • Steel No. 20 has a cooling start temperature lower than the lower limit of the present invention in the production method. Therefore, since the average crystal grain size of the ferrite is above the upper limit of the present invention, the equivalent circle diameter of the cementite particles is higher than the upper limit of the present invention, and the number density is lower than the lower limit of the present invention, The yield strength at room temperature is below the lower limit of the present invention, and the Charpy average absorbed energy is below the lower limit of the present invention. Since the yield strength at 400 ° C satisfies the requirements of the present invention, the deformation characteristics after linear heating are excellent, but it does not have the yield strength and toughness as steel for shipbuilding.
  • Steel No. 21 has a cooling rate exceeding the upper limit of the present invention in the production method. Therefore, since the average crystal grain size of the ferrite is below the lower limit of the present invention, the yield strength at 400 ° C. exceeds the upper limit of the present invention. Therefore, steel No. 22 whose deformation characteristics after linear heating are inferior to the steel of the present invention has a cooling end temperature exceeding the upper limit of the present invention in the production method. Therefore, since the equivalent circle diameter of the cementite particles exceeds the upper limit of the present invention and the number density falls below the lower limit of the present invention, the yield stress at room temperature is lower than the lower limit of the present invention.
  • the yield strength at 400 ° C satisfies the requirements of the present invention, it has excellent deformation characteristics after linear heating, but does not have the yield strength required for shipbuilding steel.
  • Steel No. 23 is subjected to two-phase rolling in the production method, and the cooling start temperature is lower than the lower limit of the present invention. Therefore, no added F Since the area area ratio is below the lower limit of the present invention and the processing ferrite area ratio is increasing, the yield strength at 400 ° C exceeds the upper limit of the present invention, and the Charbi average absorbed energy is It is below the lower limit of the present invention. Therefore, the deformation characteristics after linear heating are inferior to the steel of the present invention, and it does not have the toughness necessary for shipbuilding steel.
  • Steel No. 24 has a cooling rate below the lower limit of the present invention in the production method. Therefore, since the average crystal grain size of ferrite exceeds the upper limit of the present invention, the Charbi average absorbed energy is also lower than the lower limit of the present invention. Further, since the equivalent circle diameter of the cementite particles exceeds the upper limit of the present invention and the number density falls below the lower limit of the present invention, the yield strength at room temperature is lower than the lower limit of the present invention. Since the yield strength at 400 ° C satisfies the requirements of the present invention, the deformation characteristics after linear heating are excellent, but it does not have the yield strength and toughness as steel for shipbuilding.
  • steel number 25 is M n C u N i N b
  • Steel No. 26 is M n Mo V
  • Steel No. 2 7 is C n Cr
  • Steel No. 28 is S i exceeding the upper limit of the present invention.
  • each chemical component is within the scope of the present invention, but the value of formula (1) exceeds the upper limit of the present invention.
  • the ferrite area ratio is below the lower limit of the present invention, and the average crystal grain size of X Is below the lower limit of the present invention, the yield strength at 400 ° C. is much higher than the upper limit of the present invention. Therefore, the deformation characteristics and efficiency after linear heating are degraded.
  • steel No. 31 has a tempering temperature exceeding the upper limit of the present invention in the production method, so that the equivalent circle diameter of the cementite particles exceeds the upper limit of the present invention, and the number density is the lower limit of the present invention. Because it is less than Although the particle dispersion strengthening of Nintendo is not contributing, the yield strength at room temperature is sufficiently high. This is because, in the chemical composition, as in Steel No. 25, 3 ⁇ 411, Cu, Ni, Nb exceeds the upper limit of the present invention and is a chemical component with high hardenability. This is because the area ratio is lower than the lower limit of the present invention, and the average crystal grain size of the ferrite is lower than the lower limit of the present invention. Therefore, since the yield stress at 400 is much higher than the upper limit of the present invention, the deformation characteristics and efficiency after linear heating are deteriorated.
  • Steel No. 32 is air-cooled without rolling after rolling in the production method, that is, the cooling rate is lower than the lower limit of the present invention, so the equivalent circle diameter of cementitious particles is that of the present invention.
  • the upper limit is exceeded and the number density is lower than the lower limit of the present invention, cement dispersion does not contribute to strengthening the particle dispersion, but the yield strength at room temperature is sufficiently high.
  • Mn, Ni, and Nb exceed the upper limit of the present invention, and the chemical composition has high hardenability.
  • the rate is below the lower limit of the present invention. Therefore, since the yield stress at 400 ° C. exceeds the upper limit of the present invention, the deformation characteristics and efficiency after linear heating are deteriorated.
  • the heating time is shortened, that is, the maximum ultimate temperature of the linear heating part is low.
  • the present invention has sufficient yield strength and toughness mainly as a steel plate for shipbuilding, and can increase the amount of bending deformation even at a low maximum temperature, so that bending work by linear heating can be performed. Efficiency can be improved dramatically. And that brings about shortening the shipbuilding period, reducing costs, and reducing the environmental impact associated with reducing energy consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

For the purpose of improving the operating efficiency in the plate bending by line heating, the invention provides a steel plate which exhibits large bending deformation even under the conditions of enhanced heating rate and shortened heating time and a process for production of the plate. The steel plate has both a chemical composition which contains by mass C:0.01 to 0.08%, P: ≤0.05%, S: ≤0.05%, Al: 0.002 to 0.1%, and N: 0.001 to 0.008% with the balance being iron and unavoidable impurities and a microstructure which comprises a non-deformed ferrite phase at an area fraction of 90% or above and in which the mean grain diameter of theferrite phase is 15 to 45μm and cementite particles having circle-equivalent diameters of 0.5μm or below are present in the ferrite grains at a number density of 100000 particles/mm2 or above. Further, the plate exhibits a yield strength of 235MPa or above at room temperature, a yield strength of 180MPa or below at 400°C, and an average Charpy absorbed energy of 100J or above at 0°C.

Description

明 細 書 線状加熱による曲げ加工性に優れた厚鋼板及びその製造方法 技術分野  MEXICO BOOKS Steel plate with excellent bending workability by linear heating and its manufacturing method Technical Field
本発明は、 造船、 建築、 橋梁、 海洋構造物などの溶接鋼構造物分 野のうち、 特に造船分野で多く用いられる鋼板の線状加熱による変 形 · 成形作業、 すなわちガスバーナーにより鋼板の表面または裏面 を線状加熱し、 引き続き該加熱部を水冷して鋼板を曲げ変形させる 鋼板の熱加工作業において、 変形量が大きく、 作業効率を向上させ ることが可能な厚鋼板及びその製造方法に関する。 背景技術  The present invention relates to a steel plate surface that is deformed and formed by linear heating of a steel plate frequently used in the shipbuilding field, in particular, in the field of welded steel structures such as shipbuilding, construction, bridges, and offshore structures, that is, a gas burner. In addition, the present invention relates to a thick steel plate and a method of manufacturing the same that can greatly improve the work efficiency in the heat processing operation of a steel plate in which the back surface is linearly heated and the heated portion is subsequently cooled with water to bend and deform the steel plate. . Background art
造船分野における船殻などの船舶構造体は、 航海中の水流抵抗を 少なくするために外面が連続した滑らかな曲率面とする必要がある Ship structures such as hulls in the shipbuilding field need to have a smooth curvature surface with a continuous outer surface in order to reduce water flow resistance during voyage.
。 そのため、 主に厚さ 1 0〜 3 0 m mの厚鋼板を予め所定形状に曲 げ加工した後、 鋼板の端面同士を溶接して連続した滑らかな曲率面 を有する溶接構造体としている。 . Therefore, a thick steel plate having a thickness of 10 to 30 mm is bent into a predetermined shape in advance, and then the end surfaces of the steel plates are welded to form a welded structure having a continuous smooth curvature surface.
このような鋼板の曲げ加工は、 船舶構造体の部位によつて複雑か つ微妙な曲率に加工する必要があるため、'単純かつ画一的なプレス 加工だけでは対処できない。 したがって、 通常はプレス粗加工を行 つた後、 線状加熱による曲げ加工、 すなわちガスバーナーなどを用 いて鋼板を線状に局所加熱し、 加熱直後に水冷を行う方法を用いて いる。  Such bending of steel sheets needs to be processed into a complicated and delicate curvature depending on the part of the ship structure, so it cannot be dealt with by simple and uniform press work alone. Therefore, usually, after roughing the press, bending is performed by linear heating, that is, a steel plate is locally heated linearly using a gas burner or the like, and then water-cooled immediately after heating.
この線状加熱による曲げ加工は、 所定形状にするために長時間を 要することから、 造船工程のボトルネックの一つであり、 コス ト増 加の要因になっている。 このため、 作業効率向上に寄与するような 鋼板が望まれている。 This bending process by linear heating takes a long time to obtain a predetermined shape, and is therefore one of the bottlenecks in the shipbuilding process, which increases costs. For this reason, it will contribute to improving work efficiency. A steel sheet is desired.
線状加熱による鋼板の熱変形は、 加熱部が熱膨張後、 冷却により 収縮する際に、 その周囲の非加熱領域からの拘束により鋼板の加熱 部が降伏し、 塑性変形する現象である。 そのため、 鋼板の降伏強度 が影響し、 その降伏強度を制御して線状加熱による変形量を高める ことを狙った鋼板に関する技術が種々提案されている。  The thermal deformation of a steel sheet due to linear heating is a phenomenon in which when the heated part contracts due to cooling after thermal expansion, the heated part of the steel sheet yields due to restraint from the surrounding non-heated region and plastically deforms. For this reason, various techniques related to steel sheets have been proposed that aim to increase the amount of deformation caused by linear heating by controlling the yield strength of the steel sheet.
これらの技術は、 高温での降伏強度を高く した鋼板に関する技術 、 高温での降伏強度を低く した鋼板に関する技術、 室温での降伏強 度を低く した鋼板に関する技術に大別される。  These technologies can be broadly classified into technologies related to steel plates with high yield strength at high temperatures, technologies related to steel plates with low yield strength at high temperatures, and technologies related to steel plates with low yield strength at room temperature.
高温での降伏強度を高く した鋼板に関する技術は、 特開平 7 — 1 3 8 7 1 5号公報に記載された技術がある。 特開平 7 — 1 3 8 7 1 5号公報に記載された技術は、 N b、 M oなどを複合添加し、 適切 な熱間圧延条件を行う ことにより、 線状加熱作業の熱履歴中に N b 、 M o含有炭窒化物を析出させることによって、 高温での降伏強度 を高く した鋼板に関するものである。  A technique related to a steel sheet having a high yield strength at high temperature is described in Japanese Patent Application Laid-Open No. 7-1 3 8 7 15. In the technique described in Japanese Patent Laid-Open No. 7-1 3 8 7 1 5, Nb, Mo, etc. are added in combination, and appropriate hot rolling conditions are applied, so that the heat history of the linear heating operation is achieved. The present invention relates to a steel sheet having high yield strength at high temperatures by precipitating Nb and Mo-containing carbonitrides.
高温での降伏強度を低く した鋼板に関する技術は、 特開 2 0 0 7 - 5 6 3 4 8号公報に記載された技術がある。 特開 2 0 0 7 — 5 6 3 4 8号公報に記載された技術は、 ミクロ組織中に加工あるいは変 態歪により転位が導入されたフェライ ト相を 2 0 〜 9 5 %含有し、 5 0 0 °Cでの降伏応力を室温での降伏応力の 0 . 7 5倍以下、 6 0 0 °Cでの降伏応力を室温の降伏応力の 0 , 5倍以下とした、 高温で の降伏強度を低く した鋼板に関するものである。 なお、 転位が導入 されたフェライ ト相とするために、 鋼板製造プロセスとして、 二相 域圧延または二相域からの加速冷却が必要である。  A technique related to a steel sheet having a low yield strength at a high temperature is described in Japanese Patent Application Laid-Open No. 20 07-5 6 3 48. The technology described in Japanese Patent Laid-Open No. 2007-0 5 6 3 4 8 contains 20 to 95% of a ferrite phase in which dislocations are introduced into the microstructure by processing or transformation strain. Yield strength at high temperature with yield stress at 0,0 ° C not more than 0.75 times the yield stress at room temperature, and yield stress at 600 ° C not more than 0,5 times the yield stress at room temperature This is related to a steel plate with a low slab. In order to obtain a ferrite phase with dislocations introduced, the steel plate manufacturing process requires two-phase rolling or accelerated cooling from the two-phase zone.
室温での降伏強度を低く した鋼板に関する技術は、 特開 2 0 0 6 一 2 0 5 1 8 1号公報に記載された技術がある。 特開 2 0 0 6 - 2 0 5 1 8 1号公報に記載された技術は、 フェライ ト分率が 2 0 %以 上の鋼板を、 時効が生じない温度において圧下率 0 . 1 %以上 0 . 5 %以下で圧下矯正させることによって、 室温の降伏強度を低く し た鋼板に関するものである。 発明の開示 A technique related to a steel sheet having a low yield strength at room temperature is a technique described in Japanese Patent Application Laid-Open No. 2 0 06 1 2 0 5 1 8 1. The technique described in Japanese Patent Laid-Open No. 20 0 6-2 0 5 1 8 1 has a ferrite fraction of 20% or less. The present invention relates to a steel sheet in which the yield strength at room temperature is reduced by straightening the above steel sheet at a reduction rate of 0.1% to 0.5% at a temperature at which no aging occurs. Disclosure of the invention
鋼板の線状加熱による曲げ加工において、 通常、 線状加熱部の最 高到達温度が高くなるほど変形量が大きくなる傾向にある。 これは 、 線状加熱部の最高到達温度が高くなることにより、 熱膨張および 収縮する領域が広くなるからである。  In bending of a steel sheet by linear heating, the amount of deformation usually tends to increase as the maximum temperature reached by the linear heating part increases. This is because the region that undergoes thermal expansion and contraction widens as the maximum temperature reached by the linear heating section increases.
しかし、 線状加熱部の最高到達温度を高くするためには、 加熱時 間を長く しなければならず、 曲げ加工を行う際の作業効率は低下す ることとなる。  However, in order to increase the maximum temperature reached in the linear heating section, it is necessary to lengthen the heating time, and the working efficiency when bending is reduced.
また、 線状加熱部の最高到達温度が低い条件では、 曲げ変形量が 大きい鋼板が必要である。 このような条件では、 特開 2 0 0 7 — 5 6 3 4 8号公報または特開 2 0 0 6 - 2 0 5 1 8 1号公報に記載の ように鋼板の降伏強度を低くすることが線状加熱による曲げ変形量 を大きくすることに有利となってくる。  In addition, steel sheets with a large amount of bending deformation are required under conditions where the maximum temperature reached by the linear heating section is low. Under such conditions, it is possible to lower the yield strength of the steel sheet as described in Japanese Patent Application Laid-Open No. 2 0 0 7-5 6 3 4 8 or Japanese Patent Application Laid-Open No. 2 0 0 6-2 0 5 1 8 1. It is advantageous to increase the amount of bending deformation due to linear heating.
これは、 低温加熱の場合、 降伏応力が低い鋼板の方が、 加熱部が 熱膨張した際、 非加熱部からの拘束により容易に降伏することによ り、 逆変形量が小さくなることに起因している。  This is because, in the case of low-temperature heating, a steel sheet with a low yield stress has a smaller reverse deformation due to yielding more easily due to restraint from the non-heated part when the heated part is thermally expanded. is doing.
その後の冷却の熱収縮による変形量は降伏強度にほとんど依存し ないため、 逆変形量が小さい降伏強度が低い鋼板の方が、 最終的な 変形量は大きくなる。  Since the amount of deformation due to subsequent thermal contraction of cooling hardly depends on the yield strength, the final amount of deformation is greater for steel sheets with low reverse strength and low yield strength.
逆に、 降伏応力が高い鋼板では、 加熱部が降伏し難く、 変形に要 する応力が高まるため、 熱膨張による逆変形量が大きくなることに よって、 最終的な変形量は小さくなつてしまう。  On the other hand, in a steel plate with a high yield stress, it is difficult for the heated part to yield, and the stress required for deformation increases, so the amount of reverse deformation due to thermal expansion increases, and the final amount of deformation decreases.
したがって、 特開平 7 — 1 3 8 7 1 5号公報に記載された技術は 、 鋼板の高温での降伏強度を高くする技術であるので、 線状加熱部 の最高到達温度が低い条件で、 曲げ変形量が大きい鋼板としては不 適である。 Therefore, the technique described in Japanese Patent Laid-Open No. 7-1 3 8 7 1 5 is Since this is a technique for increasing the yield strength of steel sheets at high temperatures, it is not suitable as a steel sheet with a large amount of bending deformation under conditions where the maximum ultimate temperature of the linear heating section is low.
また、 特開 2 0 0 7 — 5 6 3 4 8号公報に記載された技術は、 5 0 0 °C、 6 0 0 °Cでの降伏強度を低くするには有益な技術であるが 、 転位が導入されたフェライ ト相を活用していることから、 5 0 0 より低温側かつ加熱時間が短くなるような線状加熱条件では転位 の回復は起こり難く、 転位強化が残存するため、 高温での降伏強度 を十分に低くする技術とは言えない。  Further, the technique described in Japanese Patent Application Laid-Open No. 2 0 0 7-5 6 3 4 8 is a useful technique for reducing the yield strength at 5 0 0 ° C and 6 0 0 ° C, Since the ferrite phase with dislocations is used, dislocation recovery is unlikely to occur under linear heating conditions where the temperature is lower than 500 and the heating time is short, and dislocation strengthening remains, resulting in high temperatures. It cannot be said that it is a technique for sufficiently lowering the yield strength at.
さらに、 転位が導入されたフェライ ト相では、 転位が導入されて いないフェライ ト相との界面が脆性破壊の起点となり易く、 靭性が 低下する要因となる。 それに加え、 二相域圧延によって転位が導入 されたフェライ ト相とした場合、 集合組織の発達によってセパレ一 シヨ ンが発生し易くなるため、 シャルピ一破面遷移温度は低下する ことができても、 シャルピー平均吸収エネルギーを上昇させること は困難である。  Furthermore, in the ferrite phase in which dislocations are introduced, the interface with the ferrite phase in which dislocations are not introduced tends to be the starting point of brittle fracture, which causes a decrease in toughness. In addition, when a ferrite phase with dislocations introduced by two-phase rolling is used, segregation is more likely to occur due to the development of the texture, so the Charpy fracture surface transition temperature can be lowered. It is difficult to increase the Charpy average absorbed energy.
また、 鋼板の異方性も大きくなることにより、 曲げ変形量にも異 方性が出てしまい、 線状加熱により滑らかな曲率面となるよう加工 することが困難となる。  In addition, since the anisotropy of the steel sheet is increased, the amount of bending deformation becomes anisotropic, and it becomes difficult to process the surface with a smooth curvature by linear heating.
また、 特開 2 0 0 6 — 2 0 5 1 8 1号公報に記載された技術は、 圧下矯正により導入された可動転位によって、 室温での降伏応力を 低下することができるが、 低温域に加熱されると固溶炭素の転位へ の固着や転位上への炭化物の析出などによる、 いわゆる時効硬化に よって、 低温の降伏強度を十分に低くする技術とは言えない。  In addition, the technique described in Japanese Patent Laid-Open No. 2 0 06-2 0 5 1 8 1 can reduce the yield stress at room temperature due to the movable dislocation introduced by the rolling reduction, but in the low temperature range. When heated, it cannot be said to be a technique for sufficiently reducing the yield strength at low temperatures by so-called age hardening by fixing solid solution carbon to dislocations or depositing carbides on the dislocations.
本発明は、 上記のような事情を考慮してなされたものである。 そ の目的は、 線状加熱による曲げ加工作業効率向上のため、 つまり加 熱時間を短く し、 線状加熱部の低い最高到達温度でも、 曲げ変形量 が大きい厚鋼板 (主に厚さ 1 0 〜 3 0 m m ) を得ることである。 そ のために、 低温での降伏強度を低く した厚鋼板及びその製造方法、 さらに造船用鋼としての降伏強度、 靭性を十分に兼ね備えた線状加 熱による曲げ加工性に優れた厚鋼板及びその製造方法を提供するこ とにある。 The present invention has been made in consideration of the above circumstances. The purpose is to improve the bending work efficiency by linear heating, that is, to shorten the heating time and to reduce the amount of bending deformation even at the low maximum temperature of the linear heating part. Is to obtain a thick steel plate (mainly 10 to 30 mm thick). For this purpose, a steel plate with a low yield strength at low temperatures and a method for manufacturing the same, and a steel plate with excellent bending workability by linear heating that has sufficient yield strength and toughness as shipbuilding steel and its It is to provide a manufacturing method.
本発明は、 前述の課題を解決するために鋭意検討の結果なされた ものであり、 その手段とするところは、 以下のとおりである。  The present invention has been made as a result of intensive studies in order to solve the above-described problems, and the means thereof are as follows.
( 1 ) 量%で 、  (1)
C : 0 • 0 1 〜 0 . 0 8 %、  C: 0 • 0 1 to 0.08%,
P 0 . 0 5 % 、  P 0 .05%,
S : く 0 . 0 5 、  S: Ku 0.55,
A 1 : 0 0 0 2 0 . 1 %、  A 1: 0 0 0 2 0.1%,
N : 0 0 0 1 〜 0 . 0 0 8  N: 0 0 0 1 to 0. 0 0 8
を含有し、 残部が鉄及び不可避不純物によって化学成分が構成され た鋼板で、 ミクロ組織が無加工のフェライ 卜相が面積率で 9 0 %以 上、 そのフェライ ト相の平均結晶粒径が 1 5 〜 4 5 mであり、 ま たフェライ ト粒内に円相当径 0 . 5 x m以下のセメン夕イ ト粒子が 個数密度で 1 0 0 0 0 0個 m m 2 以上存在しており、 さらに室温 での降伏強度が 2 3 5 M P a以上、 4 0 0 °Cでの降伏強度が 1 8 0 M P a以下、 0 °Cでのシャルピー平均吸収エネルギーが 1 0 0 J以 上であることを特徴とした線状加熱による曲げ加工性に優れた厚鋼 板。 The balance is a steel plate whose chemical composition is composed of iron and inevitable impurities. Ferrite with an unprocessed microstructure is 90% or more in area ratio. The average grain size of the ferrite phase is 1%. In addition, cementite particles with an equivalent circle diameter of 0.5 xm or less are present in the ferrite grains in a number density of 1 000 000 mm 2 or more, and at room temperature. Yield strength at 2 35 MPa or higher, yield strength at 400 ° C or lower at 180 ° C, and Charpy average absorbed energy at 0 ° C or higher at 100 J or higher A thick steel plate with excellent bending workability by linear heating.
( 2 ) さらに 、 買量%で、  (2) In addition, the amount purchased is
S i : 0 . 0 5 〜 0 . 5 %、  S i: 0.05 to 0.5%,
M n : 0 . 0 5 〜 0 . 5 %、  M n: 0.05 to 0.5%,
C u : 0 . 0 5 〜 0 . 5 %、  C u: 0.05 to 0.5%,
N i : 0 . 0 5 〜 0 . C r 0. 0 5 0• 3 %、 N i: 0.05 to 0. C r 0. 0 5 0 • 3%,
M o 0. 0 0 5 0 1 % 、  M o 0. 0 0 5 0 1%,
N b 0. 0 0 5 0 • 0 1 Zo、  N b 0. 0 0 5 0 • 0 1 Zo,
V 0. 0 0 5 〜 0 • 0 2 /o、  V 0. 0 0 5 to 0 • 0 2 / o,
T i 0. 0 0 5 0 • 0 2 %、  T i 0. 0 0 5 0 • 0 2%,
B 0. 0 0 0 5 〜 0 0 0 3  B 0. 0 0 0 5 to 0 0 0 3
の少なく とも 1種以上を化学成分として含有し、 かつ、 C e qが 0 . 2 0質量%以下であることを特徴とする請求項 1 に記載の線状加 熱による曲げ加工性に優れた厚鋼板。 The thickness excellent in bending workability by linear heating according to claim 1, characterized in that it contains at least one kind of chemical component as a chemical component, and C eq is 0.2% by mass or less. steel sheet.
但し、 C e q = C + S i // 2 4 +M n / 6 + (C u +N i ) / 1 5 + (C r +M o + V) / 5 However, C eq = C + S i / / 2 4 + M n / 6 + (C u + N i) / 1 5 + (C r + M o + V) / 5
こ こで、 C、 S i 、 M n、 C u、 N i 、 C r、 M o、 V : 各元素の 含有量 (質量%) C, Si, Mn, Cu, Ni, Cr, Mo, V: Content of each element (% by mass)
( 3 ) さらに、 質量%で、  (3) Furthermore, in mass%,
C a : 0. 0 0 0 3〜 0. 0 0 5 %、 C a: 0. 0 0 0 3 to 0.0. 0 5%,
M g : 0. 0 0 0 3〜 0. 0 0 5 %、 M g: 0. 0 0 0 3 to 0.0. 0 5%,
R E M : 0 . 0 0 0 3 〜 0 • 0 0 5 %  R E M: 0. 0 0 0 3 to 0 • 0 0 5%
の少なく とも 1種以上を化学成分として含有することを特徴とする fij記 ( 1 ) 又は ( 2 ) に記載の線状加熱による曲げ加工性に優れた 厚鋼板。 A thick steel plate excellent in bending workability by linear heating as described in fij (1) or (2), characterized by containing at least one or more of these as chemical components.
ュ,、  ,
( 4 ) 刖記 ( 1 ) 〜 ( 3 ) のいずれかに記載の化学成分を有する 鋼片を、 1 0 0 0〜 1 3 0 0 °Cに加熱し、 A r 3変態点以上のォー ステナイ 卜単相域で累積圧下率 3 0 %以上の圧延を行つて製品板厚 とした後 、 7 5 0 °C以上から板厚平均で 5〜 5 0 / s の冷却速度 で 4 0 0 °C未満の温度まで加速冷却を行う ことを特徴とする線状加 熱による曲げ加工性に優れた厚鋼板の製造方法。  (4) A steel slab having the chemical composition described in any one of (1) to (3) above is heated to 10:00 to 1300 ° C, and is heated above the Ar3 transformation point. Stennai 圧 延 Rolling at a cumulative reduction rate of 30% or more in the single-phase region to obtain the product sheet thickness, then the average sheet thickness from 7500 ° C to a cooling rate of 5 to 50 / s, 400 ° C A method for producing a thick steel plate excellent in bending workability by linear heating, characterized by performing accelerated cooling to a temperature below C.
( 5 ) 前記加速冷却を終了した後、 3 0 0で以上 4 0 0 °C未満で 焼戻しすることを特徴とする前記 ( 4 ) に記載の線状加熱による曲 げ加工性に優れた厚鋼板の製造方法。 (5) After completing the accelerated cooling, at 3 0 0 and less than 4 0 0 ° C The method for producing a thick steel plate having excellent bending workability by linear heating as described in (4) above, characterized by tempering.
なお、 本発明における無加工のフェライ ト相とは、 A r 3変態点 以下の二相域圧延による圧延加工を施されていないフェライ ト相を 指す。  The unprocessed ferrite phase in the present invention refers to a ferrite phase that has not been subjected to rolling by two-phase rolling below the Ar 3 transformation point.
また、 室温とは、 J I S Z 2 2 4 1 の 「金属材料引張試験方 法」 に定められている試験温度範囲である 1 0〜 3 5 °Cの温度範囲 とする。  The room temperature is the temperature range of 10 to 35 ° C, which is the test temperature range specified in the “Metal Material Tensile Test Method” of JISZ 2 2 4 1.
本発明により次の効果が得られる。  The following effects can be obtained by the present invention.
まず、 主として造船用鋼板としての降伏強度、 靭性を十分に兼ね 備え、 かつ最高到達温度が低い条件において、 曲げ変形量を大きく することができるので、 線状加熱による曲げ加工作業効率を飛躍的 に向上させることができる。 そして、 それは造船のェ期短縮、 コス ト低減、 またエネルギー消費低減に伴う環境負荷低減などをもたら し、 産業上の貢献は極めて大きい。 発明を実施するための最良の形態  First, it has a sufficient yield strength and toughness, mainly as a steel plate for shipbuilding, and the amount of bending deformation can be increased under conditions where the maximum temperature reached is low, dramatically improving the efficiency of bending work by linear heating. Can be improved. And it contributes to the industrial contribution by shortening the shipbuilding period, reducing costs, and reducing the environmental burden associated with reducing energy consumption. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態について説明する。  Hereinafter, embodiments of the present invention will be described.
一般に船舶用溶接構造体の製造に用いられる厚鋼板 (以下単に鋼 板と称することがある) の線状加熱による曲げ加工は、 前記の様に 、 ガスバーナーなどの加熱源を用いて鋼板の表面または裏面上の所 定領域を線状に局部加熱し、 該加熱領域が熱膨張後、 冷却により収 縮する際に、 その周囲の非加熱領域からの拘束により鋼板が塑性変 形することによって、 目的とする加工形状に鋼板を加工するもので ある。  Generally, a thick steel plate (hereinafter, simply referred to as a steel plate) used for manufacturing a welded marine structure is bent by linear heating, as described above, using a heating source such as a gas burner. Alternatively, a predetermined region on the back surface is locally heated linearly, and when the heated region contracts by cooling after thermal expansion, the steel plate undergoes plastic deformation due to restraint from the surrounding non-heated region. The steel sheet is processed into the desired processing shape.
このように線状加熱による曲げ加工は、 鋼板の塑性変形を利用す ることから、 鋼板の降伏強度が変形量に大きな影響を及ぼす。 特に 線状加熱による曲げ加工作業の効率化のために、 線状加熱時の加熱 温度を低く した条件、 具体的には最高到達温度を 4 0 0〜 6 0 0で の低温とした条件においては、 曲げ変形量は、 4 0 0 での降伏強 度と良好な相関関係があり、 4 0 0 °Cでの降伏強度が低くなると、 曲げ変形量が増大することを知見した。 In this way, bending by linear heating uses plastic deformation of the steel sheet, so the yield strength of the steel sheet has a large effect on the deformation. In particular In order to improve the efficiency of bending work by linear heating, under conditions where the heating temperature during linear heating is lowered, specifically, under the conditions where the maximum temperature reached is a low temperature of 400 to 600, The amount of bending deformation has a good correlation with the yield strength at 400, and it was found that the amount of bending deformation increases as the yield strength at 400 ° C decreases.
この線状加熱時の最高到達温度を 4 0 0〜 6 0 O t とした理由は 、 4 0 0 °C未満では熱膨張、 収縮量が少なく曲げ変形量が不足する ので、 所定の形状にするまでの線状加熱の回数が増加することによ り加工時間を要するためである。 つまり、 加熱時間が短くてもかえ つて作業効率は低下してしまうからである。 また 6 0 0 :超では加 熱時間が長くなり、 加工時間の増加につながり作業効率が低下して しまうためである。  The reason why the highest temperature during linear heating is set to 400 to 60 Ot is that if it is less than 400 ° C, the amount of thermal expansion and contraction is small and the amount of bending deformation is insufficient. This is because the processing time is required due to the increase in the number of times of linear heating up to. In other words, even if the heating time is short, the work efficiency is reduced. Also, if it exceeds 60: 0, the heating time becomes longer, which leads to an increase in machining time and lowers work efficiency.
次に鋼板の室温及び 4 0 0 °Cでの降伏強度、 並びに、 0 °Cでのシ ャルピー平均吸収エネルギーを限定した理由を説明する。  Next, the reason why the steel sheet yield strength at room temperature and 400 ° C and the Charpy average absorbed energy at 0 ° C were limited will be described.
室温での降伏強度の下限を 2 3 5 M P aとした理由は、 座屈、 塑 性変形、 疲労破壊などを防止するために、 最低限必要な造船構造用 鋼としての降伏強度が 2 3 5 M P aであるからである。  The reason why the lower limit of yield strength at room temperature is 2 3 5 MPa is that the minimum yield strength for shipbuilding structural steel is 2 3 5 to prevent buckling, plastic deformation, fatigue failure, etc. This is because it is MP a.
しかし、 3 5 5 M P a超では、 次に述べる 4 0 0 °Cでの降伏強度 を低下させることが容易ではないため、 上限は 3 5 5 M P aとする のが好ましい。  However, if it exceeds 35 5 MPa, it is not easy to reduce the yield strength at 400 ° C described below, so the upper limit is preferably 3 55 MPa.
線状加熱作業を効率的に行うためには、 前記の様に、 最高到達温 度が 4 0 0〜 6 0 0 °Cと低温の条件で行う ことが必要となってくる 。 このような条件下で曲げ変形量を大きくするためには、 4 0 0で での降伏強度を 1 8 O M P a以下にする必要があり、 これを上限と した。 温度のバラツキ等を考慮すると、 4 0 0 °Cでの降伏強度は 1 6 O M P a以下とすることが好ましい。 また、 4 0 0 °Cでの降伏強 度は低いほど、 曲げ変形量は増大する力 8 0 M P a未満では、 室 温の降伏強度を確保する とが容易ではないため、 下限は 8 0 M P aとするのが好ましい。 In order to efficiently perform the linear heating work, as described above, it is necessary to perform the heating under the condition that the maximum temperature reaches 400 to 600 ° C. In order to increase the amount of bending deformation under these conditions, the yield strength at 40 0 must be 18 OMPa or less, and this is the upper limit. Considering temperature variations, the yield strength at 400 ° C. is preferably 16 OMPa or less. Also, the lower the yield strength at 400 ° C, the more the bending deformation increases. Since it is not easy to ensure the yield strength of temperature, the lower limit is preferably 80 MPa.
また、 0 °Cでのシャルピ —平均吸収エネルギーが 1 0 0 J以上と した理由は、 1 0 0 J未満では脆性破壌の危険性が高まることカゝら In addition, the Charpy-average absorbed energy at 0 ° C is more than 100 J because the risk of brittle smashing increases if the temperature is less than 100 J.
、 これを阻止して安全性を高めた厚鋼板とするために 1 0 0 J を下 限とした。 In order to prevent this and make steel plates with improved safety, the lower limit was set to 100 J.
以下に本発明における ク口組織の限定理由を述べる  The reason for limiting the mouth tissue in the present invention is described below.
ミクロ組織を無加工のフェライ ト相主体とした理由は 鋼板の組 織の中で最も軟らかいことを利用して前記 4 0 0 °Cでの降伏強度を 低下させるためである。  The reason why the microstructure is mainly composed of an unprocessed ferrite phase is to reduce the yield strength at 40 ° C. by utilizing the softest of the steel sheet structures.
また、 二相域圧延などによってフェライ ト相を加工し 転1^ 3 # 入すれば、 4 0 0 °Cでの転位回復は起こり難いため、 転位強化が残 存し、 4 0 0 °Cでの降伏強度を 1 8 O M P a以下にする とが困難 であることから、 無加工のフェライ 卜相とした。 In addition, if the ferrite phase is processed by two-phase rolling or the like, and the transition 1 ^ 3 # enters, dislocation recovery at 400 ° C is unlikely to occur, so dislocation strengthening remains, and at 400 ° C Since it was difficult to make the yield strength of 18 OMPa or less, it was considered as an unprocessed Ferai phase.
さらに加工したフェラィ ト相は鋼板の異方性ゃシャルピ一平均吸 収エネルギー低下の原因になり、 それを避けるためにも無加工のフ ェライ ト相主体とした。  Furthermore, the processed ferrite phase causes the steel sheet anisotropy to decrease the Charpy average absorbed energy, and in order to avoid this, the non-processed ferrite phase is mainly used.
また、 無加工のフェライ ト相の面積率を 9 0 %以上としたのは、 9 0 %未満となるとフェライ ト相以外のパ一ライ ト、 ペイナイ ト、 マルテンサイ トなどの硬い低温変態組織が 1 0 %を超え、 4 0 0 °C での降伏強度を 1 8 O M P a'以下にすることが困難となるからであ る。 望ましくは、 無加工のフェライ ト相の面積率は 9 3 9 7 %と することが好ましい。  In addition, the area ratio of the unprocessed ferrite phase was set to 90% or more. When the area ratio was less than 90%, hard low-temperature transformation structures other than ferrite phase, such as particulates, paynite, and martensite, were 1 This is because it is difficult to make the yield strength at more than 0% and 400 ° C less than 18 OMP a '. Desirably, the area ratio of the unprocessed ferrite phase is preferably 9 397%.
さらに、 フェライ ト相の平均結晶粒径を 1 5 4 5 mとした理 由は、 1 5 m未満では細粒強化により 4 0 0 での降伏強度を 1 8 0 M P a以下にすることが困難であり、 4 5 ^ m超では靭性が劣 化しシャルピー平均吸収エネルギーを 1 0 0 J以上にすることが困 難であるからである。 Furthermore, the reason for setting the average crystal grain size of the ferrite phase to 15 45 5 m is that if it is less than 15 m, it is difficult to make the yield strength at 400 0 m or less due to fine grain strengthening. However, if it exceeds 45 ^ m, the toughness deteriorates and it is difficult to increase the Charpy average absorbed energy to 100 J or more. Because it is difficult.
なお、 1 5 未満の細粒になると、 Cは容易に粒界まで拡散す ることができるので、 以下で説明するようなフェライ ト粒内にセメ ンタイ ト粒子を析出させることが困難となることも 1 5 mを下限 にした理由の一つである。 好ましくは、 フェライ ト相の平均結晶粒 径を 2 0〜 4 0 mとしたい。  In addition, when the particle size is less than 15, C can easily diffuse to the grain boundary, which makes it difficult to precipitate cementite particles in the ferrite particles as described below. This is one of the reasons why the lower limit is 15 m. Preferably, the average crystal grain size of the ferrite phase is 20 to 40 m.
次に、 フェライ ト粒内に円相当径 0 . 5 / m以下のセメンタイ ト 粒子が個数密度で 1 0 0 0 0 0個 m m 2 以上存在していることが 、 本発明において重要な要件の一つである。 この理由を以下に説明 する。 Next, it is one of the important requirements in the present invention that the cementite particles having an equivalent circle diameter of 0.5 / m or less are present in the ferritite grains in a number density of 1 000 000 mm 2 or more. One. The reason for this will be explained below.
本発明では、 4 0 0 °Cでの降伏強度を 1 8 0 M P a以下、 好まし くは 1 6 O M P a以下とするために、 フェライ 卜相以外のパーライ ト、 ベイナイ ト、 マルテンサイ トなどの硬い低温変態組織での強化 や、 C以外の合金元素の添加を極力低減しているので合金元素によ る固溶強化や析出強化を用いることはできない。 そのため、 室温で の降伏強度を 2 3 5 M P a以上にすることが極めて困難となってく る。 そこで、 多数ある鋼の析出物の中でも熱的に不安定な析出物で あるセメンタイ ト粒子を室温での降伏強度の増加に利用した。  In the present invention, in order to set the yield strength at 400 ° C. to 1800 MPa or less, and preferably 1 6 OMPa or less, it is possible to use perlite, bainite, martensite, etc. Strengthening with a hard low temperature transformation structure and addition of alloying elements other than C are minimized, so solid solution strengthening and precipitation strengthening with alloying elements cannot be used. Therefore, it becomes extremely difficult to increase the yield strength at room temperature to 2 35 MPa or more. Thus, among the many steel precipitates, cementite particles, which are thermally unstable, were used to increase the yield strength at room temperature.
セメン夕イ トは、 室温では比較的安定しており、 降伏強度の増加 に寄与する。 しかし、 4 0 0 t:以上では短時間で容易に凝集、 粗大 化することによって、 降伏強度の増加にはほとんど寄与しなくなる 。 つまり、 セメン夕イ ト粒子を適切に制御すれば、 室温での降伏強 度は、 細粒強化と粒子分散強化が重畳し、 降伏強度の増加への寄与 が極めて大きくなる一方で、 4 0 0 °C以上では、 降伏強度の増加に は粒子分散強化の寄与をほとんどなく し、 結晶粒径のみを強化の支 配因子とすることが可能である。  The cementite is relatively stable at room temperature and contributes to an increase in yield strength. However, at 400 t: or more, it easily agglomerates and coarsens in a short time, and hardly contributes to the increase in yield strength. In other words, if the cementite particles are appropriately controlled, the yield strength at room temperature is superimposed on the fine grain strengthening and particle dispersion strengthening, which contributes significantly to the increase in yield strength. Above ° C, the increase in yield strength hardly contributes to grain dispersion strengthening, and only the crystal grain size can be used as a controlling factor for strengthening.
このような粒内への微細セメンタイ ト粒子による分散強化は、 フ ェライ ト分率が多いとき、 そのフェライ トの結晶粒径が比較的大き いとき、 さらに冷却速度が大きいときに顕著となる。 つまり、 これ は、 合金元素の添加により焼入れ性が高まりフェライ 卜分率が少な く第二相分率が多くなるような場合は、 フェライ ト中の固溶 C量が 減少することにより、 所定のセメンタイ ト析出量を確保することが 困難となるからである。 また、 結晶粒径が極端に細かくなると Cが 粒界まで容易に拡散することにより、 粒内にセメンタイ トを分散さ せることが困難となるからである。 さらに冷却速度が小さくなるとSuch dispersion strengthening by fine cementite particles within the grains is This is remarkable when the ferrite fraction is large, when the crystal grain size of the ferrite is relatively large, and when the cooling rate is large. In other words, this is because the addition of alloying elements increases the hardenability and the ferritic fraction is small and the second phase fraction is large. This is because it is difficult to secure the amount of cementite precipitation. Also, if the crystal grain size becomes extremely small, C diffuses easily to the grain boundary, making it difficult to disperse the cementite within the grain. If the cooling rate is further reduced,
、 上記と同様に Cが粒界まで容易に拡散することにより、 粒内へセ メン夕イ トを分散させることが困難となるだけでなく、 セメンタイ トが凝集、 粗大化し、 粒子分散強化に寄与できるようなサイズ、 個 数密度に制御することが困難となるからである。 Similar to the above, C easily diffuses to the grain boundary, making it difficult to disperse the cementite within the grains, and consolidating and coarsening the cementite, contributing to enhanced particle dispersion. This is because it becomes difficult to control the size and the number density as possible.
ここで、 セメン夕イ ト粒子の円相当径を 0. 5 m以下、 個数密 度を 1 0 0 0 0 0個 / mm2 以上とした理由は、 0. 5 m超、 あ るいは 1 0 0 0 0 0個 Zmm2 未満では、 粒子分散強化が寄与しな くなり室温での降伏強度を 2 3 5 M P a以上にすることが困難であ るからである。 セメンタイ ト粒子の円相当径の下限と個数密度の上 限は、 セメンタイ ト粒子分散強化による靭性低下を許容できるレべ ルとして、 円相当径の下限は 2 0 n m、 個数密度の上限は 1 0 0 0 0 0 0 0個/ mm2 とすることが好ましい。 Here, the reason why the equivalent particle diameter of cementite particles is 0.5 m or less and the number density is 10 0 0 0 0 0 pieces / mm 2 or more is more than 0.5 m, or 10 If it is less than Zmm 2 , grain dispersion strengthening does not contribute, and it is difficult to make the yield strength at room temperature 2 3 5 MPa or more. The lower limit of the equivalent circle diameter and the upper limit of the number density of the cementite particles are those that can tolerate a decrease in toughness due to enhanced cementite particle dispersion. The lower limit of the equivalent circle diameter is 20 nm, and the upper limit of the number density is 10 Preferably, the number is 0 0 0 0 0 0 pieces / mm 2 .
以下、 各元素の量を限定した理由について説明する。 なお、 以下 の 「%」 は、 特段の説明がない場合は 「質量%」 を意味するものと する。  Hereinafter, the reason for limiting the amount of each element will be described. “%” Below means “% by mass” unless otherwise specified.
Cは、 本発明において最も重要な元素である。 セメン夕イ ト粒子 の析出量を確保し、 室温での降伏強度を 2 3 5 M P a以上とするた めには 0. 0 1 %以上必要である。 しかし、 0. 0 8 %超では、 例 えばパーライ トなどの第二相分率が増加することにより、 4 0 0 °C での降伏強度を 1 8 0 M P a以下とすることが困難であるため、 0 . 0 8 %を上限としたが、 好ましくは 0. 0 2〜 0. 0 5 %である C is the most important element in the present invention. In order to secure the precipitation amount of cementite particles and to obtain a yield strength of 2 35 MPa or more at room temperature, 0.0 1% or more is necessary. However, if it exceeds 0.08%, for example, the second phase fraction such as perlite increases, resulting in an increase of 4 0 0 ° C. Since it is difficult to make the yield strength at 1800 MPa or less at 0.08%, the upper limit was set to 0.08%, but preferably 0.02 to 0.05%
Pは、 不純物元素であり、 固溶強化による高温での降伏強度の上 昇ゃ靭性の劣化を招くため、 極力低減する必要がある。 しかし、 0 . 0 5 %以下ではそれらの悪影響が許容できるため、 0. 0 5 %を 上限とする。 P is an impurity element, and the yield strength at a high temperature is increased by solid solution strengthening, leading to deterioration of toughness. Therefore, P must be reduced as much as possible. However, at 0.05% or less, those adverse effects can be tolerated, so 0.05% is the upper limit.
Sも不純物元素であり、 鋼の靭性ゃ延性を劣化させるため、 極力 低減した方が望ましいが、 0. 0 5 %以下ではそれらの悪影響が許 容できるため、 0. 0 5 %を上限とする。  S is also an impurity element, and it is desirable to reduce it as much as possible in order to degrade the toughness and ductility of steel. However, since the adverse effect is acceptable at 0.05% or less, the upper limit is set to 0.05%. .
A 1 は、 本発明において重要な元素である。 主に脱酸を目的とし て添加する。 そのためには 0. 0 0 2 %以上必要である。 ただし、 0 · 1 %を超えると、 アルミナ系の粗大酸化物やそのクラスタ一が 生成し、 靭性が損なわれるため、 0. 1 %が上限である。 好ましく は A 1 : 0. 0 1〜 0. 0 7 %である。  A 1 is an important element in the present invention. Add mainly for deoxidation. For that purpose, 0.02% or more is necessary. However, if it exceeds 0.1%, alumina-based coarse oxides and their clusters are formed and the toughness is impaired, so the upper limit is 0.1%. Preferably, A 1: 0.0 1 to 0.0 7%.
Nは、 微量では鋼片の加熱時に微細な窒化物を形成して加熱ォー ステナイ ト粒を微細化して靭性向上に寄与する。 そのためには 0. 0 0 1 %以上必要である。 一方で、 0. 0 0 8 %超では、 窒化物の 粗大化による靭性が劣化しやすいことと、 固溶 N量が増大して固溶 強化により 4 0 0 °Cでの降伏強度を 1 8 O M P a以下とすることが 困難であるため、 0. 0 0 8 %を上限とする力 好ましくは 0. 0 0 1〜 0. 0 0 5 %である。  N, in a trace amount, forms fine nitrides when the steel slab is heated and refines the heated austenite grains, contributing to improved toughness. For that purpose, 0.0 0 1% or more is necessary. On the other hand, if it exceeds 0.08%, the toughness due to the coarsening of the nitride tends to deteriorate, and the yield strength at 400 ° C is increased by increasing the solid solution N content and strengthening the solid solution. Since it is difficult to make it OMPa or less, the force having an upper limit of 0.0 0 8%, preferably 0.0 0 1 to 0.0 0 5%.
なお、 0. 0 5 %未満の S i 及び M n、 0. 0 5 %未満の C u、 N i 及び C r、 0. 0 0 5 %未満の M o、 N b、 V及び T i 、 0. 0 0 0 5 %未満の B、 0. 0 0 0 3 %未満の。 &、 M g及び R E M は、 原料や耐火物等から不可避的不純物として混入することがある 。 しかし、 これらの範囲内であれば、 何ら悪影響を及ぼさないため 、 本発明では不可避不純物として許容できる。 S i and M n less than 0.05%, Cu, Ni and Cr less than 0.05%, Mo, Nb, V and T i less than 0.05%, 0. 0 0 0 Less than 5% B, 0. 0 0 0 Less than 3%. &, Mg and REM may be mixed as inevitable impurities from raw materials and refractories. However, if it is within these ranges, it will have no adverse effect. In the present invention, it is acceptable as an inevitable impurity.
以上が、 本発明鋼板の基本成分であり、 本発明の目的とする線状 加熱による曲げ加工性や造船用鋼としての強度、 靭性に優れた鋼板 とすることができる。  The above are the basic components of the steel sheet of the present invention, and it can be a steel sheet excellent in bending workability by linear heating, strength and toughness as shipbuilding steel, which is the object of the present invention.
さらに、 強度、 靱性の調整の目的で S i 、 M n、 C u、 N i 、 C r、 M o、 N b、 V、 T i 、 Bの 1種以上を含有させることができ る。  Furthermore, one or more of Si, Mn, Cu, Ni, Cr, Mo, Nb, V, Ti, and B can be contained for the purpose of adjusting strength and toughness.
しかし、 これらの選択元素は 、 .微量添加でも鋼の焼入れ性を高め て結晶粒微細化による強度、 靭性向上や、 固溶強化 、 析出強化など に寄与するが、 いずれも過剰に含有すると 、 4 0 0 °cでの降伏強度 を 1 8 0 M P a以下とすることが困難となるので 、 それぞれ上限を 設ける必要がある。  However, these selective elements increase the hardenability of steel even when added in a small amount and contribute to strength and toughness improvement by grain refinement, solid solution strengthening, precipitation strengthening, etc. Since it is difficult to set the yield strength at 0 0 ° C to 1800 MPa or less, it is necessary to set an upper limit for each.
この上限を S i 、 M nは夫々 0. 5 %、 C u 、 N i 、 C r は夫々 This upper limit is 0.5% for S i and M n respectively, and Cu, Ni and Cr are each
0. 3 %、 M oは 0. 1 %、 N bは 0. 0 1 % 、 V 、 T i は夫々 00.3%, Mo is 0.1%, Nb is 0.01%, V and Ti are 0 respectively.
. 0 2 %、 Bは 0. 0 0 3 %とした。 しかし好ましくは、 S i 、 M nは夫々 0. 3 %以下、 C u、 N i 、 C rは夫々 0 . 1 %以下、 M oは 0. 0 5 %以下、 N bは 0 . 0 0 5 %以下 、 Vは 0. 0 1 %以 下、 T i は 0. 0 1 %以下、 Bは 0. 0 0 1 %以下である。 0. 00 2%, B was 0.0 0 3%. However, preferably, S i and M n are each 0.3% or less, Cu, N i and Cr are each 0.1% or less, Mo is 0.05% or less, and Nb is 0.0%. 5% or less, V is 0.01% or less, T i is 0.01% or less, and B is 0.00 1% or less. 0. 0
5 %以上の S i 、 M n、 C u、 N i または C r 、 0 . 0 0 5 %以上 の M o、 N b、 Vまたは T i 、 若しくは 0 . 0 0 0 5 %以上の Bは5% or more of S i, M n, Cu, N i or C r, 0.0 5% or more of Mo, N b, V or T i, or 0.0 0 0 5% or more of B is
、 結晶粒微細化による強度、 靭性向上や、 固溶強化 、 析出強化など に寄与するため、 この値を下限とした。 This value was made the lower limit because it contributes to strength and toughness improvement by crystal grain refinement, solid solution strengthening and precipitation strengthening.
また、 S i 、 M n、 C u、 N i 、 C r、 M o 、 N b、 V、 T i 、 Also, S i, M n, C u, N i, C r, M o, N b, V, T i,
Bを複数種含有させる場合には 、 以下の式で求められる C e Qを 0When multiple types of B are included, C e Q obtained by the following formula is 0
. 2 0以下とする必要がある。 し れは、 し e qが 0 . 2 0 %を超え て過剰に含有させると、 4 0 0 °Cでの降伏強度を 1 8 0 M P a以下 にすることが困難である。 C e q = C + S i / 2 4 + M n / 6 + (C u +N i ) / 1 5 + ( C r +M o + V) / 5 . Must be 0 or less. However, if eq exceeds 0.20%, it is difficult to make the yield strength at 400 ° C. less than 180 MPa. C eq = C + S i / 2 4 + M n / 6 + (C u + N i) / 1 5 + (C r + M o + V) / 5
こ こで、 C、 S i 、 M n、 C u、 N i 、 C r、 M o、 V : 各元素の 含有量 (質量%) C, Si, Mn, Cu, Ni, Cr, Mo, V: Content of each element (% by mass)
さらに、 上記した含有元素のほかに、 本発明においては、 鋼板の 延性向上や HA Z靭性向上の目的で、 C a : 0. 0 0 0 3〜 0. 0 0 5 %、 M g : 0. 0 0 0 3〜 0. 0 0 5 %、 R EM : 0, 0 0 0 3〜 0. 0 0 5 %の少なく とも一種以上を化学成分として含有して もよい。 これらを含有させることにより、 延性や H A Z靭性が向上 する。  Further, in addition to the above-described contained elements, in the present invention, for the purpose of improving the ductility of the steel sheet and improving the HA Z toughness, C a: 0.00 0 3 to 0.0 0 5%, M g: 0. At least one of 0 0 0 3 to 0.0 0 5%, R EM: 0, 0 0 0 3 to 0.0 0 5% may be contained as a chemical component. Inclusion of these improves ductility and HAZ toughness.
C a、 ¥ 及び £¼は夫々 0. 0 0 3 %未満では鋼板の延性向 上や H A Z靭性向上の効果が得られず、 一方、 夫々 0. 0 0 5 %を 超えて含有させても効果が飽和するので、 夫々 0. 0 0 0 3〜 0. 0 0 5 %とした。  When Ca, ¥ and £ ¼ are less than 0.03%, respectively, the effect of improving the ductility of the steel sheet and the improvement of HAZ toughness cannot be obtained. On the other hand, even if each content exceeds 0.005%, it is effective. Are saturated, so that they are set to 0.0 0 0 3 to 0.0 0 5%, respectively.
以下、 本発明の製造方法を限定した理由について説明する。 まず 、 上記した適切な化学成分組成に調整した溶鋼を、 転炉等の通常公 知の溶製方法で溶製し、 連続铸造等の通常公知の铸造方法で鋼素材 とする。  Hereinafter, the reason for limiting the production method of the present invention will be described. First, the molten steel adjusted to the appropriate chemical composition described above is melted by a commonly known melting method such as a converter, and is made into a steel material by a generally known forging method such as continuous casting.
次に、 鋼素材を 1 0 0 0 °C〜 1 3 0 0 °Cの温度に加熱し、 オース テナイ ト単相化する。 これは 1 0 0 ot:未満ではオーステナイ ト単 相化が不十分であり、 1 3 0 0 °C超では加熱ァ粒径が極端に粗大化 して圧延後に微細な組織を得ることが困難となり靭性が低下するか らである。  Next, the steel material is heated to a temperature of 100 ° C. to 1300 ° C. to make an austenite single phase. If it is less than 100 ot :, the austenite single phase is insufficient, and if it exceeds 1300 ° C, the grain size of the heater becomes extremely coarse and it becomes difficult to obtain a fine structure after rolling. This is because toughness decreases.
引き続き行う圧延の過程が本発明の最も重要な部分である。 すな わち、 A r 3変態点以上のオーステナイ ト単相域で累積圧下率 3 0 %以上の圧延を行うことが必要である。  The subsequent rolling process is the most important part of the present invention. In other words, it is necessary to perform rolling with a cumulative reduction of 30% or more in the austenite single phase region above the Ar 3 transformation point.
まず、 A r 3変態点以上のオーステナイ ト単相域での圧延とした 理由は、 A r 3変態点未満の二相域圧延によってフェライ ト相へ転 位が導入されると、 転位強化が残存するため、 4 0 0 °Cでの降伏強 度を 1 8 O M P aとすることが困難となるからである。 First, rolling was performed in the austenite single-phase region above the Ar 3 transformation point. The reason is that when dislocations are introduced into the ferrite phase by two-phase rolling below the Ar 3 transformation point, the dislocation strengthening remains, so the yield strength at 400 ° C is 18 OMPa. It is difficult to do.
また転位が導入されたフェライ ト相と転位が導入されていないフ ェライ 卜相との界面が脆性破壊の起点となり易く、 靭性が低下する 要因となることからも二相域圧延は避ける必要がある。  Also, it is necessary to avoid two-phase rolling because the interface between the ferrite phase with dislocations and the ferri phase without dislocations is likely to be the starting point of brittle fracture, leading to a decrease in toughness. .
さらに、 二相域圧延を行った場合、 集合組織の発達によってセパ レーシヨンが発生し易くなるため、 シャルビ一平均吸収エネルギー を 1 0 0 J以上確保することが困難となる。  Furthermore, when two-phase rolling is performed, separation tends to occur due to the development of the texture, and it is difficult to secure Charbi average absorbed energy of 10 J or more.
また、 鋼板の異方性が大きくなることにより、 線状加熱による曲 げ加工性にも異方性が出てしまい、 滑らかな曲率面となるよう加工 することが困難となる。  In addition, since the anisotropy of the steel sheet is increased, anisotropy also occurs in the bending workability due to linear heating, and it becomes difficult to perform processing so as to obtain a smooth curvature surface.
次に、 圧延の累積圧下率を 3 0 %以上とする理由は、 3 0 %未満 では再結晶によるオーステナイ トの細粒化が不十分であり、 その後 の加速冷却により結晶粒径を所定の範囲に制御することが困難とな るからである。 好ましくは圧延の累積圧下率を 5 0 %以上としたい 上記の圧延後、 7 5 0 °C以上から、 板厚方向の断面平均で 5〜 5 0 °C Z sの冷却速度で 4 0 0 °C未満の温度まで加速冷却を行う必要 がある。  Next, the reason why the cumulative rolling reduction ratio is set to 30% or more is that if it is less than 30%, the austenite is not sufficiently refined by recrystallization, and the crystal grain size is reduced within a predetermined range by subsequent accelerated cooling. This is because it becomes difficult to control it. Preferably, the rolling reduction ratio of rolling should be 50% or more after the above rolling, from 70 ° C or more to 40 ° C at a cooling rate of 5 to 50 ° CZ s in the cross-sectional average in the sheet thickness direction. It is necessary to perform accelerated cooling to a temperature below.
冷却開始温度を 7 5 0 °C以上とした理由は、 7 5 0 °C未満では、 冷却前にフェライ トが変態、 成長し、 平均結晶粒径を 4 5 m以下 にすることが困難であることと、 フェライ ト中の固溶 Cが減少しセ メン夕イ ト析出量の確保が困難であることと、 さらにセメンタイ ト が析出、 凝集、 粗大化して室温での降伏強度を確保することが困難 であるからである。  The reason for setting the cooling start temperature to 75 ° C. or higher is that if it is lower than 75 ° C., the ferrite transforms and grows before cooling, and it is difficult to reduce the average crystal grain size to 45 m or less. In addition, it is difficult to secure the precipitation amount of cementite due to a decrease in solid solution C in the ferrite, and further, cementite precipitates, agglomerates and coarsens to ensure yield strength at room temperature. It is difficult.
加速冷却時の冷却速度を板厚方向の断面平均で 5〜 5 0 °C Z s以 上とした理由は、 上記と同様の理由で 5 °C / s未満ではフェライ ト の平均結晶粒径を 4 5 m以下にすることが困難であることと、 C が粒界まで容易に拡散できることにより粒内にセメンタイ トを分散 させることが困難であることと、 さらにセメン夕イ トが析出、 凝集 、 粗大化して室温での降伏強度の確保が困難になるからである。 ま た、 5 0 °C Z s を超えると、 フェライ トの結晶粒径が 1 5 未満 の細粒となってしまい、 細粒強化により 4 0 0 °Cでの降伏強度を 1 8 O M P a以下とすることが困難であることから、 5 O X: / s を上 限とした。 加速冷却時の冷却速度は板厚方向の断面平均で 1 0 〜 4 0 °C Z sがより好ましい。 The cooling rate during accelerated cooling is 5 to 50 ° C The reason for the above is that the average crystal grain size of ferrite is difficult to be 45 m or less at less than 5 ° C / s for the same reason as above, and that C can easily diffuse to the grain boundary. This is because it is difficult to disperse the cementite within the grains, and the cementite precipitates, aggregates and coarsens, making it difficult to secure yield strength at room temperature. In addition, when the temperature exceeds 50 ° CZ s, the ferrite grain size becomes smaller than 15 and the yield strength at 40 ° C is less than 18 OMPa due to fine grain strengthening. Since it is difficult to do this, the upper limit was set to 5 OX: / s. The cooling rate during accelerated cooling is more preferably 10 to 40 ° C. Zs in terms of the cross-sectional average in the thickness direction.
4 0 0 °C未満の温度まで加速冷却する理由は、 4 0 0 °C以上で冷 却を終了すると、 セメンタイ トが析出、 凝集、 粗大化して室温での 降伏強度の確保が困難になるからである。 温度バラツキを考慮して 、 3 0 0 °C以下の温度まで加速冷却することが好ましい。  The reason for accelerated cooling to temperatures below 400 ° C is that when cooling is completed at 400 ° C or higher, cementite precipitates, aggregates, and coarsens, making it difficult to secure yield strength at room temperature. It is. In consideration of temperature variation, it is preferable to perform accelerated cooling to a temperature of 300 ° C. or lower.
加速冷却後、 強度と靭性を調整する目的で必要に応じ 3 0 0以上 4 0 0 °C未満の温度で焼き戻しすることが可能である。 その効果を 得るためには 3 0 0 °C以上にする必要があるが、 4 0 0 °C以上では セメン夕イ トが凝集、 粗大化して室温での降伏強度の確保が困難と なるので、 4 0 0 °C未満、 好ましくは 3 5 0 °C以下とする必要があ る。  After accelerated cooling, it can be tempered at a temperature of not less than 300 and not more than 400 ° C as necessary for the purpose of adjusting strength and toughness. In order to obtain this effect, it is necessary to set the temperature to 300 ° C or higher, but at 400 ° C or higher, the cementite aggregates and becomes coarse, and it becomes difficult to ensure the yield strength at room temperature. The temperature should be less than 400 ° C, preferably not more than 35 ° C.
以上のように本実施形態によれば、 線状加熱による曲げ加工作業 効率向上のために、 加熱時間を短く した条件、 つまり線状加熱部の 最高到達温度が低い条件において、 曲げ変形量が大きい鋼板、 さら に造船用鋼としての降伏強度、 靭性を十分に兼ね備えた鋼板を製造 することができる。  As described above, according to this embodiment, in order to improve the efficiency of bending work by linear heating, the amount of bending deformation is large under the conditions where the heating time is shortened, that is, under the condition where the maximum temperature reached in the linear heating part is low. It is possible to manufacture steel sheets that have sufficient yield strength and toughness as steel for shipbuilding and shipbuilding.
実施例  Example
製鋼工程において溶鋼の化学成分調整を行った後、 連続铸造によ つて铸片を製造した。 表 1 に化学成分を示す。 表中、 鋼種 A〜 Pは 本発明の化学成分要件を満足するものであり、 鋼種 Q〜Xは本発明 の化学成分要件を満足しないものである。 なお、 本発明の化学成分 要件を満足する鋼種 A〜 Pは、 S i ≤ 0. 0 2 %, M n≤ 0. 0 3 %、 C u≤ 0. 0 3 %、 N i ≤ 0. 0 3 %、 C r≤ 0. 0 4 %、 M o≤ 0. 0 0 4 %、 N b≤ 0. 0 0 2 %、 V≤ 0. 0 0 2 %、 T i ≤ 0. 0 0 2 %、 B≤ 0. 0 0 0 2 %、 C a≤ 0. 0 0 0 2 %、 M g≤ 0. 0 0 0 2 %、 R E M≤ 0. 0 0 0 1 %の範囲のいずれか 1 種以上の元素を不可避不純物として含有していたので、 その不純物 量を表 1 に示している。 また、 表中の A r 3変態点 (°C) は、 これ ら铸片より採取したフォーマス夕試験片を用いて、 1 2 0 0 °Cのォ ーステナイ ト化処理をした後、 0. 5 °C/ sで冷却する熱履歴を与 えたときの熱膨張曲線によって求めた値である。 表 1の铸片を用い て板厚 1 0〜 3 0 mmの厚鋼板を製造した。 表 2に各厚鋼板の製造 方法を示す。 After adjusting the chemical composition of the molten steel in the steelmaking process, A piece was produced. Table 1 shows the chemical composition. In the table, steel types A to P satisfy the chemical component requirements of the present invention, and steel types Q to X do not satisfy the chemical component requirements of the present invention. Steel grades A to P that satisfy the chemical composition requirements of the present invention are S i ≤ 0.0 2%, M n ≤ 0.0 3%, C u ≤ 0.0 3%, N i ≤ 0.0 3%, C r≤ 0. 0 4%, M o≤ 0. 0 0 4%, N b≤ 0. 0 0 2%, V≤ 0. 0 0 2%, T i ≤ 0. 0 0 2% , B≤ 0. 0 0 0 2%, C a≤ 0. 0 0 0 2%, M g≤ 0. 0 0 0 2%, REM≤ 0. 0 0 0 1% These elements are inevitable impurities, and the amount of impurities is shown in Table 1. In addition, the Ar 3 transformation point (° C) in the table is 0.5 after the austenization treatment at 120 ° C. using a formal evening test piece taken from these pieces. This is a value obtained from a thermal expansion curve when a thermal history of cooling at ° C / s is given. Thick steel plates with a thickness of 10 to 30 mm were manufactured using the pieces in Table 1. Table 2 shows the manufacturing method for each steel plate.
表 1 table 1
Figure imgf000019_0001
Figure imgf000019_0001
注 1) Ced=C+Si/24+Mn/6+ (Cu+Ni) /15+ (Cr+Mo+V) /5  Note 1) Ced = C + Si / 24 + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5
注 2) () は意図的添加を行なわなかった、 いわゆる不可避的不純物としての分析値である。 Note 2) () is an analysis value as an inevitable impurity without intentional addition.
表 2 Table 2
Figure imgf000020_0001
Figure imgf000020_0001
表 3に各鋼板のミクロ組織面積率 (%) 、 及びフェライ ト相の平 均結晶粒径 ( m) 、 フェライ ト粒内のセメン夕イ ト粒子の円相当 径 (zzm) と個数密度 (個 Zmm2 ) を示す。 それぞれの測定値は 、 中心偏析を外した板厚中心位置のものであり、 各鋼板の代表値と した。 Table 3 shows the microstructure area ratio (%) of each steel sheet, the average crystal grain size (m) of ferrite phase, the equivalent circle diameter (zzm) and number density (pieces) of cementite grains in ferrite grains. Zmm 2 ). Each measured value is the thickness center position excluding the center segregation, and is the representative value of each steel plate.
ミクロ組織面積率は、 1 0 0倍、 または 5 0 0倍の光学顕微鏡写 真を用いて画像解析により測定した。 このとき、 圧延方向に伸ばさ れた圧延方向の板厚方向の長さの比 (アスペク ト比) が 1 . 5以上 のフェライ トを加工フェライ ト、 アスペク ト比が 1 . 5未満のフエ ライ トを無加工フェライ トと定義し、 また第二相はフェライ ト以外 のパ一ライ ト、 ベイナイ ト、 マルテンサイ トを指す。 Microstructure area ratio is 100 times or 500 times optical microscope image Measured by image analysis using true. At this time, a ferrite having a length ratio (aspect ratio) of 1.5 mm or more in the thickness direction of the rolling direction stretched in the rolling direction is a machining ferrite, and a ferrite having an aspect ratio of less than 1.5. Is defined as unprocessed ferrite, and the second phase refers to non-ferrite light, bainite, and martensite.
フェライ ト相の平均結晶粒径は、 ミクロ組織面積率を測定した光 学顕微鏡写真を用いて、 J I S G 0 5 5 2の 「鋼のフェライ 卜 結晶粒度試験方法」 に準拠し、 測定した。 フェライ ト粒内のセメン タイ ト粒子の円相当径と個数密度は、 1 0 0 0 0倍〜 5 0 0 0 0倍 の走査型電子顕微鏡写真を用いて画像解析により測定した。 The average crystal grain size of the ferritic phase was measured in accordance with JISG 0 5 52 “Ferrata of steel 結晶 Grain size test method” using a photomicrograph obtained by measuring the microstructure area ratio. The equivalent-circle diameter and number density of cementite particles in the ferrite particles were measured by image analysis using scanning electron micrographs of 100000 times to 500 00 times.
表 3 Table 3
Figure imgf000022_0001
Figure imgf000022_0001
B :へ、'イナ仆、 M:マルテンサ仆 表 4に各厚鋼板の機械的性質を示す。 それぞれの測定値は、 板厚 中心部から採取した試験片を用いて試験したときのものであり、 各 鋼板の代表値とした。 室温、 及び 4 0 0 °Cでの降伏強度は、 直径 1 0 mmの丸棒引張試験片を用いて、 室温での引張試験は、 J I S Z 2 2 4 1の 「金属材料引張試験方法」 に準拠し、 4 0 0ででの 引張試験は、 J I S G 0 5 6 7の 「鉄鋼材料及び耐熱合金の高 温引張試験方法」 に準拠し、 各 2本を試験測定し、 その平均値を記 載した。 0 °Cのシャルビ一平均吸収エネルギーは、 2 m m Vノッチ シャルビ一衝撃試験片を用いて、 J I S Z 2 2 4 2の 「金属材 料衝撃試験方法」 に準拠し、 0でで各 3本を試験測定し、 その平均 値を記載した。 B: H, Ina, M: Martensa Table 4 shows the mechanical properties of each steel plate. Each measured value was measured using a specimen taken from the center of the plate thickness, and was used as a representative value for each steel plate. The yield strength at room temperature and 400 ° C is Using a 0 mm round bar tensile test piece, the tensile test at room temperature conforms to JISZ 2 2 4 1 “Metal Material Tensile Test Method”. The tensile test at 400 is JISG 0 5 6 In accordance with Section 7 “High temperature tensile test method for steel materials and heat-resistant alloys”, two were tested and measured, and the average value was recorded. Charbi average absorbed energy at 0 ° C is 2 mm V notch Charbi impact test piece, in accordance with JISZ 2 2 4 2 “Metallic material impact test method”. The average value was measured.
更に、 各鋼板の線状加熱後の変形特性を評価した結果を示す。 こ の際の試験体は、 元の板厚 X 5 0 0 mm幅 X 5 0 0 mm長さのサイ ズとした。 板幅中央を長さ方向にガスバーナーにて線状加熱し、 引 き続きガスバーナー後方に配置した水冷トーチを用いて水冷した。 この作業を鋼板同一の位置で 3回繰り返し、 鋼板の跳ね上がり量を 測定した。 線状加熱条件は、 〇 2 ガスの圧力を 5 k g Z c m、 流量 を 5 0 l Zm i n、 C 2 H2 ガスの圧力を 0. 5 k g / c m、 流量 を 2 0 1 /m i nとし、 ガスバーナーと鋼板の距離を 1 4 c mとし 、 水量 6 1 /m i nの冷却トーチはガスバ一ナ一後方の 9 0 mm離 れた位置に配置した。 ガスバーナーと水冷トーチは、 速度制御でき るテーブルにセッ 卜し、 予備試験において、 鋼板表下 l mmの位置 で熱電対により温度測定し、 狙いの温度となるようなテーブル速度 条件を決めた。 Furthermore, the result of having evaluated the deformation characteristic after linear heating of each steel plate is shown. The test specimen at this time was the original plate thickness X 500 mm width X 500 mm length. The center of the plate width was linearly heated with a gas burner in the length direction, and then water-cooled using a water-cooled torch placed behind the gas burner. This operation was repeated three times at the same position of the steel sheet, and the amount of steel sheet jumping was measured. The linear heating conditions are as follows: ○ 2 gas pressure is 5 kg Z cm, flow rate is 50 l Zmin, C 2 H 2 gas pressure is 0.5 kg / cm, flow rate is 2 0 1 / min, gas The distance between the burner and the steel sheet was 14 cm, and a cooling torch with a water volume of 61 / min was placed 90 mm away from the rear of the gas burner. The gas burner and water-cooled torch were set on a speed-controllable table, and in the preliminary test, the temperature was measured with a thermocouple at a position 1 mm below the steel sheet surface, and the table speed conditions were determined so that the target temperature was achieved.
鋼板表下 l mmの温度は、 4 0 0、 5 0 0、 6 0 0でとし、 その ときのテーブル速度は、 それぞれ 6 4 0、 4 8 0、 2 8 0 c m/m i nである。 測定した跳ね上がり量とテーブル速度から、 跳ね上が り量 l mmを得るための加熱時間を求めることによって作業効率の 評価とした。 なお、 このときの値は、 単に線状加熱しているときの 時間であり、 段取り時間や跳ね上がり量の測定時間は考慮していな い The temperature of l mm below the steel sheet surface is assumed to be 400, 50, 60, and the table speeds at that time are 6 40, 48 0, 28 0 cm / min, respectively. The working efficiency was evaluated by determining the heating time to obtain the lapping amount lmm from the measured amount of bounce and table speed. Note that the value at this time is simply the time during linear heating, and does not take into account the setup time or the measurement time of the jump amount. No
また、 跳ね上がり量 (m m ) は、 試験体を平坦な台の上に置き、 試験体の片側端面を治具で固定し、 その反対側端面の両端と中央部 の計 3箇所を、 テーパーゲージを用いて測定し、 その平均値を記載 した。 Also, the amount of jump (mm) can be measured by placing the test piece on a flat table, fixing one end face of the test piece with a jig, and using a taper gauge on both ends and the center of the opposite end face. The average value was recorded.
表 4 Table 4
Figure imgf000025_0001
鋼番 1〜 1 6は本発明の厚鋼板である。 化学成分、 製造方法とも に本発明要件を満足しているため、 機械的性質、 ミクロ組織も本発 明要件を満足していた。 したがって、 線状加熱後の曲げ変形特性は 、 比較例に比べ、 跳ね上がり量は大きく、 さらに跳ね上がり量 l m mを得るための加熱時間は短くなり、 極めて効率的であった。
Figure imgf000025_0001
Steel numbers 1 to 16 are the thick steel plates of the present invention. Since both the chemical composition and the production method satisfied the requirements of the present invention, the mechanical properties and the microstructure also satisfied the present invention requirements. Therefore, the bending deformation characteristics after linear heating are Compared with the comparative example, the amount of jumping was large, and the heating time for obtaining the amount of jumping lmm was shortened, which was extremely efficient.
これに対し、 鋼番 1 7〜 3 3は比較例となる厚鋼板である。 この うち、 鋼番 1 7〜 2 4は、 化学成分は本発明要件を満足しているが 、 製造方法及びミク口組織が本発明要件を満足していない比較例で ある。 また、 鋼番 2 5〜 3 0は、 製造方法が本発明要件を満足して いるが、 化学成分及びミク口組織が本発明要件を満足していない比 較例である。 そして、 鋼番 3 1〜 3 3は、 化学成分、 ミクロ組織、 製造方法とも本発明要件を満足していない比較例である。  On the other hand, steel numbers 17-3 are thick steel plates as comparative examples. Among these, Steel Nos. 17 to 24 are comparative examples in which the chemical composition satisfies the requirements of the present invention, but the production method and the mouthpiece structure do not satisfy the requirements of the present invention. Steel numbers 25 to 30 are comparative examples in which the manufacturing method satisfies the requirements of the present invention, but the chemical composition and the mouthpiece structure do not satisfy the requirements of the present invention. Steel numbers 3 1 to 3 3 are comparative examples that do not satisfy the requirements of the present invention in terms of chemical composition, microstructure, and manufacturing method.
以下に比較例となる厚鋼板が本発明鋼板より劣ることについての 理由を説明する。  The reason why the thick steel plate as a comparative example is inferior to the steel plate of the present invention will be described below.
鋼番 1 7は、 製造方法において、 圧延後水冷を行わずに空冷して いる、 すなわち冷却速度が本発明の下限を下回っている。 そのため 、 フェライ トの平均結晶粒径が本発明の上限を上回っていることか ら、 シャルピー平均吸収エネルギーも本発明の下限を下回っている 。 また、 セメン夕イ ト粒子の円相当径が本発明の上限を上回り、 個 数密度が本発明の下限を下回ったことから、 室温での降伏強度が本 発明の下限を下回っている。 4 0 0 °Cでの降伏強度は本発明要件を 満足しているため、 線状加熱後の変形特性は優れているものの、 造 船用鋼としての降伏強度、 靱性を兼ね備えていない。  In the production method, steel No. 17 is air cooled without performing water cooling after rolling, that is, the cooling rate is lower than the lower limit of the present invention. Therefore, since the average crystal grain size of ferrite exceeds the upper limit of the present invention, the Charpy average absorbed energy is also lower than the lower limit of the present invention. In addition, since the equivalent circle diameter of cementite particles exceeded the upper limit of the present invention and the number density fell below the lower limit of the present invention, the yield strength at room temperature was lower than the lower limit of the present invention. Since the yield strength at 400 ° C satisfies the requirements of the present invention, the deformation characteristics after linear heating are excellent, but it does not have the yield strength and toughness as shipbuilding steel.
鋼番 1 8は、 製造方法において、 二相域圧延を行っている、 また 冷却開始温度も本発明の下限を下回っている。 そのため、 無加エフ ェライ ト面積率が本発明の下限を下回り、 加工フェライ ト面積率が 増加していることから、 4 0 0 °Cでの降伏強度が本発明の上限を上 回り、 シャルピー平均吸収エネルギーが本発明の下限を下回ってい る。 よって、 線状加熱後の変形特性が本発明鋼より劣っているとと もに、 造船用鋼として必要な靭性を有していない。 鋼番 1 9は、 製造方法において、 焼戻し温度が本発明の上限を上 回っている。 そのため、 セメン夕イ ト粒子の円相当径が本発明の上 限を上回り、 個数密度が本発明の下限を下回ったことから、 室温で の降伏強度が本発明の下限を下回っている。 4 0 0 °Cでの降伏強度 は本発明要件を満足しているため、 線状加熱後の変形特性は優れて いるものの、 造船用鋼として必要な降伏強度を有していない。 Steel No. 18 is subjected to two-phase rolling in the production method, and the cooling start temperature is also below the lower limit of the present invention. Therefore, the additive-free ferrite area ratio is below the lower limit of the present invention, and the machining ferrite area ratio is increasing, so the yield strength at 400 ° C exceeds the upper limit of the present invention, and the Charpy average The absorbed energy is below the lower limit of the present invention. Therefore, the deformation characteristics after linear heating are inferior to the steel of the present invention, and it does not have the toughness necessary for shipbuilding steel. Steel No. 19 has a tempering temperature exceeding the upper limit of the present invention in the production method. For this reason, the equivalent circle diameter of cementite particles exceeds the upper limit of the present invention, and the number density falls below the lower limit of the present invention, so that the yield strength at room temperature is lower than the lower limit of the present invention. Since the yield strength at 400 ° C satisfies the requirements of the present invention, the deformation characteristics after linear heating are excellent, but the yield strength necessary for shipbuilding steel is not obtained.
鋼番 2 0は、 製造方法において、 冷却開始温度が本発明の下限を 下回っている。 そのため、 フェライ トの平均結晶粒径が本発明の上 限を上回り、 また、 セメン夕イ ト粒子の円相当径が本発明の上限を 上回り、 個数密度が本発明の下限を下回ったことから、 室温での降 伏強度が本発明の下限を下回り、 シャルピー平均吸収エネルギーが 本発明の下限を下回っている。 4 0 0 °Cでの降伏強度は本発明要件 を満足しているため、 線状加熱後の変形特性は優れているものの、 造船用鋼としての降伏強度、 靭性を兼ね備えていない。  Steel No. 20 has a cooling start temperature lower than the lower limit of the present invention in the production method. Therefore, since the average crystal grain size of the ferrite is above the upper limit of the present invention, the equivalent circle diameter of the cementite particles is higher than the upper limit of the present invention, and the number density is lower than the lower limit of the present invention, The yield strength at room temperature is below the lower limit of the present invention, and the Charpy average absorbed energy is below the lower limit of the present invention. Since the yield strength at 400 ° C satisfies the requirements of the present invention, the deformation characteristics after linear heating are excellent, but it does not have the yield strength and toughness as steel for shipbuilding.
鋼番 2 1 は、 製造方法において、 冷却速度が本発明の上限を上回 つている。 そのため、 フェライ トの平均結晶粒径が本発明の下限を 下回ったことから、 4 0 0 °Cでの降伏強度が本発明の上限を上回つ ている。 よって、 線状加熱後の変形特性が本発明鋼より劣っている 鋼番 2 2は、 製造方法において、 冷却終了温度が本発明の上限を 上回っている。 そのため、 セメンタイ ト粒子の円相当径が本発明の 上限を上回り、 個数密度が本発明の下限を下回ったことから、 室温 での降伏応力が本発明の下限を下回っている。 4 0 0 °Cでの降伏強 度は本発明要件を満足しているため、 線状加熱後の変形特性は優れ ているものの、 造船用鋼として必要な降伏強度を有していない。 鋼番 2 3は、 製造方法において、 二相域圧延を行っている、 また 冷却開始温度も本発明の下限を下回っている。 そのため、 無加エフ エライ ト面積率が本発明の下限を下回り、 加工フェライ ト面積率が 増加していることから、 4 0 0 °Cでの降伏強度が本発明の上限を上 回り、 シャルビ一平均吸収エネルギ一が本発明の下限を下回ってい る。 よって、 線状加熱後の変形特性が本発明鋼より劣っているとと もに、 造船用鋼として必要な靭性を有していない。 Steel No. 21 has a cooling rate exceeding the upper limit of the present invention in the production method. Therefore, since the average crystal grain size of the ferrite is below the lower limit of the present invention, the yield strength at 400 ° C. exceeds the upper limit of the present invention. Therefore, steel No. 22 whose deformation characteristics after linear heating are inferior to the steel of the present invention has a cooling end temperature exceeding the upper limit of the present invention in the production method. Therefore, since the equivalent circle diameter of the cementite particles exceeds the upper limit of the present invention and the number density falls below the lower limit of the present invention, the yield stress at room temperature is lower than the lower limit of the present invention. Since the yield strength at 400 ° C satisfies the requirements of the present invention, it has excellent deformation characteristics after linear heating, but does not have the yield strength required for shipbuilding steel. Steel No. 23 is subjected to two-phase rolling in the production method, and the cooling start temperature is lower than the lower limit of the present invention. Therefore, no added F Since the area area ratio is below the lower limit of the present invention and the processing ferrite area ratio is increasing, the yield strength at 400 ° C exceeds the upper limit of the present invention, and the Charbi average absorbed energy is It is below the lower limit of the present invention. Therefore, the deformation characteristics after linear heating are inferior to the steel of the present invention, and it does not have the toughness necessary for shipbuilding steel.
鋼番 2 4は、 製造方法において、 冷却速度が本発明の下限を下回 つている。 そのため、 フェライ トの平均結晶粒径が本発明の上限を 上回っていることから、 シャルビ一平均吸収エネルギーも本発明の 下限を下回っている。 また、 セメンタイ ト粒子の円相当径が本発明 の上限を上回り、 個数密度が本発明の下限を下回ったことから、 室 温での降伏強度が本発明の下限を下回っている。 4 0 0 °Cでの降伏 強度は本発明要件を満足しているため、 線状加熱後の変形特性は優 れているものの、 造船用鋼としての降伏強度、 靭性を兼ね備えてい ない。  Steel No. 24 has a cooling rate below the lower limit of the present invention in the production method. Therefore, since the average crystal grain size of ferrite exceeds the upper limit of the present invention, the Charbi average absorbed energy is also lower than the lower limit of the present invention. Further, since the equivalent circle diameter of the cementite particles exceeds the upper limit of the present invention and the number density falls below the lower limit of the present invention, the yield strength at room temperature is lower than the lower limit of the present invention. Since the yield strength at 400 ° C satisfies the requirements of the present invention, the deformation characteristics after linear heating are excellent, but it does not have the yield strength and toughness as steel for shipbuilding.
次に、 化学成分において、 鋼番 2 5は M n C u N i N b Next, in chemical composition, steel number 25 is M n C u N i N b
、 鋼番 2 6は、 M n M o V、 鋼番 2 7は、 C n C r、 鋼 番 2 8は S i が本発明の上限を上回つている。 また 鋼番 2 9 3Steel No. 26 is M n Mo V, Steel No. 2 7 is C n Cr, and Steel No. 28 is S i exceeding the upper limit of the present invention. Steel number 2 9 3
0は各々の化学成分は本発明範囲内であるが、 ( 1 ) 式の値が本発 明の上限を上回っている。 このように 焼入れ性の高い化学成分と なっているため、 本発明要件を満足する製造方法に いても、 フエ ライ ト面積率が本発明の下限を下回り さらにフ Xラィ 卜の平均結 晶粒径が本発明の下限を下回つている とから、 4 0 0 °Cでの降伏 強度が本発明の上限を大きく上回っている 。 そのため 、 線状加熱後 の変形特性や効率が劣化している。 Each chemical component is within the scope of the present invention, but the value of formula (1) exceeds the upper limit of the present invention. Thus, because it is a chemical component with high hardenability, even in the production method that satisfies the requirements of the present invention, the ferrite area ratio is below the lower limit of the present invention, and the average crystal grain size of X Is below the lower limit of the present invention, the yield strength at 400 ° C. is much higher than the upper limit of the present invention. Therefore, the deformation characteristics and efficiency after linear heating are degraded.
次に、 鋼番 3 1は、 製造方法において、 焼戻し温度が本発明の上 限を上回っているため、 セメンタイ ト粒子の円相当径が本発明の上 限を上回り、 個数密度が本発明の下限を下回っていることからセメ ンタイ 卜の粒子分散強化は寄与していないが、 室温での降伏強度は 十分高い。 これは、 化学成分において、 鋼番 2 5 と同様に¾1 11、 C u、 N i 、 N bが本発明の上限を上回っており、 焼入れ性が高い化 学成分となっているため、 フェライ ト面積率が本発明の下限を下回 り、 さらにフェライ 卜の平均結晶粒径が本発明の下限を下回ってい ることが原因である。 よって、 4 0 0ででの降伏応力が本発明の上 限を大きく上回っているため、 線状加熱後の変形特性や効率が劣化 している。 Next, steel No. 31 has a tempering temperature exceeding the upper limit of the present invention in the production method, so that the equivalent circle diameter of the cementite particles exceeds the upper limit of the present invention, and the number density is the lower limit of the present invention. Because it is less than Although the particle dispersion strengthening of Nintendo is not contributing, the yield strength at room temperature is sufficiently high. This is because, in the chemical composition, as in Steel No. 25, ¾11, Cu, Ni, Nb exceeds the upper limit of the present invention and is a chemical component with high hardenability. This is because the area ratio is lower than the lower limit of the present invention, and the average crystal grain size of the ferrite is lower than the lower limit of the present invention. Therefore, since the yield stress at 400 is much higher than the upper limit of the present invention, the deformation characteristics and efficiency after linear heating are deteriorated.
鋼番 3 2は、 製造方法において、 圧延後水冷を行わずに空冷して いる、 すなわち冷却速度が本発明の下限を下回っているため、 セメ ン夕ィ ト粒子の円相当径が本発明の上限を上回り、 個数密度が本発 明の下限を下回っていることからセメンタイ 卜の粒子分散強化は寄 与していないが、 室温での降伏強度は十分高い。 これは、 鋼番 3 1 と同様の理由で、 化学成分において、 M n、 N i 、 N bが本発明の 上限を上回っており、 焼入れ性が高い化学成分となっているため、 フェライ 卜面積率が本発明の下限を下回っていることが原因である 。 よって、 4 0 0 °Cでの降伏応力が本発明の上限を上回っているた め、 線状加熱後の変形特性や効率が劣化している。  Steel No. 32 is air-cooled without rolling after rolling in the production method, that is, the cooling rate is lower than the lower limit of the present invention, so the equivalent circle diameter of cementitious particles is that of the present invention. Although the upper limit is exceeded and the number density is lower than the lower limit of the present invention, cement dispersion does not contribute to strengthening the particle dispersion, but the yield strength at room temperature is sufficiently high. This is because, for the same reason as steel No. 31, in the chemical composition, Mn, Ni, and Nb exceed the upper limit of the present invention, and the chemical composition has high hardenability. This is because the rate is below the lower limit of the present invention. Therefore, since the yield stress at 400 ° C. exceeds the upper limit of the present invention, the deformation characteristics and efficiency after linear heating are deteriorated.
鋼番 3 3は、 製造方法において、 二相域圧延を行っている、 また 冷却開始温度も本発明の下限を下回っている。 そのため、 無加エフ ェライ ト面積率が本発明の下限を下回り、 加工フェライ ト面積率が 増加している。 それに加え、 化学成分において、 (:、 M nが本発明 の上限を上回っており、 焼入れ性が高い化学成分となっているため 、 室温、 及び 4 0 0 °Cでの降伏応力が本発明の上限を大きく上回り 、 さらに 0 °Cでのシャルピー平均吸収エネルギーが本発明の下限を 下回っている。 よって、 造船用鋼としての靭性を有していないばか りか、 線状加熱後の変形特性や効率も本発明鋼に比べ著しく劣って いる。 Steel No. 3 3 is subjected to two-phase rolling in the production method, and the cooling start temperature is also lower than the lower limit of the present invention. Therefore, the additive-free ferrite area ratio is below the lower limit of the present invention, and the machining ferrite area ratio is increasing. In addition, in the chemical component, (:, M n exceeds the upper limit of the present invention, and because it is a chemical component with high hardenability, the yield stress at room temperature and 400 ° C is The Charpy average absorbed energy at 0 ° C is much lower than the lower limit of the present invention, which is much higher than the upper limit, so that it should not have toughness as steel for shipbuilding, and its deformation characteristics and efficiency after linear heating Is significantly inferior to the steel of the present invention. Yes.
以上の実施例から、 本発明を適用することにより、 線状加熱によ る曲げ加工作業効率向上のために、 加熱時間を短く した条件、 つま り線状加熱部の最高到達温度が低い条件において、 曲げ変形量が大 きい鋼板とするために、 低温での降伏強度を低く した鋼板及びその 製造方法、 さらに造船用鋼としての降伏強度、 靭性を十分に兼ね備 えた鋼板及びその製造方法を提供できることが確認された。  From the above examples, by applying the present invention, in order to improve the bending work efficiency by linear heating, the heating time is shortened, that is, the maximum ultimate temperature of the linear heating part is low. In order to make steel plates with a large amount of bending deformation, we provide steel plates with low yield strength at low temperatures and their manufacturing methods, as well as steel plates with sufficient yield strength and toughness as steel for shipbuilding and their manufacturing methods. It was confirmed that it was possible.
なお、 本発明は上述した実施形態に限定されるものではなく、 本 発明の主旨を逸脱しない範囲内で種々変更して実施することが可能 である。 産業上の利用可能性  Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. Industrial applicability
前述したように、 本発明により、 主として造船用鋼板としての降 伏強度、 靭性を十分に兼ね備え、 かつ低い最高到達温度でも曲げ変 形量を大きくすることができるので、 線状加熱による曲げ加工作業 効率を飛躍的に向上させることができる。 そして、 それは造船のェ 期短縮、 コス ト低減、 またエネルギー消費低減に伴う環境負荷低減 などをもたらし、 産業上の貢献は極めて大きいと考えられる。  As described above, the present invention has sufficient yield strength and toughness mainly as a steel plate for shipbuilding, and can increase the amount of bending deformation even at a low maximum temperature, so that bending work by linear heating can be performed. Efficiency can be improved dramatically. And that brings about shortening the shipbuilding period, reducing costs, and reducing the environmental impact associated with reducing energy consumption.

Claims

請 求 の 範 囲 The scope of the claims
1 . 胃量%で 、 1. Stomach volume%
c : 0 . 0 1 〜 0 . 0 8 %、  c: 0.01 to 0.08%,
P : ≤ 0 . 0 5 %、  P: ≤ 0.05%,
s : ≤ 0 . 0 5 、  s: ≤ 0.05,
A 1 : 0 . 0 0 2 〜 0 · 1 %、  A 1: 0.0 0 2 to 0 · 1%,
N : 0 . 0 0 1 〜 0 . 0 0 8 %  N: 0.01 to 0.00 8%
を含有し、 残部が鉄及び不可避不純物によって化学成分が構成 された鋼板で、 ミクロ組織が無加工のフェライ ト相が面積率で 9 0 The balance is a steel plate with the chemical composition composed of iron and inevitable impurities in the balance, and the ferrite phase with an unprocessed microstructure is 90% in area ratio.
%以上 、 そのフェライ 卜相の平均結晶粒径が 1 5 〜 4 5 mでありThe average crystal grain size of the Ferai phase is 15 to 45 m
、 またフェライ ト粒内に円相当径 0 . 5 m以下のセメンタイ ト粒 子が個数密度で 1 0 0 0 0 0個 Z m m 2 以上存在しており、 さらに 室温での降伏強度が 2 3 5 M P a以上 、 4 0 0 °Cでの降伏強度が 1In addition, cementite particles with a circle-equivalent diameter of 0.5 m or less are present in the ferrite grains in a number density of more than 1 000 000 Z mm 2 and the yield strength at room temperature is 2 3 5 MP a or higher, yield strength at 400 ° C is 1
8 0 P a以下 、 0 。cでのシャルピ―平均吸収エネルギーが 1 0 00 0 Pa or less, 0. Charpy average absorbed energy at c is 1 0 0
J以上であることを特徴とした線状加熱による曲げ加工性に優れた Excellent bending workability by linear heating, characterized by J or higher
2 . さらに、 質量%で、 2. In addition, by mass%
S i 0 . 0 5 〜 0 • 5 、  S i 0 .0 5 to 0 • 5,
M n 0 . 0 5 0 • 5 、  M n 0 .0 5 0 • 5,
C u 0 . 0 5 〜 0 5 、  C u 0 .0 5 to 0 5,
N i 0 . 0 5 〜 0 - 3 、  N i 0 .0 5 to 0-3,
C r 0 . 0 5 0 • 3 % 、  C r 0. 0 5 0 • 3%,
M o 0 . 0 0 5 0 • 1 % 、  M o 0 .0 0 5 0 • 1%
N b 0 . 0 0 5 0 • 0 1 、  N b 0. 0 0 5 0 • 0 1,
V 0 . 0 0 5 〜 0 - 0 2 、  V 0 .0 0 5 to 0-0 2,
T i 0 . 0 0 5 0 0 2 % B • 0 . 0 0 0 5 〜 0 . 0 0 3 % T i 0. 0 0 5 0 0 2% B • 0. 0 0 0 5 to 0. 0 0 3%
の少な < とも 1種以上を化学成分として含有し、 かつ、 C e q 力 S 0 . 2 0 %以下であることを特徴とする請求の範囲 1 に記載 の線状加熱による曲げ加工性に優れた厚鋼板。  The composition is excellent in bending workability by linear heating according to claim 1, characterized in that it contains at least one kind of chemical component as a chemical component and has a C eq force of S 0.20% or less. Thick steel plate.
伹し 、 C e Q = C + S i 2 4 + M n / 6 + ( C u + N i ) / C e Q = C + S i 2 4 + M n / 6 + (C u + N i) /
1 5 + ( C r + M o + V) / 5 1 5 + (C r + Mo + V) / 5
ここで、 C、 S i 、 M n、 C u、 N i 、 C r 、 M o 、 V : 各元 素の含有量 (質量%)  Where C, Si, Mn, Cu, Ni, Cr, Mo, V: Content of each element (mass%)
3. さらに、 胃量%で、  3. In addition, stomach volume%
C a : 0 . 0 0 0 3 〜 0 . 0 0 5 % 、  C a: 0.0 0 0 3 to 0.0 0 5%,
M g : 0 . 0 0 0 3 〜 0 . 0 0 5 % 、  M g: 0.00 0 3 to 0.05%,
R E M : 0 0 0 0 3 0 . 0 0 5 %  R E M: 0 0 0 0 3 0. 0 0 5%
の少な < と 1種以上を化学成分として含有することを特徴と する請求の範囲 1又は 2に記載の線状加熱による曲げ加工性に優れ た厚鋼板。  3. A thick steel plate excellent in bending workability by linear heating according to claim 1 or 2, characterized by containing <1 and at least one kind as a chemical component.
4 . 請求の範囲 1 〜 3のいずれかに記載の化学成分を有する鋼片 を、 1 0 0 0 〜 1 3 0 0 °Cに加熱し、 A r 3変態点以上のオーステ ナイ 卜単相域で累積圧下率 3 0 %以上の圧延を行って製品板厚とし た後、 7 5 0 °C以上から板厚方向の断面平均で 5 〜 5 0 °C/ s の冷 却速度で 4 0 (TC未満の温度まで加速冷却を行うことを特徴とする 線状加熱による曲げ加工性に優れた厚鋼板の製造方法。  4. A steel slab having the chemical composition according to any one of claims 1 to 3 is heated to 10 00 to 13 300 ° C, and austenite 卜 single phase region at or above the Ar 3 transformation point After rolling to a cumulative reduction rate of 30% or more to obtain a product sheet thickness, the average cross-section in the sheet thickness direction from 75 ° C or higher to a cooling rate of 5 to 50 ° C / s is 40 ( A method for producing a thick steel plate excellent in bending workability by linear heating, characterized by performing accelerated cooling to a temperature below TC.
5 . 前記加速冷却を終了した後、 3 0 0 °C以上 4 0 0 °C未満で焼 戻しすることを特徴とする請求の範囲 4に記載の線状加熱による曲 げ加工性に優れた厚鋼板の製造方法。  5. Thickness excellent in bending workability by linear heating according to claim 4, wherein after accelerating cooling is finished, tempering is performed at 300 ° C. or more and less than 400 ° C. A method of manufacturing a steel sheet.
PCT/JP2008/073928 2008-01-08 2008-12-25 Steel plate exhibiting excellent bendability by line heating and process for production of the plate WO2009087944A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008800017768A CN101688272B (en) 2008-01-08 2008-12-25 Steel plate exhibiting excellent bendability by line heating and process for production of the plate
KR1020097014126A KR101131209B1 (en) 2008-01-08 2008-12-25 Steel plate excellent in bending workability by linear heating and method of production of same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008001609 2008-01-08
JP2008-001609 2008-01-08
JP2008283290A JP4308312B1 (en) 2008-01-08 2008-11-04 Thick steel plate excellent in bending workability by linear heating and its manufacturing method
JP2008-283290 2008-11-04

Publications (1)

Publication Number Publication Date
WO2009087944A1 true WO2009087944A1 (en) 2009-07-16

Family

ID=40853064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073928 WO2009087944A1 (en) 2008-01-08 2008-12-25 Steel plate exhibiting excellent bendability by line heating and process for production of the plate

Country Status (1)

Country Link
WO (1) WO2009087944A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062000A1 (en) * 2009-11-20 2011-05-26 新日本製鐵株式会社 Thick steel plate for ship hull and process for production thereof
RU2790243C1 (en) * 2022-01-11 2023-02-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Керченский государственный морской технологический университет" Method for deformation and heat treatment of flat steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163213A (en) * 1985-01-08 1986-07-23 Nippon Steel Corp Manufacture of steel plate superior in strength and toughness
JPS62158817A (en) * 1985-12-28 1987-07-14 Nippon Steel Corp Manufacture of thick steel plate having high strength and high toughness
JPS63183123A (en) * 1987-01-26 1988-07-28 Kobe Steel Ltd Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating
JPH07138715A (en) * 1993-09-20 1995-05-30 Nippon Steel Corp Steel plate small in welding strain and good in bending workability by linear heating and its production
JP2000256777A (en) * 1999-03-08 2000-09-19 Nippon Steel Corp High tensile strength steel plate excellent in strength and low temperature toughness
JP2007056348A (en) * 2005-08-26 2007-03-08 Nippon Steel Corp Steel plate easily processed for bending by linear heating, and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163213A (en) * 1985-01-08 1986-07-23 Nippon Steel Corp Manufacture of steel plate superior in strength and toughness
JPS62158817A (en) * 1985-12-28 1987-07-14 Nippon Steel Corp Manufacture of thick steel plate having high strength and high toughness
JPS63183123A (en) * 1987-01-26 1988-07-28 Kobe Steel Ltd Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating
JPH07138715A (en) * 1993-09-20 1995-05-30 Nippon Steel Corp Steel plate small in welding strain and good in bending workability by linear heating and its production
JP2000256777A (en) * 1999-03-08 2000-09-19 Nippon Steel Corp High tensile strength steel plate excellent in strength and low temperature toughness
JP2007056348A (en) * 2005-08-26 2007-03-08 Nippon Steel Corp Steel plate easily processed for bending by linear heating, and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062000A1 (en) * 2009-11-20 2011-05-26 新日本製鐵株式会社 Thick steel plate for ship hull and process for production thereof
JP4772932B2 (en) * 2009-11-20 2011-09-14 新日本製鐵株式会社 Thick steel plate for hull and manufacturing method thereof
CN102482751A (en) * 2009-11-20 2012-05-30 新日本制铁株式会社 Thick steel plate for ship hull and process for production thereof
RU2790243C1 (en) * 2022-01-11 2023-02-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Керченский государственный морской технологический университет" Method for deformation and heat treatment of flat steel

Similar Documents

Publication Publication Date Title
JP5162382B2 (en) Low yield ratio high toughness steel plate
JP5233020B2 (en) Yield strength 800 MPa class low weld crack sensitive steel plate and method for producing the same
JP5598225B2 (en) High-strength hot-rolled steel sheet with excellent bending characteristics and low-temperature toughness and method for producing the same
JP4772932B2 (en) Thick steel plate for hull and manufacturing method thereof
JP5812048B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP2016534230A (en) High hardness hot rolled steel product and method for producing the same
CN1846002A (en) Method of producing austenitic iron/carbon/manganese steel sheets having a high strength and excellent toughness and being suitable for cold forming, and sheets thus produced
WO2007119878A1 (en) High-strength steel plate with superior crack arrestability
KR20190134704A (en) High Mn steel and its manufacturing method
KR20010074896A (en) Cold workable steel bar or wire and process
TWI499676B (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
WO2009125820A1 (en) PROCESS FOR PRODUCTION OF 780MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATES EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
JP5761080B2 (en) High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and fatigue characteristics, and manufacturing method thereof
WO2007055387A1 (en) HIGH-STRENGTH STEEL SHEET OF 450 MPa OR HIGHER YIELD STRESS AND 570 MPa OR HIGHER TENSILE STRENGTH HAVING LOW ACOUSTIC ANISOTROPY AND HIGH WELDABILITY AND PROCESS FOR PRODUCING THE SAME
JP4308312B1 (en) Thick steel plate excellent in bending workability by linear heating and its manufacturing method
JP6771047B2 (en) High-strength steel sheet with low yield ratio characteristics and excellent low-temperature toughness and its manufacturing method
JP2011052271A (en) High-strength cold-rolled steel sheet having excellent workability, and method for producing the same
JP5747249B2 (en) High-strength steel material excellent in strength, ductility and energy absorption capacity and its manufacturing method
JP2010248621A (en) Method for manufacturing high-strength high-toughness steel
JP2008248359A (en) Method for manufacturing on-line cooling type high tension steel sheet
JP5549450B2 (en) High carbon hot-rolled steel sheet excellent in fine blanking property and manufacturing method thereof
JP6718510B2 (en) High-strength structural steel sheet excellent in hot resistance and manufacturing method thereof
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP2007277629A (en) Extra-thick steel material and manufacturing method therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880001776.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020097014126

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08869706

Country of ref document: EP

Kind code of ref document: A1