JPS61163213A - Manufacture of steel plate superior in strength and toughness - Google Patents

Manufacture of steel plate superior in strength and toughness

Info

Publication number
JPS61163213A
JPS61163213A JP133185A JP133185A JPS61163213A JP S61163213 A JPS61163213 A JP S61163213A JP 133185 A JP133185 A JP 133185A JP 133185 A JP133185 A JP 133185A JP S61163213 A JPS61163213 A JP S61163213A
Authority
JP
Japan
Prior art keywords
less
toughness
strength
steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP133185A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoshikawa
宏 吉川
Shiro Imai
今井 嗣郎
Yokimi Kawashima
川島 善樹果
Takaharu Konno
今野 敬治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP133185A priority Critical patent/JPS61163213A/en
Publication of JPS61163213A publication Critical patent/JPS61163213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture the titled steel plate at a low cost using slab having low Mn content without requiring controlled rolling, by adding suitably combined contents of Mn, C, Si into slab being stock, in hot rolling continuously cast slab. CONSTITUTION:By weight, 0.09-0.18% C, 0.05-0.50% Si, 0.2-0.7% Mn, 0.005-0.1% Al, <0.006% N are added, if necessary, one or >=2 kinds among ranges of <0.1% Ti, Zr, Nb, Ta, V, Ca, <1.0% Ni, Cr, Mo, Cu, <0.003% B, further contents of C, Si, Mn are added so that formulas (1), (2) are satisfied. Consequently, slab of the steel is hot rolled at <=1,200 deg.C by >=50% draft, and hot rolling is ended at <=950 deg.C. This is cooled from >=700 deg.C to <=200 deg.C by >=15 deg.C/sec rate, further if necessary, reheated to <=Ac1 point. Hot rolled titled steel plate is manufactured with low Mn content without controlled rolling.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低Mn成分で制御圧延を行なうことなく所望の
強度靭性を有する鋼板の経済性に優れた製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an economically efficient manufacturing method of a steel plate having a low Mn content and desired strength and toughness without performing controlled rolling.

(従来の技術) 従来の水冷型高張力鋼の製造方法の1つに、例えば特公
昭55−30047号公報に示されている様に、0.5
wt%以上のMnを添加した鋼を圧延終了温度を800
℃以下とする熱間圧延後、鋼板を2〜b 却し、優れた強度靭性を得る方法がある。かかる製造方
法では、優れた靭性を得るために0.5wt%以上のM
nを添加することに加え、熱間圧延を比較的低温で行な
う所謂制御圧延が必須要件となっておし、合金コストの
削減上の制約並びに圧延能率の低下等工業的生産上の欠
点を有している。
(Prior Art) One of the conventional methods for manufacturing water-cooled high-strength steel is, for example, as shown in Japanese Patent Publication No. 55-30047.
The rolling end temperature of steel to which wt% or more of Mn is added is 800.
There is a method of obtaining excellent strength and toughness by cooling the steel plate after hot rolling to a temperature of 2 to 10 °C or less. In this manufacturing method, 0.5 wt% or more of M is added in order to obtain excellent toughness.
In addition to adding n, so-called controlled rolling, in which hot rolling is performed at a relatively low temperature, has become an essential requirement, which has disadvantages in industrial production such as restrictions on reducing alloy costs and reduced rolling efficiency. are doing.

また特開昭55−28318号公報に示されている様、
に、0の上限を0.09%とし、Mn量’に0.5%以
上添加した鋼を通常の熱間圧延後500℃以下まで冷却
する溶接性の優れた50キロ級以上の高張力鋼の製造方
法がある。この方法では圧延能率の低下は避けられるも
のの、0.5%以上0.18%以下のMnを添加するこ
とが必須であり、合金コスト削減上の制約を有する欠点
がある。
Also, as shown in Japanese Patent Application Laid-open No. 55-28318,
The upper limit of 0 is 0.09%, and the steel containing 0.5% or more of Mn is cooled to 500°C or less after normal hot rolling to produce high tensile strength steel of 50 kg class or higher with excellent weldability. There is a manufacturing method. Although this method avoids a decrease in rolling efficiency, it is essential to add Mn in an amount of 0.5% or more and 0.18% or less, which has the drawback of limiting alloy cost reduction.

さらに特願昭58−85588号公報では00下限を0
.18wt%とじ、MnをO06wt%未満添加するフ
ェライト、パーライト主体の50 呻f/−扱銅の製造
方法が示されているが、これは? cm 値1、   
1     1     1      1(P Cm
” 0 + a o S ’ +20 Mn+ 200
u + e o N’ + 20Or+πMO+10 
V +5 B )を増大させ、溶接硬化性を高めるなど
の欠点を有している。
Furthermore, in Japanese Patent Application No. 58-85588, the lower limit of 00 is set to 0.
.. A method for manufacturing ferrite and pearlite-based copper with 18wt% binding and less than 6wt% of Mn is shown, but what is this? cm value 1,
1 1 1 1 (P Cm
"0 + aoS' +20 Mn+200
u + e o N' + 20Or+πMO+10
It has disadvantages such as increasing V +5 B) and increasing weld hardenability.

また、従来Mn量を0.9%程度以下として非水冷型で
熱間圧延により製造した鋼板では50 kyf/ld級
の強度を得ることは不可能で、かつ靭性レベルもvTr
s二〇℃程度と低い特性しか得られないなどの欠点を有
している。
In addition, it is impossible to obtain a strength of 50 kyf/ld class with conventional steel sheets manufactured by hot rolling in a non-water-cooled type with an Mn content of about 0.9% or less, and the toughness level is also below vTr.
It has the disadvantage that only low characteristics can be obtained at temperatures of about 20°C.

(発明が解決しようとする問題点) 本発明は、従来の水冷型高張力鋼が多量のMnの添加も
しくは制御圧延を組み合せることによってはじめて靭性
の優れた高張力鋼を得るために有する合金コストの圧迫
と生産能率の低下等によって製造コストが増大する等の
経済的に不利な問題点、並びに低Mn系水冷材が高O系
であるために有する溶接硬化性が高く使用上に不安を伴
う等の品。
(Problems to be Solved by the Invention) The present invention solves the alloy cost that conventional water-cooled high-strength steels have in order to obtain high-strength steels with excellent toughness by combining a large amount of Mn addition or controlled rolling. There are economical disadvantages such as increased manufacturing costs due to pressure on production and reduced production efficiency, and the high weld hardening properties of low-Mn based water-cooled materials due to their high O-based content, making them uneasy to use. etc. items.

買上の問題点を併せて解決するもので、 O,Si量の
適切な組み合せによってMniを削減しても優れた強度
靭性並びに溶接性を有する鋼板を製造する方法を提供す
るもので、これによってこの棟用途において経済性に優
れた鋼材の提供を可能にするものである。
This method also solves the purchasing problem, and provides a method for manufacturing steel sheets that have excellent strength, toughness, and weldability even when Mni is reduced by an appropriate combination of O and Si contents. This makes it possible to provide steel materials with excellent economic efficiency for ridge applications.

(問題点を解決するための手段) 本発明は、上記した問題点を解決するために、0 : 
0.09Wt tX超0.18wt%未満、Si:0.
05wt%以上0.50 wt%未満、Mn : 0.
2 wt%以上0.7wt%以下、Al : 0.00
5 wt%以上0.1wt%未満、N : 0.006
 wt%未満を含有し、必要に応じて’rt、 zr、
 Nb、 Ta、 v、 oaを0.1wt%以下、 
Ni、 Cr、 MO,(luを1.0wt%以下、B
を0.003wt%以下の範囲で一種または二種以上加
え、残部re及び不可避的不純物よりなる鋼を連続鋳造
後、1200℃以下の温度で50%以上の圧延を行ない
圧延終了温度を950℃以下にし、鋼板の温度が700
℃以上から15℃/sec以上の冷却速度で200℃以
下まで冷却することを特徴とする強度靭性に優れた鋼板
の製造方法、および、0:0.09wt%超0.18 
wt%未満、S’ : 0.05 wt%以上O05Q
wt′X未満、Mn:0.2WtX以上0.7wt%以
下、Al: 0.005wt%以上0.1wt%未満、
N:0゜006wt%未満を含有し、必要に応じてTi
、 Zr、 Nb、 Ta、 V、 Oa’i0.l 
wt以下、Ni。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides 0:
More than 0.09Wt tX and less than 0.18wt%, Si: 0.
05 wt% or more and less than 0.50 wt%, Mn: 0.
2 wt% or more and 0.7 wt% or less, Al: 0.00
5 wt% or more and less than 0.1 wt%, N: 0.006
Contains less than wt% and optionally 'rt, zr,
Nb, Ta, v, oa 0.1 wt% or less,
Ni, Cr, MO, (lu not more than 1.0 wt%, B
After continuous casting of steel with one or more types added in a range of 0.003 wt% or less and the remainder consisting of re and unavoidable impurities, rolling is performed at a temperature of 50% or more at a temperature of 1200°C or less, and the rolling end temperature is 950°C or less. and the temperature of the steel plate is 700
A method for manufacturing a steel plate with excellent strength and toughness, characterized by cooling from ℃ or higher to 200℃ or lower at a cooling rate of 15℃/sec or higher, and 0:0.09wt% or more than 0.18
Less than wt%, S': 0.05 wt% or more O05Q
Less than wt'X, Mn: 0.2WtX or more and 0.7wt% or less, Al: 0.005wt% or more and less than 0.1wt%,
N: Contains less than 0°006wt%, and Ti as necessary.
, Zr, Nb, Ta, V, Oa'i0. l
Below wt, Ni.

Cr、 MO+ Cuを1.Qwt%以下、Bを0.0
03 wt%以下の範囲で一種または二種以上加え、残
部Fe及び不可避的不純物よりなる鋼を連続鋳造後、1
200℃以下の温度で50%以上の圧延を行ない圧延終
了温度を950℃以下にし、鋼板の温度が700℃以上
から15℃/ sec以上の冷却速度で200℃以下ま
で冷却した後、Ac,点板下に再加熱することを特徴と
する強度靭性に優れた鋼板の製造方法を採用する。前記
各方法において、次の0式及び[2]式を満足する範囲
でO,Si、 Mn  を添加することは好まし匹。
Cr, MO+Cu 1. Qwt% or less, B is 0.0
0.03 After continuous casting of steel consisting of one or more kinds added in a range of 0.03 wt% or less and the balance being Fe and unavoidable impurities, 1.
After rolling 50% or more at a temperature of 200°C or lower to bring the rolling end temperature to 950°C or lower, and cooling the steel plate from 700°C or higher to 200°C or lower at a cooling rate of 15°C/sec or higher, Ac, point A method for manufacturing steel plates with excellent strength and toughness is adopted, which involves reheating the steel plate below the plate. In each of the above methods, it is preferable to add O, Si, and Mn within a range that satisfies the following formulas 0 and [2].

Mn(wt%)≧0.099TS−11.200−2.
731Si−2.379・・・■ Mn(wB、0≧−0.061vTrs+2.870−
7.92Si−0.687・・・■ (ここでTSは引張強度(kyf/mA)、v’l”r
sは破面遷移温度(℃)を表わす。) 本発明方法の構成要件の各限定は次の各理由に基づいて
定めた。
Mn (wt%)≧0.099TS-11.200-2.
731Si-2.379...■ Mn(wB, 0≧-0.061vTrs+2.870-
7.92Si-0.687...■ (Here, TS is tensile strength (kyf/mA), v'l"r
s represents the fracture surface transition temperature (°C). ) Each limitation of the constituent elements of the method of the present invention was determined based on the following reasons.

Cは強度を高めるのに有効な元素であるが、多すぎると
Pcrn値を高め溶接性を損うので上限をo、15wt
%未満に限定した。またCが0.09 wt%以下では
強度が不足するのでCの添加範囲を0.09wt%超0
.18 wt%未満とした。
C is an effective element for increasing strength, but too much C increases the Pcrn value and impairs weldability, so the upper limit is set at 15 wt.
limited to less than %. In addition, if the C content is less than 0.09 wt%, the strength will be insufficient, so the range of C added should be reduced to 0.09 wt% or less.
.. It was set to less than 18 wt%.

3iは脱酸及び地鉄の強化に加え、0.05wt%以上
の添加により靭性の向上に有効であるため下限を0.0
5WtXK限定した。また多すぎると溶接性およびHA
Z部靭性に有害なので上限を0. 5 wt%未満とし
た。
In addition to deoxidizing and strengthening the base steel, 3i is effective in improving toughness by adding 0.05 wt% or more, so the lower limit is set to 0.0.
5WtXK limited. Also, if the amount is too high, weldability and HA
Since it is harmful to the Z part toughness, the upper limit is set to 0. It was set to less than 5 wt%.

Mnは靭性を高めるの随動な元素であるが、多量に使用
すると水冷型高張力鋼の合金削減メリットを減するので
上限を0.7wt%以下とし、またMnが0.2wt%
未満では靭性が劣化したり鋳片の熱間割れが生じたシす
るのでMnの添加範囲を0.2wt%以上0.7wt%
以下とした。
Mn is an element that increases toughness, but if used in large quantities, it reduces the alloy reduction benefits of water-cooled high-strength steel, so the upper limit is set to 0.7 wt% or less, and Mn is 0.2 wt%.
If the Mn content is less than 0.2 wt% or more, the toughness may deteriorate or hot cracking may occur in the slab.
The following was made.

Alは脱酸と細粒化に必要でそのための充分な量として
0.005wt%以上0.1wt%未満に限定した。
Al is necessary for deoxidation and grain refinement, and is limited to 0.005 wt% or more and less than 0.1 wt% as a sufficient amount for this purpose.

Nは溶接性及び雄手部の靭性を良好に保つために0.0
06wt%未満にした。
N is 0.0 to maintain good weldability and toughness of the male part.
0.6 wt% or less.

上記成分範囲の鋼を製造するにあた)、加熱前の鋳片(
以下スラブと称する)の凝固組織並びにAlその他の微
量元素の析出物の粗大化を防止し、スラブ加熱時のオー
ステナイト粒を細かくすることが重要で、連続鋳造工程
を必須要件とした。
When manufacturing steel with the above composition range), cast slabs before heating (
It is important to prevent the solidification structure of the slab (hereinafter referred to as slab) and the coarsening of precipitates of Al and other trace elements, and to make the austenite grains finer during heating of the slab, making a continuous casting process an essential requirement.

スラブの圧延温度はオーステナイト粒の微細化の点から
は低温はど好ましいが、圧延中の温度低下を考慮しであ
る程度高くすることになる。連続鋳造の1ま圧延すると
きも、又スラブを加熱し、所望温度にするときも細粒化
の限界以上の温度で圧延すると本発明で目的とする靭性
が得られないのでスラブの圧延開始温度の上限を120
0℃とした。
The rolling temperature of the slab is preferably low from the point of view of refining austenite grains, but it is set to a certain degree of temperature in consideration of the temperature drop during rolling. When rolling the slab in continuous casting, or when heating the slab to a desired temperature, if the slab is rolled at a temperature higher than the limit for grain refinement, the toughness targeted by the present invention cannot be obtained, so the rolling start temperature of the slab is the upper limit of 120
The temperature was 0°C.

次に、圧延中の圧下率はオーステナイトの細粒化に与え
る影響が大きいので50%以上の全圧下率を規定した。
Next, since the rolling reduction during rolling has a large effect on the grain refinement of austenite, a total rolling reduction of 50% or more was specified.

圧延終了温度は生産性を阻害することなくm性を確保し
得る950℃を上限温度とした。
The upper limit of the rolling end temperature was set at 950° C., which could ensure m properties without impeding productivity.

圧延後冷却開始までの時間は可能な限シ短時間が好まし
く、圧延後長時間放置すると結晶粒の粗大化や温度ムラ
が生じ、更には温度が下がるとフェライト変態が始るの
で、最大10分以内で700℃以上から冷却を開始する
必要がある。
It is preferable that the time after rolling until the start of cooling is as short as possible. Leaving it for a long time after rolling will cause coarsening of crystal grains and temperature unevenness, and furthermore, if the temperature drops, ferrite transformation will start, so it should be kept for a maximum of 10 minutes. It is necessary to start cooling from 700°C or higher.

冷却時の冷却速度は鋼の強度向上及び靭性向上に有効な
15℃/sec以上とした。また冷却の完了する温度、
すなわち冷却停止温度は低いほど冷却効果が大きく、前
記成分範囲においてフェライトベイナイト組織を形成す
るのに必要な上限として200℃以下に限定した。
The cooling rate during cooling was set to 15° C./sec or more, which is effective for improving the strength and toughness of steel. Also, the temperature at which cooling is completed,
That is, the lower the cooling stop temperature, the greater the cooling effect, and the upper limit required to form a ferrite bainite structure in the above component range was limited to 200° C. or less.

本発明は上記の諸元の数値制限に加え、さらにTi、 
Zl’、 Nb、 Ta、 V、  Oaを0. l 
、wt%以下、Ni。
In addition to the numerical limitations of the above-mentioned specifications, the present invention further includes Ti,
Zl', Nb, Ta, V, Oa at 0. l
, wt% or less, Ni.

Cr、 Mo、 Cu f 1.Owt%以下、Bを0
.003 wt%以下の範囲で一種または二種以上添加
した鋼の場合にはより一層強度靭性の優れた5 0 k
f/−扱銅の製造が可能で、さらに200℃以下に冷却
後、Ac1点以下に再加熱処理するときにはより一層機
械的性質の優れた厚鋼板が得られる。
Cr, Mo, Cu f 1. Owt% or less, B is 0
.. In the case of steel in which one or more types are added in the range of 003 wt% or less, 50K has even better strength and toughness.
It is possible to produce f/- treated copper, and when it is further cooled to 200° C. or lower and then reheated to a temperature of Ac1 or lower, a thick steel plate with even better mechanical properties can be obtained.

(作 用) 従来、低炭素低合金成分の厚鋼板の強度靭性を向上させ
るためには水冷型、非水冷型の如何を問わず約0.7w
t%以上のMnの添加が有効とされ、かつ制御圧延が必
須とさnている。本発明は、本発明者等がかかるMnに
よる靭性改善の効果を見面し、Mnを低くしてもSlを
0.05 wt%〜0. 5 wt%と適量添加すると
圧延後の制御冷却によって圧延能率を低下させる制御圧
延を用いることなく強度靭性の優れた厚鋼板を製造出来
ることを見い出したことに基づいてなされたものである
。つまシ本発明は生産性を阻害することなく水冷型高張
力鋼の特徴であるMn元素の削減をSiを0.05〜0
.5wt%確保することで可能とし、強度靭性のみなら
ず溶接性の優れた鋼材の経済的な製造方法を提供するも
のであり、特に従来靭性の劣化を招くとされていた粗大
な上部ベイナイトと類似したベイナイト組織を呈してい
るにもかかわらずSiの適量添加によって靭性の悪化を
招かない組織、つまり低Mn系のフェライト9ベイナイ
ト組織とするのである。以下にその点を中心に詳細する
(Function) Conventionally, in order to improve the strength and toughness of thick steel plates with low carbon and low alloy components, it has been necessary to use approximately 0.7W regardless of water-cooled or non-water-cooled
Addition of t% or more of Mn is said to be effective, and controlled rolling is essential. In the present invention, the present inventors have considered the effect of Mn on improving toughness, and have determined that even if Mn is lowered, Sl can be increased from 0.05 wt% to 0.05 wt%. This was based on the discovery that adding an appropriate amount of 5 wt% makes it possible to produce thick steel plates with excellent strength and toughness without using controlled rolling, which reduces rolling efficiency due to controlled cooling after rolling. Tsumashi: The present invention reduces the Mn element, which is a feature of water-cooled high-strength steel, without impeding productivity by reducing Si to 0.05 to 0.
.. 5wt%, and provides an economical manufacturing method for steel materials with excellent strength and toughness as well as weldability, especially similar to coarse upper bainite, which was conventionally thought to cause deterioration of toughness. Despite exhibiting a bainite structure, the addition of an appropriate amount of Si creates a structure that does not cause deterioration in toughness, that is, a low-Mn ferrite-9 bainite structure. This point will be discussed in detail below.

第1〜6図は本発明者等が上記した検討のために行った
実験の結果を示す。
1 to 6 show the results of experiments conducted by the present inventors for the above study.

第1図、第2図はS’ f 0.25 wt%、Mnを
0.6wt%含む鋼においてC景を0.09.0.13
.及び[2]、17 wt%の3水準とし、スラブを1
050℃に加熱後、熱間圧延を行ない板厚301mとし
た後、冷却速度15℃/secで200℃以下まで冷却
した鋼板の強度(TS)、靭性(vTrs)を示す。第
1図から明らかな様に強度(TS)はO量と共に増加す
る。
Figures 1 and 2 show C-shape of 0.09.0.13 in steel containing S' f 0.25 wt% and Mn 0.6 wt%.
.. and [2], with three levels of 17 wt%, and a slab of 1
The strength (TS) and toughness (vTrs) of a steel plate heated to 050°C, hot rolled to a thickness of 301 m, and then cooled to 200°C or less at a cooling rate of 15°C/sec are shown. As is clear from FIG. 1, the strength (TS) increases with the amount of O.

また、第2図から明らかな様に靭性(vTrs)はやや
劣化する。
Furthermore, as is clear from FIG. 2, the toughness (vTrs) deteriorates somewhat.

第3図、第4図は0を0.15 wt%、  Mnを0
.5W’ X 含す鋼<、bいてSi量を0.01.0
.07.0.25及びC05wt %の4水準とし、前
述のCの影響悄べたのと同様の方法で得た鋼板の強度(
TS )、靭性(vTrS)を示す。第3図から明らか
な様に強度(TS )は5iliと共に増加する。また
第4図から明らかな様に靭性(v’l’rs)も改善さ
れる。
In Figures 3 and 4, 0 is 0.15 wt%, Mn is 0
.. 5W'
.. Strength (
TS), toughness (vTrS). As is clear from FIG. 3, the intensity (TS) increases with 5ili. Furthermore, as is clear from FIG. 4, the toughness (v'l'rs) is also improved.

第5図、第6図はCを0. l 3 wt%、 Siを
0.25wt%含む鋼においてMn量を0.15.0.
35及び0. 7 ’Q wt%の3水準とし、前記2
例の場合と同様な方法において得た鋼板の強度(TS)
、靭性(v’l’rs)を示す。第5図から明らかな様
に強度(TS )はMn量と共に増加する。また第6図
から明らかな様に靭性(vTrs )も改善される。
In Figures 5 and 6, C is 0. L 3 wt%, in steel containing 0.25 wt% Si, the amount of Mn was set to 0.15.0.
35 and 0. 7 'Q wt%, and the above 2
Strength (TS) of steel plate obtained by the same method as in the example case
, indicates toughness (v'l'rs). As is clear from FIG. 5, the strength (TS) increases with the amount of Mn. Furthermore, as is clear from FIG. 6, the toughness (vTrs) is also improved.

上記の結果から明らかな様に、強度(TS )はC15
i、Mnいずれの元素の場合にも添加量の増加に伴ない
上昇し、靭性(vTrs )はSi及びMnの添加によ
り改善され、Cの添加は靭性(vTrs )を劣化させ
る。
As is clear from the above results, the strength (TS) is C15
In the case of both elements i and Mn, the toughness (vTrs) increases as the amount added increases, and the addition of Si and Mn improves the toughness (vTrs), while the addition of C deteriorates the toughness (vTrs).

上記条件で得られる組織は一例を第9図に示す如く比較
的粗いフェライトと上部ベイナイトから成っている。従
来からかかる組織は靭性を劣化させるものとして仰られ
ており、通常は微細なフェライト?パーライト組織、微
細なフェライトへベイナイト組織もしくは下部ベイナイ
ト組織、または焼戻しマルテンサイト組織等が靭性にと
って好ましいとされている。しかるにSiを0.05〜
0.5wt%程度添加すると従来の卸見と異なfi、M
n量が0. 7 wt%程度以下とした低Mn成分にお
いても、組織が前述の如く比較的粗いフェライト・ベイ
ナイト組織であるにも拘らず強度のみか靭性も向上し、
制御圧延を必要としないという新事実が発見された。
The structure obtained under the above conditions consists of relatively coarse ferrite and upper bainite, as shown in FIG. 9, for example. It has been said that such a structure deteriorates toughness, and it is usually fine ferrite. Pearlite structure, fine ferrite to bainite structure or lower bainite structure, tempered martensitic structure, etc. are said to be preferable for toughness. However, Si from 0.05
When adding about 0.5wt%, the fi and M are different from the conventional wholesale.
n amount is 0. Even with a low Mn content of about 7 wt% or less, not only the strength but also the toughness improves, although the structure is a relatively coarse ferrite/bainite structure as described above.
A new fact has been discovered that controlled rolling is not required.

第7図は、上記結果よシ強度(TS )に及ぼすC1、
Si、Mn量の影響の重回帰結果によシ求めた0式つま
90式の原型に基づき推定したTSの値と実測値との相
関を示したもので、第7図は0式からTS  を実用上
の支障がない精度で推定可能であることを示していると
いえる。
Figure 7 shows the effect of C1 on the strength (TS) of the above results.
Figure 7 shows the correlation between the estimated TS value based on the prototype of Equation 0 and Equation 90 obtained from the multiple regression results of the effects of Si and Mn contents, and the actual measured value. This can be said to show that estimation is possible with an accuracy that does not pose any practical problems.

第8図は、同様にv’1’rsに及ぼす。、 Si、 
Mn量の影響の重回帰結果によ)求めた0式つま90式
の原型に基づき推定したvTrSO値と実測値との相関
を示したもので、第8図は0式からvTrsを実用上支
障がない精度で推定可能であることを示しているといえ
る。
FIG. 8 similarly affects v'1'rs. , Si,
Figure 8 shows the correlation between the vTrSO value estimated based on the prototype of Equation 0 and Equation 90 (based on the multiple regression results of the influence of Mn amount) and the actual measured value. It can be said that this shows that it is possible to estimate with an accuracy of 0.

1.1 ’rs=24+113 (0+’;781 +n7Mn
)・・・■V’rrS = −11,2+ 46.80
−129.1’S 1−16.3 Mn 、、、■尚、
前記■、■式は、上記■、■式の各々を、所望強度及び
靭性を得るに必要なMn量を求める式に変換したもので
ある。
1.1 'rs=24+113 (0+';781 +n7Mn
)...■V'rrS = -11,2+ 46.80
-129.1'S 1-16.3 Mn , , ■ In addition,
The above formulas (1) and (2) are obtained by converting each of the above formulas (2) and (2) into formulas for determining the amount of Mn necessary to obtain desired strength and toughness.

(実施例) 表1は、表中の各成分の各鋼を付記した熱延条件及び冷
却条件、つまシスラブ厚180記の連鋳材を1050℃
に加熱後熱間圧延を行ない、圧延終了温度950℃以下
で板厚30■迄圧延し、820℃以上から冷却速度15
℃/ secにて100℃ 以下まで冷却を行ない、そ
の機械的性質として引張試験及び衝撃試験の結果を示し
たものである。
(Example) Table 1 shows the hot rolling conditions and cooling conditions for each steel with each component listed in the table, and continuous cast material with a thickness of 180 degrees Celsius at 1050°C.
After heating, hot rolling is carried out, and the rolling end temperature is 950°C or less, and the plate thickness is 30cm, and the cooling rate is 15cm from 820°C or higher.
It was cooled down to 100°C or less at a rate of 100°C/sec, and the mechanical properties are the results of a tensile test and an impact test.

鋼A−EはSiを0.3wt%程度、Mnを0.65w
(t%程度含む鋼で、C量が0.073〜0.191W
tXに変化したもので、本発明鋼B、0及びDはいずれ
もTSが5okyf/−以上でかつvTrsも一50℃
以下の良好な値を示すのに対し、比較鋼Aは靭性は良好
なものの強度(TS )は50 kgf/−以下の値を
示し、本発明の0添加による強度上昇効果が明らかに認
められる。尚、鋼Eは比較鋼であシながら充分な強度靭
性を有するものの、高Pα(0.23)の成分系である
ことから溶接性を損う欠点を有しておシ、実用上充分な
ものとは言えない。
Steel A-E contains approximately 0.3wt% Si and 0.65w Mn.
(Steel containing about t%, C content is 0.073 to 0.191W
t
In contrast, Comparative Steel A had good toughness but a strength (TS) of 50 kgf/- or less, clearly demonstrating the strength increasing effect of the present invention's zero addition. Although Steel E is a comparative steel and has sufficient strength and toughness, it has the disadvantage of impairing weldability because it has a high Pα (0.23) component system. I can't say it's a thing.

鋼F〜JはCを0.15wt%程度、Mn ′!1l−
0゜65wt%程度含む鋼で、Si量が0.01〜0.
57wt%に変化したもので、本発明鋼G、 H,I 
 はいずれもTSが50に〃−以上でかつvTrsも一
25℃〜−65℃の良好な値を示すのに対し、比較鋼F
はTSが501qf/−以下でまたVT r 13も一
10℃と劣化しておシ、本発明のSiによる強度靭性改
善効果が明らかに認められる。さらに、鋼Jは比較鋼で
あシながら充分な強度靭性を有するものの、溶接性及び
HAZ 部靭性を考慮すると実用上充分なものとは言え
ない。
Steels F to J contain approximately 0.15 wt% of C and Mn'! 1l-
Steel containing approximately 0.65 wt%, with an Si content of 0.01 to 0.
Inventive steel G, H, I
In contrast, the comparative steel F has a TS of 50 or more and vTrs of -25°C to -65°C.
When the TS was 501 qf/- or less, the VT r 13 also deteriorated to -10°C, and the strength and toughness improving effect of the Si of the present invention was clearly recognized. Further, although Steel J is a comparative steel and has sufficient strength and toughness, it cannot be said to be practically sufficient in terms of weldability and HAZ toughness.

鋼に−0はOを0.15 wt%程度、Siを0.25
wt%程度含む成分でMn量が0.15〜0.89 w
t%に変化したもので、本発明鋼り、M、Nはいずれも
TSが50kgf/−以上でvTrsも一40℃以下の
良好な値を示すのに対し、比較鋼には強度(TS)が5
0 kqf/−以下の不充分な値であり、本発明のMn
による強度靭性改善効果が認められる。さらに、鋼Oは
比較鋼ながら充分な強度靭性を有するものの、Mnを多
量に使用すると水冷型高張力鋼の合金削減メリットを減
するので本発明の対象外とした。
-0 for steel is approximately 0.15 wt% O and 0.25 wt% Si.
The amount of Mn is 0.15 to 0.89 w with components containing about wt%
t%, the steels of the present invention, M, and N all show good values of TS of 50 kgf/- or higher and vTrs of -40°C or lower, whereas the comparative steel has a high strength (TS). is 5
This is an insufficient value of 0 kqf/- or less, and the Mn of the present invention
The effect of improving strength and toughness is recognized. Furthermore, although Steel O has sufficient strength and toughness as a comparative steel, the use of a large amount of Mn reduces the alloy reduction benefits of water-cooled high-strength steel, so it was excluded from the scope of the present invention.

表2はCを0゜169 wt%、 f9iを0.15 
wt%、 Mnを0.62 wt%含む鋼に於て、表中
に示す製造条件の影響を検討したもので、その機械的性
質として引張試験及び衝撃試験の結果を示したものであ
る。
Table 2 shows C at 0°169 wt% and f9i at 0.15
The effect of the manufacturing conditions shown in the table was investigated on steel containing 0.62 wt% of Mn, and the results of a tensile test and an impact test are shown as its mechanical properties.

n開昭Gl−163213(8) 鋼Pは圧延開始温度が12000超の比較鋼で、圧延開
始温度が1200℃のものと比較すると靭性lzヘルが
v’I’rsで35℃程度劣り、本発明の圧延開始温度
の確保による靭性改善効果が明らかに認められる。
n Kaisho Gl-163213 (8) Steel P is a comparative steel with a rolling start temperature of over 12,000°C, and when compared with the steel with a rolling start temperature of 1,200°C, the toughness lzher is inferior by about 35°C in terms of v'I'rs, and this steel The effect of improving toughness by ensuring the rolling start temperature of the invention is clearly recognized.

鋼几、Sは圧延終了温度の影響を与だもので、圧延終了
温度が942℃の本発明@Sのv’1”rsが一35℃
であるのに対し、圧延終了温度が976℃の比較鋼尺で
はvTr sが一18℃と劣っており、本発明の圧延終
了温度の確保による靭性改善効果が明らかに認められる
The steel box, S, has an influence on the rolling end temperature, and the v'1"rs of the present invention @S, where the rolling end temperature is 942°C, is -35°C.
On the other hand, the comparison steel strip with a rolling finish temperature of 976°C had an inferior vTr s of 118°C, which clearly shows the toughness improvement effect achieved by securing the rolling finish temperature of the present invention.

鋼Tは冷却開始温度が685℃と低いもので、本発明鋼
Qの冷却開始温度が837℃のものと比較すると強度、
靭性共に劣り、本発明の冷却開始温度の確保が強度靭性
改善に有効なことが明らかである。
Steel T has a low cooling start temperature of 685°C, and when compared with Invention Steel Q, which has a cooling start temperature of 837°C, its strength is lower.
Both toughness and toughness are poor, and it is clear that securing the cooling start temperature of the present invention is effective in improving strength and toughness.

鋼Uは冷却停止温度が350℃と高い場合で、本発明鋼
Qの冷却停止温度が100℃以下のものと比較すると強
度靭性共に劣っており、本発明の冷却停止温度の確保が
強度靭性に有効なことが明らかである。
Steel U has a high cooling stop temperature of 350°C, and is inferior in both strength and toughness when compared to the steel of the present invention, which has a cooling stop temperature of 100°C or lower. It is clear that it is effective.

鋼Vは冷却速度が8℃/ seeと遅い場合で、本発明
鋼Qの冷却速度15℃/secと比較すると強度靭性共
に劣ってかっ、本発明の冷却速度の確保が強度靭性に有
効なことが明らかである。
Steel V has a slow cooling rate of 8°C/sec, and is inferior in strength and toughness when compared to the cooling rate of Inventive Steel Q of 15°C/sec, indicating that securing the cooling rate of the present invention is effective for improving strength and toughness. is clear.

(発明の効果) 以上説明した様に、本発明は81を0.05 wt %
以上o、5owt%未満添加することによって、Mn添
加蓄を0.2〜0. 7 wt%とし、ながらTS 5
0呻f/−以上でvTrs −25℃〜−65℃の高強
度高靭性でかつ溶接性(C優れた鋼材を生産性が低下す
る制御圧延を用いることなく製造可能としたものであっ
て、これによシこの種用途分野に品質の優れた安価な鋼
材の供給を可能とする等、産業上、工業上にもたらす効
果は大きい。
(Effect of the invention) As explained above, the present invention provides 0.05 wt% of 81.
By adding less than 5wt% of Mn, the amount of Mn added can be increased by 0.2 to 0. 7 wt%, while TS 5
A steel material with high strength, high toughness, and excellent weldability (C) of vTrs -25°C to -65°C at 0 o f / - or more can be manufactured without using controlled rolling that reduces productivity, This has great industrial effects, such as making it possible to supply high-quality and inexpensive steel materials to this type of application field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は強度に、第2図は靭性に及ぼす0の影響を示す
グラフ、第3図1l−1:強度に、第4図は靭性に及ぼ
すSlの影響を示すグラフ、第5図は強度に、第6図は
靭性に及ぼすMnの影響を示すグラフ、第7図は0式に
よるTSの推定値と実測値の関係を示すグラフ、第8図
は0式によるvTr sの推定値と実測値の関係を示す
グラフ、第9図は本発明鋼の顕微鏡組織写真である。 代理人 弁理士 秋 沢 政 光 他2名 C(wt’1) −A′1図グ虹度lay灸ぼ′すCtn B皐5乙(w
t%) −A′3図強度t;及ば゛す5Lの影響C(wt’l) りr2 [Zl  htl−i tJ+rすC(7) 
影’4”力・4図芋刃、f生1ち攻ば゛す5−影VTS
 Jf! 5tII (K3/mm’)Mrr (wt
’/、)
Figure 1 is a graph showing the influence of 0 on strength, Figure 2 is a graph showing the influence of 0 on toughness, Figure 3 is a graph showing the influence of 0 on toughness, Figure 3 is a graph showing the influence of Sl on strength, Figure 5 is strength. Fig. 6 is a graph showing the influence of Mn on toughness, Fig. 7 is a graph showing the relationship between the estimated value of TS by Equation 0 and the actual measured value, and Fig. 8 is the graph showing the estimated value of vTr s by Equation 0 and the actual measurement. A graph showing the relationship between the values, and FIG. 9 is a photograph of the microstructure of the steel of the present invention. Agent Patent Attorney Masamitsu Aki Sawa and 2 others C(wt'1) -A'1
t%) -A'3 Figure intensity t; influence of 5L C(wt'l) r2 [Zl htl-i tJ+rsC(7)
Kage '4' power, 4-figure potato blade, f raw 1chi attack 5-Kage VTS
Jf! 5tII (K3/mm') Mrr (wt
'/,)

Claims (4)

【特許請求の範囲】[Claims] (1)C:0.09wt%超0.18wt%未満、Si
:0.05wt%以上0.50wt%未満、Mn:0.
2wt%以上0.7wt%以下、Al:0.005wt
%以上0.1wt%未満、N:0.006wt%未満 を含有し、必要に応じてTi、Zr、Nb、Ta、V、
Caを0.1wt%以下、Ni、Cr、Mo、Cuを1
.0wt%以下、Bを0.003wt%以下の範囲で一
種または二種以上加え、残部Fe及び不可避的不純物よ
りなる鋼を連続鋳造後、1200℃以下の温度で50%
以上の圧延を行ない圧延終了温度を950℃以下にし、
鋼板の温度が700℃以上から15℃/sec以上の冷
却速度で200℃以下まで冷却することを特徴とする強
度靭性に優れた鋼板の製造方法。
(1) C: more than 0.09wt% and less than 0.18wt%, Si
:0.05wt% or more and less than 0.50wt%, Mn:0.
2wt% or more and 0.7wt% or less, Al: 0.005wt
% or more and less than 0.1 wt%, N: less than 0.006 wt%, and optionally contains Ti, Zr, Nb, Ta, V,
Ca: 0.1 wt% or less, Ni, Cr, Mo, Cu: 1
.. 0 wt% or less, one or more types of B are added in the range of 0.003 wt% or less, and the balance is Fe and unavoidable impurities.
Perform the above rolling to reduce the rolling end temperature to 950°C or less,
A method for producing a steel plate with excellent strength and toughness, characterized in that the temperature of the steel plate is cooled from 700°C or higher to 200°C or lower at a cooling rate of 15°C/sec or higher.
(2)次の[1]式及び[2]式を満足する範囲で、C
、Si、Mnを添加する特許請求の範囲第1項に記載の
強度靭性に優れた鋼板の製造方法。 Mn(wt%)≧0.099TS−11.20C−2.
731Si−2.379・・・[1] Mn(wt%)≧−0.061vTrs+2.87C−
7.92Si−0.687・・・[2] ここでTSは引張強度(kg^f/mm^2)、vTr
sは破面遷移温度(℃)を表わす。
(2) Within the range that satisfies the following formulas [1] and [2], C
, Si, and Mn are added. 1. The method for producing a steel plate with excellent strength and toughness according to claim 1. Mn (wt%)≧0.099TS-11.20C-2.
731Si-2.379...[1] Mn (wt%)≧-0.061vTrs+2.87C-
7.92Si-0.687...[2] Here, TS is tensile strength (kg^f/mm^2), vTr
s represents the fracture surface transition temperature (°C).
(3)C:0.09wt%超0.18wt%未満、Si
:0.05wt%以上0.50wt%未満、Mn:0.
2wt%以上0.7wt%以下、Al:0.005wt
%以上0.1wt%未満、N:0.006wt%未満 を含有し、必要に応じてTi、Zr、Nb、Ta、V、
Caを0.1wt%以下、Ni、Cr、Mo、Cuを1
.0wt%以下、Bを0.003wt%以下の範囲で一
種または二種以上加え、残部Fe及び不可避的不純物よ
りなる鋼を連続鋳造後、1200℃以下の温度で50%
以上の圧延を行ない圧延終了温度を950℃以下にし、
鋼板の温度が700℃以上から15℃/sec以上の冷
却速度で200℃以下まで冷却した後、Ac_1点以下
に再加熱することを特徴とする強度靭性に優れた鋼板の
製造方法。
(3) C: more than 0.09wt% and less than 0.18wt%, Si
:0.05wt% or more and less than 0.50wt%, Mn:0.
2wt% or more and 0.7wt% or less, Al: 0.005wt
% or more and less than 0.1 wt%, N: less than 0.006 wt%, and optionally contains Ti, Zr, Nb, Ta, V,
Ca: 0.1 wt% or less, Ni, Cr, Mo, Cu: 1
.. 0 wt% or less, one or more types of B are added in the range of 0.003 wt% or less, and the balance is Fe and unavoidable impurities.
Perform the above rolling to reduce the rolling end temperature to 950°C or less,
A method for manufacturing a steel plate with excellent strength and toughness, characterized in that the temperature of the steel plate is cooled from 700°C or higher to 200°C or lower at a cooling rate of 15°C/sec or higher, and then reheated to Ac_1 point or lower.
(4)次の[1]式及び[2]式を満足する範囲でC、
Si、Mnを添加する特許請求の範囲第3項に記載の強
度靭性に優れた鋼板の製造方法。 Mn(wt%)≧0.099TS−11.20C−2.
731Si−2.379・・・[1] Mn(wt%)≧−0.061vTrs+2.87C−
7.92Si−0.687・・・[2] ここでTSは引張強度(kg^f/mm^2)、vTr
sは破面遷移温度(℃)を表わす。
(4) C within the range that satisfies the following formulas [1] and [2],
The method for producing a steel plate with excellent strength and toughness according to claim 3, wherein Si and Mn are added. Mn (wt%)≧0.099TS-11.20C-2.
731Si-2.379...[1] Mn (wt%)≧-0.061vTrs+2.87C-
7.92Si-0.687...[2] Here, TS is tensile strength (kg^f/mm^2), vTr
s represents the fracture surface transition temperature (°C).
JP133185A 1985-01-08 1985-01-08 Manufacture of steel plate superior in strength and toughness Pending JPS61163213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP133185A JPS61163213A (en) 1985-01-08 1985-01-08 Manufacture of steel plate superior in strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP133185A JPS61163213A (en) 1985-01-08 1985-01-08 Manufacture of steel plate superior in strength and toughness

Publications (1)

Publication Number Publication Date
JPS61163213A true JPS61163213A (en) 1986-07-23

Family

ID=11498514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP133185A Pending JPS61163213A (en) 1985-01-08 1985-01-08 Manufacture of steel plate superior in strength and toughness

Country Status (1)

Country Link
JP (1) JPS61163213A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036322A (en) * 1989-06-02 1991-01-11 Nippon Steel Corp Production of low yield ratio steel products for building having excellent fire resistivity and steel material for building formed by using these steel products
WO2009087944A1 (en) * 2008-01-08 2009-07-16 Nippon Steel Corporation Steel plate exhibiting excellent bendability by line heating and process for production of the plate
CN102482751A (en) * 2009-11-20 2012-05-30 新日本制铁株式会社 Thick steel plate for ship hull and process for production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036322A (en) * 1989-06-02 1991-01-11 Nippon Steel Corp Production of low yield ratio steel products for building having excellent fire resistivity and steel material for building formed by using these steel products
JPH0579744B2 (en) * 1989-06-02 1993-11-04 Nippon Steel Corp
WO2009087944A1 (en) * 2008-01-08 2009-07-16 Nippon Steel Corporation Steel plate exhibiting excellent bendability by line heating and process for production of the plate
CN102482751A (en) * 2009-11-20 2012-05-30 新日本制铁株式会社 Thick steel plate for ship hull and process for production thereof

Similar Documents

Publication Publication Date Title
EP1777315B1 (en) Steel for welded structure excellent in low temperature toughness of heat affected zone of welded part, and method for production thereof
JP5950045B2 (en) Steel sheet and manufacturing method thereof
JP4644076B2 (en) High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
JP2017504722A (en) Steel material for super high strength welded structure excellent in toughness of weld heat affected zone and its manufacturing method
JPS601929B2 (en) Manufacturing method of strong steel
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP5842574B2 (en) Manufacturing method of steel for large heat input welding
JP4878219B2 (en) Steel sheet with excellent HAZ toughness and small reduction in strength due to heat treatment after welding
JP4514150B2 (en) High strength steel plate and manufacturing method thereof
KR101505279B1 (en) Hot-rolled steel sheet and method of manufacturing the same
JPS61163213A (en) Manufacture of steel plate superior in strength and toughness
JPH08143954A (en) Production of steel plate excellent in weld crack resistance and having 780n/square millimeter class tensile strength
JPH1030122A (en) Production of hot rolled steel strip with high strength and high toughness
JP2556411B2 (en) Method for producing high-strength hot-rolled steel sheet with good workability and weldability
JPH11302781A (en) Thin hot rolled steel sheet excellent in wear resistance and bendability and its production
JP2020164950A (en) Clad steel plate and method of producing the same
KR101344556B1 (en) High strength thick steel and method of manufacturing the thick steel
CN114341386B (en) Steel material excellent in strength and low-temperature impact toughness and method for producing same
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JPS63121618A (en) Manufacture of hot rolled nb added steel plate having high ductility and toughness
JP3815229B2 (en) Method for producing martensitic stainless steel strip and steel pipe
JP2003166033A (en) Thick steel plate with excellent toughness in welded heat affected zone
JPH10273721A (en) Production of thick tapered steel plate
JPH07109546A (en) Steel for medium permeability steel used for reinforcing bar and its production
JP3475987B2 (en) Manufacturing method of high toughness hot rolled steel strip with excellent homogeneity and fatigue properties