JP4265583B2 - Cold-rolled steel sheet having excellent toughness after quenching and method for producing the same - Google Patents

Cold-rolled steel sheet having excellent toughness after quenching and method for producing the same Download PDF

Info

Publication number
JP4265583B2
JP4265583B2 JP2005233095A JP2005233095A JP4265583B2 JP 4265583 B2 JP4265583 B2 JP 4265583B2 JP 2005233095 A JP2005233095 A JP 2005233095A JP 2005233095 A JP2005233095 A JP 2005233095A JP 4265583 B2 JP4265583 B2 JP 4265583B2
Authority
JP
Japan
Prior art keywords
cold
quenching
less
toughness
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005233095A
Other languages
Japanese (ja)
Other versions
JP2005350776A (en
Inventor
毅 藤田
英幸 鶴丸
展之 中村
俊明 占部
克俊 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005233095A priority Critical patent/JP4265583B2/en
Publication of JP2005350776A publication Critical patent/JP2005350776A/en
Application granted granted Critical
Publication of JP4265583B2 publication Critical patent/JP4265583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車の構造部品等に使用される薄鋼板およびその製造方法に関する。   The present invention relates to a thin steel plate used for a structural part of an automobile and a manufacturing method thereof.

現在、ドアインパクトビームやセンターピラー等の自動車構造部品として、軽量かつ高耐久性の観点から980MPa以上の高強度の鋼板が使用されている。しかし、これらの部品は成形性が厳しいため、上記高強度の鋼板を使用した場合、割れや形状不良の問題が多く、また、素材コストも高い。   Currently, high-strength steel sheets of 980 MPa or more are used as automotive structural parts such as door impact beams and center pillars from the viewpoint of light weight and high durability. However, since these parts have severe formability, when the above-described high-strength steel sheet is used, there are many problems of cracks and defective shapes, and the material cost is high.

近年では、このような問題を背景に440MPaレベルの低強度の薄鋼板を用いて成形を行い、高周波焼入れ等により高強度化が図られている。このような例として、非特許文献1では、センターピラーリンフォースメントやフロントクロスメンバー等において、それぞれ、440MPa、390MPaの鋼板を用いて高周波焼入れにより高強度化している。そして、表面が3次元形状をしている部品に対し、高周波焼入れを行うに際して焼入れコイルをロボットに支持させ、これを部品形状に沿って精密に移動させながら焼入れを行う方法を新規に開発している。   In recent years, with such a problem as a background, forming is performed using a thin steel plate having a low strength of 440 MPa, and high strength is achieved by induction hardening or the like. As such an example, in Non-Patent Document 1, the center pillar reinforcement, the front cross member, and the like are strengthened by induction hardening using steel plates of 440 MPa and 390 MPa, respectively. A new method has been developed in which the induction coil is supported by the robot when induction hardening is performed on a part with a three-dimensional surface, and the hardening is performed while precisely moving the coil along the part shape. Yes.

また、後熱処理により高強度化する技術としては、特許文献1において、レーザー照射による部分強化の方法が開示されている。   As a technique for increasing the strength by post-heat treatment, Patent Document 1 discloses a method of partial strengthening by laser irradiation.

特許文献2では、高エネルギー密度ビーム照射により強化する技術が開示されている。
まてりあ、第37巻、第6号(1998) 特開昭60-238424号公報 特開平7-126807号公報
Patent Document 2 discloses a technique for strengthening by high energy density beam irradiation.
Materia, Vol. 37, No. 6 (1998) JP-A-60-238424 JP-A-7-126807

しかしながら、非特許文献1に記載の技術では、焼入れ条件の変動を小さくするため、莫大な設備投資が必要となっている。   However, the technique described in Non-Patent Document 1 requires enormous capital investment in order to reduce the variation in quenching conditions.

特許文献1に記載の技術は、レーザー照射部は極く僅かであり、部材の強度上昇には長時間を要する。また、設備投資も莫大となりコスト増を招く。   In the technique described in Patent Document 1, the laser irradiation portion is very small, and it takes a long time to increase the strength of the member. In addition, the capital investment is enormous, resulting in an increase in cost.

特許文献2に記載の技術は、局所的な強化を行うだけであるため、得られる強度レベルも710MPa程度に過ぎない。また、靭性については言及されてない。   Since the technique described in Patent Document 2 only performs local strengthening, the obtained strength level is only about 710 MPa. Also, no mention is made of toughness.

このように、焼入れ安定性に優れ、かつ焼入れ後の靭性に優れる鋼板は未だ提案されてないのが現状である。   Thus, the present condition is that the steel plate which is excellent in quenching stability and excellent in toughness after quenching has not yet been proposed.

よって、本発明は、焼入れ条件による変動が小さく、焼入れ後の靭性に優れる薄鋼板およびその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a thin steel sheet that is less affected by quenching conditions and has excellent toughness after quenching, and a method for producing the same.

本発明者らが上記目的を達成するために、鋭意研究を重ねた結果、以下のことを見出した。   In order to achieve the above object, the present inventors have conducted intensive research and found the following.

1)加熱温度が1000℃以下、特に950℃以下での焼入れ性に対しては、成分組成が大きく影響し、C、Bの添加が必須である。   1) The component composition greatly affects the hardenability when the heating temperature is 1000 ° C. or less, particularly 950 ° C. or less, and the addition of C and B is essential.

2)焼入れ後の靭性に対しては、析出物の粒径、ミクロ組織の影響が大きく、B含有鋼において、BNの形態が加熱時のオーステナイト粒径を大きく変化させ、BNが微細に析出している場合、加熱中にBNが溶解し著しくオーステナイト粒径が粗大化するためシャルピー衝撃吸収エネルギーが低下する。   2) The toughness after quenching is greatly affected by the grain size and microstructure of the precipitates. In B-containing steel, the BN morphology greatly changes the austenite grain size during heating, and BN precipitates finely. In this case, BN dissolves during heating and the austenite grain size becomes extremely coarse, so that the Charpy impact absorption energy is lowered.

3)ミクロ組織においてオーステナイト粒径が小さい場合、冷却時にフェライトが部分的に生成してしまいフェライトとオーステナイト界面で亀裂が伸展しやすくなり靭性が低下する。   3) When the austenite grain size is small in the microstructure, ferrite is partially formed during cooling, and cracks tend to extend at the interface between ferrite and austenite and the toughness decreases.

4)さらに、高周波加熱後の冷却までの時間の変動といった焼入れ条件の変動に対しては、B/N(14B/10.8N)の影響が大きく、B/N(14B/10.8N)が小さい場合、高周波加熱後の冷却時にフェライトが生成し、オーステナイト粒径が細粒化した場合と同じく靭性が低下する。   4) In addition, when B / N (14B / 10.8N) is large and B / N (14B / 10.8N) is small, the effect of quenching conditions, such as the time until cooling after high-frequency heating, varies. In addition, ferrite is generated during cooling after high-frequency heating, and the toughness decreases as in the case where the austenite grain size is reduced.

本発明はかかる知見に基づきなされたもので、鋼成分としてmass%で、C:0.10〜0.37%、Si:1%以下、Mn:2.5%以下、P:0.1%以下、S:0.03%以下、sol.Al:0.01〜0.1%、N:0.0005〜0.0050%、B:0.0003〜0.0050%を含有し、14B/10.8N:0.50以上を満足し、残部Fe及び不可避不純物からなり、鋼中析出物であるBNの平均粒径が0.14μm以上であり、かつ焼入れ後の旧オーステナイト粒径が2〜25μmであることを特徴とする焼入れ後の靭性に優れる冷延鋼板である。 The present invention has been made on the basis of such knowledge, in mass% as a steel component, C: 0.10-0.37%, Si: 1% or less, Mn: 2.5% or less, P: 0.1% or less, S: 0.03% or less, sol.Al: 0.01 to 0.1%, N: 0.0005 to 0.0050%, B: 0.0003 to 0.0050%, 14B / 10.8N: 0.50 or more satisfied, consisting of remaining Fe and inevitable impurities , with precipitates in steel A cold-rolled steel sheet having excellent toughness after quenching, characterized in that a certain BN has an average grain size of 0.14 μm or more and a prior austenite grain size after quenching of 2 to 25 μm.

この発明において、さらに、鋼成分としてmass%で、Ni、Cr、Moの1種以上を、合計で1%以下含有することを特徴とする焼入れ後の靭性に優れる冷延鋼板とすることもできる。   In this invention, it is also possible to provide a cold-rolled steel sheet having excellent toughness after quenching, characterized by containing at least 1% of Ni, Cr, and Mo in mass% as a steel component in total. .

さらにまた、鋼成分としてmass%で、Nb:0.1%以下を含有することを特徴とする焼入れ後の靭性に優れる冷延鋼板とすることもできる。   Furthermore, it can also be set as the cold-rolled steel plate which is excellent in the toughness after hardening characterized by mass% as a steel component and containing Nb: 0.1% or less.

上記の発明の薄鋼板を得ることができる製造方法の発明は、上記の鋼成分を有する鋼を、巻取温度620℃以上720℃以下で熱間圧延し、酸洗した後、冷圧率30%以上で冷間圧延し、その後、640℃以上Ac1変態点以下で焼鈍することを特徴とする焼入れ後の靭性に優れる冷延鋼板の製造方法である。 The invention of the production method capable of obtaining the thin steel sheet of the above invention is a method of hot rolling the steel having the above steel components at a coiling temperature of 620 ° C. or more and 720 ° C. or less, pickling, and then cold-pressing rate 30 It is a method for producing a cold-rolled steel sheet having excellent toughness after quenching, characterized in that it is cold-rolled at% or higher and then annealed at 640 ° C. or higher and the Ac 1 transformation point or lower.

この製造方法の発明においてさらに、巻取温度620℃以上720℃以下で熱間圧延し、酸洗した後、640℃以上Ac1変態点以下で球状化焼鈍して、冷圧率30%以上で冷間圧延し、その後、600℃以上Ac1変態点以下で焼鈍することを特徴とする焼入れ後の靭性に優れる冷延鋼板の製造方法とすることもできる。 Further, in this invention of the manufacturing method, hot rolling at a coiling temperature of 620 ° C. or more and 720 ° C. or less, pickling, spheroidizing annealing at 640 ° C. or more and Ac 1 transformation point or less, and a cold pressure ratio of 30% or more cold rolled, then, may be a method for manufacturing a cold-rolled steel sheet excellent in toughness after quenching, characterized by annealing below 1 transformation point 600 ° C. or higher Ac.

本発明によれば、低温短時間での焼入れ性に優れ、かつシャルピー衝撃吸収エネルギーが高く、焼入れ条件による変動が小さい焼入れ後の靭性に優れる薄鋼板を得ることができる。さらに、上記薄鋼板が安定して低コストで得られるため、高強度部材として工業的に有用な効果をもたらし、例えば、自動車構造部品として最適である。   ADVANTAGE OF THE INVENTION According to this invention, the thin steel plate which is excellent in the hardenability in low temperature for a short time, has high Charpy impact absorption energy, and is excellent in toughness after quenching with a small fluctuation | variation by quenching conditions can be obtained. Furthermore, since the thin steel sheet can be obtained stably and at low cost, it provides an industrially useful effect as a high-strength member, and is optimal, for example, as an automobile structural component.

まず、鋼板の鋼成分について限定理由を説明する。   First, the reasons for limitation of the steel components of the steel sheet will be described.

C:0.10〜0.37%
Cは、焼入れ後の強度を得るための重要な元素であり、980MPa以上を得るには少なくとも0.10%以上が必要である。しかし、0.37%を超えて添加すると強度は得られるものの靭性が著しく低下する。従って、本発明においてCの添加範囲は0.10〜0.37%とする。優れた靭性を得るには0.30%以下が好ましい。
C: 0.10-0.37%
C is an important element for obtaining strength after quenching, and at least 0.10% or more is necessary to obtain 980 MPa or more. However, if added over 0.37%, the toughness is remarkably lowered although the strength is obtained. Therefore, in the present invention, the addition range of C is set to 0.10 to 0.37%. In order to obtain excellent toughness, 0.30% or less is preferable.

Si:1%以下
Siは焼入れ性を向上させるとともに固溶強化により強度を上昇させる元素である。しかし、1%を超えて添加すると、熱延板において偏析帯であるバンド組織が著しくなるため靭性が劣化する。従って、本発明においてはSiの添加範囲は1%以下とする。また、優れた靭性を得るには0.5%以下が好ましい。
Si: 1% or less
Si is an element that improves the hardenability and increases the strength by solid solution strengthening. However, if added in excess of 1%, the band structure that is a segregation zone in the hot-rolled sheet becomes significant, and the toughness deteriorates. Therefore, in the present invention, the Si addition range is 1% or less. Moreover, 0.5% or less is preferable for obtaining excellent toughness.

Mn:2.5%以下
Mnは焼入れ性を向上させるとともに固溶強化により強度を上昇させる元素である。しかし、2.5%を超える添加は、偏析帯であるマンガンバンドの生成が顕著となり靭性が劣化する。従って、本発明においてMnの添加範囲は2.5%以下とする。また、優れた靭性を得るには1.5%以下が好ましい。
Mn: 2.5% or less
Mn is an element that improves hardenability and increases strength by solid solution strengthening. However, when the content exceeds 2.5%, the formation of a manganese band, which is a segregation band, becomes remarkable and the toughness deteriorates. Therefore, in the present invention, the Mn addition range is 2.5% or less. Further, 1.5% or less is preferable for obtaining excellent toughness.

P:0.1%以下
Pは焼入れ性を向上させるとともに固溶強化により強度を上昇させる元素である。しかし、Pは粒界に偏析し靭性を低下させる元素でもある。B添加により粒界偏析は抑制されるが、それでもPの0.1%を超える添加は粒界脆化を招き靭性が劣化する。よって、本発明においてはPの添加範囲は0.1%以下とする。また、優れた靭性を得るには0.05%以下が好ましい。
P: 0.1% or less
P is an element that improves hardenability and increases strength by solid solution strengthening. However, P is also an element that segregates at grain boundaries and lowers toughness. Grain boundary segregation is suppressed by addition of B, but addition exceeding 0.1% of P still causes grain boundary embrittlement and deteriorates toughness. Therefore, in the present invention, the addition range of P is 0.1% or less. Moreover, 0.05% or less is preferable for obtaining excellent toughness.

S:0.03%以下
Sは、硫化物を形成し靭性を低下させるため、低減しなければならない元素である。含有量が0.03%を超える場合、靭性が著しく劣化するため、0.03%以下に抑制しなければならない。よって、本発明においてSの添加範囲は0.03%以下とする。なお、優れた靭性を得るには0.02%以下が好ましい。
S: 0.03% or less
S is an element that must be reduced in order to form sulfides and reduce toughness. If the content exceeds 0.03%, the toughness deteriorates remarkably, so it must be suppressed to 0.03% or less. Therefore, in the present invention, the S addition range is 0.03% or less. In order to obtain excellent toughness, 0.02% or less is preferable.

sol.Al:0.01〜0.1%
sol.Alは脱酸剤として用い鋼の清浄度を向上させる元素である。0.01%未満の添加は、清浄度が低下し介在物が増大し、靭性を低下させる。一方、0.1%を越える添加はAlNの形成が顕著となり、焼入れ時のオーステナイトが微細化し冷却時にフェライトが生成してしまい靭性が劣化する。よって、本発明においてsol.Alの添加範囲は0.01〜0.1%とする。なお、優れた靭性を得るには0.03〜0.07%が好ましい。
sol.Al:0.01-0.1%
sol.Al is an element used as a deoxidizer to improve the cleanliness of steel. Addition of less than 0.01% reduces cleanliness, increases inclusions, and decreases toughness. On the other hand, when the content exceeds 0.1%, the formation of AlN becomes remarkable, the austenite at the time of quenching becomes fine, and ferrite is formed at the time of cooling, so that the toughness is deteriorated. Therefore, in the present invention, the addition range of sol.Al is set to 0.01 to 0.1%. In order to obtain excellent toughness, 0.03% to 0.07% is preferable.

N:0.0005〜0.0050%
NはBNを形成し加熱時のオーステナイトの粒成長を抑制し靭性を向上させる重要な元素であり、少なくとも0.0005%以上が必要である。一方、0.0050%を越える添加はBNのみならずAlNの形成も顕著となり、焼入れ時のオーステナイトが微細化し冷却時にフェライトが生成してしまい靭性が劣化する。よって、本発明においてNの添加範囲は0.0005〜0.0050%とする。
N: 0.0005-0.0050%
N is an important element that forms BN, suppresses the grain growth of austenite during heating, and improves toughness, and at least 0.0005% or more is necessary. On the other hand, when the content exceeds 0.0050%, formation of not only BN but also AlN becomes remarkable, austenite at the time of quenching becomes fine, ferrite is formed at the time of cooling, and toughness deteriorates. Therefore, in the present invention, the addition range of N is 0.0005 to 0.0050%.

B:0.0003〜0.0050%
Bは焼入れ性を高めるとともに、BNを形成しオーステナイトの粗大化を抑制し靭性を向上させる重要な元素である。しかし、添加量が0.0003%未満の場合、十分な効果が得られない。一方、0.0050%を超える添加は熱間圧延の負荷が高くなり操業性が低下するととともに、加工性が低下する。よって、本発明においてBの添加範囲は、0.0003〜0.0050%とする。なお、極めて優れた効果を得るには0.0010〜0.0030%が好ましい。
B: 0.0003-0.0050%
B is an important element that enhances hardenability and improves toughness by forming BN and suppressing austenite coarsening. However, when the addition amount is less than 0.0003%, a sufficient effect cannot be obtained. On the other hand, addition over 0.0050% increases the hot rolling load, lowers operability, and lowers workability. Therefore, in the present invention, the addition range of B is 0.0003 to 0.0050%. In addition, 0.0010 to 0.0030% is preferable to obtain an extremely excellent effect.

14B/10.8N:0.50以上
14B/10.8Nは、焼入れ条件の変動(靭性の安定性)に対して大きな影響を及ぼす比率である。そこで、焼入れ後の靭性に及ぼす14B/10.8Nの影響について調査した。
14B / 10.8N: 0.50 or more
14B / 10.8N is a ratio that greatly influences the fluctuation of quenching conditions (stability stability). Therefore, the effect of 14B / 10.8N on the toughness after quenching was investigated.

ベース成分として、C=0.16%、Si=0.01%、Mn=0.75%、P=0.015%、S=0.012%、sol.Al=0.040%とし、N=0.0020〜0.0028%、B=0.0003〜0.0028%、14B/10.8N=0.19〜1.30の化学成分を有する鋼を溶製し、次いで、加熱温度:1200℃、熱延仕上温度:880℃、中間温度:710℃、巻取温度:640℃で熱延し、酸洗後、冷圧率:50%、焼鈍温度:700℃×2minで1.2mmtの冷延板を製造した。次いで、得られたサンプルについて高周波焼入後の靭性を評価した。   As base components, C = 0.16%, Si = 0.01%, Mn = 0.75%, P = 0.015%, S = 0.012%, sol.Al = 0.040%, N = 0.0020-0.0028%, B = 0.0003-0.0028% , 14B / 10.8N = 0.19 to 1.30, and then heat the steel at a heating temperature of 1200 ° C., a hot rolling finishing temperature of 880 ° C., an intermediate temperature of 710 ° C., and a winding temperature of 640 ° C. After rolling and pickling, a cold rolled sheet of 1.2 mmt was manufactured at a cold pressure rate of 50% and an annealing temperature of 700 ° C. × 2 min. Subsequently, the toughness after induction hardening was evaluated about the obtained sample.

高周波焼入れは、平板(幅35mm×長さ300mm)に対し高周波コイルを移動させながら加熱・焼入れを実施した。図1に高周波焼入れの実施態様を示す。この時の加熱温度は、900℃の低温とし、加熱時間は、900℃までの通電時間を4秒とした。   In the induction hardening, heating and hardening were performed while moving the high-frequency coil on a flat plate (width 35 mm x length 300 mm). FIG. 1 shows an embodiment of induction hardening. The heating temperature at this time was a low temperature of 900 ° C., and the heating time was 4 seconds for the energization time up to 900 ° C.

また、冷却開始時間は、通常行われる即冷却とし0.5秒と、焼入れ安定性を評価するために1.5秒、3秒の3パターンを実施した。   In addition, the cooling start time was 0.5 seconds for the immediate cooling that is normally performed, and three patterns of 1.5 seconds and 3 seconds were performed to evaluate the quenching stability.

高周波焼入れ後の評価としては、シャルピー衝撃試験を実施した。シャルピー衝撃試験は、図2に示すような試験片形状にて、試験温度:-50℃、n=3で行った。   As evaluation after induction hardening, the Charpy impact test was implemented. The Charpy impact test was performed with a test piece shape as shown in FIG. 2 at a test temperature of −50 ° C. and n = 3.

得られた結果を図3に示す。図3はシャルピー衝撃吸収エネルギーに及ぼす冷却開始時間と14B/10.8Nの影響を示す図である。図3より、14B/10.8Nが0.50以上で、冷却開始時間が3秒においても安定して高いシャルピー衝撃吸収エネルギーが得られることがわかる。   The obtained results are shown in FIG. FIG. 3 is a diagram showing the influence of the cooling start time and 14B / 10.8N on the Charpy impact absorption energy. From FIG. 3, it is understood that high Charpy impact absorption energy can be obtained stably even when 14B / 10.8N is 0.50 or more and the cooling start time is 3 seconds.

また、14B/10.8Nが0.50未満の場合、焼入れ加熱時の固溶B量が十分確保されず、加熱後の冷却開始時間の遅れるような場合、フェライトが生成し靭性低下を招く。   In addition, when 14B / 10.8N is less than 0.50, a sufficient amount of solute B during quenching heating is not ensured, and when the cooling start time after heating is delayed, ferrite is generated and toughness is reduced.

よって、生産上のバラツキを低減し安定して高い靭性を得るために、14B/10.8Nは0.50以上とする。   Therefore, 14B / 10.8N is set to 0.50 or more in order to reduce the variation in production and stably obtain high toughness.

Ni、Cr、Mo:添加する場合1種以上を合計1%以下
Ni、Cr、Moは焼入れ性向上の元素であり、1種以上を添加しても良い。しかし、過剰な添加はコスト増を招くため、Ni、Cr、Moの1種以上を合計1%以下とする。
Ni, Cr, Mo: 1% or more when added, totaling 1% or less
Ni, Cr and Mo are elements for improving hardenability, and one or more of them may be added. However, excessive addition causes an increase in cost, so at least one of Ni, Cr, and Mo is made 1% or less in total.

なお、本発明において、加熱時のオ−ステナイト粒の粗大化抑制のためにNbを0.1%以下添加しても良い。   In the present invention, 0.1% or less of Nb may be added in order to suppress coarsening of austenite grains during heating.

また、本発明において、残部はFe及び不可避不純物からなる。 In the present invention, the balance consists of Fe and inevitable impurities.

次に、析出物について限定理由を説明する。   Next, the reasons for limiting the precipitate will be described.

BN平均粒径:0.14μm以上
BNは、焼入れ加熱時のオーステナイト粒の粗大化を抑制する析出物である。BN平均粒径が0.14μm未満の場合、900℃以上の加熱時に溶解してしまいオーステナイトの粒成長を抑制することができない。よって、本発明においてBN平均粒径は、0.14μm以上とする。なお、上限は靭性の点から1μm以下が好ましい。
BN average particle size: 0.14 μm or more
BN is a precipitate that suppresses coarsening of austenite grains during quenching heating. If the BN average particle size is less than 0.14 μm, it dissolves when heated at 900 ° C. or higher, and austenite grain growth cannot be suppressed. Therefore, in the present invention, the BN average particle size is 0.14 μm or more. The upper limit is preferably 1 μm or less from the viewpoint of toughness.

次に、ミクロ組織について限定理由を説明する。   Next, the reason for limiting the microstructure will be described.

焼入れ後の旧オーステナイト粒径:2〜25μm
焼入れ後の旧オーステナイト粒径、即ち焼入れ後に測定される変態前の旧オーステナイト粒径は、靭性に大きな影響を及ぼす。旧オーステナイト粒径が2μm未満の場合、加熱後冷却時に一部フェライトが生成しフェライトとオーステナイト界面の応力集中に起因して靭性が低下する。一方、25μmを越えるような粗大粒の場合、粒界脆化が顕著となり従来のJSC980Y(鉄連規格)より靭性が低下する。よって、本発明において焼入れ後の旧オーステナイト粒径は、2〜25μmとする。
Old austenite grain size after quenching: 2-25μm
The prior austenite grain size after quenching, that is, the prior austenite grain size before transformation measured after quenching has a great influence on toughness. When the prior austenite grain size is less than 2 μm, some ferrite is formed during cooling after heating, and the toughness is reduced due to stress concentration at the ferrite-austenite interface. On the other hand, in the case of coarse grains exceeding 25 μm, grain boundary embrittlement becomes prominent and the toughness is lower than that of the conventional JSC980Y (Iron Standard). Therefore, in the present invention, the prior austenite grain size after quenching is 2 to 25 μm.

次に製造方法の限定理由について説明する。   Next, the reason for limiting the manufacturing method will be described.

巻取温度: 620℃以上720℃以下
熱間圧延での巻取温度については、BN形成の観点から620℃以上とする。620℃未満ではBNが微細化し焼入れ加熱時に溶解してしまい、オーステナイトが粗大化し靭性が劣化する。一方、720℃を超えるとパーライトのラメラ間隔が大きくなり、焼入性が低下するとともに、焼入時にセメンタイトが溶け残り靭性が低下する。よって、本発明において、熱間圧延での巻取温度は620℃以上720℃以下とする。なお、巻取温度の上限はスケール生成増大による酸洗性の低下から700℃以下が好ましい。
Winding temperature: 620 ° C or higher and 720 ° C or lower The hot rolling temperature is 620 ° C or higher from the viewpoint of BN formation. Below 620 ° C, BN becomes finer and dissolves during quenching heating, austenite becomes coarse and toughness deteriorates. On the other hand, when the temperature exceeds 720 ° C., the lamella spacing of pearlite increases, hardenability decreases, and cementite remains undissolved during quenching and toughness decreases. Therefore, in this invention, the coiling temperature in hot rolling shall be 620 degreeC or more and 720 degrees C or less. In addition, the upper limit of the coiling temperature is preferably 700 ° C. or less because of a decrease in pickling property due to increased scale formation.

熱延後の球状化焼鈍温度:640℃以上Ac1変態点以下
熱延鋼板を酸洗した後、セメンタイトを球状化し、優れた加工性と焼入性を得るため球状化焼鈍を行うことができる。焼鈍温度が640℃未満の場合、セメンタイトの球状化が不十分となり、効果が得られない。一方、焼鈍温度がAc1変態点を超える場合、部分的にオーステナイト化して冷却中に粗大なパーライトを生成し、加工性が低下するとともに、焼入性も低下する。また、焼入れ時にセメンタイトが溶け残り靭性が低下する。よって、本発明において熱延後に球状化焼鈍を行う場合は、焼鈍温度を640℃以上Ac1変態点以下とする。
Spheroidizing annealing temperature after hot rolling: 640 ° C or higher and Ac 1 transformation point or lower After pickling hot rolled steel sheet, cementite can be spheroidized and spheroidizing annealing can be performed to obtain excellent workability and hardenability . When the annealing temperature is less than 640 ° C., the cementite is insufficiently spheroidized and the effect cannot be obtained. On the other hand, when the annealing temperature exceeds the Ac 1 transformation point, it partially becomes austenite and coarse pearlite is generated during cooling, resulting in a decrease in workability and a decrease in hardenability. In addition, cementite remains undissolved during quenching and the toughness decreases. Therefore, in the present invention, when spheroidizing annealing is performed after hot rolling, the annealing temperature is set to 640 ° C. or more and Ac 1 transformation point or less.

冷間圧延時の圧下率:30%以上
冷間圧延の圧下率(冷圧率)は、30%未満であると焼鈍後に未再結晶部が残るとともに、セメンタイトの球状化が不十分となり、軟質化が得られず加工性が劣化する。よって、冷間圧延の冷圧率は、30%以上とする。冷圧率の上限は、特に規定しないが、圧延機への負荷が大きくならないように、80%以下とするのが好ましい。
Rolling ratio during cold rolling: 30% or more If the rolling reduction ratio (cold rolling ratio) of cold rolling is less than 30%, unrecrystallized parts remain after annealing, and cementite spheroidization becomes insufficient and soft The processability is deteriorated because it cannot be obtained. Therefore, the cold pressure ratio of cold rolling is set to 30% or more. The upper limit of the cold pressure ratio is not particularly defined, but is preferably 80% or less so as not to increase the load on the rolling mill.

冷間圧延後の焼鈍温度:640℃以上Ac1変態点以下
冷間圧延後の焼鈍については、熱延後の球状化焼鈍を省略した場合は、ここで球状化焼鈍を行う。冷間圧延後の球状化焼鈍の焼鈍温度は、前述の熱延後の球状化焼鈍と同様、640℃以上Ac1変態点以下とする。
Annealing temperature after cold rolling: 640 ° C. or more and Ac 1 transformation point or less For annealing after cold rolling, when spheroidizing annealing after hot rolling is omitted, spheroidizing annealing is performed here. The annealing temperature of spheroidizing annealing after cold rolling is set to 640 ° C. or more and Ac 1 transformation point or less, similarly to the spheroidizing annealing after hot rolling described above.

熱延後の球状化焼鈍を行った場合は、ここで再結晶焼鈍を行う。冷間圧延後の再結晶焼鈍の焼鈍温度は、600℃未満では未再結晶部が残り加工性が低下する。一方、焼鈍温度がAc1変態点を超える場合、部分的にオーステナイト化して冷却中に粗大なパーライトを生成し、加工性が低下するとともに、焼入性も低下する。また、焼入れ時にセメンタイトが溶け残り靭性が低下する。よって、本発明において冷間圧延後の再結晶焼鈍を行う場合は、焼鈍温度を600℃以上Ac1変態点以下とする。 When spheroidizing annealing after hot rolling is performed, recrystallization annealing is performed here. If the annealing temperature of recrystallization annealing after cold rolling is less than 600 ° C., unrecrystallized portions remain and the workability deteriorates. On the other hand, when the annealing temperature exceeds the Ac 1 transformation point, it partially becomes austenite and coarse pearlite is generated during cooling, resulting in a decrease in workability and a decrease in hardenability. In addition, cementite remains undissolved during quenching and the toughness decreases. Therefore, in the present invention, when performing recrystallization annealing after cold rolling, the annealing temperature is set to 600 ° C. or more and Ac 1 transformation point or less.

対象とする薄鋼板は、熱延鋼板あるいは冷延鋼板のいずれでも良いが、本発明においては冷延鋼板とする。本発明鋼板を製造する場合、素材鋼は、例えば転炉、電気炉等により溶製される。鋼片の製造は造塊-分塊圧延法、連続鋳造法、薄スラブ鋳造法、ストリップ鋳造法のいずれでも構わない。   The target thin steel sheet may be either a hot-rolled steel sheet or a cold-rolled steel sheet, but in the present invention, it is a cold-rolled steel sheet. When manufacturing this invention steel plate, raw material steel is smelted by a converter, an electric furnace, etc., for example. The slab can be manufactured by any of the ingot-bundling rolling method, continuous casting method, thin slab casting method, and strip casting method.

熱延プロセスはスラブ加熱後圧延する方法、連続鋳造後短時間の加熱処理を施してあるいは前記加熱工程を省略して直ちに圧延する方法のいずれでもよいが、優れた表面品質を付与するためには、一次スケールのみならず熱間圧延時に生成する二次スケールについても十分に除去するのが好ましい。なお、熱間圧延中においては、バーヒーターにより加熱を行ってもよい。   The hot rolling process may be either a method of rolling after slab heating, a method of performing a heat treatment for a short time after continuous casting, or a method of rolling immediately after omitting the heating step, but in order to give excellent surface quality It is preferable to sufficiently remove not only the primary scale but also the secondary scale generated during hot rolling. In addition, you may heat with a bar heater during hot rolling.

仕上圧延終了温度は、組織の均一性からAr3変態点以上とすることが好ましい。また、組織の均一化を目的として、仕上圧延後1秒以内に200℃/秒以上の急速冷却を行ってもよい。 The finish rolling finish temperature is preferably not less than the Ar 3 transformation point in view of the uniformity of the structure. For the purpose of homogenizing the structure, rapid cooling at 200 ° C./second or more may be performed within 1 second after finish rolling.

冷間圧延時の圧延率(冷圧率)は80%以下とするのが好ましい。冷圧率が80%を超えるような高い冷圧率の場合、圧延負荷が高くなりすぎるため生産性を低下させる。このときの冷間圧延はタンデム圧延、リバース圧延のいずれでも良い。   The rolling rate (cold pressure rate) during cold rolling is preferably 80% or less. In the case of a high cold pressure ratio that exceeds 80%, the rolling load becomes too high and the productivity is lowered. The cold rolling at this time may be either tandem rolling or reverse rolling.

冷間圧延後に行われる再結晶焼鈍における焼鈍温度は、再結晶の観点から少なくとも650℃以上が必要で、850℃を超えるとパーライトが粗大化し加工性が低下する。そのため、焼鈍温度は650〜850℃とするのが好ましい。なお、再結晶焼鈍を行う方法としては、連続焼鈍、箱焼鈍、または溶融亜鉛めっき処理に先行する連続熱処理のいずれでもよい。   The annealing temperature in the recrystallization annealing performed after the cold rolling needs to be at least 650 ° C. from the viewpoint of recrystallization, and if it exceeds 850 ° C., the pearlite becomes coarse and the workability deteriorates. Therefore, the annealing temperature is preferably 650 to 850 ° C. In addition, as a method of performing recrystallization annealing, any of continuous annealing, box annealing, or continuous heat treatment preceding hot dip galvanizing treatment may be used.

本発明に係る薄鋼板は、適宜、表面処理(化成処理、溶融亜鉛めっき、合金化溶融亜鉛めっき)が施されて使用されてもよい。   The thin steel sheet according to the present invention may be used after appropriately being subjected to a surface treatment (chemical conversion treatment, hot dip galvanizing, galvannealed alloying).

[参考例1]
表1に示す鋼番1から12の化学成分組成を有する鋼を溶製し、次いで表2に示す製造条件に従って熱間圧延あるいは熱間圧延-焼鈍を行い、2.4mmtの熱延板を製造した。このようにして製造した熱延板について引張試験(JIS 5号、C方向(圧延方向に垂直))、BNの平均粒径測定および高周波焼入れ特性を調査した。
[Reference Example 1]
Steel having chemical composition of steel Nos. 1 to 12 shown in Table 1 was melted, and then hot rolling or hot rolling-annealing was performed according to the manufacturing conditions shown in Table 2 to produce 2.4 mmt hot rolled sheets. . The hot-rolled sheets thus manufactured were examined for tensile tests (JIS No. 5, C direction (perpendicular to the rolling direction)), average particle size measurement of BN, and induction hardening characteristics.

BN平均粒径は、レプリカ法によりBNを抽出し、透過電子顕微鏡により析出物を撮影し、サンプル数:500個をマイクロアナライザーを用いて測定した。   The average particle size of BN was measured by extracting BN by the replica method, photographing the precipitate with a transmission electron microscope, and using a microanalyzer for 500 samples.

高周波焼入れは、平板(幅35mm×長さ300mm)に対し高周波コイルを移動させながら加熱・焼入れを実施した。図1に高周波焼入れの実施態様を示す。この時の加熱温度は900℃の低温とし、加熱時間は900℃までの通電時間を4秒とした。   In the induction hardening, heating and hardening were performed while moving the high-frequency coil on a flat plate (width 35 mm x length 300 mm). FIG. 1 shows an embodiment of induction hardening. The heating temperature at this time was a low temperature of 900 ° C., and the heating time was 4 seconds for the energization time up to 900 ° C.

冷却開始時間は、通常行われる即冷却として0.5秒と、焼入れ安定性を評価するために3秒の2パターンを実施した。   The cooling start time was 0.5 seconds for the immediate cooling that is normally performed, and two patterns of 3 seconds for evaluating the quenching stability.

高周波焼入れ後の評価として、引張試験(JIS 5号、C方向(圧延方向に垂直))、シャルピー衝撃試験、旧オーステナイト粒径測定を実施した。シャルピー衝撃試験は、図2に示すような試験片形状にて、試験温度:-50℃、n=3で行った。また、熱延板の板厚を1.2mmtに研削加工し、後述の冷延板と同一形状とした。なお、シャルピー衝撃試験値は、同一条件で試験を実施したJSC980Yレベルの0.4kgm以上を合格とした。   As evaluation after induction hardening, a tensile test (JIS No. 5, C direction (perpendicular to the rolling direction)), Charpy impact test, and prior austenite particle size measurement were performed. The Charpy impact test was performed with a test piece shape as shown in FIG. 2 at a test temperature of −50 ° C. and n = 3. In addition, the hot-rolled sheet was ground to a thickness of 1.2 mm to have the same shape as a cold-rolled sheet described later. In addition, the Charpy impact test value passed 0.4 kgm or more of the JSC980Y level tested on the same conditions.

旧オーステナイト粒径は、サンプルの板厚断面を研磨・腐食後、光学顕微鏡にてミクロ組織を撮影し、マイクロアナライザーを用いて平均粒径を測定した。   For the prior austenite particle size, after polishing and corroding the plate thickness section of the sample, the microstructure was photographed with an optical microscope, and the average particle size was measured using a microanalyzer.

上記より得られた結果を表3に示す。   The results obtained from the above are shown in Table 3.

表3より、成分、14B/10.8N、BN平均粒径、旧オーステナイト粒径が本範囲内であるNo.A、B、C、E、Gは、焼入れ後の特性として980MPa以上の強度を有し、焼入れ後の冷却開始時間にかかわらず安定してJSC980Y以上(0.4kgm以上)のシャルピー衝撃吸収エネルギーが得られ、優れた靭性が得られていることが明らかとなった。   From Table 3, No. A, B, C, E, and G, whose components, 14B / 10.8N, BN average particle size, and prior austenite particle size are within this range, have a strength of 980 MPa or more as characteristics after quenching. It was revealed that Charpy impact absorption energy of JSC980Y or more (0.4 kgm or more) was stably obtained regardless of the cooling start time after quenching, and excellent toughness was obtained.

特に、C、Si、Mn、P、Sが低く、sol.Alが0.03〜0.07%、Bが0.0010〜0.0030%であるNo.A、Bはシャルピー衝撃吸収エネルギーが0.5kgm以上であり、極めて優れた靭性が得られていることがわかった。   In particular, No. A and B with low C, Si, Mn, P, S, sol.Al 0.03-0.07%, B 0.0010-0.0030%, Charpy impact absorption energy is 0.5kgm or more It was found that toughness was obtained.

一方、Cが本発明範囲外で低いNo.Hは強度が低く、Cが本発明範囲外で高いNo.Iと、Si、Pが本発明範囲外で高いNo.Jと、Mn、Sが本発明範囲外で高いNo.Kは、シャルピー衝撃吸収エネルギーが低く、靭性が劣化している。   On the other hand, No.H having a low C outside the scope of the present invention has low strength, No.I having a high C outside the scope of the present invention, and No.J having a high Si and P outside the scope of the present invention, Mn, and S. No. K high outside the range of the present invention has low Charpy impact absorption energy and deteriorates toughness.

sol.Al、Nが本発明範囲外で高いNo.Lは、旧オーステナイト粒径が本発明範囲外で小さく、冷却開始時間が遅い場合、シャルピー衝撃吸収エネルギーが低く、靭性が劣化している。   No. L having a high sol.Al, N outside the scope of the present invention has a low prior austenite grain size outside the scope of the present invention, and when the cooling start time is slow, the Charpy impact absorption energy is low and the toughness is deteriorated.

Bが本発明範囲外で低く、かつ、BN平均粒径が本発明範囲外であるNo.Mは、旧オーステナイト粒径が本発明範囲外で粗大化し、靭性が劣化している。14B/10.8Nが本発明範囲外で小さいNo.Nは、冷却開始時間が遅い場合、シャルピー衝撃吸収エネルギーが低く、靭性が劣化している。   In No. M, in which B is outside the scope of the present invention and the BN average particle diameter is outside the scope of the present invention, the prior austenite grain size is coarsened outside the scope of the present invention, and the toughness is deteriorated. No. N having a small 14B / 10.8N outside the scope of the present invention has low Charpy impact absorption energy and deteriorates toughness when the cooling start time is slow.

巻取温度が本発明範囲外で高いNo.Dは、焼入時にセメンタイトが溶け残り、シャルピー衝撃吸収エネルギーが低く靭性が劣化している。焼鈍温度が本発明範囲外で高いNo.Fは、部分的にパーライトが生成し、シャルピー衝撃吸収エネルギーが低く靭性が劣化している。   In No. D, which has a high coiling temperature outside the range of the present invention, cementite remains undissolved during quenching, has low Charpy impact absorption energy, and deteriorates toughness. In No. F, which has a high annealing temperature outside the range of the present invention, pearlite is partially generated, and Charpy impact absorption energy is low and toughness is deteriorated.

Figure 0004265583
Figure 0004265583

Figure 0004265583
Figure 0004265583

Figure 0004265583
Figure 0004265583

表1に示す鋼番1から12の化学成分組成を有する鋼を溶製し、次いで表4に示す製造条件に従って熱間圧延-冷間圧延-焼鈍を行い、1.2mmtの冷延板を製造した。   Steel having chemical composition of steel Nos. 1 to 12 shown in Table 1 was melted, and then hot-rolled-cold-rolled-annealed according to the manufacturing conditions shown in Table 4 to produce 1.2 mmt cold-rolled sheets .

このようにして製造した冷延板について、参考例1と同様に、引張試験、BN平均粒径測定、および高周波焼入れ特性を調査した。結果を表5に示す。   With respect to the cold-rolled sheet thus produced, the tensile test, the BN average particle diameter measurement, and the induction hardening characteristics were investigated in the same manner as in Reference Example 1. The results are shown in Table 5.

表5より、熱延鋼板の場合と同様に、成分、14B/10.8N、BN平均粒径、旧オーステナイト粒径が本範囲内であるNo.a、c、d、e、hは、焼入れ後の特性として980MPa以上の強度を有し、焼入れ後の冷却開始時間にかかわらず安定してJSC980Y以上(0.4kgm以上)のシャルピー衝撃吸収エネルギーが得られ、優れた靭性が得られていることが明らかとなった。   From Table 5, as in the case of hot-rolled steel sheets, No. a, c, d, e, and h whose components, 14B / 10.8N, BN average particle size, and prior austenite particle size are within this range are after quenching It has a strength of 980MPa or more as a characteristic of the above, and it is clear that Charpy impact absorption energy of JSC980Y or more (0.4kgm or more) is stably obtained regardless of the cooling start time after quenching, and excellent toughness is obtained. It became.

特に、C、Si、Mn、P、Sが低く、sol.Alが0.03〜0.07%、Bが0.0010〜0.0030%であるNo.a、c、dはシャルピー衝撃吸収エネルギーが0.5kgm以上であり、極めて優れた靭性が得られていることがわかった。   In particular, C, Si, Mn, P, S is low, sol.Al is 0.03-0.07%, B is 0.0010-0.0030% No. a, c, d has Charpy impact absorption energy of 0.5 kgm or more, It was found that extremely excellent toughness was obtained.

一方、BN平均粒径が本発明範囲外で小さいNo.bは旧オーステナイト粒径が小さく、冷却開始時間が遅い場合、シャルピー衝撃吸収エネルギーが低く靭性が劣化している。   On the other hand, No. b having a small BN average particle size outside the range of the present invention has a small prior austenite particle size and a low cooling start time, resulting in low Charpy impact absorption energy and poor toughness.

また、Cが本発明範囲外で低いNo.iは強度が低く、Cが本発明範囲外で高いNo.jと、Si、Pが本発明範囲外で高いNo.kと、Mn、Sが本発明範囲外で高いNo.lは、シャルピー衝撃吸収エネルギーが低く、靭性が劣化している。   No.i having a low C outside the scope of the present invention is low in strength, No.j having a high C outside the scope of the present invention, No.k having a high Si and P outside the scope of the present invention, Mn, S No. 1 high outside the scope of the present invention has low Charpy impact absorption energy and deteriorates toughness.

sol.Al、Nが本発明範囲外で高いNo.mは、旧オーステナイト粒径が本発明範囲外で小さく、冷却開始時間が遅い場合、シャルピー衝撃吸収エネルギーが低く、靭性が劣化している。   No.m having a high sol.Al, N outside the scope of the present invention has a low prior austenite grain size outside the scope of the present invention, and when the cooling start time is slow, the Charpy impact absorption energy is low and the toughness is deteriorated.

Bが本発明範囲外で低く、かつ、BN平均粒径が本発明範囲外であるNo.nは、旧オーステナイト粒径が本発明範囲外で粗大化し、靭性が劣化している。14B/10.8Nが本発明範囲外で小さいNo.oは、冷却開始時間が遅い場合、シャルピー衝撃吸収エネルギーが低く靭性が劣化している。   No. n having a low B outside the scope of the present invention and a BN average grain size outside the scope of the present invention has a prior austenite grain size that is outside the scope of the present invention and has deteriorated toughness. No.o having a small 14B / 10.8N outside the scope of the present invention has low Charpy impact absorption energy and deteriorates toughness when the cooling start time is slow.

巻取温度が本発明範囲外で高いNo.fは、焼入時にセメンタイトが溶け残り、シャルピー衝撃吸収エネルギーが低く靭性が劣化している。冷間圧延後の焼鈍温度が本発明範囲外で高いNo.gは、部分的にパーライトが生成し、シャルピー衝撃吸収エネルギーが低く靭性が劣化している。   No. f having a high coiling temperature outside the range of the present invention has cementite remaining undissolved during quenching, has low Charpy impact absorption energy, and deteriorates toughness. No.g having a high annealing temperature after cold rolling outside the scope of the present invention partially generates pearlite, has low Charpy impact absorption energy, and deteriorates toughness.

Figure 0004265583
Figure 0004265583

Figure 0004265583
Figure 0004265583

高周波焼入れの一実施態様を示す図である。It is a figure which shows one embodiment of induction hardening. シャルピー衝撃試験における試験片形状の一施態様を示す図である。It is a figure which shows one embodiment of the test piece shape in a Charpy impact test. シャルピー衝撃吸収エネルギーに及ぼす冷却開始時間と14B/10.8Nの影響を示す図である。It is a figure which shows the influence of the cooling start time and 14B / 10.8N which give to the Charpy impact absorption energy.

Claims (5)

鋼成分としてmass%で、C:0.10〜0.37%、Si:1%以下、Mn:2.5%以下、P:0.1%以下、S:0.03%以下、sol.Al:0.01〜0.1%、N:0.0005〜0.0050%、B:0.0003〜0.0050%を含有し、14B/10.8N:0.50以上を満足し、残部Fe及び不可避不純物からなり、鋼中析出物であるBNの平均粒径が0.14μm以上であり、かつ焼入れ後の旧オーステナイト粒径が2〜25μmであることを特徴とする焼入れ後の靭性に優れる冷延鋼板。 The steel component is mass%, C: 0.10 to 0.37%, Si: 1% or less, Mn: 2.5% or less, P: 0.1% or less, S: 0.03% or less, sol.Al: 0.01 to 0.1%, N: 0.0005 Containing ~ 0.0050%, B: 0.0003 ~ 0.0050%, satisfying 14B / 10.8N: 0.50 or more, balance Fe and inevitable impurities, and the average particle size of BN as precipitates in steel is 0.14 μm or more A cold-rolled steel sheet having excellent toughness after quenching, wherein the prior austenite grain size after quenching is 2 to 25 μm. 鋼成分としてさらに、mass%で、Ni、Cr、Moの1種以上を、合計で1%以下含有することを特徴とする請求項1記載の焼入れ後の靭性に優れる冷延鋼板。   2. The cold-rolled steel sheet having excellent toughness after quenching according to claim 1, further comprising at least 1% of Ni, Cr, and Mo in mass% as a steel component. 鋼成分としてさらに、mass%で、Nb:0.1%以下を含有することを特徴とする請求項1または請求項2記載の焼入れ後の靭性に優れる冷延鋼板。   3. The cold-rolled steel sheet having excellent toughness after quenching according to claim 1, wherein the steel component further contains mass% and Nb: 0.1% or less. 請求項1ないし請求項3のいずれかに記載の鋼成分を有する鋼を、巻取温度620℃以上720℃以下で熱間圧延し、酸洗した後、冷圧率30%以上で冷間圧延し、その後、640℃以上Ac1変態点以下で焼鈍することにより、鋼中析出物であるBNの平均粒径が0.14μm以上であり、かつ焼入れ後の旧オーステナイト粒径が2〜25μmである冷延鋼板を得ることを特徴とする焼入れ後の靭性に優れる冷延鋼板の製造方法。 The steel having the steel component according to any one of claims 1 to 3, is hot-rolled at a coiling temperature of 620 ° C or higher and 720 ° C or lower, pickled, and then cold-rolled at a cold pressure ratio of 30% or higher. Then, by annealing at 640 ° C. or more and below the Ac 1 transformation point, the average particle size of BN as a precipitate in the steel is 0.14 μm or more, and the prior austenite particle size after quenching is 2 to 25 μm. A method for producing a cold-rolled steel sheet having excellent toughness after quenching, characterized by obtaining a cold-rolled steel sheet. 請求項1ないし請求項3のいずれかに記載の鋼成分を有する鋼を、巻取温度620℃以上720℃以下で熱間圧延し、酸洗した後、640℃以上Ac1変態点以下で球状化焼鈍して、冷圧率30%以上で冷間圧延し、その後、600℃以上Ac1変態点以下で焼鈍することにより、鋼中析出物であるBNの平均粒径が0.14μm以上であり、かつ焼入れ後の旧オーステナイト粒径が2〜25μmである冷延鋼板を得ることを特徴とする焼入れ後の靭性に優れる冷延鋼板の製造方法。 The steel having the steel component according to any one of claims 1 to 3, after hot rolling at a coiling temperature of 620 ° C or more and 720 ° C or less, pickling, and then spherical at 640 ° C or more and Ac 1 transformation point or less By annealing and cold rolling at a cold pressure ratio of 30% or higher, and then annealing at 600 ° C or higher and the Ac 1 transformation point or lower, the average grain size of BN, which is a precipitate in steel, is 0.14 μm or higher. And the manufacturing method of the cold-rolled steel plate excellent in the toughness after quenching characterized by obtaining the cold-rolled steel plate whose prior austenite grain size after quenching is 2-25 micrometers.
JP2005233095A 2001-02-07 2005-08-11 Cold-rolled steel sheet having excellent toughness after quenching and method for producing the same Expired - Fee Related JP4265583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233095A JP4265583B2 (en) 2001-02-07 2005-08-11 Cold-rolled steel sheet having excellent toughness after quenching and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001030354 2001-02-07
JP2005233095A JP4265583B2 (en) 2001-02-07 2005-08-11 Cold-rolled steel sheet having excellent toughness after quenching and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001268315A Division JP3952714B2 (en) 2001-02-07 2001-09-05 Hot-rolled steel sheet having excellent toughness after quenching and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005350776A JP2005350776A (en) 2005-12-22
JP4265583B2 true JP4265583B2 (en) 2009-05-20

Family

ID=35585486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233095A Expired - Fee Related JP4265583B2 (en) 2001-02-07 2005-08-11 Cold-rolled steel sheet having excellent toughness after quenching and method for producing the same

Country Status (1)

Country Link
JP (1) JP4265583B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687554B2 (en) * 2006-05-10 2011-05-25 住友金属工業株式会社 Steel plate for quenched member, quenched member and method for producing the same
JP5181619B2 (en) * 2007-10-26 2013-04-10 新日鐵住金株式会社 Hardened steel with excellent machinability and hardenability

Also Published As

Publication number Publication date
JP2005350776A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
KR100513991B1 (en) Method for production of thin steel sheet
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
JP4714574B2 (en) High strength steel plate and manufacturing method thereof
JP4265545B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
WO2015080242A1 (en) Hot-formed steel sheet member, method for producing same, and steel sheet for hot forming
KR102654714B1 (en) High-strength member, method of manufacturing high-strength member, and method of manufacturing steel plate for high-strength member
JP4291860B2 (en) High-strength steel sheet and manufacturing method thereof
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
KR20210091755A (en) Hot rolled steel strip and manufacturing method thereof
MX2011002559A (en) High-strength steel plate and manufacturing method thereof.
KR20200101980A (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet and their manufacturing method
JP4983082B2 (en) High-strength steel and manufacturing method thereof
JP2000080440A (en) High strength cold rolled steel sheet and its manufacture
JP4123748B2 (en) Thin steel plate with excellent impact properties after quenching and method for producing the same
CN115461482B (en) Steel sheet, component, and method for manufacturing same
JP4306497B2 (en) High-strength cold-rolled steel sheet with excellent workability and post-coating corrosion resistance and method for producing the same
JP4265582B2 (en) Hot-rolled steel sheet with excellent impact properties after quenching and method for producing the same
KR102209555B1 (en) Hot rolled and annealed steel sheet having low strength-deviation, formed member, and manufacturing method of therefor
JP4519373B2 (en) High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
JP4265583B2 (en) Cold-rolled steel sheet having excellent toughness after quenching and method for producing the same
JP3952714B2 (en) Hot-rolled steel sheet having excellent toughness after quenching and manufacturing method thereof
KR102451005B1 (en) High-strength steel sheet having excellent thermal stability and method for mnufacturing thereof
JP2005171319A (en) Method for manufacturing high-strength cold-rolled steel sheet having superior ductility and formability for extension flange
JP6032173B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet having a maximum tensile strength of 980 MPa and excellent delayed fracture resistance
JP4781563B2 (en) High strength hot-rolled steel sheet with excellent bake hardenability and method for producing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Ref document number: 4265583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees