JP4123748B2 - Thin steel plate with excellent impact properties after quenching and method for producing the same - Google Patents

Thin steel plate with excellent impact properties after quenching and method for producing the same Download PDF

Info

Publication number
JP4123748B2
JP4123748B2 JP2001268316A JP2001268316A JP4123748B2 JP 4123748 B2 JP4123748 B2 JP 4123748B2 JP 2001268316 A JP2001268316 A JP 2001268316A JP 2001268316 A JP2001268316 A JP 2001268316A JP 4123748 B2 JP4123748 B2 JP 4123748B2
Authority
JP
Japan
Prior art keywords
less
quenching
steel
present
impact characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001268316A
Other languages
Japanese (ja)
Other versions
JP2002309345A (en
Inventor
毅 藤田
賢一 三塚
展之 中村
俊明 占部
克俊 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001268316A priority Critical patent/JP4123748B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to EP02711309A priority patent/EP1359235A4/en
Priority to PCT/JP2002/000915 priority patent/WO2002063058A1/en
Priority to CNB028001982A priority patent/CN1232672C/en
Priority to KR10-2002-7012212A priority patent/KR100513991B1/en
Priority to TW091102062A priority patent/TWI241349B/en
Priority to US10/255,349 priority patent/US6767417B2/en
Publication of JP2002309345A publication Critical patent/JP2002309345A/en
Application granted granted Critical
Publication of JP4123748B2 publication Critical patent/JP4123748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車の構造部品等に使用される薄鋼板およびその製造方法に関する。
【0002】
【従来の技術】
現在、ドアインパクトビームやセンターピラー等の自動車構造部品として、軽量かつ高耐久性の観点から980MPa以上の高強度の鋼板が使用されている。しかし、これらの部品は成形性が厳しいため、上記高強度の鋼板を使用した場合、割れや形状不良の問題が多く、また、素材コストも高い。
【0003】
近年では、このような問題を背景に440MPaレベルの低強度の薄鋼板を用いて成形を行い、高周波焼入れ等により高強度化が図られている。このような例として、「まてりあ、第37巻、第6号(1998)」では、センターピラーリンフォースメントやフロントクロスメンバー等において、それぞれ、440MPa、390MPaの鋼板を用いて高周波焼入れにより高強度化している。そして、表面が3次元形状をしている部品に対し、高周波焼入れを行うに際して焼入れコイルをロボットに支持させ、これを部品形状に沿って精密に移動させながら焼入れを行う方法を新規に開発している。
【0004】
また、後熱処理により高強度化する技術としては、特開昭60−238424号公報において、レーザー照射による部分強化の方法が開示されている。
【0005】
特開平7−126807号公報では、高エネルギー密度ビーム照射により強化する技術が開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、「まてりあ、第37巻、第6号(1998)」に記載の技術は、焼入れ条件の変動を小さくするため、莫大な設備投資が必要となっている。
【0007】
特開昭60−238424号公報に記載の技術は、レーザ照射部は極く僅かであり、部材の強度上昇には長時間を要する。また、設備投資も莫大となりコスト増を招く。
【0008】
特開平7−126807号公報に記載の技術は、局所的な強化を行うだけであるため、得られる強度レベルも710MPa程度に過ぎない。
【0009】
このように、焼入れ安定性に優れ、かつ焼入れ後の衝撃特性に優れる鋼板は未だ提案されてないのが現状である。
【0010】
よって、本発明は、焼入れ条件による変動が小さく、焼入れ後の衝撃特性に優れる薄鋼板およびその製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らが上記目的を達成するために、鋭意研究を重ねた結果、以下のことを見出した。
【0012】
▲1▼加熱温度が1000℃以下、特に950℃以下での焼入れ性に対しては、成分組成が大きく影響し、C、Bの添加が必須である。
【0013】
▲2▼焼入れ後の衝撃特性に対しては、析出物の粒径、ミクロ組織の影響が大きく、Ti含有鋼において、TiNの形態が加熱時のオーステナイト粒径を大きく変化させ、TiNが微細に析出している場合、著しくオーステナイト粒径が微細化するため、冷却時にフェライトが部分的に生成してしまいフェライトとオーステナイト界面で亀裂が伸展しやすくなり衝撃特性が低下する。
【0014】
▲3▼さらに、高周波加熱後の冷却までの時間の変動といった焼入れ条件の変動に対しては、B−(10.8/14)N*の影響が大きく、B−(10.8/14)N*が小さい場合、高周波加熱後の冷却時にフェライトが生成し、オーステナイト粒径が細粒化した場合と同じくフェライトとオーステナイトとの界面で亀裂が伸展しやすくなり衝撃特性が低下する。
【0015】
本発明はかかる知見に基づきなされたもので、鋼成分としてmass%で、C:0.10〜0.37%、Si:1%以下、Mn:2.5%以下、P:0.1%以下、S:0.03%以下、sol.Al:0.01〜0.1%、N:0.0005〜0.0050%、Ti:0.005〜0.05%、B:0.0003〜0.0050%を含有し、あるいはさらにNi、Cr、Moの1種以上を、合計で1%以下含有し、B−(10.8/14)N*≧0.0005%、N*=N−(14/48)Ti、但し、右辺≦0の場合、N*=0を満足する鋼成分を有する鋼を、巻取温度720℃以下で熱間圧延し、酸洗した後、640℃以上Ac 1 変態点以下で球状化焼鈍することにより、鋼中析出物であるTiNの平均粒径が0.06〜0.30μmであり、かつ焼入れ後の旧オーステナイト粒径が2〜25μmである薄鋼板を得ることを特徴とする焼入れ後の衝撃特性に優れる薄鋼板の製造方法である。
【0016】
この発明において、さらに、鋼成分としてmass%で、C:0.10〜0.37%、Si:1%以下、Mn:2.5%以下、P:0.1%以下、S:0.03%以下、sol.Al:0.01〜0.1%、N:0.0005〜0.0050%、Ti:0.005〜0.05%、B:0.0003〜0.0050%を含有し、あるいはさらにNi、Cr、Moの1種以上を、合計で1%以下含有し、B−(10.8/14)N * ≧0.0005%、N * =N−(14/48)Ti、但し、右辺≦0の場合、N * =0を満足する鋼成分を有する鋼を、巻取温度720℃以下で熱間圧延し、酸洗した後、640℃以上Ac 1 変態点以下で球状化焼鈍して、冷延率30%以上で冷間圧延し、その後、600℃以上Ac 1 変態点以下で焼鈍することにより、鋼中析出物であるTiNの平均粒径が0.06〜0.30μmであり、かつ焼入れ後の旧オーステナイト粒径が2〜25μmである薄鋼板を得ることを特徴とする焼入れ後の衝撃特性に優れる薄鋼板の製造方法とすることもできる。
【0020】
まず、鋼板の鋼成分について限定理由を説明する。
【0021】
C: 0.10〜0.37%
Cは、焼入れ後の強度を得るための重要な元素であり、980MPa以上を得るには少なくとも0.10%以上が必要である。しかし、0.37%を超えて添加すると強度は得られるものの衝撃特性が著しく低下する。従って、本発明においてCの添加範囲は0.10%〜0.37%とする。優れた衝撃特性を得るには0.30%以下が好ましい。
【0022】
Si: 1%以下
Siは焼入れ性を向上させるとともに固溶強化により強度を上昇させる元素である。しかし、1%を超えて添加すると、熱延板において偏析帯であるバンド組織が著しくなるため衝撃特性が劣化する。従って、本発明においてはSiの添加範囲は1%以下とする。また、優れた衝撃特性を得るには0.5%以下が好ましい。また、優れた衝撃特性を得るには0.5%以下が好ましい。
【0023】
Mn: 2.5%以下
Mnは焼入れ性を向上させるとともに固溶強化により強度を上昇させる元素である。しかし、2.5%を超える添加は、偏析帯であるマンガンバンドの生成が顕著となり衝撃特性が劣化する。従って、本発明においてMnの添加範囲は2.5%以下とする。また、優れた衝撃特性を得るには1.5%以下が好ましい。
【0024】
P: 0.1%以下
Pは焼入れ性を向上させるとともに固溶強化により強度を上昇させる元素である。しかし、Pは粒界に偏析し衝撃特性を低下させる元素でもある。B添加により粒界偏析は抑制されるが、それでもPの0.1%を超える添加は粒界脆化を招き衝撃特性が劣化する。よって、本発明においてはPの添加範囲は0.1%以下とする。また、優れた衝撃特性を得るには0.05%以下が好ましい。
【0025】
S: 0.03%以下
Sは、硫化物を形成し衝撃特性を低下させるため、低減しなければならない元素である。含有量が0.03%を超える場合、衝撃特性が著しく劣化するため、0.03%以下に抑制しなければならない。よって、本発明においてSの添加範囲は0.03%以下とする。なお、優れた衝撃特性を得るには0.02%以下が好ましい。
【0026】
sol.Al: 0.01〜0.1%
sol.Alは脱酸剤として用い鋼の清浄度を向上させる元素である。0.01%未満の添加は、清浄度が低下し介在物が増大し、衝撃特性を低下させる。一方、0.1%を越える添加はAlNの形成が顕著となり、焼入れ時のオーステナイトが微細化し冷却時にフェライトが生成してしまい衝撃特性が劣化する。よって、本発明においてsol.Alの添加範囲は0.01%〜0.1%とする。なお、優れた衝撃特性を得るには0.03%〜0.07%が好ましい。
【0027】
N: 0.0005〜0.0050%
NはTiNを形成し加熱時のオーステナイトの粒成長を抑制し衝撃特性を向上させる重要な元素であり、少なくとも0.0005%以上が必要である。一方、0.0050%を越える添加はTiNのみならずBN、AlNの形成も顕著となり、焼入れ時のオーステナイトが微細化し冷却時にフェライトが生成してしまい衝撃特性が劣化する。よって、本発明においてNの添加範囲は0.0005%〜0.0050%とする。
【0028】
Ti: 0.005〜0.05%
Tiは、NとTiNを形成し、オーステナイト粒の粗大化を抑制し、衝撃特性を向上させる重要な元素である。しかし、添加量が0.005%未満の場合、十分な効果が得られず、0.05%を超える過剰な添加はTiCの形成が顕著となり、低温短時間焼入れ時のオーステナイト粒成長を著しく抑制し、加熱後の冷却時にフェライトが生成し衝撃特性が劣化する。よって、本発明においてTiの添加範囲は、0.005%〜0.05%とする。
【0029】
B: 0.0003〜0.0050%
Bは焼入れ性を高めるとともに、加熱後冷却時のフェライト生成を抑制し衝撃特性を向上させる重要な元素である。しかし、添加量が0.0003%未満の場合、十分な効果が得られない。一方、0.0050%を超える添加は熱間圧延の負荷が高くなり操業性が低下するととともに、加工性が低下する。よって、本発明においてBの添加範囲は、0.0003%〜0.0050%とする。なお、極めて優れた効果を得るには0.0005%〜0.0020%が好ましい。
【0030】
有効B: B−(10.8/14)N*≧0.0005%
有効Bは、焼入れ条件の変動に対して大きな影響を及ぼす比率である。
【0031】
有効B=B−(10.8/14)N*
ここで、N*=N−(14/48)Ti (但し、右辺≦0の場合、N*=0)
そこで、焼入れ後の衝撃特性に及ぼす有効B:B−(10.8/14)N*の影響について調査した。
【0032】
ベース成分として、C:0.15%、Si:0.02%、Mn:0.90%、P:0.020%、S:0.015%、sol.Al:0.035%、Ti:0.01%とし、N:0.0018〜0.0030%、B:0〜0.0031%、B−(10.8/14)N*:0〜0.0017%の化学成分を有する鋼を溶製し、次いで、加熱温度:1200℃、熱延仕上温度:870℃、中間温度:700℃、巻取温度:620℃で熱延し、酸洗後、冷圧率:50%、焼鈍温度:720℃で1.2mmtの冷延板を製造した。
【0033】
次いで、得られたサンプルについて高周波焼入後の衝撃特性を評価した。
高周波焼入れは、平板(幅35mm×長さ300mm)に対し高周波コイルを移動させながら加熱・焼入れを実施した。図1に高周波焼入れの実施態様を示す。この時の加熱温度は、900℃の低温とし、加熱時間は、900℃までの通電時間を4秒とした。
【0034】
冷却開始時間は、通常行われる即冷却として0.5秒と、焼入れ安定性を評価するために1.5秒、3秒の3パターンを実施した。
【0035】
高周波焼入れ後の評価としては、シャルピー衝撃試験を実施した。シャルピー衝撃試験は、図2に示すような試験片形状にて、試験温度:−50℃、n=3で行った。
【0036】
得られた結果を図3に示す。図3より、B−(10.8/14)N*が0.0005%以上で冷却開始時間が3秒においても安定して高いシャルピー衝撃吸収エネルギーが得られることがわかる。
【0037】
また、B−(10.8/14)N*が0.0005%未満の場合、焼入れ加熱時の固溶B量が十分確保されず、加熱後の冷却開始時間の遅れるような場合、フェライトが生成し衝撃特性の劣化を招く。
【0038】
よって、生産上のバラツキを低減し安定して高い衝撃特性を得るために、本発明において、B−(10.8/14)N*は0.0005%以上とする。ただし、N*=N−(14/48)Tiであり、右辺≦0の場合、N*=0である。
【0039】
Ni、Cr、Mo: 添加する場合1種以上を合計1%以下
Ni、Cr、Moは焼入れ性向上元素であり、1種以上を添加しても良い。しかし、過剰な添加はコスト増を招くため、Ni、Cr、Moの1種以上を合計で1%以下とする。
【0040】
なお、本発明において、加熱時のオ−ステナイト粒の粗大化抑制のためにNbを0.1%以下、Vを0.1%以下添加しても良い。
【0041】
また、本発明において、上記元素以外は実質的にFeであり、本発明の作用効果を無くさない限り、不可避不純物を含有するものが本発明の範囲に含まれ得ることを意味する。
【0042】
次に、析出物について限定理由を説明する。
【0043】
TiN平均粒径: 0.06〜0.30μm
TiNは、焼入れ加熱時のオーステナイト粒の粗大化を抑制する析出物である。TiN平均粒径が0.06μm未満の場合、オーステナイト粒が極めて微細となり、加熱後の冷却時にフェライトが生成し、衝撃特性が劣化する。一方、0.30μmを超える粗大な析出物の場合、オーステナイトの粒成長を抑制することができない。よって、本発明においてTiN平均粒径は、0.06μm〜0.30μmとする。
【0044】
次に、ミクロ組織について限定理由を説明する。
【0045】
焼入れ後の旧オーステナイト粒径: 2〜25μm
焼入れ後の旧オーステナイト粒径、即ち焼入れ後に測定される変態前の旧オーステナイト粒径は、衝撃特性に大きな影響を及ぼす。旧オーステナイト粒径が2μm未満の場合、加熱後冷却時に一部フェライトが生成しフェライトとオーステナイト界面の応力集中に起因して衝撃特性が低下する。一方、25μmを越えるような粗大粒の場合、粒界脆化が顕著となり従来のJSC980Y(鉄連規格)より衝撃特性が低下する。よって、本発明において焼入れ後の旧オーステナイト粒径は、2〜25μmとする。
【0046】
次に製造方法の限定理由について説明する。
【0047】
巻取温度: 720℃以下
熱間圧延での巻取温度については、720℃を超えるとパーライトのラメラ間隔が大きくなり、焼入性が低下するとともに、焼入時にセメンタイトが溶け残り衝撃特性が低下する。よって、本発明において、熱間圧延での巻取温度は720℃以下とする。
【0048】
熱延後の球状化焼鈍温度: 640℃以上Ac1変態点以下
熱延鋼板を酸洗した後、セメンタイトを球状化し、優れた加工性と焼入性を得るため球状化焼鈍を行うことができる。焼鈍温度が640℃未満の場合、セメンタイトの球状化が不十分となり、効果が得られない。一方、焼鈍温度がAc1変態点を超える場合、部分的にオーステナイト化して冷却中に粗大なパーライトを生成し、加工性が低下するとともに、焼入性も低下する。また、焼入れ時にセメンタイトが溶け残り衝撃特性が低下する。よって、本発明において熱延後に球状化焼鈍を行う場合は、焼鈍温度を640℃以上Ac1変態点以下とする。
【0049】
冷間圧延時の圧下率: 30%以上
冷間圧延を行う場合の圧下率(冷圧率)は、30%未満であると焼鈍後に未再結晶部が残るとともに、セメンタイトの球状化が不十分となり、軟質化が得られず加工性が劣化する。よって、冷間圧延を行う場合の冷圧率は、30%以上とする。冷圧率の上限は、特に規定しないが、圧延機への負荷が大きくならないように、80%以下とするのが好ましい。
【0050】
冷間圧延後の焼鈍温度: 640℃以上又は600℃以上Ac1変態点以下
冷間圧延後の焼鈍については、熱延後の球状化焼鈍を省略した場合は、ここで球状化焼鈍を行う。冷間圧延後の球状化焼鈍の焼鈍温度は、前述の熱延後の球状化焼鈍と同様、640℃以上Ac1変態点以下とする。
【0051】
熱延後の球状化焼鈍を行った場合は、ここで再結晶焼鈍を行う。冷間圧延後の再結晶焼鈍の焼鈍温度は、600℃未満では未再結晶部が残り加工性が低下する。一方、焼鈍温度がAc1変態点を超える場合、部分的にオーステナイト化して冷却中に粗大なパーライトを生成し、加工性が低下するとともに、焼入性も低下する。また、焼入れ時にセメンタイトが溶け残り衝撃特性が低下する。よって、本発明において冷間圧延後の再結晶焼鈍を行う場合は、焼鈍温度を600℃以上Ac1変態点以下とする。
【0052】
【発明の実施の形態】
本発明において、対象とする薄鋼板は、熱延鋼板あるいは冷延鋼板のいずれでも良い。本発明鋼板を製造する場合、素材鋼は、例えば転炉、電気炉等により溶製される。鋼片の製造は造塊−分塊圧延法、連続鋳造法、薄スラブ鋳造法、ストリップ鋳造法のいずれでも構わない。
【0053】
熱延プロセスはスラブ加熱後圧延する方法、連続鋳造後短時間の加熱処理を施してあるいは前記加熱工程を省略して直ちに圧延する方法のいずれでもよいが、優れた表面品質を付与するためには、一次スケールのみならず熱間圧延時に生成する二次スケールについても十分に除去するのが好ましい。なお、熱間圧延中においては、バーヒーターにより加熱を行ってもよい。
【0054】
仕上圧延終了温度は、組織の均一性からAr3点以上とすることが好ましい。また、組織の均一化を目的として、仕上圧延後1秒以内に200℃/秒以上の急速冷却を行ってもよい。巻取温度は材質安定性の観点から500℃以上とするのが好ましく、一方、上限はスケール生成増大による酸洗性の低下から700℃以下が好ましい。
【0055】
冷延鋼板を本発明の薄鋼板として用いる場合、冷間圧延時の圧延率(冷圧率)は80%以下とするのが好ましい。冷圧率が80%を超えるような高い冷圧率の場合、圧延負荷が高くなりすぎるため生産性を低下させる。このときの冷間圧延はタンデム圧延、リバース圧延のいずれでも良い。
【0056】
なお、再結晶焼鈍を行う方法としては、連続焼鈍、箱焼鈍、または溶融亜鉛めっき処理に先行する連続熱処理のいずれでもよい。
【0057】
本発明に係る熱延鋼板、冷延鋼板は、適宜、表面処理(化成処理、溶融亜鉛めっき、合金化溶融亜鉛めっき)が施されて使用されてもよい。
【0058】
【実施例】
〔実施例1〕
表1に示す鋼番1から13の化学成分組成を有する鋼を溶製し、次いで表2に示す製造条件に従って熱間圧延−焼鈍を行い、2.4mmtの熱延板を製造した。
【0059】
【表1】

Figure 0004123748
【0060】
【表2】
Figure 0004123748
【0061】
このようにして製造した熱延板について引張試験(JIS5号、C方向(圧延方向に垂直))、TiNの平均粒径測定および高周波焼入れ特性を調査した。
【0062】
TiN平均粒径は、レプリカ法によりTiNを抽出し、透過電子顕微鏡により析出物を撮影し、サンプル数:500個をマイクロアナライザーを用いて測定した。
【0063】
高周波焼入れは、平板(幅35mm×長さ300mm)に対し高周波コイルを移動させながら加熱・焼入れを実施した。図1に高周波焼入れの実施態様を示す。この時の加熱温度は900℃の低温とし、加熱時間は900℃までの通電時間を4秒とした。
【0064】
冷却開始時間は、通常行われる即冷却として0.5秒と、焼入れ安定性を評価するために3秒の2パターンを実施した。
【0065】
高周波焼入れ後の評価として、引張試験(JIS5号、C方向(圧延方向に垂直))、シャルピー衝撃試験、旧オーステナイト粒径測定を実施した。シャルピー衝撃試験は、図2に示すような試験片形状にて、試験温度:−50℃、n=3で行った。また、熱延板の板厚を1.2mmtに研削加工し、後述の冷延板と同一形状とした。なお、シャルピー衝撃試験値は、同一条件で試験を実施したJSC980Yレベルの0.4kgm以上を合格とした。
【0066】
旧オーステナイト粒径は、サンプルの板厚断面を研磨・腐食後、光学顕微鏡にてミクロ組織を撮影し、マイクロアナライザーを用いて平均粒径を測定した。
【0067】
上記より得られた結果を表3に示す。
【0068】
【表3】
Figure 0004123748
【0069】
表3より、成分、B−(10.8/14)N*、TiN平均粒径、旧オーステナイト粒径が本範囲内であるNo.A、B、C、E、Gは、焼入れ後の特性として980MPa以上の強度を有し、焼入れ後の冷却開始時間にかかわらず安定してJSC980Y以上(0.4kgm以上)のシャルピー衝撃吸収エネルギーが得られ、優れた衝撃特性が得られていることが明らかとなった。
【0070】
特に、C、Si、Mn、P、Sが低く、sol.Alが0.03%〜0.07%、Bが0.0005%〜0.0020%であるNo.A、B、Cはシャルピー衝撃吸収エネルギーが0.5kgm以上であり、極めて優れた衝撃特性が得られていることがわかった。
【0071】
一方、Cが本発明範囲外で低いNo.Hは強度が低く、Cが本発明範囲外で高いNo.Iと、Si、Pが本発明範囲外で高いNo.Jと、Mn、Sが本発明範囲外で高いNo.Kは、シャルピー衝撃吸収エネルギーが低く、衝撃特性が劣化している。
【0072】
sol.Al、Nが本発明範囲外で高いNo.Lは、旧オーステナイト粒径が本発明範囲外で小さく、冷却開始時間が遅い場合、シャルピー衝撃吸収エネルギーが低く、衝撃特性が劣化している。
【0073】
Bが本発明範囲外で低く、かつ、B−(10.8/14)N*が本発明範囲外であるNo.Mは、冷却開始時間が遅い場合、フェライトが生成し衝撃特性が劣化している。
【0074】
Tiが本発明範囲外で低く、TiN平均粒径が本発明範囲外で小さく、かつ、B−(10.8/14)N*が本発明範囲外であるNo.Nは、TiNの量が少なくオーステナイト粒成長の抑制がなされず、シャルピー衝撃吸収エネルギーが低く衝撃特性が劣化している。
【0075】
Tiが本発明範囲外で高く、かつ、TiN平均粒径が本発明範囲外で大きいNo.Oは、旧オーステナイト粒径が小さく、冷却開始時間が遅い場合、シャルピー衝撃吸収エネルギーが低く衝撃特性が劣化している。
【0076】
巻取温度が本発明範囲外で高いNo.Dは、焼入時にセメンタイトが溶け残り、シャルピー衝撃吸収エネルギーが低く衝撃特性が劣化している。
【0077】
焼鈍温度が本発明範囲外で高いNo.Fは、部分的にパーライトが生成し、シャルピー衝撃吸収エネルギーが低く衝撃特性が劣化している。
【0078】
〔実施例2〕
表1に示す鋼番1から13の化学成分組成を有する鋼を溶製し、次いで表4に示す製造条件に従って熱間圧延−冷間圧延−焼鈍を行い、1.2mmtの冷延板を製造した。
【0079】
【表4】
Figure 0004123748
【0080】
このようにして製造した冷延板について、実施例1と同様に、引張試験、TiNの平均粒径測定、および高周波焼入れ特性を調査した。結果を表5に示す。
【0081】
【表5】
Figure 0004123748
【0082】
表5より、熱延鋼板の場合と同様に、成分、B−(10.8/14)N*、TiN平均粒径、旧オーステナイト粒径が本範囲内であるNo.a、c、d、e、hは、焼入れ後の特性として980MPa以上の強度を有し、焼入れ後の冷却開始時間にかかわらず安定してJSC980Y以上(0.4kgm以上)のシャルピー衝撃吸収エネルギーが得られ、優れた衝撃特性が得られていることが明らかとなった。
【0083】
特に、C、Si、Mn、P、Sが低く、sol.Alが0.03%〜0.07%、Bが0.0005%〜0.0020%であるNo.a、c、dはシャルピー衝撃吸収エネルギーが0.5kgm以上であり、極めて優れた衝撃特性が得られていることがわかった。
【0084】
一方、TiN平均粒径が本発明範囲外で小さいあるNo.bは旧オーステナイト粒径が小さく、冷却開始時間が遅い場合、シャルピー衝撃吸収エネルギーが低く衝撃特性が劣化している。
【0085】
また、Cが本発明範囲外で低いNo.iは強度が低く、Cが本発明範囲外で高いNo.jと、Si、Pが本発明範囲外で高いNo.kと、Mn、Sが本発明範囲外で高いNo.l(Lの小文字)は、シャルピー衝撃吸収エネルギーが低く、衝撃特性が劣化している。
【0086】
sol.Al、Nが本発明範囲外で高いNo.mは、旧オーステナイト粒径が本発明範囲外で小さく、冷却開始時間が遅い場合、シャルピー衝撃吸収エネルギーが低く、衝撃特性が劣化している。
【0087】
Bが本発明範囲外で低く、かつ、B−(10.8/14)N*が本発明範囲外であるNo.nは、冷却開始時間が遅い場合、フェライトが生成し衝撃特性が劣化している。
【0088】
Tiが本発明範囲外で低く、TiN平均粒径が本発明範囲外で小さく、かつ、B−(10.8/14)N*が本発明範囲外であるNo.oは、TiNの量が少なくオーステナイト粒成長の抑制がなされず、シャルピー衝撃吸収エネルギーが低く衝撃特性が劣化している。
【0089】
Tiが本発明範囲外で高く、かつ、TiN平均粒径が本発明範囲外で大きいNo.pは、旧オーステナイト粒径が小さく、冷却開始時間が遅い場合、シャルピー衝撃吸収エネルギーが低く衝撃特性が劣化している。
【0090】
巻取温度が本発明範囲外で高いNo.fは、焼入時にセメンタイトが溶け残り、シャルピー衝撃吸収エネルギーが低く衝撃特性が劣化している。
【0091】
冷間圧延後の焼鈍温度が本発明範囲外で高いNo.gは、部分的にパーライトが生成し、シャルピー衝撃吸収エネルギーが低く衝撃特性が劣化している。
【0092】
【発明の効果】
以上述べたように、本発明によれば、低温短時間での焼入れ性に優れ、焼入れ条件による変動が小さい焼入れ後の衝撃特性に優れる薄鋼板を得ることができる。 さらに、上記薄鋼板が安定して低コストで得られるため、高強度部材として工業的に有用な効果をもたらし、例えば、自動車構造部品として最適である。
【図面の簡単な説明】
【図1】高周波焼入れの一実施態様を示す図。
【図2】シャルピー衝撃試験における試験片形状の一実施態様を示す図。
【図3】シャルピー衝撃吸収エネルギーに及ぼす冷却開始時間とB−(10.8/14)N*の影響を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin steel plate used for a structural part of an automobile and a manufacturing method thereof.
[0002]
[Prior art]
Currently, high-strength steel plates of 980 MPa or more are used as automotive structural parts such as door impact beams and center pillars from the viewpoint of light weight and high durability. However, since these parts have severe formability, when the above-described high-strength steel sheet is used, there are many problems of cracks and defective shapes, and the material cost is high.
[0003]
In recent years, with such a problem as a background, forming is performed using a thin steel sheet having a low strength of 440 MPa, and high strength is achieved by induction hardening or the like. As an example of this, in “Materia, Vol. 37, No. 6 (1998)”, the center pillar reinforcement, the front cross member, and the like are high by induction hardening using steel plates of 440 MPa and 390 MPa, respectively. Strengthening. Then, a new method has been developed in which a hardened coil is supported by a robot when induction hardening is performed on a part having a three-dimensional surface, and the part is hardened while being precisely moved along the part shape. Yes.
[0004]
As a technique for increasing the strength by post-heat treatment, Japanese Patent Application Laid-Open No. 60-238424 discloses a method of partial strengthening by laser irradiation.
[0005]
Japanese Patent Application Laid-Open No. 7-126807 discloses a technique for strengthening by high energy density beam irradiation.
[0006]
[Problems to be solved by the invention]
However, the technique described in “Materia, Vol. 37, No. 6 (1998)” requires enormous capital investment in order to reduce fluctuations in quenching conditions.
[0007]
According to the technique described in Japanese Patent Application Laid-Open No. 60-238424, the laser irradiation portion is very small, and it takes a long time to increase the strength of the member. In addition, the capital investment is enormous, resulting in an increase in cost.
[0008]
Since the technique described in JP-A-7-126807 only performs local strengthening, the strength level obtained is only about 710 MPa.
[0009]
Thus, the present condition is that the steel plate which is excellent in quenching stability and is excellent in the impact characteristic after quenching has not been proposed yet.
[0010]
Therefore, an object of the present invention is to provide a thin steel sheet that is less affected by quenching conditions and has excellent impact characteristics after quenching, and a method for producing the same.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted intensive research and found the following.
[0012]
(1) The component composition greatly affects the hardenability when the heating temperature is 1000 ° C. or less, particularly 950 ° C. or less, and the addition of C and B is essential.
[0013]
(2) The impact characteristics after quenching are greatly affected by the grain size and microstructure of precipitates. In Ti-containing steel, the form of TiN greatly changes the austenite grain size during heating, and TiN becomes finer. When precipitated, the austenite grain size is remarkably refined, so that ferrite is partially formed during cooling, and cracks tend to extend at the interface between ferrite and austenite, resulting in a reduction in impact characteristics.
[0014]
(3) Furthermore, B- (10.8 / 14) N * has a large effect on the variation in quenching conditions such as the variation in time until cooling after high-frequency heating, and B- (10.8 / 14) When N * is small, ferrite is generated during cooling after high-frequency heating, and cracks are likely to extend at the interface between ferrite and austenite as in the case where the austenite grain size is reduced, and impact characteristics are reduced.
[0015]
The present invention has been made on the basis of such findings. The steel component is mass%, C: 0.10 to 0.37%, Si: 1% or less, Mn: 2.5% or less, P: 0.1%. Hereinafter, S: 0.03% or less, sol. Al: 0.01 to 0.1%, N: 0.0005 to 0.0050%, Ti: 0.005 to 0.05%, B: 0.0003 to 0.0050%, or Ni , Cr, Mo, 1% or less in total, B- (10.8 / 14) N * ≧ 0.0005%, N * = N- (14/48) Ti, provided that right side When ≦ 0, a steel having a steel component satisfying N * = 0 is hot-rolled at a coiling temperature of 720 ° C. or lower, pickled, and then spheroidized and annealed at a temperature of 640 ° C. or higher and an Ac 1 transformation point or lower. To obtain a thin steel sheet having an average grain size of TiN which is a precipitate in steel of 0.06 to 0.30 μm and a prior austenite grain size of 2 to 25 μm after quenching. This is a method for producing a thin steel sheet having excellent impact characteristics .
[0016]
In the present invention, the steel component is further in mass%, C: 0.10 to 0.37%, Si: 1% or less, Mn: 2.5% or less, P: 0.1% or less, S: 0.00. 03% or less, sol. Al: 0.01 to 0.1%, N: 0.0005 to 0.0050%, Ti: 0.005 to 0.05%, B: 0.0003 to 0.0050%, or Ni , Cr, Mo, 1% or less in total, B- (10.8 / 14) N * ≧ 0.0005%, N * = N- (14/48) Ti, provided that right side In the case of ≦ 0, a steel having a steel component satisfying N * = 0 is hot-rolled at a coiling temperature of 720 ° C. or lower, pickled, and then spheroidized and annealed at a temperature of 640 ° C. or higher and an Ac 1 transformation point or lower. The average grain size of TiN, which is a precipitate in steel, is 0.06 to 0.30 μm by cold rolling at a cold rolling rate of 30% or more and then annealing at 600 ° C. or more and the Ac 1 transformation point or less. And after quenching, characterized in that a thin steel plate having a prior austenite grain size of 2 to 25 μm after quenching is obtained. It may be a method for manufacturing a thin steel sheet excellent in撃特properties.
[0020]
First, the reasons for limitation of the steel components of the steel sheet will be described.
[0021]
C: 0.10 to 0.37%
C is an important element for obtaining strength after quenching, and at least 0.10% or more is necessary to obtain 980 MPa or more. However, if added over 0.37%, although the strength is obtained, the impact characteristics are remarkably lowered. Therefore, in the present invention, the addition range of C is set to 0.10% to 0.37%. In order to obtain excellent impact characteristics, 0.30% or less is preferable.
[0022]
Si: 1% or less Si is an element that improves hardenability and increases strength by solid solution strengthening. However, if added over 1%, the band structure which is a segregation band becomes noticeable in the hot-rolled sheet, and the impact characteristics deteriorate. Accordingly, in the present invention, the addition range of Si is set to 1% or less. Moreover, 0.5% or less is preferable for obtaining excellent impact characteristics. Moreover, 0.5% or less is preferable for obtaining excellent impact characteristics.
[0023]
Mn: 2.5% or less Mn is an element that improves hardenability and increases strength by solid solution strengthening. However, when the content exceeds 2.5%, the formation of a manganese band, which is a segregation band, becomes remarkable and the impact characteristics deteriorate. Therefore, in the present invention, the Mn addition range is 2.5% or less. Moreover, 1.5% or less is preferable for obtaining excellent impact characteristics.
[0024]
P: 0.1% or less P is an element that improves hardenability and increases strength by solid solution strengthening. However, P is also an element that segregates at the grain boundary and lowers impact characteristics. Although the grain boundary segregation is suppressed by addition of B, the addition of more than 0.1% of P still causes grain boundary embrittlement and deteriorates impact characteristics. Therefore, in the present invention, the addition range of P is 0.1% or less. Moreover, 0.05% or less is preferable for obtaining excellent impact characteristics.
[0025]
S: 0.03% or less S is an element that must be reduced in order to form sulfides and reduce impact properties. When the content exceeds 0.03%, the impact characteristics are remarkably deteriorated, so the content must be suppressed to 0.03% or less. Therefore, in the present invention, the addition range of S is 0.03% or less. In order to obtain excellent impact characteristics, 0.02% or less is preferable.
[0026]
sol. Al: 0.01 to 0.1%
sol. Al is an element used as a deoxidizer to improve the cleanliness of steel. Addition of less than 0.01% reduces cleanliness, increases inclusions, and lowers impact properties. On the other hand, when the content exceeds 0.1%, the formation of AlN becomes remarkable, the austenite at the time of quenching becomes fine, and ferrite is formed at the time of cooling, so that the impact characteristics are deteriorated. Therefore, in the present invention, sol. The addition range of Al is 0.01% to 0.1%. In order to obtain excellent impact characteristics, 0.03% to 0.07% is preferable.
[0027]
N: 0.0005 to 0.0050%
N is an important element that forms TiN, suppresses the grain growth of austenite during heating, and improves impact characteristics, and at least 0.0005% or more is necessary. On the other hand, when the content exceeds 0.0050%, not only TiN but also BN and AlN are formed remarkably, the austenite at the time of quenching becomes fine and ferrite is formed at the time of cooling, so that the impact characteristics deteriorate. Therefore, in the present invention, the addition range of N is set to 0.0005% to 0.0050%.
[0028]
Ti: 0.005 to 0.05%
Ti is an important element that forms N and TiN, suppresses coarsening of austenite grains, and improves impact characteristics. However, if the addition amount is less than 0.005%, sufficient effects cannot be obtained, and if it exceeds 0.05%, TiC formation becomes remarkable and austenite grain growth during quenching at a low temperature for a short time is remarkably suppressed. In addition, ferrite is generated during cooling after heating, and the impact characteristics are deteriorated. Therefore, in the present invention, the addition range of Ti is set to 0.005% to 0.05%.
[0029]
B: 0.0003 to 0.0050%
B is an important element that improves hardenability and suppresses the formation of ferrite during cooling after heating and improves impact characteristics. However, when the addition amount is less than 0.0003%, a sufficient effect cannot be obtained. On the other hand, addition over 0.0050% increases the hot rolling load, lowers operability, and lowers workability. Therefore, in the present invention, the addition range of B is set to 0.0003% to 0.0050%. In addition, 0.0005% to 0.0020% is preferable to obtain an extremely excellent effect.
[0030]
Effective B: B- (10.8 / 14) N * ≧ 0.0005%
Effective B is a ratio that has a great influence on fluctuations in quenching conditions.
[0031]
Effective B = B- (10.8 / 14) N *
Here, N * = N− (14/48) Ti (however, when the right side ≦ 0, N * = 0)
Therefore, the effect of effective B: B- (10.8 / 14) N * on impact characteristics after quenching was investigated.
[0032]
As base components, C: 0.15%, Si: 0.02%, Mn: 0.90%, P: 0.020%, S: 0.015%, sol. Al: 0.035%, Ti: 0.01%, N: 0.0018 to 0.0030%, B: 0 to 0.0031%, B- (10.8 / 14) N *: 0 to 0 Steel with a chemical composition of 0017% was melted, then hot rolled at 1200 ° C, hot rolled finishing temperature: 870 ° C, intermediate temperature: 700 ° C, coiling temperature: 620 ° C, after pickling A cold-rolled sheet having a cold pressure ratio of 50% and an annealing temperature of 720 ° C. of 1.2 mmt was manufactured.
[0033]
Subsequently, the impact characteristics after induction hardening were evaluated about the obtained sample.
In the induction hardening, heating and hardening were performed while moving the high-frequency coil with respect to a flat plate (width 35 mm × length 300 mm). FIG. 1 shows an embodiment of induction hardening. The heating temperature at this time was a low temperature of 900 ° C., and the heating time was 4 seconds for the energization time up to 900 ° C.
[0034]
The cooling start time was 0.5 seconds for the immediate cooling that is usually performed, and three patterns of 1.5 seconds and 3 seconds for evaluating the quenching stability.
[0035]
As evaluation after induction hardening, the Charpy impact test was implemented. The Charpy impact test was performed in a test piece shape as shown in FIG. 2 at a test temperature: −50 ° C. and n = 3.
[0036]
The obtained results are shown in FIG. FIG. 3 shows that high Charpy impact absorption energy can be obtained stably even when B- (10.8 / 14) N * is 0.0005% or more and the cooling start time is 3 seconds.
[0037]
Further, when B- (10.8 / 14) N * is less than 0.0005%, the amount of dissolved B during quenching heating is not sufficiently secured, and when the cooling start time after heating is delayed, This will cause degradation of impact characteristics.
[0038]
Therefore, in order to reduce production variations and stably obtain high impact characteristics, in the present invention, B- (10.8 / 14) N * is made 0.0005% or more. However, when N * = N− (14/48) Ti and the right side ≦ 0, N * = 0.
[0039]
Ni, Cr, Mo: In the case of adding one or more kinds, the total is 1% or less. Ni, Cr, and Mo are hardenability improving elements, and one or more kinds may be added. However, excessive addition causes an increase in cost, so one or more of Ni, Cr, and Mo is made 1% or less in total.
[0040]
In the present invention, Nb may be added in an amount of 0.1% or less and V may be added in an amount of 0.1% or less in order to suppress coarsening of austenite grains during heating.
[0041]
Further, in the present invention, elements other than the above elements are substantially Fe, and unless the effects of the present invention are lost, it means that unavoidable impurities can be included in the scope of the present invention.
[0042]
Next, the reasons for limiting the precipitate will be described.
[0043]
TiN average particle diameter: 0.06 to 0.30 μm
TiN is a precipitate that suppresses coarsening of austenite grains during quenching heating. When the TiN average particle diameter is less than 0.06 μm, the austenite grains become extremely fine, and ferrite is generated during cooling after heating, resulting in deterioration of impact characteristics. On the other hand, in the case of coarse precipitates exceeding 0.30 μm, austenite grain growth cannot be suppressed. Therefore, in the present invention, the TiN average particle diameter is 0.06 μm to 0.30 μm.
[0044]
Next, the reason for limiting the microstructure will be described.
[0045]
Old austenite grain size after quenching: 2-25 μm
The prior austenite grain size after quenching, that is, the prior austenite grain size before transformation measured after quenching, has a great influence on the impact properties. When the prior austenite grain size is less than 2 μm, a part of ferrite is generated during cooling after heating, and the impact characteristics are deteriorated due to stress concentration at the interface between ferrite and austenite. On the other hand, in the case of coarse grains exceeding 25 μm, grain boundary embrittlement becomes remarkable, and impact characteristics are deteriorated as compared with the conventional JSC980Y (iron standard). Therefore, in the present invention, the prior austenite grain size after quenching is 2 to 25 μm.
[0046]
Next, the reason for limiting the manufacturing method will be described.
[0047]
Winding temperature: 720 ° C or less As for the coiling temperature in hot rolling, if it exceeds 720 ° C, the pearlite lamella spacing increases, hardenability deteriorates, and cementite melts during quenching and impact characteristics decrease. To do. Therefore, in this invention, the coiling temperature in hot rolling shall be 720 degrees C or less.
[0048]
Spheroidizing annealing temperature after hot rolling: After pickling the hot-rolled steel sheet at 640 ° C. or higher and below the Ac 1 transformation point, spheroidizing annealing can be performed to spheroidize cementite and obtain excellent workability and hardenability. . When the annealing temperature is less than 640 ° C., the cementite is insufficiently spheroidized and the effect cannot be obtained. On the other hand, when the annealing temperature exceeds the Ac 1 transformation point, it is partially austenitized to produce coarse pearlite during cooling, resulting in a decrease in workability and a decrease in hardenability. In addition, the cementite remains undissolved during quenching and the impact characteristics are reduced. Therefore, when performing spheroidizing annealing after hot rolling in the present invention, the annealing temperature and 640 ° C. or higher Ac 1 transformation point.
[0049]
Reduction ratio during cold rolling: When the rolling reduction (cold reduction ratio) is 30% or more when the cold rolling is less than 30%, an unrecrystallized portion remains after annealing and the cementite is insufficiently spheroidized. Thus, softening cannot be obtained and workability is deteriorated. Therefore, the cold pressure ratio when performing cold rolling is set to 30% or more. The upper limit of the cold pressure ratio is not particularly defined, but is preferably 80% or less so that the load on the rolling mill does not increase.
[0050]
Annealing temperature after cold rolling: 640 ° C. or higher or 600 ° C. or higher and Ac 1 transformation point or lower For annealing after cold rolling, when spheroidizing annealing after hot rolling is omitted, spheroidizing annealing is performed here. The annealing temperature of the spheroidizing annealing after the cold rolling is set to 640 ° C. or more and the Ac 1 transformation point or less similarly to the spheroidizing annealing after the hot rolling described above.
[0051]
When spheroidizing annealing after hot rolling is performed, recrystallization annealing is performed here. If the annealing temperature of recrystallization annealing after cold rolling is less than 600 ° C., unrecrystallized portions remain and workability is lowered. On the other hand, when the annealing temperature exceeds the Ac 1 transformation point, it is partially austenitized to produce coarse pearlite during cooling, resulting in a decrease in workability and a decrease in hardenability. In addition, the cementite remains undissolved during quenching and the impact characteristics are reduced. Therefore, in the present invention, when performing recrystallization annealing after cold rolling, the annealing temperature is set to 600 ° C. or more and Ac 1 transformation point or less.
[0052]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the target thin steel sheet may be either a hot-rolled steel sheet or a cold-rolled steel sheet. When manufacturing this invention steel plate, raw material steel is smelted by a converter, an electric furnace, etc., for example. The steel slab may be manufactured by any of the ingot-bundling rolling method, continuous casting method, thin slab casting method, and strip casting method.
[0053]
The hot rolling process may be either a method of rolling after slab heating, a method of performing a heat treatment for a short time after continuous casting, or a method of rolling immediately after omitting the heating step, but in order to give excellent surface quality It is preferable to sufficiently remove not only the primary scale but also the secondary scale generated during hot rolling. In addition, you may heat with a bar heater during hot rolling.
[0054]
The finish rolling finishing temperature is preferably Ar 3 or more in view of the uniformity of the structure. Further, for the purpose of homogenizing the structure, rapid cooling at 200 ° C./second or more may be performed within 1 second after finish rolling. The coiling temperature is preferably 500 ° C. or higher from the viewpoint of material stability, while the upper limit is preferably 700 ° C. or lower because of a decrease in pickling properties due to increased scale formation.
[0055]
When a cold-rolled steel sheet is used as the thin steel sheet of the present invention, the rolling rate (cold pressure rate) during cold rolling is preferably 80% or less. In the case of a high cold pressure ratio such that the cold pressure ratio exceeds 80%, the rolling load becomes too high, so that productivity is lowered. The cold rolling at this time may be either tandem rolling or reverse rolling.
[0056]
In addition, as a method of performing recrystallization annealing, any of continuous annealing, box annealing, or continuous heat treatment preceding hot dip galvanizing treatment may be used.
[0057]
The hot-rolled steel sheet and cold-rolled steel sheet according to the present invention may be used after appropriately being subjected to surface treatment (chemical conversion treatment, hot-dip galvanizing, alloyed hot-dip galvanizing).
[0058]
【Example】
[Example 1]
Steels having chemical composition compositions of steel numbers 1 to 13 shown in Table 1 were melted and then hot-rolled and annealed according to the manufacturing conditions shown in Table 2 to produce 2.4 mmt hot rolled sheets.
[0059]
[Table 1]
Figure 0004123748
[0060]
[Table 2]
Figure 0004123748
[0061]
The hot-rolled sheet thus manufactured was examined for tensile test (JIS No. 5, C direction (perpendicular to rolling direction)), TiN average particle diameter measurement, and induction hardening characteristics.
[0062]
The TiN average particle diameter was measured by extracting TiN by a replica method, photographing the precipitate with a transmission electron microscope, and using 500 microsamples.
[0063]
In the induction hardening, heating and hardening were performed while moving the high-frequency coil with respect to a flat plate (width 35 mm × length 300 mm). FIG. 1 shows an embodiment of induction hardening. The heating temperature at this time was a low temperature of 900 ° C., and the heating time was set to 4 seconds for the energization time up to 900 ° C.
[0064]
The cooling start time was 0.5 seconds for immediate cooling that is normally performed, and two patterns of 3 seconds for evaluating the quenching stability.
[0065]
As the evaluation after induction hardening, a tensile test (JIS No. 5, C direction (perpendicular to the rolling direction)), Charpy impact test, and prior austenite particle size measurement were performed. The Charpy impact test was performed in a test piece shape as shown in FIG. 2 at a test temperature: −50 ° C. and n = 3. Further, the thickness of the hot-rolled sheet was ground to 1.2 mmt to have the same shape as a cold-rolled sheet described later. In addition, the Charpy impact test value set 0.4 kgm or more of the JSC980Y level tested by the same conditions as the pass.
[0066]
For the prior austenite particle size, after polishing and corroding the plate thickness section of the sample, the microstructure was photographed with an optical microscope, and the average particle size was measured using a microanalyzer.
[0067]
The results obtained from the above are shown in Table 3.
[0068]
[Table 3]
Figure 0004123748
[0069]
Table 3 shows that the component, B- (10.8 / 14) N *, TiN average particle diameter, and prior austenite particle diameter are within this range. A, B, C, E, and G have strengths of 980 MPa or more as characteristics after quenching, and have stable Charpy impact absorption energy of JSC 980Y or more (0.4 kgm or more) regardless of the cooling start time after quenching. It was revealed that excellent impact characteristics were obtained.
[0070]
In particular, C, Si, Mn, P, and S are low. No. in which Al is 0.03% to 0.07% and B is 0.0005% to 0.0020%. A, B, and C had Charpy impact absorption energy of 0.5 kgm or more, and it was found that extremely excellent impact characteristics were obtained.
[0071]
On the other hand, No. C which is low outside the scope of the present invention. No. H is low in strength and C is high outside the scope of the present invention. No. I, Si, and P are high outside the scope of the present invention. No. J, Mn, and S are high outside the scope of the present invention. K has low Charpy impact absorption energy and has deteriorated impact characteristics.
[0072]
sol. Nos. Al and N are high outside the scope of the present invention. In L, when the prior austenite particle size is small outside the range of the present invention and the cooling start time is slow, the Charpy impact absorption energy is low and the impact characteristics are deteriorated.
[0073]
No. in which B is low outside the scope of the present invention and B- (10.8 / 14) N * is outside the scope of the present invention. In M, when the cooling start time is slow, ferrite is generated and the impact characteristics are deteriorated.
[0074]
No. in which Ti is low outside the scope of the present invention, TiN average particle size is small outside the scope of the present invention, and B- (10.8 / 14) N * is outside the scope of the present invention. N has a small amount of TiN and does not suppress austenite grain growth, has low Charpy impact absorption energy, and deteriorates impact characteristics.
[0075]
No. 1 in which Ti is high outside the scope of the present invention and the TiN average particle size is large outside the scope of the present invention. When the prior austenite grain size is small and the cooling start time is slow, O has low Charpy impact absorption energy and deteriorates impact characteristics.
[0076]
The winding temperature is high outside the scope of the present invention. In D, cementite remains undissolved at the time of quenching, Charpy impact absorption energy is low, and impact characteristics are deteriorated.
[0077]
The annealing temperature is high outside the scope of the present invention. In F, pearlite is partially generated, the Charpy impact absorption energy is low, and the impact characteristics are deteriorated.
[0078]
[Example 2]
Steel having the chemical composition of steel Nos. 1 to 13 shown in Table 1 is melted, and then hot-rolled-cold-rolled-annealed according to the manufacturing conditions shown in Table 4 to produce a 1.2 mmt cold-rolled sheet did.
[0079]
[Table 4]
Figure 0004123748
[0080]
For the cold-rolled sheet thus produced, the tensile test, the TiN average particle diameter measurement, and the induction hardening characteristics were investigated in the same manner as in Example 1. The results are shown in Table 5.
[0081]
[Table 5]
Figure 0004123748
[0082]
From Table 5, as in the case of the hot-rolled steel sheet, the component, B- (10.8 / 14) N *, TiN average particle diameter, and prior austenite particle diameter are within this range. a, c, d, e, and h have a strength of 980 MPa or more as a characteristic after quenching, and have stable Charpy impact absorption energy of JSC 980Y or more (0.4 kgm or more) regardless of the cooling start time after quenching. It was revealed that excellent impact characteristics were obtained.
[0083]
In particular, C, Si, Mn, P, and S are low. No. in which Al is 0.03% to 0.07% and B is 0.0005% to 0.0020%. It was found that a, c and d had Charpy impact absorption energy of 0.5 kgm or more, and extremely excellent impact characteristics were obtained.
[0084]
On the other hand, the TiN average particle size is small outside the scope of the present invention. When the prior austenite grain size is small and the cooling start time is slow, the Charpy impact absorption energy is low and the impact characteristics are deteriorated.
[0085]
In addition, C is a low No. outside the scope of the present invention. i is low in strength and C is high outside the scope of the present invention. j, Si, and P are high and out of the scope of the present invention. k, Mn, and S which are high outside the scope of the present invention. l (lowercase letter L) has low Charpy impact absorption energy and has deteriorated impact characteristics.
[0086]
sol. Nos. Al and N are high outside the scope of the present invention. In the case of m, when the prior austenite grain size is small outside the range of the present invention and the cooling start time is slow, the Charpy impact absorption energy is low and the impact characteristics are deteriorated.
[0087]
No. in which B is low outside the scope of the present invention and B- (10.8 / 14) N * is outside the scope of the present invention. In the case of n, when the cooling start time is late, ferrite is generated and the impact characteristics are deteriorated.
[0088]
No. in which Ti is low outside the scope of the present invention, TiN average particle size is small outside the scope of the present invention, and B- (10.8 / 14) N * is outside the scope of the present invention. In the case of o, the amount of TiN is small and the austenite grain growth is not suppressed, the Charpy impact absorption energy is low, and the impact characteristics are deteriorated.
[0089]
No. 1 in which Ti is high outside the scope of the present invention and the TiN average particle size is large outside the scope of the present invention. When p is a small prior austenite grain size and the cooling start time is slow, the Charpy impact absorption energy is low and the impact characteristics are deteriorated.
[0090]
The winding temperature is high outside the scope of the present invention. As for f, cementite remains undissolved at the time of quenching, Charpy impact absorption energy is low, and impact characteristics are deteriorated.
[0091]
The annealing temperature after cold rolling is high, outside the scope of the present invention. In g, pearlite is partially generated, the Charpy impact absorption energy is low, and the impact characteristics are deteriorated.
[0092]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a thin steel sheet that is excellent in hardenability at a low temperature in a short time and excellent in impact characteristics after quenching with small fluctuations due to quenching conditions. Furthermore, since the thin steel sheet can be obtained stably and at low cost, it provides an industrially useful effect as a high-strength member, and is optimal, for example, as an automobile structural component.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of induction hardening.
FIG. 2 is a view showing an embodiment of a test piece shape in a Charpy impact test.
FIG. 3 is a graph showing the influence of cooling start time and B- (10.8 / 14) N * on Charpy impact absorption energy.

Claims (2)

鋼成分としてmass%で、C:0.10〜0.37%、Si:1%以下、Mn:2.5%以下、P:0.1%以下、S:0.03%以下、sol.Al:0.01〜0.1%、N:0.0005〜0.0050%、Ti:0.005〜0.05%、B:0.0003〜0.0050%を含有し、あるいはさらにNi、Cr、Moの1種以上を、合計で1%以下含有し、B−(10.8/14)N*≧0.0005%、N*=N−(14/48)Ti、但し、右辺≦0の場合、N*=0を満足する鋼成分を有する鋼を、巻取温度720℃以下で熱間圧延し、酸洗した後、640℃以上Ac1変態点以下で球状化焼鈍することにより、鋼中析出物であるTiNの平均粒径が0.06〜0.30μmであり、かつ焼入れ後の旧オーステナイト粒径が2〜25μmである薄鋼板を得ることを特徴とする焼入れ後の衝撃特性に優れる薄鋼板の製造方法。As a steel component, C: 0.10 to 0.37%, Si: 1% or less, Mn: 2.5% or less, P: 0.1% or less, S: 0.03% or less, sol. Al: 0.01 to 0.1%, N: 0.0005 to 0.0050%, Ti: 0.005 to 0.05%, B: 0.0003 to 0.0050%, or Ni , Cr, Mo, 1% or less in total, B- (10.8 / 14) N * ≧ 0.0005%, N * = N- (14/48) Ti, provided that right side When ≦ 0, a steel having a steel component satisfying N * = 0 is hot-rolled at a coiling temperature of 720 ° C. or lower, pickled, and then spheroidized and annealed at a temperature of 640 ° C. or higher and an Ac 1 transformation point or lower. To obtain a thin steel sheet having an average grain size of TiN, which is a precipitate in steel, of 0.06 to 0.30 μm, and a prior austenite grain size after quenching of 2 to 25 μm. A method for manufacturing thin steel sheets with excellent impact properties. 鋼成分としてmass%で、C:0.10〜0.37%、Si:1%以下、Mn:2.5%以下、P:0.1%以下、S:0.03%以下、sol.Al:0.01〜0.1%、N:0.0005〜0.0050%、Ti:0.005〜0.05%、B:0.0003〜0.0050%を含有し、あるいはさらにNi、Cr、Moの1種以上を、合計で1%以下含有し、B−(10.8/14)N*≧0.0005%、N*=N−(14/48)Ti、但し、右辺≦0の場合、N*=0を満足する鋼成分を有する鋼を、巻取温度720℃以下で熱間圧延し、酸洗した後、640℃以上Ac1変態点以下で球状化焼鈍して、冷延率30%以上で冷間圧延し、その後、600℃以上Ac1変態点以下で焼鈍することにより、鋼中析出物であるTiNの平均粒径が0.06〜0.30μmであり、かつ焼入れ後の旧オーステナイト粒径が2〜25μmである薄鋼板を得ることを特徴とする焼入れ後の衝撃特性に優れる薄鋼板の製造方法。As a steel component, C: 0.10 to 0.37%, Si: 1% or less, Mn: 2.5% or less, P: 0.1% or less, S: 0.03% or less, sol. Al: 0.01 to 0.1%, N: 0.0005 to 0.0050%, Ti: 0.005 to 0.05%, B: 0.0003 to 0.0050%, or Ni , Cr, Mo, 1% or less in total, B- (10.8 / 14) N * ≧ 0.0005%, N * = N- (14/48) Ti, provided that right side In the case of ≦ 0, a steel having a steel component satisfying N * = 0 is hot-rolled at a coiling temperature of 720 ° C. or lower, pickled, and then spheroidized and annealed at a temperature of 640 ° C. or higher and an Ac 1 transformation point or lower. The average grain size of TiN, which is a precipitate in steel, is 0.06 to 0.30 μm by cold rolling at a cold rolling rate of 30% or more and then annealing at 600 ° C. or more and the Ac 1 transformation point or less. And the impact after hardening characterized by obtaining the thin steel plate whose prior austenite grain size after hardening is 2-25 micrometers Method for producing a thin steel sheet excellent in resistance.
JP2001268316A 2001-02-07 2001-09-05 Thin steel plate with excellent impact properties after quenching and method for producing the same Expired - Fee Related JP4123748B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001268316A JP4123748B2 (en) 2001-02-07 2001-09-05 Thin steel plate with excellent impact properties after quenching and method for producing the same
PCT/JP2002/000915 WO2002063058A1 (en) 2001-02-07 2002-02-05 Thin steel sheet and method for production thereof
CNB028001982A CN1232672C (en) 2001-02-07 2002-02-05 Sheet steel and method for producing thereof
KR10-2002-7012212A KR100513991B1 (en) 2001-02-07 2002-02-05 Method for production of thin steel sheet
EP02711309A EP1359235A4 (en) 2001-02-07 2002-02-05 Thin steel sheet and method for production thereof
TW091102062A TWI241349B (en) 2001-02-07 2002-02-06 Method for manufacturing steel sheet
US10/255,349 US6767417B2 (en) 2001-02-07 2002-09-26 Steel sheet and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-30355 2001-02-07
JP2001030355 2001-02-07
JP2001268316A JP4123748B2 (en) 2001-02-07 2001-09-05 Thin steel plate with excellent impact properties after quenching and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005233094A Division JP4265582B2 (en) 2001-02-07 2005-08-11 Hot-rolled steel sheet with excellent impact properties after quenching and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002309345A JP2002309345A (en) 2002-10-23
JP4123748B2 true JP4123748B2 (en) 2008-07-23

Family

ID=26609023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001268316A Expired - Fee Related JP4123748B2 (en) 2001-02-07 2001-09-05 Thin steel plate with excellent impact properties after quenching and method for producing the same

Country Status (1)

Country Link
JP (1) JP4123748B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325277B2 (en) * 2003-05-28 2009-09-02 住友金属工業株式会社 Hot forming method and hot forming parts
DE112006003169B4 (en) * 2005-12-01 2013-03-21 Posco Steel sheets for hot press forming with excellent heat treatment and impact properties, hot pressed parts produced therefrom and process for their production
JP5040197B2 (en) 2006-07-10 2012-10-03 Jfeスチール株式会社 Hot-rolled thin steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
JP5040475B2 (en) 2007-06-29 2012-10-03 Jfeスチール株式会社 Thick-walled hot-rolled steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
KR100967030B1 (en) * 2007-11-07 2010-06-30 주식회사 포스코 High Tensile Steel for Deep Drawing and Manufacturing Method Thereof
JP5056876B2 (en) * 2010-03-19 2012-10-24 Jfeスチール株式会社 Hot-rolled steel sheet with excellent cold workability and hardenability and method for producing the same
IN2014KN01297A (en) * 2012-01-05 2015-10-16 Jfe Steel Corp
JP5565532B2 (en) * 2012-01-06 2014-08-06 Jfeスチール株式会社 High carbon hot rolled steel sheet and manufacturing method thereof
JP6001883B2 (en) * 2012-03-09 2016-10-05 株式会社神戸製鋼所 Manufacturing method of press-molded product and press-molded product
JP6477978B1 (en) 2018-03-29 2019-03-06 新日鐵住金株式会社 Hot stamping body
US11702726B2 (en) 2018-03-29 2023-07-18 Nippon Steel Corporation Hot stamped article
WO2019186928A1 (en) 2018-03-29 2019-10-03 日本製鉄株式会社 Hot-stamped formed product
KR102450162B1 (en) 2018-03-29 2022-10-04 닛폰세이테츠 가부시키가이샤 Steel plate for hot stamping

Also Published As

Publication number Publication date
JP2002309345A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
US10934602B2 (en) High-strength flat steel product
KR100513991B1 (en) Method for production of thin steel sheet
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
KR101232972B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
EP1571230B1 (en) High tensile strength cold rolled steel sheet having excellent strain age hardening characteristics and the production thereof
KR100611541B1 (en) Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
US6692584B2 (en) High tensile cold-rolled steel sheet excellent in ductility and in strain aging hardening properties, and method for producing the same
JPWO2010137317A1 (en) High-strength steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet having excellent fatigue characteristics and elongation and impact characteristics, and methods for producing them
JP3846206B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP2007162078A (en) High strength steel sheet and production method
JP4123748B2 (en) Thin steel plate with excellent impact properties after quenching and method for producing the same
JP4687554B2 (en) Steel plate for quenched member, quenched member and method for producing the same
WO2021230079A1 (en) Steel sheet, member, and method for manufacturing same
JP4265582B2 (en) Hot-rolled steel sheet with excellent impact properties after quenching and method for producing the same
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
JP4519373B2 (en) High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
JP3952714B2 (en) Hot-rolled steel sheet having excellent toughness after quenching and manufacturing method thereof
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP4265583B2 (en) Cold-rolled steel sheet having excellent toughness after quenching and method for producing the same
JP2005171319A (en) Method for manufacturing high-strength cold-rolled steel sheet having superior ductility and formability for extension flange
JP2004270006A (en) Method of producing component having excellent shape-fixability
JP5034296B2 (en) Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JP2003064446A (en) Cold rolled steel sheet and plated cold rolled steel sheet each having excellent strain age hardening characteristic and free from degradation due to room- temperature aging, and manufacturing method of them
KR100573587B1 (en) Method for manufacturing Ultra High Strength Steel Sheet Having Excellent Bending Formability

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050811

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Ref document number: 4123748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees