JP2004270006A - Method of producing component having excellent shape-fixability - Google Patents

Method of producing component having excellent shape-fixability Download PDF

Info

Publication number
JP2004270006A
JP2004270006A JP2003065358A JP2003065358A JP2004270006A JP 2004270006 A JP2004270006 A JP 2004270006A JP 2003065358 A JP2003065358 A JP 2003065358A JP 2003065358 A JP2003065358 A JP 2003065358A JP 2004270006 A JP2004270006 A JP 2004270006A
Authority
JP
Japan
Prior art keywords
steel sheet
strength
less
amount
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003065358A
Other languages
Japanese (ja)
Inventor
Akio Tosaka
章男 登坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003065358A priority Critical patent/JP2004270006A/en
Publication of JP2004270006A publication Critical patent/JP2004270006A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a component which has excellent shape-fixability. <P>SOLUTION: A steel sheet having a composition comprising 0.01 to 0.25% C, ≤1.5% Si, 1.0 to 3.5% Mn, ≤0.01% P, ≤0.005% S, ≤0.02% Al and 0.0030 to 0.025% N, and comprising ≥0.0020% N in a solid solution state, and having a structure with a mean crystal grain size of ≤10 μm is subjected to working of performing plastic deformation in a mean strain amount of ≥2% at 100 to 500°C. Thus, the component having a reduced amount of spring back, and having high strength can be obtained. The component can comprise one or more kinds selected from Cu, Ni, Cr and Mo by ≤1.0% in total, and/or one or more kinds selected from Nb, Ti, V and B by ≤0.1% in total, and one or two kinds selected from Ca and rare earth metals by 0.0010 to 0.015% in total. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、主として種々の自動車用部品およびその要素部品に係り、とくに冷延鋼板、熱延鋼板、溶融亜鉛めっき鋼板などの鋼板を素材とする部品およびその要素部品の形状凍結性の向上に関する。
【0002】
【従来の技術】
地球環境問題への関心の高まりから、自動車に対しては、車体の軽量化が強く要求されている。車体重量を低減することにより、燃費が改善し、単位走行距離あたりに発生するCO、NOなどの汚染物質の量を低減することができるからである。車体を軽量化するための有力な手法の1つとして、より薄肉の、いわゆる高張力鋼板(以下、ハイテン材ともいう)を用いて、同等の特性を確保する方法がある。
【0003】
しかし、ハイテン材を使用する場合には、つぎのような問題点がある。
(1)ハイテン材は、延性(伸び)が低下し、プレス成形時に割れやネッキングを生じ易い。
(2)ハイテン材は、鋼板の強度が高いため、プレス成形が終了して金型から外した場合に、いわゆるスプリングバックという現象で部品の寸法精度が低下するとともに、ねじれ、しゃくれなどという形状不良発生の危険性が増加する。
(3)ハイテン材は、鋼板強度を増加させるために、種々の強化元素を鋼中に含有しているため、スポット溶接性、アーク溶接性などの特性が低下するとともに、めっき鋼板とする場合にはめっき付着性が低下する傾向を示す。
【0004】
ハイテン材を使用する場合のこのような問題に対し、例えば、延性を向上させ、強度−延性バランスに優れたDP鋼(Dual Phase鋼)などの複合組織型高張力鋼が開発されている。しかし、複合組織型ハイテン材は、延性に優れるものの、 強度が高いことによるスプリングバック、しゃくれ、ねじれなどの発生を防止することはできず、いわゆる形状凍結性が低いうえ、溶接性やめっき性の問題も未解決のままである。さらに、複合組織型ハイテン材の主たる強化機構は、いわゆる変態組織強化であるため、製造条件の変動に対して敏感であり材質の変動が大きくなる傾向がある。
【0005】
また、例えば、特許文献1には、歪時効硬化を利用したハイテン材(鋼板)が提案されている。この鋼板は成形時は低強度でありながら、プレス成形時の歪と塗装焼付時の熱処理との組み合わせで顕著に硬化するというものである。しかし、部品の強度特性が不足する場合があり、さらに強度の上昇が大きいハイテン材(鋼板)が強く要望されていた。
【0006】
また、特許文献2には、通常の低炭素鋼を素材とし、部品に成形した後に必要部分のみを局部的に加熱し、焼入れを行い、強度上昇を図る技術が提案されている。しかし、この技術では、十分に高い部品強度は得られるものの、焼入れ時の歪が極めて大きくなり、焼入れ後の形状矯正が必須であること、およびばらつきを生ずる要因が多く、品質管理や品質保証が難かしいという問題があった。
【0007】
【特許文献1】
特開昭55−141526号公報
【特許文献2】
特開2003−048567号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記した従来技術の問題を有利に解決し、鋼板を素材として、成形時には低強度で成形力が低く容易に成形でき、かつ成形後のスプリングバックが極めて小さく、極めて高精度な部品を容易に製造することができる、形状凍結性に優れた部品の製造方法を提案することを目的とする。また、本発明では、素材として使用する鋼板から期待される強度より、顕著に高い強度を有する部品を得ることを目的とする。なお、本発明が対象とする部品の主たる適用部位は、高い降伏応力と高い形状精度が要求される、いわゆる重要保安部品として位置づけられている、各種補強部材、ルーフサイドレール、シル(ロッカー)などのインナー部品など、自動車衝突時のエネルギー吸収に対応するものであり、品質の変動が小さく、部品の品質管理、品質保証が容易であることも重要となる。
【0009】
【課題を解決するための手段】
本発明者は、種々の成分、製造法の鋼板を製造し、多くの材質評価実験を行うとともに、これらの鋼板を用いてプレス成形実験を行い、部品の形状凍結性と部品の強度とを評価した。その結果、上記した課題を達成するためには、次のような技術を組み合わせること、すなわち、
(1)素材として使用する鋼板には、従来このような加工性が要求される分野にはあまり積極的に利用されていなかった窒素を強化元素として活用し、他の合金成分、微細組織を最適化した薄鋼板を適用すること、
(2)成形加工を、弾性率が顕著に低下せず、降伏応力が低下する100 〜500 ℃の温度で、歪量で2%以上の塑性変形を付与する加工とすること、
が有効であることを見出した。これにより、素材として使用する鋼板が持つ大きな歪時効硬化特性をプレス成形時およびその直後に発現させることができ、顕著な部品強度の増加が得られることを知見した。なお、プレス成形部品は位置により付与される歪量が異なるため、成形加工で付与する歪量は、部品全体での平均の歪量で規定する。
【0010】
本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、つぎのとおりである。
(1)鋼板を加工して部品とする部品の製造方法において、前記鋼板を、質量%で、C:0.01〜0.25%、Si:1.5 %以下、Mn:1.0 〜3.5 %、P:0.01%以下、S:0.005 %以下、Al:0.02%以下、N:0.0030〜0.025 %を含み、固溶状態のNを0.0020%以上含有する組成と、平均結晶粒径が10μm 以下の組織とを有する鋼板とし、前記加工を、100 ℃以上500 ℃以下の温度で平均歪量で2%以上の塑性変形を行う加工とすることを特徴とする形状凍結性に優れた部品の製造方法。
(2)(1)において、前記鋼板が、前記組成に加えてさらに、質量%で、Cu、Ni、Cr、Moのうちから選ばれた1種または2種以上を合計で1.0 %以下、および/または、Nb、Ti、V、Bのうちから選ばれた1種または2種以上を合計で0.1 %以下、を含有することを特徴とする部品の製造方法。
(3)(1)または(2)において、前記鋼板が、前記組成に加えてさらに、質量%で、Ca、REM のうちの1種または2種を合計で0.0010〜0.015 %含有することを特徴とする部品の製造方法。
(4)(1)ないし(3)のいずれかにおいて、前記加工が、1/s 以上の平均歪速度で塑性変形を行うことを特徴とする部品の製造方法。
【0011】
【発明の実施の形態】
本発明では、素材として鋼板を用い、塑性加工により部品とする。
素材とする鋼板は、冷延鋼板、熱延鋼板、および溶融亜鉛めっき鋼板等の各種めっき鋼板がいずれも好適に使用でき、また強度的には、軟鋼から、引張強さ(TS):590MPa程度までのいわゆる高強度鋼板を含む、鋼板がいずれも好適に使用できる。
【0012】
まず、用いる鋼板の組成限定理由について説明する。以下、組成における質量%は単に%と記す。
C:0.01〜0.25%
Cは、鋼板強度を増加させる元素であり、所望の部品強度を確保するために0.01%以上の含有を必要とする。C含有量が0.01%未満では、本発明の重要な要件の1つである結晶粒径の微細化を達成することが極めて困難になる。一方、0.25%を超えて含有すると、鋼中の炭化物の分率が増加することに起因して、鋼板の延性、さらには成形性が顕著に悪化する。さらにより重要な問題としては、C含有量が0.25%を超えるとスポット溶接性、アーク溶接性などが顕著に低下する。このため、Cは0.01〜0.25%の範囲に限定した。なお、成形性の向上という観点から、0.15%以下とすることが好ましい。特に良好な延性が重要となる用途に対しては、0.08%以下とすることがより好ましい。
【0013】
Si:1.5 %以下
Siは、強化元素の一つであり、延性を低下させることなく強度を上昇させる有効な元素である。このような効果は、0.02%以上の含有で顕著となる。一方、1.5 %を超えて含有すると、熱間変形抵抗が顕著に増加して加工時に多大な荷重を必要とし加工が困難となる場合も生じる。また、部品の形状凍結性が顕著に低下する。また、さらに、本発明の重要な要件である大きな歪時効硬化特性を得ることができなくなり、部品としての強度が低下する。このようなことから、Siは1.5 %以下に限定した。なお、広い製造条件の範囲で安定して歪時効硬化特性を確保するためには、Si含有量は低いほうが望ましく、0.5 %以下とすることが好ましい。
【0014】
Mn:1.0 〜3.5 %
Mnは、Sによる熱間割れを防止する有効な元素である。またMnは、結晶粒を顕著に微細化するとともに、固溶Nを安定して確保する作用も有している。このような効果は、1.0 %以上の含有で認められる。またMn含有量を高めることにより、熱延条件の変動に対する鋼板の機械的性質、とくに歪時効硬化特性の敏感性を顕著に改善するという大きな利点があるため、1.2 %以上とすることがさらに望ましい。一方、3.5 %を超えて過度に含有すると、詳細な機構は不明であるが、鋼板の熱間および温間での変形抵抗を増加させる傾向や、溶接性や溶接部の成形性を悪化する傾向があり、またフェライトの生成が顕著に抑制され延性が顕著に低下する。このようなことから、Mnは1.0 〜3.5 %の範囲に限定した。より良好な耐食性と成形性が要求される用途では2.5 %以下とすることが好ましい。
【0015】
P:0.01%以下
Pは、固溶強化により鋼の強度を増加させる元素であるが、多量の含有は鋼板を脆化させ、さらに鋼板の伸びフランジ加工性を悪化させ、また、鋼中において偏析する傾向が強いため、本発明ではできるだけ低減することが好ましく、本発明では、Pは0.01%以下に限定した。なお、伸びフランジ加工性が特に重要視される場合は、0.005 %以下とすることが好ましい。
【0016】
S:0.005 %以下
Sは、鋼板中では介在物として存在し、鋼板の延性を減少させるとともに、耐食性の劣化をもたらす元素であり、本発明では0.005 %以下に限定した。なお、特に良好な加工性が要求される用途においては0.003 %以下とすることが好ましい。また、詳細な機構は不明であるがSを0.002 %以下まで低減すると、歪時効硬化特性を安定して高いレベルに維持でき、高い部品強度を得ることができるため、Sは0.002 %以下とすることがより好ましい。
【0017】
Al:0.02%以下
Alは、脱酸剤として作用し、鋼の清浄度を向上させるのに有効な元素であり、また、鋼の組織微細化に寄与する元素であり、その意味では0.002 %以上含有することが望ましい。Al含有量が多くなると、表面性状が悪化するとともに、固溶Nが顕著に低下する。固溶Nの顕著な低下は、固溶状態のN(固溶N)を強化元素として利用する本発明では、部品強度の低下をもたらす。このようなことから、Alは従来より低い0.02%を上限とした。なお、材質の安定性という観点から、0.002 〜0.015 %の範囲とすることが好ましい。また、Al含有量の低減は結晶粒の粗大化につながる懸念があるが、本発明ではMn等の合金元素を最適量に制限するとともに、焼鈍条件を最適な範囲とすることにより結晶粒粗大化を防止する。
【0018】
N:0.0030〜0.025 %、かつ固溶状態のNを0.0020%以上
Nは、本発明においては最も重要な元素である。本発明では、適正範囲のNを含有し、さらに加えて、製造条件を制御することで塑性加工前の鋼板状態で必要かつ十分な固溶Nを確保する。これにより、固溶強化と歪時効硬化による強度(降伏応力および引張強さ)上昇効果が得られ、さらに、これらの強度増加が安定して得られるため、最終的に高い部品強度を安定して確保することができる。このような効果は、おおむね0.0030%以上のN含有によって安定して得られる。しかし、0.025 %を超えて含有すると、ブローホール等の鋼板の内部欠陥発生率が高くなるとともに、連続鋳造時のスラブ割れなどの発生も顕著となる。このようなことから、Nは0.0030〜0.025 %の範囲に限定した。なお、製造工程全体を考慮した材質の安定性・歩留り向上という観点から、0.0050〜0.0170%の範囲とすることが好ましい。なお、上記した範囲内であればNを含有しても溶接性等には全く悪影響はない。
【0019】
また、鋼板の十分な強度が確保され、さらに温間加工を付加した後のNによる歪時効硬化を有効に発揮されるためには、固溶状態のNは0.0020%以上とする必要がある。なお、本発明では、鋼中の全N量から、電解抽出による電解法で求めたN量(析出N)を差し引いた値を固溶Nとする。これは、析出Nの分析法について、種々の方法を検討したが、本発明法で採用した電解抽出による溶解法を適用する方法が最も良く、材質の変化と対応したことに基づく。また、さらに大きな温間加工後の歪時効硬化による降伏応力の増加、引張強さの増加が必要な場合は、固溶Nを0.0050%以上さらには0.0070%以上とすることが好ましい。
【0020】
Cu、Ni、Cr、Moのうちから選ばれた1種または2種以上を合計で1.0 %以下、および/または、Nb、Ti、V、Bのうちから選ばれた1種または2種以上を合計で0.1 %以下
Cu、Ni、Cr、Moは、いずれも固溶強化で鋼板の強度を増加させる作用、および焼入れ性を向上させ硬質な低温変態相を導入し鋼板を強化する作用を有し、必要に応じ選択して1種または2種以上含有できる。Cu、Ni、Cr、Moのうちから選ばれた1種または2種以上を合計で1.0 %超えて含有すると、溶接部が硬化し溶接部の成形性が劣化するとともに、温間での変形抵抗が増加する。
【0021】
また、Nb、Ti、V、Bは、いずれも窒化物あるいは炭窒化物を形成し、結晶粒径の均一かつ微細化に寄与するとともに、鋼板強度を増加させる作用も有し、必要に応じ選択して1種または2種以上含有できる。Nb、Ti、V、Bのうちから選ばれた1種または2種以上を合計で0.1 %を超えて含有すると、同様に溶接部が硬化し溶接部の成形性が劣化するとともに、温間での変形抵抗が増加する。また、本発明の最も重要な要件である温間加工による強度上昇の達成が困難になる。これは窒化物を形成することで固溶Nが顕著に低減し、固溶状態のNの確保が困難となることによる。
【0022】
また、Cu、Ni、Cr、Moの群とNb、Ti、V、Bの群とは、複合して含有することもできる。これら各群を複合して含有してもそれぞれの好ましい作用は相殺されることはない。なお、Cu、Ni、Cr、Moの群とNb、Ti、V、Bの群は単独でも複合して含有しても同様の挙動を示すため、熱間変形抵抗におよぼす実験式をもとに、Cu、Ni、Cr、Moの群は合計で1.0 %以下、Nb、Ti、V、Bの群は合計で0.1 %以下とおのおのの含有量の上限を設定した。なお、上記した効果を得るためには、Cu、Ni、Cr、Moの群は合計で0.05%以上、Nb、Ti、V、Bの群は合計で0.005 %以上含有することが好ましい。
【0023】
Ca、REM のうちの1種または2種を合計で0.0010〜0.015 %
Ca、REM は、介在物の形態制御に有効な元素であり、必要に応じ含有できる。とくに、伸びフランジ成形性が要求される場合には含有することが好ましい。Ca、REM のうちの1種または2種が合計で0.0010〜0.015 %とすることで表面欠陥の発生などを伴うことなく伸びフランジ特性を改善することができる。このため、本発明では、Ca、REM のうちの1種または2種は合計で0.0010〜0.015 %の範囲に限定することが好ましい。
【0024】
上記した成分以外の残部はFeおよび不可避的不純物とすることが望ましい。
ついで鋼板の組織限定理由について説明する。
平均結晶粒径:10μm 以下
鋼板の平均結晶粒径を微細化することにより、プレス成形時の塑性加工面の面性状が改善され、特に打抜き加工面の平滑性が向上する。また温間成形による歪時効硬化特性が向上するという効果もある。このような効果は、平均結晶粒径を概ね10μm 以下とすることで顕著となる。なお、顕著な歪時効硬化特性向上の観点からは8μm 以下とすることが好ましい。
【0025】
つぎに、上記した組成、組織を有し、本発明における素材として使用する鋼板の好ましい製造方法について説明する。
上記した組成の溶鋼を、転炉、電気炉等の公知の溶製法により溶製し、成分のマクロ偏析を防止すべく連続鋳造法で鋼板素材(スラブ)とすることが好ましい。なお、造塊−分塊法、薄スラブ鋳造法によっても良いことはいうまでもない。
【0026】
ついで、好ましい熱間圧延条件について、説明する。
連続鋳造法等で鋼板素材(スラブ)としたのち、いったん室温まで冷却し、その後再度加熱し、熱間圧延する従来法に加え、冷却しないで、温片のままで加熱炉に挿入する、あるいはわずかの保熱を行った後に直に熱間圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。特に固溶状態のNを有効に確保するには直送圧延は有用な技術の一つである。
【0027】
鋼板素材(スラブ)は、1000℃以上のスラブ加熱温度に加熱され、熱間圧延を施され熱延鋼板とされる。
鋼板素材(スラブ)の加熱温度(スラブ加熱温度SRT)は、初期状態として固溶状態のNを確保するという観点から、1000℃以上とすることが好ましい。なお、スラブ加熱温度は、酸化重量の増加に伴うロスの増大などから1280℃以下とすることが好ましい。
【0028】
熱間圧延は、均一微細な熱延鋼板組織を得るために、仕上圧延終了温度(FT)を800 ℃以上とすることが好ましい。仕上圧延終了温度が800 ℃未満では、熱延鋼板の組織が不均一になり、冷延、焼鈍を施しても組織の不均一性が残留し、プレス成形時に種々の不具合を発生する危険性が増大する。また、低い圧延温度の場合に加工組織の残留を回避すべく高い巻取温度を採用すると、粗大粒が発生しプレス成形時に不具合を生じる危険性が増大する。また、圧延温度の低下は、固溶Nの顕著な低下を招くため、所望の機械的特性を確保することが困難となる。なお、さらに機械的特性を向上させる必要がある場合には820 ℃以上とすることがより好ましい。なお、仕上圧延終了温度の上限はとくに限定されないが、過度に高い圧延温度の場合には、スケール疵などの発生が顕著となるため、概ね1000℃とすることが好ましい。
【0029】
なお、鋼板の形状・寸法精度の向上および鋼板の長手方向および幅方向の材質均一化のためには、熱間圧延工程にて、現在、一部で実用化されている連続圧延技術の適用は極めて有効な技術である。
連続的に圧延することにより、コイルの先端および後端のいわゆる圧延の非定常部がなくなり、安定した熱延条件がコイル全長および全幅に渡って達成可能である。この連続圧延の際の接合方法は、圧接法でも、レーザー溶接法、電子ビーム溶接法でもまたその他の接合法でもまったく同様に適用できる。また圧延後の鋼板をホットランテーブル上で冷却する場合にも常に張力を鋼板に付与できるため鋼板の形状を良好に保つことが可能である。また、連続圧延を行うことでコイル先端を安定して通板できるため、通常の単発のバッチ圧延条件では通板性および噛込み性の観点から適用できなかった潤滑圧延を適用することができる。これにより、圧延荷重を低減することができると同時にロールの面圧をも低減できロールの寿命延長が可能となる。
【0030】
また、材質均一化のために圧延温度をコイルの長手方向、幅方向に均一化するシートバーエッジヒーター、あるいはシートバーヒーターを加えて使用することは極めて有効である。シートバーエッジヒーターは、幅方向の圧延温度の差異を補償することができる。この際の加熱量は最終的な仕上圧延での温度差が概ね20℃以下となるような条件が推奨されるが、鋼組成その他で変化する。また、シートバーヒーターは、コイルの先尾端の温度低下部分をより均一なものとすることが可能である。この場合は加熱量は中央部に対して概ね+20℃の範囲が材質均一化という観点から推奨される。
【0031】
仕上圧延終了後の冷却パターンは特に規定されないが、熱延鋼板には、直に(概ね0.5s以内に)水冷を開始し、冷却中の平均冷却速度を40℃/s以上とする冷却を施すことがより好ましい。これにより、平均結晶粒径で10μm以下と結晶粒径の微細化が達成されやすくなり、熱延鋼板の固溶N量を0.0020%以上とし、歪時効硬化特性を大きくすることが容易になる。また、上記した冷却速度であれば、熱間圧延歪により、窒化アルミの析出が促進される高温域を速く冷却することができ、所望の固溶N量を容易に確保することができる。なお、冷却速度が、概ね300 ℃/sを上回ると材質の均一性と形状の均一性を両立するうえで不利となるため、冷却速度は300 ℃/s以下とすることが好ましい。なお、圧延後の冷却においてエッジ部の過冷却を防止するために幅方向に冷却水のマスキングを行う技術も材質均一化の観点では有利な技術の一つである。
【0032】
熱間圧延後、熱延鋼板はコイル状に巻き取られるが、巻取温度(CT)を650 ℃以下とすることが好ましい。巻取温度を低下させることで強度、歪時効特性は増加、改善する傾向にあるが、十分高い引張強さ、歪時効硬化量を得るには650 ℃以下の巻取温度とすることが好ましい。なお、巻取温度が200 ℃を下まわると鋼板の形状が顕著に乱れだし、実際の使用にあたり不具合を生ずる危険性が増大する。また、材質の均一性も低下する傾向にあり、望ましくないため、巻取温度は200 ℃以上とすることが好ましい。なお、さらに高い材質均一性が要求される場合には300 ℃以上とすることがより好ましい。
【0033】
本発明に使用する鋼板は、熱延ままのいわゆる黒皮状態の熱延鋼板、あるいは熱延後さらに酸洗を施した熱延鋼板、あるいは熱延後、あるいはさらに酸洗を施した後、冷間圧延−焼鈍を施した冷延鋼板、あるいは熱延鋼板または冷延鋼板を原板とし連続溶融めっき又は電気めっきラインにて各種のめっき処理を施しためっき鋼板がいずれも適用可能である。なお、酸洗は通常法に準じて行うことが好ましい。
【0034】
冷延鋼板の焼鈍は、再結晶温度以上900 ℃以下の温度で行うことが好ましい。焼鈍温度が再結晶温度未満でも強度は確保できるものの、未再結晶組織を含むため、延性が極めて低い。一方、900 ℃を超える温度では、Nが析出して固溶Nが減少する。なお、焼鈍は連続焼鈍法で行うことが、特性の均一化、高い歪時効硬化性の確保という観点から好ましい。さらに連続焼鈍法であれば、結晶粒径が微細化し、打抜き加工性の向上、ひいては伸びフランジ加工性の向上が期待できる。
【0035】
各種のめっき鋼板は、上記した熱延鋼板、あるいは冷延鋼板を原板とし、連続めっきラインで溶融めっき処理あるいは電気めっきラインにて電気めっき処理を施すことが好ましい。めっき種としては、合金化溶融亜鉛めっき、非合金化溶融亜鉛めっき、あるいは亜鉛をベースにしたAl等との合金めっき、Alめっき、Zn−Niめっきなどがいずれも適用できる。なお、上記した熱延鋼板、冷延鋼板、めっき鋼板は通常行われているように形状矯正のためスキンパス圧延を行ってもよい。
【0036】
本発明では、上記した組成および組織を有する鋼板に、100 ℃以上500 ℃以下の温度で平均歪量が2%以上の塑性変形を行う加工を施し部品とする。なお、鋼板の板厚はとくに限定する必要はない。鋼板が厚い場合でも薄い場合でも本発明の効果は発揮される。
次に、鋼板の加工条件限定理由について説明する。
【0037】
加工温度:100 ℃以上500 ℃以下
本発明では、加工温度は極めて重要な要件である。本発明で使用する鋼板は、概ね100 〜500 ℃の温度範囲では、加工中、ヤング率がほとんど低下せず、降伏点がやや低下し、引張強さが低下するという特徴を有している。このため、この温度範囲内で加工する場合には、プレス成形時の加工力が低下し、スプリングバック量が顕著に低下するため、部品の形状凍結性が顕著に改善される。このようなことから、本発明では、鋼板を100 ℃以上500 ℃以下の温度に加熱して、加工を施す。加工温度が、100 ℃未満では、鋼板強度の低下が少なくプレス成形時の加工力が高くなり、またスプリングバック量も多い傾向となる。一方、500 ℃を超えると、鋼板表面が酸化し易くなり表面性状が劣化する。なお、溶融亜鉛めっき鋼板などのめっき鋼板のめっき層の損傷が懸念される場合は、低めの温度で加工する温度条件を設定することが望ましい。
【0038】
鋼板の加熱方法は、とくに限定する必要はなく、通常の塗装焼付処理のように炉で雰囲気加熱される場合だけでなく、たとえば誘導加熱、無酸化炎、レーザー、プラズマ等による加熱も好適に適用できる。また、特に長時間の保熱処理も必要としない。なお、プレス型の加熱は必ずしも必要としない。加工が実質的にこの温度域で完成すればよい。また、加工( プレス成形) 後は、プレス金型からとり出して空冷しても、また水冷してもよい。また、金型に拘束したまま冷却してもよい。また、その後、通常の塗装・焼付け(おおむね170 ℃、20分の処理)によっても従来並以上の強度上昇はある。
【0039】
加工:平均歪量で2%以上の塑性変形
鋼板の加工は、上記した温度範囲で、平均歪量で2%以上の歪を付加する塑性変形を伴う加工とする。塑性変形量が、2%未満では板厚方向に均一な加工歪を付与することが困難なため形状寸法の精度が低下することに加え、十分な歪時効硬化が生じないため、所望の部品強度を得ることができない。なお、部分的には歪量が2%未満であっても、部品全体で平均して2%以上の歪量となれば十分な部品強度を得ることができる。なお、平均歪量は、2〜20%とすることが成形の安定性の観点から好ましい。なお、本発明でいう平均歪量とは、同一部品内での歪量の分布を考慮して、これらを平均して得られる歪量をいうものとする。なお、歪量の分布は鋼板表面にグリッドやスクライブドサークルを転写してからプレス加工し、その前後での変形歪量を定量化することで測定することができる。
【0040】
平均歪速度:1/s以上
加工における歪速度は通常プレス成形時に採用されるような平均歪速度で概ね1/s以上とすることが好ましい。歪速度(成形開始から終了までの平均歪速度)が1/s未満では、変形抵抗の変化量が小さく、メリットが小さい。また、工程時間も長くなり生産性が低下する可能性がある。また加工中の温度低下も大きい。なお、平均歪速度の上限は、とくに限定されないが、一般的なプレス成形条件の上限である10/s程度が目安となる。
【0041】
上記した組成および組織を有する鋼板に、上記した条件でいわゆる温間加工を施すことにより、得られる部品は、鋼板強度から期待される部品強度より、あるいは、通常の室温でのプレス成形を施し、あるいはさらに塗装焼付け処理を施し静的な歪時効硬化を加えて得られる部品強度より、高い部品強度を有する。この現象の正確な機構については、現在までには明確となっていないが、多量の固溶Nによる動的歪時効に関連した現象によるものと考えられる。
【0042】
本発明により製造された部品の強度は、素材である鋼板の強度と比較して、降伏応力YSで100MPa以上、引張強さTSで50MPa 以上上昇する。このことは、加工時には従来の同等強度の鋼板に比べて、より良加工(プレス成形)性を有し、部品に加工された後にはより高い部品強度が確保できる。
素材である鋼板にくらべ、部品におけるYS,TSがともにこの程度上昇すれば、同一の部品としての要求強度特性を概ね0.1mm 〜0.3mm 程度の薄い板厚で達成することができる。すなわち、より薄肉化が達成でき、部品の軽量化に寄与できる。なお、目安としてYSの上昇量が150MPa以上、TSの上昇量が80MPa 以上あれば、板厚にして0.2 〜0.5mm 程度に相当する顕著な薄肉化が期待できる。
【0043】
次に、実施例に基づき、本発明をさらに説明する。
【0044】
【実施例】
(実施例1)
まず、表1に示す成分を含み、残部が実質的にFeからなる溶鋼を転炉にて溶製し、連続鋳造法で鋼スラブとした。得られた鋼スラブに、表2に示す条件で熱間圧延を施し、さらに酸洗を施して熱延鋼板とした。また、一部の熱延鋼板に、引き続き、表2に示す条件の冷間圧延および連続焼鈍を施して冷延鋼板とした。また、一部の熱延鋼板または冷延鋼板に、表2に示すめっき付着量の溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板とした。なお、いずれの鋼板についても、表2に示す伸び率のスキンパス圧延を施した。
【0045】
得られた鋼板について、固溶N量、結晶粒径、引張特性、塗装焼付相当処理による歪時効硬化特性を調査した。なお、調査方法は次のとおりである。
(1) 固溶N量
得られた鋼板について、全N量を化学分析により、また析出N量を通常の電解抽出法で求め、固溶N量(=全N量−析出N量)を算出した。
(2)結晶粒径
得られた鋼板の幅方向中央部から試験片を採取し、ナイタール液で結晶粒界を現出し、光学顕微鏡あるいは走査型電子顕微鏡を用いて、板厚方向全体で10視野以上撮像し、画像解析装置で結晶粒の平均面積を算出し、円相当直径に換算し平均結晶粒径とした。
(3)引張特性
得られた鋼板から、圧延方向を長手方向とするJIS 5号引張試験片を採取し、JIS Z 2201の規定に準拠して引張試験を実施し、降伏応力YS、引張強さTS、伸びElを求めた。
(4)塗装焼付相当処理による歪時効硬化特性
得られた鋼板から、圧延方向を長手方向とするJIS 5号引張試験片を採取し、該引張試験片に、7%の予歪を付与したのち、170 ℃×20分の熱処理(塗装焼付相当処理)を行う歪時効処理を施したのち、再度引張試験を実施し、降伏応力YSBH、引張強さTSBHを求め、処理前後の強度差である、歪時効硬化量ΔYS、ΔTSを算出した。なお、ΔYS、ΔTSは、ΔYS=YSBH−σ%、ΔTS=TSBH−TSで定義される値である。ここで、YS、TSは、それぞれ鋼板の降伏応力、引張強さ、σ7%は7%予歪加工時の変形応力である。
【0046】
得られた結果を表3に示す。
【0047】
【表1】

Figure 2004270006
【0048】
【表2】
Figure 2004270006
【0049】
【表3】
Figure 2004270006
【0050】
また、これらの鋼板を用いて、表4に示す温間加工条件(加熱温度、平均歪速度、平均歪量)でプレス成形により塑性変形を加えて、図1(a)に示すハット形状の部材に成形した。
ここで、部材の平均歪量は以下のようにして求めた。
成形加工前の鋼板の表裏面に2mmφのスクライブドサークルをプリントし、成形加工後に各サークルの最大主歪、最小主歪を測定し、これらの値を用い、次(1)式、(2)式
εeq=√(2/3)×√(ε +ε +ε ) ……(1)
ε+ε+ε=0 ……(2)
ここで、εeq:相当塑性歪、ε:最大主歪、ε:最小主歪、ε:板厚歪
により各サークルにおける相当塑性歪を算出した。表裏面の各々のサークルにおける相当塑性歪量を足し合わせ、スクライブドサークルの総数で除して、平均の歪量とした。
【0051】
得られた部材について、まず、スプリングバック量を測定した。スプリングバック量は、図1(b)に示すように、加工時と金型から抜き出した後の開口部寸法の変化量(l−l)で定義される量である。
また、得られた部材の縦壁部の高さ方向中央から、部材長手方向を引張方向とするJIS 5号引張試験片(採取方向:圧延方向と直角の方向)を採取して、引張試験を実施し、部材の強度(降伏応力YSHP、引張強さTSHP)を求め、温間加工による強度の上昇量ΔYSHP、ΔTSHPを求めた。なお、ΔYSHP、ΔTSHPは、ΔYSHP=YSHP−YS、ΔTSHP=TSHP−TSで定義される値である。ここで、YS、TSは元の鋼板の降伏応力、引張強さを表す。なお、ハット形状の部材においては、縦壁部の強度が最も重要な強度要素と考えている。
【0052】
また、比較例として、プレス成形(加工)温度を室温とする以外は、上記した温間加工条件と同一条件で、鋼板にプレス成形を施して同一ハット形状の部材に成形した。これら部材について、同様に部材のスプリングバック量を測定した。また、部材の縦壁部から引張試験片を採取して引張試験を実施し、部材強度(降伏応力YSRP、引張強さTSRP)を求めた。得られた部材の降伏応力YSRP、引張強さTSRPから、室温加工による強度の上昇量ΔYSRP、ΔTSRPを算出した。なお、ΔYSRP、ΔTSRPは、ΔYSRP=YSRP−YS、ΔTSRP=TSRP−TSで定義される値である。ここで、YS、TSは元の鋼板の降伏応力、引張強さを表す。
【0053】
また、得られた部材を用いて、落錘試験を実施した。プレス成形で得られたハット形状の部材の開口部に同一素材の鋼板を組み合わせスポット溶接でボックス型の試験体として、図2に示す要領で、支点間に試験体を載置し、圧子を介し試験体に衝撃荷重を負荷し、荷重と変位の関係を測定し顕著な座屈を生ずる前の最大荷重を求めた。
【0054】
得られた結果を表4に示す。なお、スプリングバック量は、スプリングバック量比、(温間加工スプリングバック量)/(室温加工スプリングバック量)で示している。また、落錘試験における最大荷重比は、同一鋼板を用いて得られた部品について、(温間加工部品の最大荷重)/(室温加工部品の最大荷重)で定義される値を用いている。
【0055】
【表4】
Figure 2004270006
【0056】
【表5】
Figure 2004270006
【0057】
本発明範囲内の条件で加工された部材(本発明例)はいずれも、室温加工の部材(比較例)に比べても、スプリングバック量が少なく形状凍結性に優れるうえ、鋼板強度から期待される強度より、あるいは室温加工の部材(比較例)より高い部材強度を有している。
また、軟鋼板(鋼板No.15)を用いた部材に比べても形状凍結性に優れかつ高強度の部材が得られている。
【0058】
なお、成形後、通常の塗装焼付け処理を行った後、部材強度を調べたが、塗装焼付け処理による強度上昇量は本発明例と室温加工の部材でほぼ同等であり、本発明例では上記で調査したように、塗装焼付け処理を施した後でも高い部材強度を有することを確認した。
(実施例2)
表5に示す成分を含み、残部が実質的にFeからなる溶鋼を転炉にて溶製し、連続鋳造法で鋼スラブとした。得られた鋼スラブに、表6に示す条件で熱間圧延を施し、さらに酸洗を施して熱延鋼板とした。また、一部の熱延鋼板については、引き続き、表6に示す条件の冷間圧延および連続焼鈍を施して冷延鋼板とした。また、一部の熱延鋼板または冷延鋼板に、表6に示すめっき付着量の溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板とした。なお、いずれの鋼板についても、表6に示す伸び率のスキンパス圧延を施した。また、この実施例2ではスキンパス圧延を施しているが、鋼板の形状に問題なければスキンパス圧延を省略してもよい。
【0059】
得られた鋼板について、実施例1と同様に、固溶N量、結晶粒径、引張特性、塗装焼付相当処理による歪時効硬化特性を調査した。
得られた結果を表7に示す。
【0060】
【表6】
Figure 2004270006
【0061】
【表7】
Figure 2004270006
【0062】
【表8】
Figure 2004270006
【0063】
また、これらの鋼板を用いて、表8に示す温間加工条件(加熱温度、平均歪速度、平均歪量)でプレス成形により塑性変形を加えて、図1(a)に示すハット形状の部材に成形した。
得られた部材について、実施例1と同様に、スプリングバック量を測定した。また、得られた部材の縦壁部の高さ方向中央から部材長手方向を引張方向とするJIS 5号引張試験片(採取方向:圧延方向と直角の方向)を採取して、実施例1と同様に、引張試験を実施し、部材の代表的強度と思われる部材の強度(降伏応力YSHP、引張強さTSHP)を求め、温間加工による強度の上昇量ΔYSHP、ΔTSHPを求めた。
【0064】
また、実施例1と同様に、比較例として、プレス成形(加工)温度を室温とする以外は、上記した温間加工条件と同一条件で、鋼板にプレス成形を施して同一ハット形状の部材に成形し、同様に部材のスプリングバック量を測定した。また、実施例1と同様に、部材の縦壁部から引張試験片を採取して引張試験を実施して、降伏応力YSRP、引張強さTSRPを求め室温加工による強度の上昇量ΔYSRP、ΔTSRPを算出した。
【0065】
さらに、実施例1と同様に、得られた部材について、開口部に同種の鋼板をスポット溶接して落錘試験を実施した。プレス成形で得られたハット形状の部材を試験体として、図2に示す要領で、支点間に試験体を載置し、実施例1と同様に、圧子を介し試験体に衝撃荷重を負荷し、顕著な座屈発生までの最大荷重を求めた。
【0066】
得られた結果を表8に示す。なお、スプリングバック量は、スプリングバック量比、(温間加工スプリングバック量)/(室温加工スプリングバック量)で示している。また、落錘試験における最大荷重比は、同一鋼板を用いて得られた部材について、(温間加工部品の最大荷重)/(室温加工部品の最大荷重)で定義される値を用いている。
【0067】
【表9】
Figure 2004270006
【0068】
【表10】
Figure 2004270006
【0069】
本発明範囲内の条件で加工された部材(本発明例)はいずれも、室温加工の部材(比較例)に比べても、スプリングバック量が少なく形状凍結性に優れるうえ、鋼板強度から期待される強度より、あるいは室温加工の部材(比較例)より高い部材強度を有している。また、軟鋼板(鋼板No.15)を用いた部材に比べても損色のない形状凍結性に優れかつ高強度の部材が得られている。
【0070】
【発明の効果】
本発明によれば、スプリングバックに代表される形状凍結性の低下を防止しつつ、十分に高い部品強度を有する部品を容易にしかも安価に製造でき、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】実施例で用いた(a)部品形状、(b)スプリングバック、を模式的に示す説明図である。
【図2】落錘試験の要領を模式的に示す、(a)正面図、(b)側面図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to various automotive parts and their component parts, and more particularly to a part made of a steel sheet such as a cold-rolled steel sheet, a hot-rolled steel sheet, a hot-dip galvanized steel sheet, and an improvement in shape freezing properties of the element parts.
[0002]
[Prior art]
With increasing interest in global environmental issues, there is a strong demand for automobiles to be lighter in weight. By reducing the body weight, fuel efficiency is improved and CO generated per unit mileage is reduced.2, NOXThis is because the amount of contaminants such as can be reduced. As one of the powerful methods for reducing the weight of a vehicle body, there is a method of using a thinner so-called high-tensile steel sheet (hereinafter, also referred to as a high-tensile material) to secure the same characteristics.
[0003]
However, when a high tensile material is used, there are the following problems.
(1) The high-tensile material has a reduced ductility (elongation) and is liable to crack or neck at the time of press molding.
(2) Since the high-tensile steel has a high strength of the steel sheet, when the press forming is completed and the metal is removed from the mold, the dimensional accuracy of the parts is reduced due to a phenomenon called so-called springback, and shape defects such as twisting and bulging are caused. The risk of occurrence increases.
(3) Since high-tensile steel contains various strengthening elements in steel in order to increase the strength of the steel sheet, properties such as spot weldability and arc weldability are reduced, and when high-tensile steel is used as a plated steel sheet. Indicates that the plating adhesion tends to decrease.
[0004]
In order to solve such a problem when a high-tensile material is used, for example, a composite structure type high-strength steel such as DP steel (Dual Phase steel) having improved ductility and excellent strength-ductility balance has been developed. However, although the composite structure type high-tensile material has excellent ductility, it cannot prevent the occurrence of springback, squatting, twisting, etc. due to its high strength. The problem remains unresolved. Furthermore, since the main strengthening mechanism of the composite structure type high-tensile material is so-called transformed structure strengthening, it is susceptible to a change in manufacturing conditions, and the change in the material tends to be large.
[0005]
Also, for example, Patent Document 1 proposes a high-tensile material (steel plate) using strain age hardening. This steel sheet has low strength at the time of forming, but is remarkably hardened by a combination of strain at the time of press forming and heat treatment at the time of paint baking. However, there are cases where the strength characteristics of the parts are insufficient, and there is a strong demand for a high-tensile material (steel plate) having a large increase in strength.
[0006]
Further, Patent Literature 2 proposes a technique in which ordinary low-carbon steel is used as a raw material, and after forming into a part, only a necessary portion is locally heated and quenched to increase the strength. However, with this technology, although sufficiently high component strength can be obtained, distortion during quenching becomes extremely large, shape correction after quenching is indispensable, and there are many factors that cause variations, and quality control and quality assurance are difficult. There was a problem that it was difficult.
[0007]
[Patent Document 1]
JP-A-55-141526
[Patent Document 2]
JP-A-2003-048567
[0008]
[Problems to be solved by the invention]
The present invention advantageously solves the above-mentioned problems of the prior art, and uses a steel plate as a material, and has a low strength and a low forming force at the time of forming, can be easily formed, and has a very small springback after forming, and has extremely high precision. It is an object of the present invention to propose a method of manufacturing a part having excellent shape freezing properties, which can easily manufacture a component. Another object of the present invention is to obtain a component having a significantly higher strength than expected from a steel sheet used as a material. The main application parts of the parts targeted by the present invention are various reinforcing members, roof side rails, sills (rockers), etc., which are positioned as so-called important security parts that require high yield stress and high shape accuracy. It is important to cope with energy absorption at the time of vehicle collision, such as inner parts, and to have small fluctuations in quality, and easy quality control and quality assurance of parts.
[0009]
[Means for Solving the Problems]
The present inventor manufactures steel sheets of various components and manufacturing methods, performs many material evaluation experiments, and performs press forming experiments using these steel sheets to evaluate the shape freezing property of the parts and the strength of the parts. did. As a result, in order to achieve the above-mentioned subject, the following technologies are combined, that is,
(1) For the steel sheet used as a raw material, nitrogen, which has not been actively used so far in fields where such workability is required, is utilized as a strengthening element, and other alloy components and microstructures are optimized. Applying thinned steel sheet,
(2) The forming process is a process of giving a plastic deformation of 2% or more in terms of strain at a temperature of 100 to 500 ° C. at which the elastic modulus does not significantly decrease and the yield stress decreases.
Was found to be effective. As a result, it has been found that a large strain age hardening characteristic of a steel sheet used as a material can be exhibited during and immediately after press forming, and a remarkable increase in component strength can be obtained. Since the amount of strain applied to a press-formed part varies depending on the position, the amount of strain applied in the forming process is defined by the average amount of distortion of the entire part.
[0010]
The present invention has been completed based on the above findings, with further investigations. That is, the gist of the present invention is as follows.
(1) In the method of manufacturing a part which is a part formed by processing a steel sheet, the steel sheet is expressed by mass% of C: 0.01 to 0.25%, Si: 1.5% or less, Mn: 1.0 to It contains 3.5%, P: 0.01% or less, S: 0.005% or less, Al: 0.02% or less, and N: 0.0030 to 0.025%. A steel sheet having a composition containing 0020% or more and a structure having an average crystal grain size of 10 μm or less; and performing the above-mentioned processing by performing plastic deformation of 2% or more with an average strain amount at a temperature of 100 ° C. or more and 500 ° C. or less. A method for producing a part having excellent shape freezing characteristics.
(2) In (1), the steel sheet may further include, in addition to the composition, one or more selected from Cu, Ni, Cr, and Mo in a mass% of 1.0% or less in total. And / or 0.1% or less in total of one or more selected from Nb, Ti, V, and B.
(3) In (1) or (2), the steel sheet further contains, by mass%, one or two of Ca and REM in a total amount of 0.0010 to 0.015% in addition to the composition. A method for manufacturing a component, comprising:
(4) The method for manufacturing a component according to any one of (1) to (3), wherein the working is plastically deformed at an average strain rate of 1 / s or more.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a steel plate is used as a material, and a part is formed by plastic working.
As the steel sheet to be used as the material, any of various types of coated steel sheets such as a cold-rolled steel sheet, a hot-rolled steel sheet, and a hot-dip galvanized steel sheet can be suitably used. In terms of strength, from mild steel, tensile strength (TS): about 590 MPa Any of the steel sheets including the so-called high-strength steel sheets can be suitably used.
[0012]
First, the reasons for limiting the composition of the steel sheet used will be described. Hereinafter, mass% in the composition is simply referred to as%.
C: 0.01 to 0.25%
C is an element that increases the strength of the steel sheet, and requires 0.01% or more of C in order to secure a desired component strength. If the C content is less than 0.01%, it becomes extremely difficult to achieve the refinement of the crystal grain size, which is one of the important requirements of the present invention. On the other hand, when the content exceeds 0.25%, the ductility and the formability of the steel sheet are significantly deteriorated due to an increase in the fraction of carbides in the steel. As an even more important problem, when the C content exceeds 0.25%, spot weldability, arc weldability, and the like are significantly reduced. For this reason, C is limited to the range of 0.01 to 0.25%. In addition, it is preferable to set it as 0.15% or less from a viewpoint of improvement of a moldability. For applications in which good ductility is particularly important, the content is more preferably 0.08% or less.
[0013]
Si: 1.5% or less
Si is one of the strengthening elements and is an effective element for increasing the strength without lowering the ductility. Such effects become remarkable when the content is 0.02% or more. On the other hand, if the content exceeds 1.5%, the hot deformation resistance is remarkably increased, and a large load is required at the time of working, which may make working difficult. Further, the shape freezing property of the part is significantly reduced. Further, it is not possible to obtain a large strain age hardening property which is an important requirement of the present invention, and the strength as a part is reduced. For this reason, Si is limited to 1.5% or less. In order to stably secure the strain aging hardening characteristics in a wide range of manufacturing conditions, the lower the Si content, the better, and preferably 0.5% or less.
[0014]
Mn: 1.0 to 3.5%
Mn is an effective element for preventing hot cracking due to S. Mn also has the effect of remarkably reducing the size of crystal grains and stably securing solid solution N. Such an effect is recognized at a content of 1.0% or more. Further, by increasing the Mn content, there is a great advantage that the mechanical properties of the steel sheet to the fluctuation of the hot rolling conditions, particularly the sensitivity of the strain aging hardening characteristics are remarkably improved. More desirable. On the other hand, if the content is excessively more than 3.5%, the detailed mechanism is unknown, but the tendency to increase the hot and warm deformation resistance of the steel sheet and the weldability and the formability of the welded portion are deteriorated. In addition, the formation of ferrite is significantly suppressed, and the ductility is significantly reduced. For these reasons, Mn is limited to the range of 1.0 to 3.5%. For applications requiring better corrosion resistance and moldability, the content is preferably 2.5% or less.
[0015]
P: 0.01% or less
P is an element that increases the strength of steel by solid solution strengthening. However, a large amount of P makes the steel sheet brittle, further deteriorates the stretch flangeability of the steel sheet, and has a strong tendency to segregate in the steel. In the present invention, it is preferable to reduce as much as possible. In the present invention, P is limited to 0.01% or less. When the stretch flangeability is particularly important, the content is preferably 0.005% or less.
[0016]
S: 0.005% or less
S is an element that exists as an inclusion in the steel sheet, reduces the ductility of the steel sheet, and deteriorates the corrosion resistance. In the present invention, S is limited to 0.005% or less. In addition, it is preferably 0.003% or less for applications requiring particularly good workability. Although the detailed mechanism is unknown, if S is reduced to 0.002% or less, strain aging hardening characteristics can be stably maintained at a high level, and high component strength can be obtained. % Is more preferable.
[0017]
Al: 0.02% or less
Al is an element that acts as a deoxidizing agent and is effective in improving the cleanliness of steel, and is an element that contributes to the refinement of the structure of steel. In this sense, the content of Al is 0.002% or more. Is desirable. When the Al content is increased, the surface properties are deteriorated, and the amount of dissolved N is significantly reduced. The remarkable decrease in solid solution N causes a decrease in component strength in the present invention in which solid solution N (solid solution N) is used as a strengthening element. For these reasons, the upper limit of Al is set to 0.02%, which is lower than the conventional value. In addition, from the viewpoint of material stability, the content is preferably in the range of 0.002 to 0.015%. In addition, although there is a concern that reduction of the Al content may lead to coarsening of the crystal grains, in the present invention, alloy elements such as Mn are limited to an optimum amount, and the coarsening of the crystal grains is performed by setting the annealing conditions in the optimum range. To prevent
[0018]
N: 0.0030 to 0.025%, and 0.0020% or more of N in a solid solution state
N is the most important element in the present invention. In the present invention, N is contained in an appropriate range, and in addition, by controlling the manufacturing conditions, necessary and sufficient solid solution N is ensured in a steel sheet state before plastic working. As a result, the effect of increasing the strength (yield stress and tensile strength) by solid solution strengthening and strain age hardening can be obtained, and furthermore, these strength increases can be obtained in a stable manner. Can be secured. Such an effect can be stably obtained by containing about 0.0030% or more of N. However, when the content exceeds 0.025%, the internal defect occurrence rate of a steel plate such as a blow hole becomes high, and the occurrence of slab cracks during continuous casting becomes remarkable. For these reasons, N is limited to the range of 0.0030 to 0.025%. In addition, it is preferable to set it in the range of 0.0050 to 0.0170% from the viewpoint of improving the stability and yield of the material in consideration of the entire manufacturing process. In addition, as long as it is within the above range, even if N is contained, there is no adverse effect on weldability and the like.
[0019]
Further, in order to ensure sufficient strength of the steel sheet and to effectively exhibit strain age hardening due to N after the addition of warm working, N in the solid solution state needs to be 0.0020% or more. is there. In the present invention, a value obtained by subtracting the N amount (precipitated N) obtained by the electrolytic method by electrolytic extraction from the total N amount in the steel is defined as solid solution N. This is based on the fact that various methods for analyzing precipitated N were examined, but the method of applying the dissolution method by electrolytic extraction employed in the method of the present invention was the best and corresponded to the change in material. Further, when it is necessary to increase the yield stress and the tensile strength due to strain age hardening after a further warm working, the solute N is preferably set to 0.0050% or more, more preferably 0.0070% or more. .
[0020]
One or more selected from Cu, Ni, Cr, and Mo in a total of 1.0% or less, and / or one or two selected from Nb, Ti, V, and B 0.1% or less in total
Cu, Ni, Cr, and Mo all have the effect of increasing the strength of the steel sheet by solid solution strengthening, and the function of improving the hardenability and introducing a hard low-temperature transformation phase to strengthen the steel sheet. One or two or more kinds. If one or more selected from Cu, Ni, Cr, and Mo are contained in a total amount of more than 1.0%, the weld is hardened, the formability of the weld is deteriorated, and the Deformation resistance increases.
[0021]
In addition, Nb, Ti, V, and B all form nitrides or carbonitrides, contribute to uniform and fine crystal grain size, and also have the effect of increasing the strength of a steel sheet. One or two or more kinds. When one or more selected from Nb, Ti, V, and B are contained in a total of more than 0.1%, the weld is similarly hardened, the formability of the weld is deteriorated, and the temperature is lowered. The deformation resistance between them increases. Further, it is difficult to achieve the increase in strength by warm working, which is the most important requirement of the present invention. This is because the formation of nitride significantly reduces the amount of dissolved N and makes it difficult to secure N in the dissolved state.
[0022]
Further, the group of Cu, Ni, Cr, and Mo and the group of Nb, Ti, V, and B can be contained in a complex form. Even if these groups are contained in combination, their preferable effects are not offset. The group of Cu, Ni, Cr, Mo and the group of Nb, Ti, V, B show the same behavior when used alone or in combination. , Cu, Ni, Cr, and Mo groups were 1.0% or less in total, and the groups of Nb, Ti, V, and B were 0.1% or less in total, and the upper limit of each content was set. In order to obtain the above-described effects, the group of Cu, Ni, Cr, and Mo may contain 0.05% or more in total, and the group of Nb, Ti, V, and B may contain 0.005% or more in total. preferable.
[0023]
Ca, REM 1 or 2 types in total 0.0010 to 0.015%
Ca and REM are effective elements for controlling the morphology of inclusions, and can be contained as necessary. In particular, when stretch-flange formability is required, it is preferably contained. By setting the total amount of one or two of Ca and REM to 0.0010 to 0.015%, stretch flange characteristics can be improved without occurrence of surface defects. For this reason, in the present invention, it is preferable that one or two of Ca and REM are limited to a range of 0.0010 to 0.015% in total.
[0024]
The balance other than the above components is desirably Fe and unavoidable impurities.
Next, the reasons for limiting the structure of the steel sheet will be described.
Average grain size: 10 μm or less
By reducing the average crystal grain size of the steel sheet, the surface properties of the plastically worked surface during press forming are improved, and in particular, the smoothness of the punched surface is improved. Also, there is an effect that the strain age hardening property by warm forming is improved. Such an effect becomes remarkable when the average crystal grain size is set to approximately 10 μm or less. In addition, from the viewpoint of remarkable improvement in strain age hardening characteristics, the thickness is preferably 8 μm or less.
[0025]
Next, a preferred method for producing a steel sheet having the above-described composition and structure and used as a material in the present invention will be described.
It is preferable that the molten steel having the above-described composition is smelted by a known smelting method such as a converter or an electric furnace, and a steel sheet material (slab) is formed by a continuous casting method in order to prevent macro segregation of components. Needless to say, an ingot-bulking method or a thin slab casting method may be used.
[0026]
Next, preferable hot rolling conditions will be described.
After the steel sheet material (slab) is made by continuous casting, etc., it is cooled to room temperature, then heated again, and then hot-rolled. Energy saving processes such as direct rolling and direct rolling, in which hot rolling is performed immediately after performing a slight heat retention, can be applied without any problem. In particular, direct rolling is one of useful techniques for effectively securing N in a solid solution state.
[0027]
The steel sheet material (slab) is heated to a slab heating temperature of 1000 ° C. or more, and is subjected to hot rolling to be a hot-rolled steel sheet.
The heating temperature (slab heating temperature SRT) of the steel sheet material (slab) is preferably 1000 ° C. or higher from the viewpoint of securing N in a solid solution state as an initial state. Note that the slab heating temperature is preferably set to 1280 ° C. or lower from the viewpoint of an increase in loss due to an increase in the weight of oxidation.
[0028]
In the hot rolling, the finish rolling temperature (FT) is preferably set to 800 ° C. or higher in order to obtain a uniform and fine hot-rolled steel sheet structure. If the finish rolling end temperature is less than 800 ° C., the microstructure of the hot-rolled steel sheet becomes non-uniform, the non-uniform microstructure remains even after cold rolling and annealing, and there is a risk that various problems occur during press forming. Increase. Further, if a high winding temperature is used to avoid the remaining of the processed structure in the case of a low rolling temperature, there is an increased risk of generating coarse grains and causing trouble during press forming. Further, a decrease in the rolling temperature causes a significant decrease in the solute N, and thus it is difficult to secure desired mechanical properties. When it is necessary to further improve the mechanical properties, the temperature is more preferably set to 820 ° C. or higher. The upper limit of the finish rolling end temperature is not particularly limited, but when the rolling temperature is excessively high, scale flaws and the like are remarkably generated.
[0029]
In order to improve the shape and dimensional accuracy of the steel sheet and to make the material uniform in the longitudinal and width directions of the steel sheet, in the hot rolling process, the application of continuous rolling technology that is currently practically used in a part of the steel sheet is required. This is an extremely effective technology.
By performing continuous rolling, the so-called rolling unsteady portions at the leading and trailing ends of the coil are eliminated, and stable hot rolling conditions can be achieved over the entire length and width of the coil. The joining method at the time of the continuous rolling can be applied to the welding method, the laser welding method, the electron beam welding method, or any other joining method. Further, even when the rolled steel sheet is cooled on a hot run table, tension can always be applied to the steel sheet, so that the shape of the steel sheet can be kept good. In addition, since the coil tip can be stably threaded by performing continuous rolling, lubricating rolling that could not be applied from the viewpoint of threading properties and biting properties under ordinary single-shot batch rolling conditions can be applied. As a result, the rolling load can be reduced, and at the same time, the surface pressure of the roll can be reduced, and the life of the roll can be extended.
[0030]
It is extremely effective to use a sheet bar edge heater or a sheet bar heater for making the rolling temperature uniform in the longitudinal direction and the width direction of the coil in order to make the material uniform. The sheet bar edge heater can compensate for the difference in the rolling temperature in the width direction. It is recommended that the amount of heating at this time be such that the temperature difference in the final finish rolling is approximately 20 ° C. or less, but varies depending on the steel composition and the like. Further, the seat bar heater can make the temperature drop portion at the leading end of the coil more uniform. In this case, the heating amount is generally recommended to be in the range of + 20 ° C. with respect to the central portion from the viewpoint of uniforming the material.
[0031]
Although the cooling pattern after the finish rolling is not particularly defined, the hot-rolled steel sheet is immediately cooled with water (within approximately 0.5 s), and is cooled at an average cooling rate of 40 ° C./s or more during cooling. It is more preferable to apply. Thereby, it becomes easy to achieve the refinement of the crystal grain size with an average crystal grain size of 10 μm or less, and it is easy to increase the amount of solute N of the hot-rolled steel sheet to 0.0020% or more and to increase the strain age hardening characteristics. Become. Further, with the cooling rate described above, a high-temperature region in which precipitation of aluminum nitride is promoted can be rapidly cooled by hot rolling strain, and a desired amount of solute N can be easily secured. If the cooling rate exceeds approximately 300 ° C./s, it is disadvantageous in achieving both the uniformity of the material and the uniformity of the shape. Therefore, the cooling rate is preferably 300 ° C./s or less. A technique of masking the cooling water in the width direction in order to prevent the edge portion from being excessively cooled in the cooling after the rolling is also one of the advantageous techniques from the viewpoint of uniformity of the material.
[0032]
After hot rolling, the hot-rolled steel sheet is wound into a coil, and the winding temperature (CT) is preferably set to 650 ° C. or lower. Although the strength and strain aging characteristics tend to increase and improve by lowering the winding temperature, the winding temperature is preferably 650 ° C. or lower in order to obtain a sufficiently high tensile strength and the amount of strain aging hardening. If the winding temperature is lower than 200 ° C., the shape of the steel sheet is remarkably disturbed, and the risk of causing a problem in actual use increases. In addition, the uniformity of the material tends to decrease, which is not desirable. Therefore, the winding temperature is preferably set to 200 ° C. or higher. When higher material uniformity is required, the temperature is more preferably set to 300 ° C. or higher.
[0033]
The steel sheet used in the present invention is a hot-rolled steel sheet in a so-called black scale state as hot-rolled, or a hot-rolled steel sheet further subjected to pickling after hot rolling, or after hot rolling, or further subjected to pickling, and then cooled. A cold rolled steel sheet that has been subjected to cold rolling and annealing, or a plated steel sheet that has been subjected to various plating treatments in a continuous hot-dip plating or electroplating line using a hot-rolled steel sheet or a cold-rolled steel sheet as an original sheet can be applied. The pickling is preferably performed according to a usual method.
[0034]
Annealing of the cold-rolled steel sheet is preferably performed at a temperature not lower than the recrystallization temperature and not higher than 900 ° C. Although the strength can be ensured even when the annealing temperature is lower than the recrystallization temperature, ductility is extremely low due to the inclusion of an unrecrystallized structure. On the other hand, at a temperature exceeding 900 ° C., N precipitates and solute N decreases. Annealing is preferably performed by a continuous annealing method from the viewpoint of uniformity of characteristics and securing high strain age hardening. Further, in the case of the continuous annealing method, the crystal grain size becomes finer, and improvement in punching workability and, in turn, improvement in stretch flangeability can be expected.
[0035]
Various types of plated steel sheets are preferably prepared by using the above-mentioned hot-rolled steel sheets or cold-rolled steel sheets as base plates and subjecting them to a hot-dip plating process in a continuous plating line or an electroplating process in an electroplating line. As a plating type, any of alloyed hot-dip galvanizing, non-alloyed hot-dip galvanizing, zinc-based alloy plating with Al or the like, Al plating, Zn-Ni plating, and the like can be applied. The above-mentioned hot-rolled steel sheet, cold-rolled steel sheet, and plated steel sheet may be subjected to skin pass rolling for shape correction as is usually performed.
[0036]
In the present invention, a steel sheet having the above-described composition and structure is subjected to plastic deformation with an average strain of 2% or more at a temperature of 100 ° C. or more and 500 ° C. or less. The thickness of the steel plate does not need to be particularly limited. The effect of the present invention is exhibited regardless of whether the steel plate is thick or thin.
Next, the reason for limiting the processing conditions of the steel sheet will be described.
[0037]
Processing temperature: 100 ° C or more and 500 ° C or less
In the present invention, processing temperature is a very important requirement. The steel sheet used in the present invention has a characteristic that, in the temperature range of approximately 100 to 500 ° C., the Young's modulus hardly decreases during the processing, the yield point slightly decreases, and the tensile strength decreases. Therefore, when processing is performed within this temperature range, the processing force during press forming is reduced, and the amount of springback is significantly reduced, so that the shape freezing property of the part is significantly improved. For this reason, in the present invention, the steel sheet is processed by being heated to a temperature of 100 ° C. or more and 500 ° C. or less. If the working temperature is less than 100 ° C., the strength of the steel sheet will not decrease much, the working force during press forming will be high, and the amount of springback will tend to be large. On the other hand, when the temperature exceeds 500 ° C., the surface of the steel sheet is easily oxidized, and the surface properties deteriorate. In addition, when there is a concern that the coating layer of a galvanized steel sheet such as a hot-dip galvanized steel sheet may be damaged, it is desirable to set a temperature condition for processing at a lower temperature.
[0038]
The heating method of the steel sheet is not particularly limited, and is not limited to the case where the atmosphere is heated in a furnace as in a normal coating baking treatment, but also suitably applied, for example, induction heating, non-oxidizing flame, laser, plasma, etc. it can. In addition, no long-term heat treatment is required. Note that heating of the press mold is not always necessary. Processing may be completed substantially in this temperature range. After the processing (press forming), it may be taken out of the press die and air-cooled or water-cooled. Further, the cooling may be performed while being restrained by the mold. After that, the strength can be increased more than usual by ordinary painting and baking (approximately 170 ° C., treatment for 20 minutes).
[0039]
Processing: plastic deformation of 2% or more in average strain
The processing of the steel sheet is processing accompanied by plastic deformation in which a strain of 2% or more in average strain is added in the above-mentioned temperature range. If the amount of plastic deformation is less than 2%, it is difficult to impart a uniform working strain in the thickness direction, so that the accuracy of the shape and dimensions is reduced. Can not get. Even if the strain amount is partially less than 2%, sufficient component strength can be obtained if the strain amount is 2% or more on average for the entire part. The average strain is preferably set to 2 to 20% from the viewpoint of molding stability. Note that the average strain amount in the present invention refers to a strain amount obtained by averaging these in consideration of the strain amount distribution in the same part. The distribution of the amount of strain can be measured by transferring a grid or a scribed circle onto the surface of the steel sheet and then pressing, and quantifying the amount of deformation strain before and after the transfer.
[0040]
Average strain rate: 1 / s or more
It is preferable that the strain rate in the processing is about 1 / s or more as an average strain rate usually employed in press molding. When the strain rate (average strain rate from the start to the end of molding) is less than 1 / s, the amount of change in deformation resistance is small, and the merit is small. In addition, the process time becomes longer, and the productivity may be reduced. Also, the temperature drop during processing is large. The upper limit of the average strain rate is not particularly limited, but is about 10 / s, which is the upper limit of general press molding conditions.
[0041]
By subjecting the steel sheet having the above-described composition and structure to so-called warm working under the above-described conditions, the obtained component is subjected to press forming at a normal room temperature, from the component strength expected from the steel sheet strength, Alternatively, it has a higher component strength than the component strength obtained by applying a paint baking treatment and adding static strain age hardening. Although the exact mechanism of this phenomenon has not been clarified until now, it is considered to be due to a phenomenon related to dynamic strain aging due to a large amount of solute N.
[0042]
The strength of the component manufactured according to the present invention increases by 100 MPa or more in the yield stress YS and 50 MPa or more in the tensile strength TS as compared with the strength of the steel plate as the raw material. This means that the steel sheet has better workability (press forming) than conventional steel sheets having the same strength at the time of working, and can secure higher part strength after being worked into parts.
If the YS and TS in the parts both increase by this degree as compared with the steel sheet as the raw material, the required strength characteristics of the same parts can be achieved with a thin plate thickness of about 0.1 mm to 0.3 mm. In other words, it is possible to achieve a thinner wall and contribute to weight reduction of parts. As a guide, if the amount of increase in YS is 150 MPa or more and the amount of increase in TS is 80 MPa or more, remarkable thinning corresponding to a plate thickness of about 0.2 to 0.5 mm can be expected.
[0043]
Next, the present invention will be further described based on examples.
[0044]
【Example】
(Example 1)
First, molten steel containing the components shown in Table 1 and the balance substantially consisting of Fe was smelted in a converter, and was made into a steel slab by a continuous casting method. The obtained steel slab was subjected to hot rolling under the conditions shown in Table 2 and further subjected to pickling to obtain a hot-rolled steel sheet. Some of the hot-rolled steel sheets were successively subjected to cold rolling and continuous annealing under the conditions shown in Table 2 to obtain cold-rolled steel sheets. Further, some hot-rolled steel sheets or cold-rolled steel sheets were subjected to a hot-dip galvanizing treatment with a coating weight shown in Table 2 to obtain a hot-dip galvanized steel sheet. Each of the steel sheets was subjected to skin pass rolling at an elongation percentage shown in Table 2.
[0045]
About the obtained steel plate, the amount of solid solution N, the crystal grain size, the tensile properties, and the strain aging hardening properties by the treatment equivalent to paint baking were investigated. The survey method is as follows.
(1) Solid solution N amount
For the obtained steel sheet, the total N amount was determined by chemical analysis, and the precipitated N amount was determined by a usual electrolytic extraction method, and the dissolved N amount (= total N amount−precipitated N amount) was calculated.
(2) Grain size
A test specimen was collected from the center of the obtained steel sheet in the width direction, crystal grains were revealed with a nital solution, and an image was taken using a light microscope or a scanning electron microscope. The average area of the crystal grains was calculated by an apparatus, converted into a circle equivalent diameter, and defined as an average crystal grain size.
(3) Tensile properties
From the obtained steel sheet, a JIS No. 5 tensile test piece whose rolling direction is the longitudinal direction was sampled, and a tensile test was performed in accordance with the provisions of JIS Z 2201. The yield stress YS, tensile strength TS, and elongation El were determined. I asked.
(4) Strain aging hardening characteristics by coating baking equivalent processing
From the obtained steel sheet, a JIS No. 5 tensile test piece whose longitudinal direction is the rolling direction is sampled, a 7% pre-strain is applied to the tensile test piece, and then heat treatment at 170 ° C. for 20 minutes (equivalent to paint baking). After performing the strain aging treatment, a tensile test is performed again, and the yield stress YSBH, Tensile strength TSBHWere calculated, and the strain age hardening amounts ΔYS and ΔTS, which are the difference in strength before and after the treatment, were calculated. Note that ΔYS and ΔTS are ΔYS = YSBH−σ7%, ΔTS = TSBH-Value defined by TS. Here, YS and TS are the yield stress, tensile strength, and σ of the steel sheet, respectively.7%Is the deformation stress during 7% prestraining.
[0046]
Table 3 shows the obtained results.
[0047]
[Table 1]
Figure 2004270006
[0048]
[Table 2]
Figure 2004270006
[0049]
[Table 3]
Figure 2004270006
[0050]
Using these steel sheets, plastic deformation was applied by press forming under warm working conditions (heating temperature, average strain rate, average strain amount) shown in Table 4 to obtain a hat-shaped member shown in FIG. Molded.
Here, the average strain amount of the member was obtained as follows.
A scribed circle of 2 mmφ is printed on the front and back surfaces of the steel sheet before forming, and after forming, the maximum principal strain and minimum principal distortion of each circle are measured. Using these values, the following equation (1) and (2) are used. formula
εeq= √ (2/3) × √ (εx 2+ Εy 2+ Εt 2) …… (1)
εx+ Εy+ Εt= 0 (2)
Where εeq: Equivalent plastic strain, εx: Maximum principal strain, εy: Minimum principal strain, εt: Thickness distortion
The equivalent plastic strain in each circle was calculated by The amount of equivalent plastic strain in each of the front and back circles was added and divided by the total number of scribed circles to obtain an average amount of strain.
[0051]
First, the springback amount of the obtained member was measured. As shown in FIG. 1 (b), the amount of springback is the amount of change (l) in the size of the opening during processing and after being extracted from the mold.s−l0).
In addition, a JIS No. 5 tensile test piece (sampling direction: a direction perpendicular to the rolling direction) with the longitudinal direction of the member as the tensile direction was sampled from the center of the vertical wall portion of the obtained member in the height direction, and the tensile test was performed. The strength of the member (yield stress YSHP, Tensile strength TSHP), And the amount of increase in strength ΔYS due to warm workingHP, ΔTSHPI asked. Note that ΔYSHP, ΔTSHPIs ΔYSHP= YSHP−YS, ΔTSHP= TSHP-Value defined by TS. Here, YS and TS represent the yield stress and the tensile strength of the original steel sheet. In the hat-shaped member, the strength of the vertical wall is considered to be the most important strength element.
[0052]
Further, as a comparative example, a steel plate was press-formed under the same conditions as the above-mentioned warm working conditions except that the press forming (working) temperature was set to room temperature, and formed into the same hat-shaped member. For these members, the springback amounts of the members were measured in the same manner. In addition, a tensile test piece was collected from the vertical wall portion of the member and a tensile test was performed to determine the strength of the member (yield stress YS).RP, Tensile strength TSRP). Yield stress YS of the obtained memberRP, Tensile strength TSRPFrom the strength increase ΔYS due to room temperature processingRP, ΔTSRPWas calculated. Note that ΔYSRP, ΔTSRPIs ΔYSRP= YSRP−YS, ΔTSRP= TSRP-Value defined by TS. Here, YS and TS represent the yield stress and the tensile strength of the original steel sheet.
[0053]
In addition, a drop weight test was performed using the obtained members. A steel plate of the same material is combined with the opening of the hat-shaped member obtained by press forming to form a box-shaped test body by spot welding, and the test body is placed between the fulcrums as shown in FIG. An impact load was applied to the test body, the relationship between the load and the displacement was measured, and the maximum load before significant buckling occurred was determined.
[0054]
Table 4 shows the obtained results. The springback amount is represented by a springback amount ratio, (warm-working springback amount) / (room-temperature working springback amount). As the maximum load ratio in the drop weight test, a value defined by (maximum load of a warm-worked part) / (maximum load of a room-temperature processed part) is used for a part obtained by using the same steel plate.
[0055]
[Table 4]
Figure 2004270006
[0056]
[Table 5]
Figure 2004270006
[0057]
All of the members processed under the conditions within the scope of the present invention (examples of the present invention) have less amount of springback and excellent shape freezing properties than the members processed at room temperature (comparative examples), and are expected from the strength of the steel sheet. It has a higher member strength than that of a member processed at room temperature or a member processed at room temperature (comparative example).
Also, compared to a member using a mild steel plate (steel plate No. 15), a member having excellent shape freezing property and high strength is obtained.
[0058]
After molding, after performing a normal paint baking treatment, the strength of the member was examined.The amount of increase in strength due to the paint baking treatment was almost the same in the present invention example and a member processed at room temperature. As investigated, it was confirmed that the material had high strength even after the coating baking treatment.
(Example 2)
Molten steel containing the components shown in Table 5 and the balance substantially consisting of Fe was smelted in a converter and made into a steel slab by a continuous casting method. The obtained steel slab was subjected to hot rolling under the conditions shown in Table 6 and further subjected to pickling to obtain a hot-rolled steel sheet. Some of the hot-rolled steel sheets were continuously subjected to cold rolling and continuous annealing under the conditions shown in Table 6 to obtain cold-rolled steel sheets. Further, some hot-rolled steel sheets or cold-rolled steel sheets were subjected to hot-dip galvanizing treatment with the coating weight shown in Table 6 to obtain hot-dip galvanized steel sheets. In addition, the skin pass rolling of the elongation rate shown in Table 6 was performed about each steel plate. Although the skin pass rolling is performed in the second embodiment, the skin pass rolling may be omitted if there is no problem in the shape of the steel sheet.
[0059]
In the same manner as in Example 1, the obtained steel sheet was examined for the amount of solute N, the crystal grain size, the tensile properties, and the strain aging hardening properties by a treatment equivalent to paint baking.
Table 7 shows the obtained results.
[0060]
[Table 6]
Figure 2004270006
[0061]
[Table 7]
Figure 2004270006
[0062]
[Table 8]
Figure 2004270006
[0063]
Using these steel plates, plastic deformation was applied by press forming under warm working conditions (heating temperature, average strain rate, average strain amount) shown in Table 8 to obtain a hat-shaped member shown in FIG. Molded.
The springback amount of the obtained member was measured in the same manner as in Example 1. Further, a JIS No. 5 tensile test piece (sampling direction: a direction perpendicular to the rolling direction) was taken from the center of the vertical wall of the obtained member in the height direction and the longitudinal direction of the member was used as the tensile direction. Similarly, a tensile test was performed to determine the strength of the member (yield stress YSHP, Tensile strength TSHP), And the amount of increase in strength ΔYS due to warm workingHP, ΔTSHPI asked.
[0064]
Further, similarly to Example 1, as a comparative example, a steel plate was subjected to press forming under the same conditions as the above-mentioned warm working conditions except that the press forming (working) temperature was set to room temperature to obtain the same hat-shaped member. After molding, the amount of springback of the member was measured in the same manner. Further, in the same manner as in Example 1, a tensile test piece was sampled from the vertical wall portion of the member, and a tensile test was performed.RP, Tensile strength TSRPAnd the increase in strength due to room temperature processing ΔYSRP, ΔTSRPWas calculated.
[0065]
Further, in the same manner as in Example 1, a drop weight test was performed on the obtained member by spot welding the same type of steel plate to the opening. Using the hat-shaped member obtained by press molding as a test body, the test body was placed between the fulcrums in the manner shown in FIG. 2 and an impact load was applied to the test body via an indenter in the same manner as in Example 1. , The maximum load until significant buckling occurred.
[0066]
Table 8 shows the obtained results. The springback amount is represented by a springback amount ratio, (warm-working springback amount) / (room-temperature working springback amount). As the maximum load ratio in the drop weight test, a value defined by (maximum load of a warm-worked part) / (maximum load of a room-temperature processed part) is used for members obtained by using the same steel plate.
[0067]
[Table 9]
Figure 2004270006
[0068]
[Table 10]
Figure 2004270006
[0069]
All of the members processed under the conditions within the scope of the present invention (examples of the present invention) have less amount of springback and excellent shape freezing properties than the members processed at room temperature (comparative examples), and are expected from the strength of the steel sheet. It has a higher member strength than that of a member processed at room temperature or a member processed at room temperature (comparative example). Also, compared to a member using a mild steel plate (Steel Sheet No. 15), a member having excellent shape freezing property without color loss and high strength is obtained.
[0070]
【The invention's effect】
According to the present invention, it is possible to easily and inexpensively manufacture a component having a sufficiently high component strength while preventing the shape freezing property represented by a springback from lowering, and to achieve an industrially remarkable effect.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing (a) a component shape and (b) a springback used in an example.
2A is a front view and FIG. 2B is a side view schematically showing a procedure of a drop weight test.

Claims (4)

鋼板を加工して部品とする部品の製造方法において、前記鋼板を、質量%で、
C:0.01〜0.25%、 Si:1.5 %以下、
Mn:1.0 〜3.5 %、 P:0.01%以下、
S:0.005 %以下、 Al:0.02%以下、
N:0.0030〜0.025 %
を含み、固溶状態のNを0.0020%以上含有する組成と、平均結晶粒径が10μm 以下の組織とを有する鋼板とし、前記加工を、100 ℃以上500 ℃以下の温度で平均歪量で2%以上の塑性変形を行う加工とすることを特徴とする形状凍結性に優れた部品の製造方法。
In a method of manufacturing a part by processing a steel sheet, the steel sheet is expressed by mass%
C: 0.01 to 0.25%, Si: 1.5% or less,
Mn: 1.0 to 3.5%, P: 0.01% or less,
S: 0.005% or less, Al: 0.02% or less,
N: 0.0030 to 0.025%
And a steel sheet having a composition containing 0.0020% or more of N in a solid solution state and a structure having an average crystal grain size of 10 μm or less. 2. A method for producing a part having excellent shape freezing properties, wherein the part is subjected to a plastic deformation of 2% or more.
前記鋼板が、前記組成に加えてさらに、質量%で、Cu、Ni、Cr、Moのうちから選ばれた1種または2種以上を合計で1.0 %以下、および/または、Nb、Ti、V、Bのうちから選ばれた1種または2種以上を合計で0.1 %以下、を含有することを特徴とする請求項1に記載の部品の製造方法。The steel sheet may further include, in addition to the composition, one or more selected from Cu, Ni, Cr, and Mo in a mass% of 1.0% or less in total and / or Nb, Ti 2. The method according to claim 1, wherein one or more selected from V, B and 0.1% or less are contained in total. 前記鋼板が、前記組成に加えてさらに、質量%で、Ca、REM のうちの1種または2種を合計で0.0010〜0.015 %含有することを特徴とする請求項1または2に記載の部品の製造方法。3. The steel sheet according to claim 1, wherein the steel sheet further contains one or two of Ca and REM in total of 0.0010 to 0.015% by mass% in addition to the composition. 4. Manufacturing method of the described part. 前記加工が、1/s 以上の平均歪速度で塑性変形を行うことを特徴とする請求項1ないし3のいずれかに記載の部品の製造方法。The method according to any one of claims 1 to 3, wherein the working is performed by plastic deformation at an average strain rate of 1 / s or more.
JP2003065358A 2003-03-11 2003-03-11 Method of producing component having excellent shape-fixability Pending JP2004270006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003065358A JP2004270006A (en) 2003-03-11 2003-03-11 Method of producing component having excellent shape-fixability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003065358A JP2004270006A (en) 2003-03-11 2003-03-11 Method of producing component having excellent shape-fixability

Publications (1)

Publication Number Publication Date
JP2004270006A true JP2004270006A (en) 2004-09-30

Family

ID=33126403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003065358A Pending JP2004270006A (en) 2003-03-11 2003-03-11 Method of producing component having excellent shape-fixability

Country Status (1)

Country Link
JP (1) JP2004270006A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152361A (en) * 2004-11-29 2006-06-15 Jfe Steel Kk Steel sheet and manufacturing method thereof, and method for manufacturing parts with excellent shape fixability
JP2006212663A (en) * 2005-02-02 2006-08-17 Nippon Steel Corp Method for producing member made of hot-pressed high strength steel having excellent formability
JP2008111189A (en) * 2006-10-03 2008-05-15 Nisshin Steel Co Ltd Hot-work method of hot dip plated steel sheet and hot-work formed article
JP2010188393A (en) * 2009-02-19 2010-09-02 Sumitomo Metal Ind Ltd Method for press-forming steel sheet
JP2012092358A (en) * 2010-10-22 2012-05-17 Jfe Steel Corp Thin steel sheet for warm forming excellent in formability and strength enhancing ability, and method for warm forming using the same
JP2012213801A (en) * 2011-03-31 2012-11-08 Jfe Steel Corp Gas-shielded arc welding method
JP2013503254A (en) * 2009-08-25 2013-01-31 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Method of manufacturing a steel member with a metal coating that provides protection against corrosion, and steel member
WO2014122695A1 (en) * 2013-02-08 2014-08-14 Jfeスチール株式会社 Press-forming analysis method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539308B2 (en) * 2004-11-29 2010-09-08 Jfeスチール株式会社 Thin steel plate, method for producing the same, and method for producing parts having excellent shape freezing property
JP2006152361A (en) * 2004-11-29 2006-06-15 Jfe Steel Kk Steel sheet and manufacturing method thereof, and method for manufacturing parts with excellent shape fixability
JP2006212663A (en) * 2005-02-02 2006-08-17 Nippon Steel Corp Method for producing member made of hot-pressed high strength steel having excellent formability
JP4575799B2 (en) * 2005-02-02 2010-11-04 新日本製鐵株式会社 Manufacturing method of hot-pressed high-strength steel members with excellent formability
JP2008111189A (en) * 2006-10-03 2008-05-15 Nisshin Steel Co Ltd Hot-work method of hot dip plated steel sheet and hot-work formed article
JP2010188393A (en) * 2009-02-19 2010-09-02 Sumitomo Metal Ind Ltd Method for press-forming steel sheet
JP2013503254A (en) * 2009-08-25 2013-01-31 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Method of manufacturing a steel member with a metal coating that provides protection against corrosion, and steel member
JP2012092358A (en) * 2010-10-22 2012-05-17 Jfe Steel Corp Thin steel sheet for warm forming excellent in formability and strength enhancing ability, and method for warm forming using the same
JP2012213801A (en) * 2011-03-31 2012-11-08 Jfe Steel Corp Gas-shielded arc welding method
WO2014122695A1 (en) * 2013-02-08 2014-08-14 Jfeスチール株式会社 Press-forming analysis method
KR20150107805A (en) * 2013-02-08 2015-09-23 제이에프이 스틸 가부시키가이샤 Press-forming analysis method
KR101718470B1 (en) * 2013-02-08 2017-03-21 제이에프이 스틸 가부시키가이샤 Method of analyzing press forming
US10161892B2 (en) 2013-02-08 2018-12-25 Jfe Steel Corporation Method of analyzing press forming

Similar Documents

Publication Publication Date Title
KR100611541B1 (en) Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
US6692584B2 (en) High tensile cold-rolled steel sheet excellent in ductility and in strain aging hardening properties, and method for producing the same
JP4725415B2 (en) Hot-pressed steel sheet, hot-pressed steel sheet member, and production method thereof
JP4445365B2 (en) Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
US20110030854A1 (en) High-strength steel sheet and method for manufacturing the same
JP2006265583A (en) Hot rolled steel sheet for hot press, method for producing the same and method for producing hot press formed member
KR20010112945A (en) High tensile hot-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
JP3846206B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
KR20130083481A (en) High-strength hot-dip galvannealed steel shhet with excellent workability and fatigue characteristics and process for production thereof
WO2016031165A1 (en) High-strength hot-dip galvanized steel sheet having superb stretch-flangeability, in-plane stability of stretch-flangeability, and bendability, and method for producing same
KR20190073469A (en) High strength steel sheet and manufacturing method thereof
JP2009035818A (en) High-strength hot dip galvanized steel sheet having excellent press formability, and production method therefor
JP3812279B2 (en) High yield ratio type high-tensile hot dip galvanized steel sheet excellent in workability and strain age hardening characteristics and method for producing the same
KR20210107806A (en) A hot-pressed member, a cold-rolled steel sheet for a hot-pressed member, and their manufacturing method
WO2020162513A1 (en) Coated steel member, coated steel sheet, and methods for producing same
EP4137602A1 (en) Galvanized steel sheet, member, and methods for manufacturing same
JP4839527B2 (en) Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4665302B2 (en) High-tensile cold-rolled steel sheet having high r value, excellent strain age hardening characteristics and non-aging at room temperature, and method for producing the same
JP2004270006A (en) Method of producing component having excellent shape-fixability
JP3870868B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in stretch flangeability, strength-ductility balance and strain age hardening characteristics, and method for producing the same
JP4519373B2 (en) High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
CN114585758B (en) High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet
JP2009144251A (en) High-tensile strength cold-rolled steel sheet
JP4539308B2 (en) Thin steel plate, method for producing the same, and method for producing parts having excellent shape freezing property
JP5034296B2 (en) Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428