JP4575799B2 - Manufacturing method of hot-pressed high-strength steel members with excellent formability - Google Patents
Manufacturing method of hot-pressed high-strength steel members with excellent formability Download PDFInfo
- Publication number
- JP4575799B2 JP4575799B2 JP2005027079A JP2005027079A JP4575799B2 JP 4575799 B2 JP4575799 B2 JP 4575799B2 JP 2005027079 A JP2005027079 A JP 2005027079A JP 2005027079 A JP2005027079 A JP 2005027079A JP 4575799 B2 JP4575799 B2 JP 4575799B2
- Authority
- JP
- Japan
- Prior art keywords
- hot
- mass
- steel sheet
- strength steel
- press
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Description
本発明は,例えば自動車の足回り,シャーシ,メンバー,衝突安全用補強部材等に用いられる高強度鋼製部材を得るための製造方法に関するものである。 The present invention relates to a manufacturing method for obtaining a high-strength steel member used for, for example, an automobile underbody, a chassis, a member, a collision safety reinforcing member, and the like.
近年,地球環境保全に向けた自動車軽量化ニーズ,衝突安全性の向上ニーズ等に伴い,プレス成形によって製造される鋼製部材にも引張強度で980MPa以上の高強度化が強く望まれている。しかし,素材としての鋼板の高強度化はプレス成形性の低下を招き,複雑な形状の製作が困難となる。具体的には,延性低下による破断,スプリングバックによる寸法精度の劣化という問題等である。このため,高強度鋼板を用いてのプレス加工による複雑な形状の製作は容易ではない。 In recent years, with the need for weight reduction of automobiles and the need to improve collision safety for global environmental protection, it is strongly desired that steel members manufactured by press molding have a tensile strength of 980 MPa or more. However, increasing the strength of the steel sheet as a material causes a decrease in press formability, making it difficult to manufacture complex shapes. Specifically, there are problems such as fracture due to reduced ductility and deterioration of dimensional accuracy due to springback. For this reason, it is not easy to manufacture complicated shapes by press working using high-strength steel sheets.
そこで,最近注目されつつある技術としてホットプレス(熱間プレス)がある。本技術は,例えば特許文献1に開示されているように,鋼板を加熱してプレス加工する方法であり,鋼板が高温ゆえに,軟質,高延性となり,複雑な形状も寸法精度良く成形可能である。加えて,加熱時にオーステナイトが生成する温度域まで昇温しておけば,プレス加工後の冷却,あるいは,プレス加工時の金型内で冷却することにより,所望の材質を得ることが可能である。すなわち,冷却速度を高めることにより,硬化相であるマルテンサイトを生成し,高強度部材を得ることが可能である。特許文献1では,金属材を850℃以上に加熱し,850℃以上の高温状態で,所望形状を付与すべく相対的に低温のプレス型を用いてプレス加工を施して製造する,車両用衝突補強材の製造方法が開示されている。 Therefore, there is a hot press (hot press) as a technology that has been attracting attention recently. For example, as disclosed in Patent Document 1, the present technology is a method of heating and pressing a steel plate, and because the steel plate is high temperature, it becomes soft and highly ductile, and even a complicated shape can be formed with high dimensional accuracy. . In addition, if the temperature is raised to a temperature range where austenite is generated during heating, it is possible to obtain a desired material by cooling after pressing or by cooling in a mold during pressing. . That is, by increasing the cooling rate, it is possible to produce martensite that is a hardened phase and obtain a high-strength member. In Patent Document 1, a metal collision is manufactured by heating a metal material to 850 ° C. or higher and pressing it with a relatively low-temperature press die to give a desired shape in a high temperature state of 850 ° C. or higher. A method for manufacturing a reinforcing material is disclosed.
しかし,効率を上げて生産性を高めたり,成形性を上げて複雑形状部材を製造可能とするためには,1回のプレスではなく,冷間プレス同様,トランスファープレスのような2回以上のプレス加工を連続で行なうことが求められるが,特許文献1では,2回以上のプレス加工をすることは想定されていない。特許文献1に開示されている技術では,焼入れの際のオーステナイトからのマルテンサイト変態を利用した高強度化を行っているため,加熱炉より取り出した鋼板を850℃以上の高温で加工することが必須となる。仮に,特許文献1に開示された技術により2回以上のプレス加工をすると仮定しても,加熱炉より取り出された鋼板は,すぐさま温度低下が引き起こされるか,あるいは,成形前に鋼板の一部が金型と接触することで冷却されてしまうため,よほどの高速搬送機や高速プレス機を使用しない限り,850℃以上でプレス加工を2回以上実施することは困難である。たとえ,2回以上の加工を実施したとしても,金型との接触により鋼板の一部が850℃未満となり,同一部材内においても材質がばらついたり,形状がくずれたりという問題を有する。また,成形性を確保するために,再度加熱し,2度目のプレスを行なう方法もあるが,生産性は大きく低下してしまう。 However, in order to increase the efficiency and productivity, or to improve the moldability and manufacture complex shaped parts, it is not a single press, but a cold press, like a transfer press. Although it is required to perform the press work continuously, Patent Document 1 does not assume that the press work is performed twice or more. In the technique disclosed in Patent Document 1, since strengthening is performed using martensitic transformation from austenite at the time of quenching, the steel sheet taken out from the heating furnace can be processed at a high temperature of 850 ° C. or higher. Required. Even if it is assumed that the press working is performed twice or more by the technique disclosed in Patent Document 1, the temperature of the steel plate taken out from the heating furnace is immediately decreased, or a part of the steel plate is formed before forming. Is cooled by contact with the mold, it is difficult to carry out the pressing process at 850 ° C. or more twice or more unless a very high speed conveying machine or high speed pressing machine is used. Even if the processing is carried out twice or more, a part of the steel sheet becomes less than 850 ° C. due to contact with the mold, and there is a problem that the material varies and the shape is deformed even within the same member. In addition, in order to ensure formability, there is a method of heating again and performing a second press, but the productivity is greatly reduced.
また,特許文献2では,温間プレス成形において,2度以上プレス成形する技術が開示されているが,特許文献2には,成分及び組織に関する記載は何もなく,マルテンサイト組織を生成し高強度部材を得るための製造方法について言及されていない。 Further, Patent Document 2 discloses a technique for press forming twice or more in warm press forming. However, Patent Document 2 has no description about components and structures, and produces a martensite structure and a high No mention is made of a production method for obtaining a strength member.
本発明は上述の課題を解決し,熱間プレスにおいても,冷間プレス同様に2回以上の連続プレスを可能とし,生産性,成形性に優れたホットプレス高強度鋼製部材の製造方法を提供することを目的とする。 The present invention solves the above-mentioned problems, and in hot pressing, a hot pressing high strength steel member manufacturing method that enables continuous pressing twice or more like cold pressing and has excellent productivity and formability. The purpose is to provide.
本発明者等は,鋼板成分と熱間プレス成形方法の関係について種々の検討を行った結果,鋼板中に含まれるMn,Cr,Cu,Ni量がMn+Cr/3.1+(Cu+Ni)/1.4≧2.5%を満たした鋼板を,300℃以上の温度域にて成形したとしても,必要な焼きが入り,かつ,均一な強度を有する部材が成形可能なこと,また,成形時の形状凍結性も部材として十分良好であることを見出した。本発明は,上記知見に基づいて完成されたもので,その要旨とするところは以下の通りである。 As a result of various studies on the relationship between the steel plate components and the hot press forming method, the inventors have found that the amounts of Mn, Cr, Cu, and Ni contained in the steel plate are Mn + Cr / 3.1 + (Cu + Ni) / 1. Even if a steel sheet satisfying 4 ≧ 2.5% is formed in a temperature range of 300 ° C. or higher, it is possible to form a member having a required baking and a uniform strength, It was found that the shape freezing property was sufficiently good as a member. The present invention has been completed based on the above findings, and the gist thereof is as follows.
即ち本発明によれば,質量%で,C:0.05〜0.35%,Si:0.005〜1.0%,Mn:0〜4.0%,Cr:0〜3.0%,Cu:0〜4.0%,Ni:0〜3.0%,B:0.0002〜0.1%,Ti:0.001〜3.0%,P:0.1%以下,S:0.05%以下,Al:0.005〜0.1%,N:0.01%以下,を含有し,かつ,Mn+Cr/3.1+(Cu+Ni)/1.4≧2.5%を満たし,残部がFeおよび不可避的不純物からなる鋼板を,750〜1300℃に昇温させて,10〜6000秒間維持した後,300℃にて2回以上のプレス成形を行い,面積率で60%以上のマルテンサイト組織を有する部材を得ることを特徴とする,成形性に優れたホットプレス高強度鋼製部材の製造方法が提供される。 That is, according to the present invention, by mass, C: 0.05 to 0.35%, Si: 0.005 to 1.0%, Mn: 0 to 4.0%, Cr: 0 to 3.0% , Cu: 0 to 4.0%, Ni: 0 to 3.0%, B: 0.0002 to 0.1%, Ti: 0.001 to 3.0%, P: 0.1% or less, S : 0.05% or less, Al: 0.005 to 0.1%, N: 0.01% or less, and Mn + Cr / 3.1 + (Cu + Ni) /1.4≧2.5% The steel sheet which is filled and the balance is Fe and inevitable impurities is heated to 750 to 1300 ° C. and maintained for 10 to 6000 seconds, and then press forming at 300 ° C. twice or more, and the area ratio is 60%. Provided is a method for producing a hot-pressed high-strength steel member excellent in formability, characterized by obtaining a member having the above martensite structure .
前記鋼板は,さらに質量%で,Mo:0.01〜3.0%を含有しても良い。また前記鋼板は,さらに質量%で,Nb:0.01〜3.0%,V:0.001〜3.0%,W:0.005〜3.0%,の1種または2種以上を含有しても良い。また前記鋼板は,さらに質量%で,REM:0.0005〜0.01%,Y:0.0005〜0.01%,Ca:0.0005〜0.01%,Mg:0.0005〜0.01%の1種または2種以上を含有しても良い。 The steel sheet may further contain Mo: 0.01 to 3.0% by mass. Further, the steel sheet is further in% by mass, one or more of Nb: 0.01 to 3.0%, V: 0.001 to 3.0%, W: 0.005 to 3.0%. May be contained. Moreover, the said steel plate is further mass%, REM: 0.0005-0.01%, Y: 0.0005-0.01%, Ca: 0.0005-0.01%, Mg: 0.0005-0 .01% of one kind or two or more kinds may be contained.
また前記鋼板を,1〜100℃/秒の昇温速度で750〜1300℃に昇温させても良い。また,最終のプレス成形後,金型パンチを下死点にて1〜60秒保持し,10〜500℃/秒の冷却速度で5〜40℃まで鋼板を冷却しても良い。また,最終のプレス成形後,金型パンチを下死点にて保持することなく,上死点まで移動させ,成形品を金型より取り出し,10〜500℃/秒の冷却速度で5〜40℃まで冷却しても良い。 Moreover, you may heat up the said steel plate to 750-1300 degreeC with the temperature increase rate of 1-100 degrees C / sec. Further, after the final press forming, the die punch may be held at the bottom dead center for 1 to 60 seconds, and the steel sheet may be cooled to 5 to 40 ° C. at a cooling rate of 10 to 500 ° C./second. Further, after the final press molding, the mold punch is moved to the top dead center without being held at the bottom dead center, the molded product is taken out from the mold, and the cooling rate of 10 to 500 ° C./second is 5 to 40. It may be cooled to ° C.
本発明によれば,熱間プレスにおいても再加熱を必要とせずに,冷間プレスと同じようにトランスファープレスを用いた2回以上のプレス成形が可能となり,大幅な生産性の向上および成形性の向上をはかることができる。得られる部材は,内部での材質変動が少なく,部材形状も良好で均一性に優れた高強度鋼製部材となる。 According to the present invention, it is possible to perform press forming two or more times using a transfer press as in the cold press without requiring reheating even in the hot press. Can be improved. The obtained member is a high-strength steel member with little variation in material inside, good member shape and excellent uniformity.
以下に本発明を更に詳細に説明する。
まず,本発明における鋼の化学成分の限定理由について説明する。
The present invention is described in further detail below.
First, the reasons for limiting the chemical composition of steel in the present invention will be described.
C:Cは,鋼板の強度を上昇させるための必須元素であり,また,Ar3点を下げ,成形可能温度を下げることから,その下限を0.05質量%とした。一方で,Cが0.35質量%を超えると溶接が困難となることから,その上限を0.35質量%とした。 C: C is an essential element for increasing the strength of the steel sheet, and lowers the Ar3 point and lowers the moldable temperature, so the lower limit was made 0.05 mass%. On the other hand, if C exceeds 0.35 mass%, welding becomes difficult, so the upper limit was made 0.35 mass%.
Si:Siは,強化元素であり,鋼板の強度を上昇させることに有効である。しかしながら質量%で1%超えると表面スケールの問題が生じるため,1%を上限とする。一方,極低化は製造コストの高騰を招くことから,質量%で0.005%以上の添加とすることが望ましい。 Si: Si is a strengthening element and is effective in increasing the strength of the steel sheet. However, if it exceeds 1% by mass, surface scale problems will occur, so the upper limit is 1%. On the other hand, since extremely low results in an increase in manufacturing cost, it is desirable to add 0.005% or more by mass%.
Mn:Mnは,フェライト変態を抑制することから,焼入れ性確保に非常に重要な元素である。加えて,Ar3点の低下を引き起こすことから,成形可能温度の低下を可能とする。しかし,過剰の添加はP,Sとの共偏析を助長するだけでなく,製造時および熱延時の製造性に悪影響を及ぼすため質量%で4%を上限とする。好ましくは3.5%以下が望ましい。本発明において,0%も含むものとする。 Mn: Mn is a very important element for ensuring hardenability because it suppresses ferrite transformation. In addition, since the Ar3 point is lowered, the moldable temperature can be lowered. However, excessive addition not only promotes co-segregation with P and S, but also adversely affects manufacturability during production and hot rolling, so the upper limit is 4% by mass. Preferably it is 3.5% or less. In the present invention, 0% is also included.
Cr:Crは,強化元素であるとともに焼入れ性の向上に重要である。加えて,Ar3点の低下を引き起こすことから,成形可能温度の低下も可能となる。しかし,3%超含有すると製造時および熱延時の製造性に悪影響を及ぼすため,上限値を質量%で3%とした。本発明において,0%も含むものとする。 Cr: Cr is a strengthening element and is important for improving hardenability. In addition, since the Ar3 point is lowered, the moldable temperature can be lowered. However, if the content exceeds 3%, the manufacturability during production and hot rolling is adversely affected, so the upper limit was set to 3% by mass%. In the present invention, 0% is also included.
Cu:Cuは,強化に有効である上,焼入れ性の向上に重要である。加えて,Ar3点の低下を引き起こすことから,成形可能温度の低下も可能となる。しかし,過剰添加は製造時および熱延時の製造性に悪影響を及ぼすため,上限を質量%で4.0%とした。本発明において,0%も含むものとする。 Cu: Cu is effective for strengthening and is important for improving hardenability. In addition, since the Ar3 point is lowered, the moldable temperature can be lowered. However, excessive addition adversely affects manufacturability during production and hot rolling, so the upper limit was made 4.0% by mass. In the present invention, 0% is also included.
Ni:Niは,強化元素であるとともに焼入れ性の向上に重要である。加えて,Ar3点の低下を引き起こすことから,成形可能温度の低下も可能となる。しかし,質量%で3%超では製造時および熱延時の製造性に悪影響を及ぼすため,上限値を3%とした。また,Ni硫化物が水素侵入を抑制し遅れ破壊特性を向上させる効果もあることから鋼板への添加は有効である。本発明において,0%も含むものとする。 Ni: Ni is a strengthening element and is important for improving hardenability. In addition, since the Ar3 point is lowered, the moldable temperature can be lowered. However, if the mass% exceeds 3%, the manufacturability during production and hot rolling is adversely affected, so the upper limit was set to 3%. In addition, since Ni sulfide has the effect of suppressing hydrogen intrusion and improving delayed fracture characteristics, it is effective to add it to the steel sheet. In the present invention, 0% is also included.
上記Mn,Cr,Cu,Niの4元素は,いずれもAr3点を低下させることが可能であり,成形可能温度の低下を可能とするので有効である。これら全ての元素を含有する必要はないが,Mn+Cr/3.1+(Cu+Ni)/1.4が2.5%未満となると,Ar3点の低下効果を十分得ることができないため,Mn+Cr/3.1+(Cu+Ni)/1.4の下限を2.5%とした。また,Cuヘゲ防止の観点から,NiはCu/2%以上の添加が好ましい。 The above four elements of Mn, Cr, Cu, and Ni are all effective because they can lower the Ar3 point and lower the moldable temperature. Although it is not necessary to contain all these elements, if Mn + Cr / 3.1 + (Cu + Ni) /1.4 is less than 2.5%, the effect of lowering the Ar3 point cannot be obtained sufficiently, so Mn + Cr / 3. The lower limit of 1+ (Cu + Ni) /1.4 was 2.5%. Further, Ni is preferably added in an amount of Cu / 2% or more from the viewpoint of prevention of Cu shaving.
B:Bは,鋼板の強度上昇に有効な元素である。しかし,質量%で0.0002%未満ではこの効果が得られないため,下限値を0.0002%とした。逆に,質量%で0.1%超含有すると熱間加工性が劣化するため,上限値を0.1%とした。 B: B is an element effective for increasing the strength of the steel sheet. However, if the mass% is less than 0.0002%, this effect cannot be obtained, so the lower limit was made 0.0002%. On the contrary, if the content exceeds 0.1% by mass, the hot workability deteriorates, so the upper limit was set to 0.1%.
Ti:Tiは,TiはNと化合物を作り,鋼板中の固溶N量を低減するため,Bを用いて鋼板の焼入れ性を向上させる場合には,添加することが望ましい。そこで下限値を質量%で0.001%とした。逆に,質量%で3%超含有すると,炭窒化物の析出が多くなり加工性および耐遅れ破壊性低下が生じるため,上限値を3%とした。また,Tiは,鋼板を再加熱する際,結晶粒の粒成長を抑制し,粒径を小さくする効果も有することから,靭性向上の観点からもその添加は望ましい。また,Tiを含有する析出物および晶出物は水素トラップサイトとなるため,耐水素脆化の観点からも重要である。 Ti: Ti is preferably added when Ti is used to improve the hardenability of the steel sheet using B because Ti forms a compound with N and reduces the amount of dissolved N in the steel sheet. Therefore, the lower limit is set to 0.001% in mass%. On the other hand, if the content exceeds 3% by mass, the precipitation of carbonitride increases and the workability and delayed fracture resistance decrease, so the upper limit was set to 3%. Moreover, Ti has the effect of suppressing grain growth and reducing the grain size when the steel sheet is reheated, so addition of Ti is also desirable from the viewpoint of improving toughness. In addition, since precipitates and crystallized substances containing Ti serve as hydrogen trap sites, they are also important from the viewpoint of hydrogen embrittlement resistance.
P:Pは不純物であり,0.1質量%を超えると,溶接性ならびに製造時および熱延時の製造性に悪影響を及ぼす。このことから上限値を,0.1質量%とした。Pの下限値は特に定めないが,0.0001質量%未満とすることは,経済的に不利であることからこの値を下限値とすることが好ましい。 P: P is an impurity, and if it exceeds 0.1% by mass, it adversely affects weldability and manufacturability during production and hot rolling. Therefore, the upper limit value was set to 0.1% by mass. Although the lower limit value of P is not particularly defined, it is preferable to set this value as the lower limit value because it is economically disadvantageous to set it to less than 0.0001% by mass.
S:Sは不純物であり,溶接性ならびに製造時および熱延時の製造性に悪影響を及ぼす。このことから,その上限値を0.05質量%以下とした。 S: S is an impurity, which adversely affects weldability and manufacturability during production and hot rolling. Therefore, the upper limit value is set to 0.05% by mass or less.
Al:Alは,脱酸材として用いられるために質量%で0.005%以上を添加するが,質量%で0.1%を超えると非金属介在物が多くなり製品に表面疵が発生しやすくなるため上限を0.1%とする。 Al: Al is used as a deoxidizer, so 0.005% or more is added by mass%. If it exceeds 0.1% by mass, non-metallic inclusions increase and surface flaws occur in the product. In order to facilitate, the upper limit is set to 0.1%.
N:Nは不純物であり,加工性劣化や溶接時のブローホール発生にも寄与するため少ない方が良い。質量%で0.01%を越えると加工性が劣化してくるので,0.01%を上限とする。 N: N is an impurity, and it is better to reduce the amount because it contributes to workability deterioration and blowhole generation during welding. If the mass% exceeds 0.01%, the workability deteriorates, so 0.01% is the upper limit.
Mo:Moは,本発明において任意の含有元素である。Moは,鋼板の強度上昇,粒径の微細化及び焼入れ性向上に有効である。これらの効果は,添加量が質量%で0.01%未満ではこれらの効果が得られないため,下限値を0.01%とした。逆に,質量%で3%超含有すると,製造時および熱延時の製造性に悪影響を及ぼすため,上限値を3%とした。また,Moは,加熱炉を用いて鋼板を再加熱する際,結晶粒の粒成長を抑制し,粒径を小さくする効果も有することから,靭性向上の観点からもその添加は望ましい。 Mo: Mo is an arbitrary contained element in the present invention. Mo is effective for increasing the strength of the steel sheet, reducing the grain size and improving the hardenability. Since these effects cannot be obtained when the addition amount is less than 0.01% by mass, the lower limit is set to 0.01%. On the other hand, if the content exceeds 3% by mass, the manufacturability during production and hot rolling is adversely affected, so the upper limit was made 3%. Moreover, Mo has the effect of suppressing grain growth and reducing the grain size when the steel sheet is reheated using a heating furnace, so addition of Mo is also desirable from the viewpoint of improving toughness.
Nb:Nbは,本発明において任意の含有元素である。Nbは,鋼板の強度上昇,粒径の微細化及び焼入れ性向上に有効である。これらの効果は,添加量が質量%で0.01%未満ではこれらの効果が得られないため,下限値を0.01%とした。逆に,質量%で3%超含有すると,炭窒化物の析出が多くなり加工性および耐遅れ破壊性低下が生じるため,上限値を3%とした。また,Nbは,鋼板を再加熱する際,結晶粒の粒成長を抑制し,粒径を小さくする効果も有することから,靭性向上の観点からもその添加は望ましい。 Nb: Nb is an arbitrary contained element in the present invention. Nb is effective in increasing the strength of the steel sheet, reducing the grain size, and improving the hardenability. Since these effects cannot be obtained when the addition amount is less than 0.01% by mass, the lower limit is set to 0.01%. On the other hand, if the content exceeds 3% by mass, the precipitation of carbonitride increases and the workability and delayed fracture resistance decrease, so the upper limit was set to 3%. Further, Nb has the effect of suppressing grain growth and reducing the grain size when the steel sheet is reheated, so addition of Nb is also desirable from the viewpoint of improving toughness.
V:Vは,本発明において任意の含有元素である。Vは,鋼板の強度上昇及び粒径の微細化に有効である上,Vを含有する析出物および晶出物は水素トラップサイトとなるため非常に重要な元素である。しかし,質量%で0.001%未満ではこの効果が得られないために,下限値を0.001%とした。逆に質量%で3%超含有すると炭窒化物の析出が顕著になり,延性低下が著しくなる。このため上限値を3%とした。 V: V is an arbitrary contained element in the present invention. V is an extremely important element because it is effective for increasing the strength of the steel sheet and reducing the grain size, and precipitates and crystallized substances containing V become hydrogen trap sites. However, if the mass% is less than 0.001%, this effect cannot be obtained, so the lower limit was set to 0.001%. On the other hand, if the content exceeds 3% by mass, the precipitation of carbonitrides becomes remarkable, and the ductility decreases remarkably. For this reason, the upper limit is set to 3%.
W:Wは,本発明において任意の含有元素である。Wは,鋼板の強度上昇に有効である上,Wを含有する析出物および晶出物は水素トラップサイトとなるため非常に重要な元素である。しかし,質量%で0.005%未満ではこれらの効果が得られないため,下限値を0.005%とした。逆に,質量%で3%超含有すると加工性低下が生じるため,上限値を3%とした。また,Wは,鋼板を再加熱する際,結晶粒の粒成長を抑制し,粒径を小さくする効果も有することから,靭性向上の観点からもその添加は望ましい。 W: W is an arbitrary contained element in the present invention. W is an extremely important element because it is effective for increasing the strength of the steel sheet and precipitates and crystallized substances containing W become hydrogen trap sites. However, if the mass% is less than 0.005%, these effects cannot be obtained, so the lower limit was set to 0.005%. On the contrary, if the content exceeds 3% by mass, the workability deteriorates, so the upper limit was made 3%. Further, W has the effect of suppressing grain growth and reducing the grain size when the steel sheet is reheated, so addition of W is also desirable from the viewpoint of improving toughness.
REM,Ca,Yは,本発明において任意の含有元素である。REM,Ca,Yは,介在物の形態制御に有効で,耐遅れ破壊性に寄与することから,それぞれ質量%で0.0005%以上の添加とした。一方,過剰添加は熱間加工性を劣化させるため,それぞれ質量%で0.01%以下の添加とした。ここでREMはRare Earth Metalの略でLaから始まるランタノイド系元素の総称である。 REM, Ca, and Y are arbitrary contained elements in the present invention. REM, Ca, and Y are effective for controlling the shape of inclusions and contribute to delayed fracture resistance. On the other hand, excessive addition deteriorates hot workability, so that the addition is 0.01% or less by mass%. Here, REM is an abbreviation for Rare Earth Metal and is a general term for lanthanoid elements starting with La.
Mg:Mgは,本発明において任意の含有元素である。Mgは,自身の化合物が耐遅れ破壊向上に効果的なだけでなく,他元素との複合析出物または複合昇出物を生成させ,かつそれらの形態を耐遅れ破壊性向上に寄与するよう制御するために有効な元素であることから,質量%で0.0005%以上とした。しかし,質量%で0.01%超では粗大酸化物および硫化物を生成して,形態制御に効果的でなくなる上,薄鋼板の基本的要求特性である加工性を低下させるため,上限を0.01%とした。 Mg: Mg is an arbitrary contained element in the present invention. Mg is not only effective in improving delayed fracture resistance of its own compound, but also controls the formation of composite precipitates or composite ascendants with other elements and contributes to the improvement of delayed fracture resistance. Therefore, the content is set to 0.0005% or more by mass%. However, if the mass% exceeds 0.01%, coarse oxides and sulfides are formed, which is not effective for shape control and lowers the workability, which is a basic required characteristic of thin steel sheets. 0.01%.
次に,熱間プレス後の部材の組織限定理由について述べる。面積率で60%以上をマルテンサイトとする理由は,980MPa以上,好ましくは1180MPa,更には1480MPa以上の高い引張強度を得るためであり,そのためには,硬質相であるマルテンサイトを面積率で60%以上,好ましくは80%以上,更に好ましくは95%以上100%以下の量を素地とすることが好ましい。ただし,ここで言う面積率100%とは,当然鋼材中には不可避的不純物,炭化物及び介在物が存在し,厳密には100%とはならないが,光学顕微鏡での観察ではこれらの不可避的不純物や介在物が認識できないレベルの大きさで存在することから,100%であるとした。その他の残部の組織として,フェライト,パーライト,ベイナイト,残留オーステナイトの1種又は2種以上を面積率の合計で40%以下含有しても良い。 Next, the reason for limiting the structure of the member after hot pressing will be described. The reason why the martensite is 60% or more in area ratio is to obtain a high tensile strength of 980 MPa or more, preferably 1180 MPa, and further 1480 MPa or more. For that purpose, martensite which is a hard phase is 60 in area ratio. % Or more, preferably 80% or more, more preferably 95% or more and 100% or less. However, the area ratio of 100% here naturally means that unavoidable impurities, carbides and inclusions are present in the steel, and strictly speaking, it is not 100%, but these unavoidable impurities are observed with an optical microscope. And 100% because inclusions exist at a level that cannot be recognized. As the remaining structure, one or more of ferrite, pearlite, bainite, and retained austenite may be contained in a total area ratio of 40% or less.
次に熱間プレス成形方法について述べる。
熱間プレス成形は,質量%で,C:0.05〜0.35%,Si:0.005〜1.0%,Mn:0〜4.0%,Cr:0〜3.0%,Cu:0〜4.0%,Ni:0〜3.0%,B:0.0002〜0.1%,Ti:0.001〜3.0%,P:0.1%以下,S:0.05%以下,Al:0.005〜0.1%,N:0.01%以下,を含有し,かつ,Mn+Cr/3.1+(Cu+Ni)/1.4≧2.5%を満たし,さらに任意で,質量%でMo:0.01〜3.0%,または,質量%で,Nb:0.01〜3.0%,V:0.001〜3.0%,W:0.005〜3.0%,の1種または2種以上,または,質量%で,REM:0.0005〜0.01%,Y:0.0005〜0.01%,Ca:0.0005〜0.01%,Mg:0.0005〜0.01%,の1種または2種以上を含有し,残部がFeおよび不可避的不純物からなる鋼板を,750〜1300℃に昇温させて,10〜6000秒間維持した後,300℃以上の温度にて2回以上のプレス成形を行う。
Next, the hot press molding method will be described.
The hot press molding is mass%, C: 0.05 to 0.35%, Si: 0.005 to 1.0%, Mn: 0 to 4.0%, Cr: 0 to 3.0%, Cu: 0 to 4.0%, Ni: 0 to 3.0%, B: 0.0002 to 0.1%, Ti: 0.001 to 3.0%, P: 0.1% or less, S: 0.05% or less, Al: 0.005 to 0.1%, N: 0.01% or less, and satisfies Mn + Cr / 3.1 + (Cu + Ni) /1.4≧2.5% Further, optionally, Mo: 0.01 to 3.0% by mass, or Nb: 0.01 to 3.0%, V: 0.001 to 3.0%, W: 0 by mass% 0.005 to 3.0%, or one or more, or% by mass, REM: 0.0005 to 0.01%, Y: 0.0005 to 0.01%, Ca: 0.0005 0.01%, Mg: A steel plate containing one or more of 0.0005 to 0.01%, the balance being Fe and unavoidable impurities is heated to 750 to 1300 ° C. and maintained for 10 to 6000 seconds. Two or more press moldings are performed at a temperature of 300 ° C. or higher.
鋼板の昇温速度は,1〜100℃/秒の範囲とすることが好ましい。昇温速度が1℃/秒より遅いと生産性が低下することから好ましくない。一方,昇温速度を100℃/秒より速くすることは,通常の炉の昇温では困難である。しかしながら,高周波加熱等によって,100℃/秒を上回る昇温速度で加熱したとしても,本発明の効果を得ることができる。 The heating rate of the steel sheet is preferably in the range of 1 to 100 ° C./second. If the rate of temperature increase is slower than 1 ° C./second, productivity is not preferable. On the other hand, it is difficult to increase the rate of temperature rise above 100 ° C./second with a normal furnace temperature increase. However, the effect of the present invention can be obtained even if heating is performed at a temperature rising rate exceeding 100 ° C./second by high-frequency heating or the like.
加熱温度については600℃程度でもプレス成形性は向上するが,980MPa以上の高強度を得るためには,加熱時にオーステナイト組織とし,冷却時にマルテンサイト組織を得る必要があるため下限を750℃とした。一方,過度の加熱は,鋼板組織の粗粒化,スケールの増加,加熱コストの上昇を招くため,上限は1300℃とした。なお,加熱方法には特段の限定はないが,均一に速く効率良く加熱可能な装置を使用することが好ましい。また,目的とする部材強度によっては,加熱時にフェライト相が残存していても問題ない。 As for the heating temperature, the press formability is improved even at about 600 ° C. However, in order to obtain a high strength of 980 MPa or more, it is necessary to obtain an austenite structure during heating and a martensite structure during cooling, so the lower limit is set to 750 ° C. . On the other hand, excessive heating causes coarsening of the steel sheet structure, an increase in scale, and an increase in heating cost, so the upper limit was set to 1300 ° C. The heating method is not particularly limited, but it is preferable to use an apparatus that can heat uniformly and quickly. Also, depending on the intended member strength, there is no problem even if the ferrite phase remains during heating.
また,加熱時間を10〜6000秒としたのは,加熱時間が10秒未満であると鋼板内部では所定の温度となっておらず,鋼板内部では十分な量のオーステナイトが得られておらず,焼き入れ後に所定の強度が得られないため10秒以上とした。また6000秒より長時間加熱するとオーステナイト粒が粗大化し,焼きいれ後に所定の強度が得られないため,また,加熱コストの上昇を招くため6000秒以下とした。 In addition, the heating time of 10 to 6000 seconds is that when the heating time is less than 10 seconds, a predetermined temperature is not obtained in the steel sheet, and a sufficient amount of austenite is not obtained in the steel sheet. Since predetermined strength could not be obtained after quenching, it was set to 10 seconds or more. Further, when heated for longer than 6000 seconds, the austenite grains become coarse, and a predetermined strength cannot be obtained after baking, and the heating cost is increased.
プレス時の加工温度は300℃以上の温度範囲とする。下限値を300℃としたのは,300℃以下になるとマルテンサイトが生成し始め,鋼板の強度が上昇し,成形性,特に形状凍結性が低下するからである。ただし,鋼板温度が300℃未満にて加工されたとしても,部材自体については,同様の機械特性は発揮される。 The processing temperature during pressing is set to a temperature range of 300 ° C. or higher. The reason why the lower limit is set to 300 ° C. is that when the temperature is 300 ° C. or less, martensite starts to be generated, the strength of the steel sheet is increased, and the formability, particularly the shape freezing property is lowered. However, even if the steel plate is processed at a temperature of less than 300 ° C., the same mechanical characteristics are exhibited for the member itself.
なお,1300℃に加熱された鋼板を炉から取り出し,すぐさま成形を行ったとしても,鋼板の一部が金型と接触することにより,加工温度は1100℃以下となり,実質的には1100℃超での成形は困難である。したがって,成形温度は,実質的には,300〜1100℃の範囲となる。但し,1100℃超の温度域で成形したとしても,材質の均一な部材の成形は可能である。 Even if the steel plate heated to 1300 ° C is taken out of the furnace and immediately formed, the processing temperature becomes 1100 ° C or lower due to part of the steel plate coming into contact with the mold, which is substantially higher than 1100 ° C. Molding with is difficult. Therefore, the molding temperature is substantially in the range of 300 to 1100 ° C. However, even if molding is performed in a temperature range exceeding 1100 ° C., it is possible to mold a member having a uniform material.
トランスファープレス,すなわち2回以上のプレスのうち,最終プレスを除いたプレス成形時での冷却速度については,特に限定しないが,最終プレス以前のプレスを300℃以上の温度域で実施するためには,なるべく低い冷却速度とすることが好ましい。 Of the two or more transfer presses, the cooling rate at the time of press forming excluding the final press is not particularly limited, but in order to perform the press before the final press in a temperature range of 300 ° C or higher. , It is preferable to set the cooling rate as low as possible.
また,最終のプレス成形後,パンチを下死点にて1〜60秒保持を行うことも有効である。下死点における保持時間が1秒以上であれば焼きが入るが,過度の保持時間の増大は,生産性の低下をもたらし経済的に好ましくないため60秒を上限とした。しかしながら,60秒を超える保持を行ったとしても,材質変動のない部材の生産は可能である。 It is also effective to hold the punch at the bottom dead center for 1 to 60 seconds after the final press forming. If the holding time at the bottom dead center is 1 second or more, baking will occur, but an excessive increase in the holding time results in a decrease in productivity and is not economically desirable, so the upper limit was 60 seconds. However, even if the holding is performed for more than 60 seconds, it is possible to produce a member having no material variation.
また,最終のプレス成形後の冷却速度は10〜500℃/秒とすることが好ましい。最終のプレス成形後の冷却速度を10℃/秒未満とすると,冷却に過度の時間を要するため生産性が低下し,経済的に好ましくないためである。一方,500℃/秒より早くする事は製造上困難であるためである。十分な焼入れ性の確保のため,また,プレス成形後のハンドリングの安全性を考慮すると,冷却速度は高い方が好ましい。この際の冷却方法は,上記の金型の下死点による保持を基本とするが,成形後,金型内で水をはじめとする液体やガスを用いた冷却を行ったとしても何ら問題は生じない。 The cooling rate after the final press molding is preferably 10 to 500 ° C./second. This is because if the cooling rate after the final press molding is less than 10 ° C./second, it takes an excessive amount of time for cooling, resulting in a decrease in productivity, which is economically undesirable. On the other hand, it is difficult to make the speed faster than 500 ° C./sec. In order to ensure sufficient hardenability and considering the safety of handling after press forming, a higher cooling rate is preferable. The cooling method at this time is basically held at the bottom dead center of the above-mentioned mold, but there is no problem even if cooling is performed using water or other liquid or gas in the mold after molding. Does not occur.
また,最終のプレス成形後,直ちに成形品を金型より取り出し,空冷,窒素ガス等の気体,水や有機溶媒等の液体を用いた冷却を行うことも有効である。冷却停止温度を5〜40℃としたのは,成形部材を5℃未満あるいは40℃超で保持するには,別途,冷却装置や保温装置を必要とし,生産性や経済性が低下するからである。また,本発明において,Alめっき鋼板またはZnめっき鋼板を使用することは,スケール生成抑制として有効であるが,その場合は,それぞれのめっき合金相の沸点以下での加熱温度とする必要がある。 It is also effective to immediately take out the molded product from the mold after the final press molding, and perform cooling using air cooling, a gas such as nitrogen gas, or a liquid such as water or an organic solvent. The reason why the cooling stop temperature is set to 5 to 40 ° C. is that, in order to keep the molded member at less than 5 ° C. or more than 40 ° C., a cooling device and a heat retaining device are separately required, which decreases productivity and economy. is there. In the present invention, the use of an Al-plated steel sheet or a Zn-plated steel sheet is effective for suppressing scale formation, but in that case, it is necessary to set the heating temperature below the boiling point of each plated alloy phase.
次に,実施例で本発明をより詳細に説明する。
表1に示す成分の鋼を溶製し,常法に従い連続鋳造でスラブ鋼片とした。符号(鋼No.)A〜Iが本発明に従った成分の鋼で,符号(鋼No.)J〜Pは成分が本発明から逸脱するものである。これらの鋼片を加熱炉中で1120℃〜1280℃に加熱し,熱間圧延を仕上げ温度850〜950℃で実施,その後620℃まで空冷し巻き取った。この熱延板を圧下率50%で冷延し,それぞれ冷延鋼板とし,熱間プレス用素材とした。
Next, the present invention will be described in more detail with reference to examples.
Steels having the components shown in Table 1 were melted and slab steel slabs were obtained by continuous casting according to a conventional method. Reference signs (steel Nos.) A to I are steels of components according to the present invention, and reference signs (steel Nos.) J to P are components that depart from the present invention. These steel pieces were heated to 1120 ° C. to 1280 ° C. in a heating furnace, hot rolled at a finishing temperature of 850 to 950 ° C., then cooled to 620 ° C. and wound up. The hot-rolled sheets were cold-rolled at a reduction rate of 50%, and were each made into a cold-rolled steel sheet as a material for hot pressing.
こうして製造した鋼板を1〜100℃/秒の昇温速度で昇温して,それぞれ,表2に示す温度で300秒間加熱した後,常温の金型で2回または3回のプレス成形を行なった。一部について,最終プレス後,それぞれ表2に示す条件で下死点保持を行った。また,残りの部材に関しては,下死点での保持を行わずに直ちに取り出した。 The steel sheet thus manufactured was heated at a temperature increase rate of 1 to 100 ° C./second, heated at the temperature shown in Table 2 for 300 seconds, and then pressed twice or three times with a normal temperature mold. It was. For some parts, the bottom dead center was maintained under the conditions shown in Table 2 after the final press. The remaining members were immediately removed without holding at the bottom dead center.
その後,成形した部材に関してその組織観察および特性調査を行った。材質調査はプレス成形された部位より,JIS Z 2201 5号試験片を加工し,同2241記載の試験方法に従って行った。 Thereafter, the microstructure of the molded members was examined and the characteristics were investigated. The material inspection was conducted according to the test method described in 2241 by processing a JIS Z 2201 No. 5 test piece from the press-formed part.
このようにして得られた部材の組織観察結果,引張強度(TS)を表2に示す。No.1〜9は,本発明例であり,熱間プレス後の高強度が確保されており,かつ,成形温度に材質が依存せず,機械特性の変動の少ない鋼板が得られた。また,スプリングバック等の形状不良もなかった。 Table 2 shows the structure observation results and tensile strength (TS) of the members thus obtained. No. Nos. 1 to 9 are examples of the present invention, and high strength after hot pressing was ensured, and a steel plate with little variation in mechanical properties was obtained without depending on the forming temperature. Moreover, there was no shape defect such as a spring back.
一方,No.10〜18は以下の理由で本発明の範囲外である。すなわち,No.10〜14は,Mn+Cr/3.1+(Cu+Ni)/1.4が本発明の2.5%以上を満たしていない鋼であるJ〜Nを使用したため,プレス成形後の組織中のマルテンサイト面積率が低下し,所望の高強度が得られなかった。No.15はTi,Bが本発明の成分範囲より低かったため,十分焼きが入らず,所望の高強度が得られなかった。No.16はCが本発明の成分範囲より低かったため,十分な量のマルテンサイト組織は得られたものの,所望の高強度が得られなかった。No.17は,最終のプレス温度が本発明の成分範囲より低かったため,マルテンサイトの生成後,すなわち,高強度でのプレスとなったため,大きなスプリングバックが生じ,所望する形状が得られなかった。No.18は,加熱温度が本発明の成分範囲より低かったため,加熱時にオーステナイト組織にならず,ゆえにプレス成形後にマルテンサイト組織が得られず,所望の高強度が得られなかった。 On the other hand, no. 10-18 are outside the scope of the present invention for the following reasons. That is, no. 10 to 14 use JN, which is steel in which Mn + Cr / 3.1 + (Cu + Ni) /1.4 does not satisfy 2.5% or more of the present invention, so the martensite area in the structure after press forming The rate decreased and the desired high strength could not be obtained. No. In No. 15, since Ti and B were lower than the component range of the present invention, sufficient baking did not occur and the desired high strength could not be obtained. No. No. 16 had a C lower than the component range of the present invention, so that a sufficient amount of martensite structure was obtained, but the desired high strength could not be obtained. No. In No. 17, since the final pressing temperature was lower than the component range of the present invention, after the martensite was formed, that is, the pressing was performed with high strength, a large springback occurred and the desired shape could not be obtained. No. In No. 18, since the heating temperature was lower than the component range of the present invention, an austenite structure was not formed during heating. Therefore, a martensite structure was not obtained after press molding, and a desired high strength was not obtained.
本発明は,例えば自動車の足回り,シャーシ,メンバー,衝突安全用補強部材等に用いられる高強度鋼製部材の製造などに利用される。 The present invention is used, for example, in the manufacture of high-strength steel members used for automobile undercarriages, chassis, members, collision safety reinforcing members, and the like.
Claims (7)
C:0.05〜0.35%,
Si:0.005〜1.0%,
Mn:0〜4.0%,
Cr:0〜3.0%,
Cu:0〜4.0%,
Ni:0〜3.0%,
B:0.0002〜0.1%,
Ti:0.001〜3.0%,
P:0.1%以下,
S:0.05%以下,
Al:0.005〜0.1%,
N:0.01%以下,
を含有し,かつ,Mn+Cr/3.1+(Cu+Ni)/1.4≧2.5%を満たし,残部がFeおよび不可避的不純物からなる鋼板を,750〜1300℃に昇温させて,10〜6000秒間維持した後,300℃以上の温度にて2回以上のプレス成形を行い,面積率で60%以上のマルテンサイト組織を有する部材を得ることを特徴とする,成形性に優れたホットプレス高強度鋼製部材の製造方法。 % By mass
C: 0.05 to 0.35%,
Si: 0.005 to 1.0%,
Mn: 0 to 4.0%,
Cr: 0 to 3.0%,
Cu: 0 to 4.0%,
Ni: 0 to 3.0%,
B: 0.0002 to 0.1%,
Ti: 0.001 to 3.0%,
P: 0.1% or less,
S: 0.05% or less,
Al: 0.005 to 0.1%,
N: 0.01% or less,
And a steel plate satisfying Mn + Cr / 3.1 + (Cu + Ni) /1.4≧2.5% and the balance being Fe and inevitable impurities is heated to 750 to 1300 ° C. Hot press with excellent formability, characterized in that after maintaining for 6000 seconds, press molding is performed twice or more at a temperature of 300 ° C. or more to obtain a member having a martensite structure of 60% or more in area ratio. A method for producing a high-strength steel member.
Nb:0.01〜3.0%,
V:0.001〜3.0%,
W:0.005〜3.0%,
の1種または2種以上を含有することを特徴とする,請求項1又は2記載の成形性に優れたホットプレス高強度鋼製部材の製造方法。 The steel sheet is further mass%,
Nb: 0.01 to 3.0%,
V: 0.001 to 3.0%,
W: 0.005 to 3.0%,
The method for producing a hot-pressed high-strength steel member having excellent formability according to claim 1 or 2, characterized by containing one or more of the following.
REM:0.0005〜0.01%,
Y:0.0005〜0.01%,
Ca:0.0005〜0.01%,
Mg:0.0005〜0.01%,
の1種または2種以上を含有することを特徴とする,請求項1〜3の何れかに記載の成形性に優れたホットプレス高強度鋼製部材の製造方法。 The steel sheet is further mass%,
REM: 0.0005 to 0.01%
Y: 0.0005 to 0.01%,
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
The manufacturing method of the hot press high-strength steel member excellent in the moldability in any one of Claims 1-3 characterized by containing 1 type (s) or 2 or more types of these.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005027079A JP4575799B2 (en) | 2005-02-02 | 2005-02-02 | Manufacturing method of hot-pressed high-strength steel members with excellent formability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005027079A JP4575799B2 (en) | 2005-02-02 | 2005-02-02 | Manufacturing method of hot-pressed high-strength steel members with excellent formability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006212663A JP2006212663A (en) | 2006-08-17 |
JP4575799B2 true JP4575799B2 (en) | 2010-11-04 |
Family
ID=36976299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005027079A Active JP4575799B2 (en) | 2005-02-02 | 2005-02-02 | Manufacturing method of hot-pressed high-strength steel members with excellent formability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4575799B2 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101484601B (en) * | 2006-05-10 | 2012-07-25 | 住友金属工业株式会社 | Hot-pressed steel sheet member and process for production thereof |
JP5476676B2 (en) * | 2008-04-22 | 2014-04-23 | 新日鐵住金株式会社 | Hot-pressed member and manufacturing method thereof |
JP5347393B2 (en) * | 2008-09-12 | 2013-11-20 | Jfeスチール株式会社 | Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member |
JP5347392B2 (en) * | 2008-09-12 | 2013-11-20 | Jfeスチール株式会社 | Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member |
JP5347395B2 (en) * | 2008-09-12 | 2013-11-20 | Jfeスチール株式会社 | Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member |
JP5347394B2 (en) * | 2008-09-12 | 2013-11-20 | Jfeスチール株式会社 | Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member |
JP5637342B2 (en) * | 2008-09-18 | 2014-12-10 | 国立大学法人 岡山大学 | Hot-pressed steel plate member and method for manufacturing the same |
JP5369713B2 (en) * | 2009-01-28 | 2013-12-18 | Jfeスチール株式会社 | Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member |
JP5369712B2 (en) * | 2009-01-28 | 2013-12-18 | Jfeスチール株式会社 | Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member |
JP5369714B2 (en) * | 2009-01-28 | 2013-12-18 | Jfeスチール株式会社 | Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member |
JP5304678B2 (en) * | 2010-02-09 | 2013-10-02 | 新日鐵住金株式会社 | HOT PRESSING METHOD AND METHOD FOR PRODUCING MOLDED ARTICLE |
JP2011173150A (en) * | 2010-02-24 | 2011-09-08 | Aisin Seiki Co Ltd | Steel working method |
CN102191434B (en) * | 2010-03-03 | 2013-02-06 | 宝山钢铁股份有限公司 | Thick steel plate with great large line energy and low temperature toughness |
WO2011158818A1 (en) * | 2010-06-14 | 2011-12-22 | 新日本製鐵株式会社 | Hot-stamp-molded article, process for production of steel sheet for hot stamping, and process for production of hot-stamp-molded article |
KR101253885B1 (en) * | 2010-12-27 | 2013-04-16 | 주식회사 포스코 | Steel sheet fir formed member, formed member having excellent ductility and method for manufacturing the same |
JP5652321B2 (en) * | 2011-05-13 | 2015-01-14 | 新日鐵住金株式会社 | Steel sheet for hot stamping excellent in hot composite formability and delayed fracture resistance of punched parts, and its manufacturing method |
EP2719788B1 (en) * | 2011-06-10 | 2016-11-02 | Kabushiki Kaisha Kobe Seiko Sho | Hot press molded article, method for producing same, and thin steel sheet for hot press molding |
EP2995691B1 (en) | 2011-07-21 | 2017-09-13 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Method for producing hot-pressed steel member |
WO2013132823A1 (en) * | 2012-03-06 | 2013-09-12 | Jfeスチール株式会社 | Warm press forming method and automobile frame component |
WO2013132821A1 (en) * | 2012-03-06 | 2013-09-12 | Jfeスチール株式会社 | Warm press forming method and automobile frame component |
JP6001883B2 (en) * | 2012-03-09 | 2016-10-05 | 株式会社神戸製鋼所 | Manufacturing method of press-molded product and press-molded product |
CN104520448B (en) * | 2012-06-05 | 2017-08-11 | 蒂森克虏伯钢铁欧洲股份公司 | The manufacture method of steel, flat product and the flat product |
CA2880946C (en) * | 2012-08-15 | 2018-06-12 | Nippon Steel & Sumitomo Metal Corporation | Steel sheet for hot stamping, method of manufacturing the same, and hot stamped steel sheet member |
JP6082451B2 (en) | 2015-03-18 | 2017-02-15 | 株式会社神戸製鋼所 | Steel sheet for hot pressing and manufacturing method thereof |
KR101770031B1 (en) | 2015-09-23 | 2017-08-21 | 현대제철 주식회사 | Manufacturing method for molded articles |
KR101677398B1 (en) * | 2015-11-30 | 2016-11-18 | 주식회사 포스코 | Steels for hot forming and method of manufacturion component using thereof |
WO2017144419A1 (en) * | 2016-02-23 | 2017-08-31 | Tata Steel Ijmuiden B.V. | Hot formed part and method for producing it |
KR101798771B1 (en) * | 2016-06-21 | 2017-11-17 | 주식회사 포스코 | Ultra high strength and high ductility steel sheet having superior yield strength and method for manufacturing the same |
CN113215481B (en) * | 2020-01-21 | 2023-05-23 | 通用汽车环球科技运作有限责任公司 | Press hardened steel with high oxidation resistance |
JP6981487B2 (en) * | 2020-02-25 | 2021-12-15 | Jfeスチール株式会社 | Press molding method and shape evaluation method of press molded products |
KR102336757B1 (en) * | 2020-04-21 | 2021-12-07 | 현대제철 주식회사 | Hot stamping product and method of manufacturing the same |
KR102416967B1 (en) * | 2020-12-23 | 2022-07-05 | 현대제철 주식회사 | Member for automobile structure |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001314923A (en) * | 2000-05-02 | 2001-11-13 | Nippon Steel Corp | Warm pressing method for high tensile strength steel sheet |
JP2004211197A (en) * | 2002-11-14 | 2004-07-29 | Nippon Steel Corp | Steel sheet having excellent hardenability after hot forming and impact property, and its using method |
JP2004270006A (en) * | 2003-03-11 | 2004-09-30 | Jfe Steel Kk | Method of producing component having excellent shape-fixability |
JP2004315927A (en) * | 2003-04-18 | 2004-11-11 | Nippon Steel Corp | Steel sheet for hot forming having excellent hardenability after high temperature forming and method of using the same |
JP2004337923A (en) * | 2003-05-15 | 2004-12-02 | Sumitomo Metal Ind Ltd | Manufacturing method of steel for hot forming |
-
2005
- 2005-02-02 JP JP2005027079A patent/JP4575799B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001314923A (en) * | 2000-05-02 | 2001-11-13 | Nippon Steel Corp | Warm pressing method for high tensile strength steel sheet |
JP2004211197A (en) * | 2002-11-14 | 2004-07-29 | Nippon Steel Corp | Steel sheet having excellent hardenability after hot forming and impact property, and its using method |
JP2004270006A (en) * | 2003-03-11 | 2004-09-30 | Jfe Steel Kk | Method of producing component having excellent shape-fixability |
JP2004315927A (en) * | 2003-04-18 | 2004-11-11 | Nippon Steel Corp | Steel sheet for hot forming having excellent hardenability after high temperature forming and method of using the same |
JP2004337923A (en) * | 2003-05-15 | 2004-12-02 | Sumitomo Metal Ind Ltd | Manufacturing method of steel for hot forming |
Also Published As
Publication number | Publication date |
---|---|
JP2006212663A (en) | 2006-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4575799B2 (en) | Manufacturing method of hot-pressed high-strength steel members with excellent formability | |
JP4427465B2 (en) | Manufacturing method of hot-pressed high-strength steel members with excellent productivity | |
JP4673558B2 (en) | Hot press molding method and automotive member excellent in productivity | |
TWI525201B (en) | Hot rolled steel sheet | |
KR101814949B1 (en) | Hot-formed steel sheet member, and method for producing same | |
JP5879364B2 (en) | Steel sheet for molded member having excellent ductility, molded member, and manufacturing method thereof | |
EP2581465B1 (en) | Hot-stamp-molded article, process for production of steel sheet for hot stamping, and process for production of hot-stamp-molded article | |
WO2017092104A1 (en) | Steel material for stamping forming, formed member and heat treatment method thereof | |
KR101587751B1 (en) | Process for producing press-formed product, and press-formed product | |
JP5598157B2 (en) | Steel sheet for hot press excellent in delayed fracture resistance and collision safety and method for producing the same | |
CN106011644B (en) | High elongation rate cold rolling high strength steel plate and preparation method thereof | |
CN108431280B (en) | High yield ratio type high strength cold rolled steel sheet and method for manufacturing same | |
JP2007016296A (en) | Steel sheet for press forming with excellent ductility after forming, its forming method and automotive parts using the steel sheet for press forming | |
JP5126844B2 (en) | Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member | |
JP2005126733A (en) | Steel sheet for hot press having excellent hot workability, and automotive member | |
KR101849031B1 (en) | Hot-formed member and process for manufacturing same | |
JP2010059452A (en) | Cold-rolled steel sheet and producing method therefor | |
KR20150110723A (en) | 780 mpa class cold rolled dual-phase strip steel and manufacturing method thereof | |
KR20080111549A (en) | Hot-pressed steel sheet member and process for production thereof | |
KR20120135521A (en) | High-strength steel sheet having excellent hot rolling workability, and process for production thereof | |
CA2933435C (en) | Hot-pressed steel sheet member, method of manufacturing the same, and steel sheet for hot pressing | |
CN101120113B (en) | High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof | |
CN114438418A (en) | Hot-formed member and method for manufacturing same | |
JP2006274335A (en) | Method for producing superhigh strength hot rolled steel sheet | |
JP5835621B2 (en) | Hot-pressed steel plate member, manufacturing method thereof, and hot-press steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100817 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100820 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4575799 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |