JP5304678B2 - HOT PRESSING METHOD AND METHOD FOR PRODUCING MOLDED ARTICLE - Google Patents

HOT PRESSING METHOD AND METHOD FOR PRODUCING MOLDED ARTICLE Download PDF

Info

Publication number
JP5304678B2
JP5304678B2 JP2010026633A JP2010026633A JP5304678B2 JP 5304678 B2 JP5304678 B2 JP 5304678B2 JP 2010026633 A JP2010026633 A JP 2010026633A JP 2010026633 A JP2010026633 A JP 2010026633A JP 5304678 B2 JP5304678 B2 JP 5304678B2
Authority
JP
Japan
Prior art keywords
mold
temperature
steel plate
dead center
bottom dead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010026633A
Other languages
Japanese (ja)
Other versions
JP2011161481A (en
Inventor
一夫 植松
友吉 徳田
真伸 加茂
佳彦 増尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010026633A priority Critical patent/JP5304678B2/en
Publication of JP2011161481A publication Critical patent/JP2011161481A/en
Application granted granted Critical
Publication of JP5304678B2 publication Critical patent/JP5304678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は形状凍結性に優れた高強度の成形品を効率よく得られる熱間プレス方法、および成形品の製造方法に関する。   The present invention relates to a hot pressing method for efficiently obtaining a high-strength molded product excellent in shape freezing property, and a method for producing the molded product.

自動車分野においては衝突安全性向上と軽量化とを両立させるために、バンパーやドアビーム等の自動車用部品を中心に、引張強度が1370MPa超級の超高強度が得られる熱間プレス成形された鋼材の採用が進んでいる。   In the automotive field, in order to achieve both improved collision safety and lighter weight, it is a hot press-formed steel material that provides ultra-high strength with a tensile strength exceeding 1370 MPa, centering on automotive parts such as bumpers and door beams. Adoption is progressing.

熱間プレスは素材を900℃程度のオーステナイト域に加熱し、金型でプレスすると同時に、金型に冷却手段を接触させて抜熱することにより常温〜200℃程度にまで冷却して焼入を行う技術である。熱間プレスでは、素材を高温の軟質状態で成形することから、プレス荷重を低く抑えることができるとともに、形状凍結性に優れた成形品を得ることができる。また、成形と同時に焼入を行うため、製品の強度を1370MPa超級と非常に高くできることが特徴である。しかし、金型に冷却手段を接触させて該金型から抜熱して冷却することから、プレスの下死点で15〜30秒程度保持する必要がある。これにより、1分間あたりのプレス回数はせいぜい1〜2回程度にとどまり、冷間プレスの8〜15回/分に比べると著しく生産性が低いといわざるを得ない。   Hot pressing heats the material to an austenite region of about 900 ° C. and presses it with a mold, and at the same time, cools the material from room temperature to about 200 ° C. by removing the heat by bringing a cooling means into contact with the mold and quenching. It is a technique to perform. In the hot press, since the raw material is molded in a high-temperature soft state, a press load can be suppressed low, and a molded product excellent in shape freezing property can be obtained. Further, since quenching is performed at the same time as molding, the strength of the product can be as high as 1370 MPa. However, since the cooling means is brought into contact with the mold and the heat is removed from the mold and cooled, it is necessary to hold the press at the bottom dead center for about 15 to 30 seconds. As a result, the number of presses per minute is limited to about 1 to 2 times at most, and it must be said that the productivity is remarkably low as compared with 8 to 15 times / minute of the cold press.

熱間プレスの生産性低下は、金型での焼き入れに起因するとの着目に基づいて、金型は成形のみの機能に特化し、焼入れは別工程で行う技術が特許文献1に開示されている。すなわち、特許文献1には、薄鋼板を850℃以上に加熱後、プレス金型にて高温成形するに際し、プレス金型から成形品を取り出して5秒以内に冷却速度30℃/秒以上で冷却する熱間プレス方法が開示されている。   Patent Document 1 discloses a technique in which a die is specialized in the function of molding only, and quenching is performed in a separate process, based on the attention that the productivity reduction of the hot press is caused by quenching in the die. Yes. That is, in Patent Document 1, when a thin steel plate is heated to 850 ° C. or higher and then formed at high temperature with a press die, the molded product is taken out from the press die and cooled at a cooling rate of 30 ° C./second or more within 5 seconds. A hot pressing method is disclosed.

また、特許文献2には、成形用の金型と焼き入れ用の金型とを備えたトランスファープレス装置による熱間プレス技術が開示され、これにより高速処理が可能であるとされている。   Further, Patent Document 2 discloses a hot press technique using a transfer press apparatus provided with a molding die and a quenching die, thereby enabling high-speed processing.

特開2005−288528号公報JP 2005-288528 A 特開2007−144495号公報JP 2007-144495 A

しかしながら、特許文献1に記載の方法では、マルテンサイト変態開始温度(Ms点)以上の温度で金型から鋼材を取り出すため、金型から次工程の焼入れまでの搬送の過程でオーステナイトからフェライトやベイナイトへの変態に伴う形状変化が生じ、形状不良を発生する虞がある。また、特許文献2に記載の装置も、成形と焼入れとを別の金型でおこなうため、上記特許文献1と同様に搬送中の変態による形状変化にもとなう形状不良が生じる虞がある。また、トランスファープレス装置は設備費が嵩み、コストアップとなる問題もある。   However, in the method described in Patent Document 1, since the steel material is taken out from the mold at a temperature equal to or higher than the martensite transformation start temperature (Ms point), the austenite to ferrite and bainite are transported from the mold to the next quenching process. There is a risk that a shape change occurs due to the transformation to a shape and a defective shape occurs. Moreover, since the apparatus described in Patent Document 2 also performs molding and quenching with different molds, there is a risk that a shape defect that also causes a shape change due to transformation during conveyance occurs as in Patent Document 1. . In addition, the transfer press apparatus has a problem that the equipment cost increases and the cost increases.

そこで本発明は、上記従来技術の問題点を解決し、良好な形状で高強度の部品を効率よく製造することが可能な熱間プレス方法、および該方法による成形品の製造方法を提供することを課題とする。   Accordingly, the present invention provides a hot pressing method capable of efficiently producing high strength parts with a good shape, and a method for producing a molded product by the method, which solves the problems of the above-described conventional techniques. Is an issue.

本発明者らは、鋭意検討の結果、以下のような知見を得て本発明を完成させた。
図5は、従来の熱間プレス方法における温度履歴を説明する模式図である。熱間プレスによる高強度部材の製造は、成形される鋼材をオーステナイト域からMs点以下まで急冷することによりマルテンサイト組織を得ることにより行われる。すなわち、マルテンサイト変態に伴う形状変化を抑制しながら十分な硬度を確保するため、図5に示すように、当該成形される鋼材をプレス成形の金型下死点で15〜30秒間拘束保持(「拘束」、あるいは「保持」ともいう。)し、金型内にて100〜200℃程度にまで冷却した後、取り出している。
As a result of intensive studies, the present inventors obtained the following knowledge and completed the present invention.
FIG. 5 is a schematic diagram for explaining a temperature history in a conventional hot pressing method. Production of a high-strength member by hot pressing is performed by obtaining a martensite structure by rapidly cooling the steel material to be formed from the austenite region to the Ms point or less. That is, in order to secure sufficient hardness while suppressing the shape change accompanying martensitic transformation, as shown in FIG. 5, the steel material to be formed is restrained and held at the bottom dead center of the press mold for 15 to 30 seconds ( It is also referred to as “restraint” or “holding”), cooled to about 100 to 200 ° C. in the mold, and then taken out.

本発明者らは、熱間プレスによる製造プロセスを3段階に分割して検討した。すなわち、
(1)金型を用いて高温素材を所定形状に成形する処理(図5の符号101)
(2)オーステナイト域から急冷して焼き入れを行う処理(図5の符号102)
(3)焼入れ後の熱収縮に伴う寸法精度の低下を防止するために拘束して冷却をする処理(図5の符号103)
である。
The present inventors examined the manufacturing process by hot pressing in three stages. That is,
(1) Processing for forming a high temperature material into a predetermined shape using a mold (reference numeral 101 in FIG. 5)
(2) Processing for quenching by quenching from the austenite region (reference numeral 102 in FIG. 5)
(3) Processing to restrain and cool in order to prevent a decrease in dimensional accuracy due to thermal shrinkage after quenching (reference numeral 103 in FIG. 5)
It is.

上記(2)の処理は、焼入れに伴う変態による形状変化を抑制するために、金型内で行うことが重要である。一方、上記(3)の処理は、焼入れ後の冷却処理であり、冷却による熱収縮に伴う形状変形を防止することができればよく、焼入れに用いる金型を用いて冷却する必要はないと考えた。従って、(3)の処理では、成形および焼入れに用いた金型とは異なる冷却手段を用いれば、当該成形および焼き入れに用いた金型は(1)の処理に使用することができるので、生産性を高めることができる。   It is important to perform the treatment (2) in the mold in order to suppress the shape change due to the transformation accompanying quenching. On the other hand, the process of (3) above is a cooling process after quenching, and it is only necessary to prevent shape deformation accompanying thermal contraction due to cooling, and it is not necessary to cool using a mold used for quenching. . Therefore, in the process (3), if a cooling means different from the mold used for molding and quenching is used, the mold used for the molding and quenching can be used for the process (1). Productivity can be increased.

次に、本発明者らは、金型の下死点で成形品を保持する際の保持終了温度(以下、「下死点保持終了温度」と記載することがある。)と焼き入れにより得られる鋼材の到達硬度との関係に着目した。なお、保持終了温度を拘束終了温度ともいう。   Next, the present inventors obtain by holding and holding temperature when holding the molded product at the bottom dead center of the mold (hereinafter sometimes referred to as “bottom dead center holding end temperature”) and quenching. We paid attention to the relationship with the ultimate hardness of the steel. The holding end temperature is also referred to as restraint end temperature.

具体的には、900℃に加熱した厚さ1.6mm、長さ280mm、幅70mmの鋼板を常温の金型に装入して、高さ70mmのハット形状断面部材に成形する試験を行った。成形時には、成形下死点で所定時間保持した後、ハット形状断面部材(成形品)を取り出し、該成形品の縦壁部分のビッカース硬度(HV)を測定した。ここで、使用した鋼板は、C:0.21質量%、Si:0.25%、Mn:1.20%の化学成分を含有し、Ac3点は823℃である。
このとき鋼板には板側面の縦壁中央予定部に熱電対を取り付け、加熱から成形に至るまでの温度履歴を測定した。なお、下死点保持終了温度をT1とする。また、金型の縦壁部における上型と下型のクリアランスは鋼板板厚+0.1mmに調整した。下死点保持開始時の成形品の温度は500℃程度であり、プレス成形開始から下死点保持終了までの平均冷却速度は70〜100℃/秒であった。
当該試験に使用したプレスは、下死点でクラッチ切断によりモーションを停止させる機能を有するクランクプレスである。また、下死点保持を行わない場合に1回の成形に要する時間(クランクモーションが1回転する時間)は約1秒である。
Specifically, a steel plate heated to 900 ° C. having a thickness of 1.6 mm, a length of 280 mm, and a width of 70 mm was placed in a normal temperature mold and formed into a hat-shaped cross-sectional member having a height of 70 mm. . At the time of molding, the hat-shaped cross-section member (molded product) was taken out after holding at the molding bottom dead center for a predetermined time, and the Vickers hardness (HV) of the vertical wall portion of the molded product was measured. Here, the used steel plate contains chemical components of C: 0.21% by mass, Si: 0.25%, Mn: 1.20%, and the Ac3 point is 823 ° C.
At this time, a thermocouple was attached to the central part of the vertical wall on the side of the plate, and the temperature history from heating to forming was measured. The bottom dead center retention end temperature is T1. The clearance between the upper mold and the lower mold in the vertical wall portion of the mold was adjusted to a steel plate thickness +0.1 mm. The temperature of the molded product at the start of holding the bottom dead center was about 500 ° C., and the average cooling rate from the start of press molding to the end of holding the bottom dead center was 70 to 100 ° C./second.
The press used for the test is a crank press having a function of stopping motion by cutting the clutch at the bottom dead center. In addition, when the bottom dead center is not maintained, the time required for one molding (the time for one crank motion rotation) is about 1 second.

図4に、測定結果より得られた下死点保持終了温度T1と上記説明した成形品の縦壁部分のビッカース硬度(HV)との関係を示す。到達硬度は450HVでほぼ収束している。また、図4からわかるように、T1=300℃付近に変曲点を持ち、T1>300℃では著しく到達硬度が低下することがわかった。この鋼板のMs点は、冷却速度30℃/秒以上で420℃程度であり、T1がMs点に近いときには十分な到達硬度が得られず、T1を(Ms−120)℃とすることで十分な到達硬度が得られることがわかった。   FIG. 4 shows the relationship between the bottom dead center retention end temperature T1 obtained from the measurement results and the Vickers hardness (HV) of the vertical wall portion of the molded product described above. The ultimate hardness is almost converged at 450 HV. Moreover, as can be seen from FIG. 4, it has an inflection point in the vicinity of T1 = 300.degree. The Ms point of this steel sheet is about 420 ° C. at a cooling rate of 30 ° C./second or more. When T1 is close to the Ms point, sufficient hardness cannot be obtained, and it is sufficient to set T1 to (Ms−120) ° C. It was found that the ultimate hardness was obtained.

次に、本発明者らは、下死点保持終了後、金型から取り出した後の成形品の形状変化について検討した。下死点保持終了温度T1が(Ms−120)℃以下であれば、成形品を金型から取り出し、速やかに正規形状に拘束して放冷すれば下死点で長時間保持したものと同等の寸法精度が確保されることがわかった。   Next, the present inventors examined the shape change of the molded product after it was taken out from the mold after the bottom dead center was maintained. If the bottom dead center holding end temperature T1 is (Ms-120) ° C. or lower, the molded product is taken out from the mold, and if it is quickly restrained to a regular shape and allowed to cool, it is equivalent to that held at the bottom dead center for a long time. It was found that the dimensional accuracy was ensured.

すなわち、金型での下死点保持終了温度を到達硬度が収束する温度までとし、金型から取り出し後速やかに拘束治具などを用いて正規形状に拘束しつつ放冷することで金型による成形・焼入れの処理時間を短縮できる。加えて、得られる製品の硬度と寸法精度は確保できるため、生産性を向上させることができる。   That is, the bottom dead center holding end temperature in the mold is set to a temperature at which the reached hardness converges, and after taking out from the mold, the mold is allowed to cool while being restrained to a normal shape using a restraining jig or the like. The processing time for molding and quenching can be shortened. In addition, since the hardness and dimensional accuracy of the obtained product can be ensured, productivity can be improved.

以下、本発明について説明する。   The present invention will be described below.

請求項1に記載の発明は、質量%にて、Cを0.08%以上0.45%以下、MnおよびCrの合計が0.5%以上3.0%以下、残部がC、Mn、Cr以外の任意の添加物、Fe、および不可避的不純物である化学成分からなり、Ac3点以上の温度に加熱された鋼板をAr3点以上のプレス開始温度から金型にてプレス成形する方法であって、鋼板を金型の下死点にて拘束しながら鋼板の臨界冷却速度以上の冷却速度で200℃以上(Ms−120)℃以下の温度にまで冷却し、次いで、鋼板を金型から取り出し、金型による下死点での拘束終了からの鋼板の温度降下量が15℃以上となる前に前記金型とは異なる手段で拘束を開始し、200℃未満の温度にまで冷却する過程を含むことを特徴とする熱間プレス成形方法である。   In the invention according to claim 1, in mass%, C is 0.08% or more and 0.45% or less, the total of Mn and Cr is 0.5% or more and 3.0% or less, and the balance is C, Mn, This is a method of press-molding a steel plate made of an optional additive other than Cr, Fe, and a chemical component that is an inevitable impurity and heated to a temperature of Ac3 point or higher with a mold from a press start temperature of Ar3 point or higher. Then, while restraining the steel plate at the bottom dead center of the mold, the steel plate is cooled to a temperature of 200 ° C. or higher (Ms−120) ° C. or lower at a cooling rate higher than the critical cooling rate of the steel plate, and then the steel plate is taken out from the die. The process of starting restraint by means different from the mold before the temperature drop of the steel plate after the end of restraint at the bottom dead center by the mold reaches 15 ° C. or more and cooling to a temperature of less than 200 ° C. It is a hot press molding method characterized by including.

ここで、「Ms」はMs点を意味し、マルテンサイト変態開始温度である。また、「MnおよびCrの合計が0.5%以上3.0%以下」であるとは、Mn、Crのいずれかが0%であることも含むものとする。以下同様である。   Here, “Ms” means the Ms point and is the martensitic transformation start temperature. Further, “the total of Mn and Cr being 0.5% or more and 3.0% or less” includes that either Mn or Cr is 0%. The same applies hereinafter.

請求項2に記載の発明は、請求項1に記載の熱間プレス成形方法において、200℃未満にまで冷却された鋼材の硬度が420HV以上であることを特徴とする。   The invention according to claim 2 is characterized in that, in the hot press forming method according to claim 1, the hardness of the steel material cooled to below 200 ° C. is 420 HV or more.

請求項3に記載の発明は、質量%にて、Cを0.08%以上0.45%以下、MnおよびCrの合計が0.5%以上3.0%以下、残部がC、Mn、Cr以外の任意の添加物、Fe、および不可避的不純物である化学成分からなり、Ac3点以上の温度に加熱された鋼板をAr3点以上のプレス開始温度から金型にてプレス成形して成形品を製造する方法であって、鋼板を金型の下死点にて拘束しながら鋼板の臨界冷却速度以上の冷却速度で200℃以上(Ms−120)℃以下の温度にまで冷却する工程、および該工程に次いで、鋼板を金型から取り出し、金型による下死点での拘束終了からの鋼板の温度降下量が15℃以上となる前に金型とは異なる手段で拘束を開始し、200℃未満の温度にまで冷却する工程を含む熱間プレス成形品の製造方法である。   In the invention according to claim 3, in mass%, C is 0.08% or more and 0.45% or less, the total of Mn and Cr is 0.5% or more and 3.0% or less, and the balance is C, Mn, A steel plate made of any additive other than Cr, Fe, and chemical components that are unavoidable impurities, and heated to a temperature higher than the Ac3 point by pressing with a die from a pressing start temperature higher than the Ar3 point. And cooling the steel plate to a temperature of 200 ° C. or higher (Ms−120) ° C. or lower at a cooling rate higher than the critical cooling rate of the steel plate while restraining the steel plate at the bottom dead center of the mold, and Following this step, the steel plate is removed from the mold, and the restraint is started by means different from the mold before the temperature drop of the steel plate after the end of restraint at the bottom dead center by the mold reaches 15 ° C. or more. Hot press-molded product including a process of cooling to a temperature below ℃ It is a manufacturing method.

本発明によれば、従来に比べ、下死点保持時間の大幅な短縮ができ、高強度で寸法精度に優れた成形品を効率よく製造することが可能となる。   According to the present invention, the bottom dead center retention time can be greatly shortened compared to the conventional case, and a molded product having high strength and excellent dimensional accuracy can be efficiently manufactured.

1つの実施形態における温度推移を表わす模式図である。It is a schematic diagram showing the temperature transition in one embodiment. 実施例における温度推移を表わす模式図である。It is a schematic diagram showing the temperature transition in an Example. 実施例の成形品の形状凍結性評価を説明する図である。It is a figure explaining the shape freezing property evaluation of the molded article of an Example. 測定結果より得られた下死点保持終了温度と成形品の到達硬度との関係を示すグラフである。It is a graph which shows the relationship between the bottom dead center holding | maintenance completion temperature obtained from the measurement result, and the ultimate hardness of a molded article. 従来のプレス成形における温度推移を表わす模式図である。It is a schematic diagram showing the temperature transition in the conventional press molding.

本発明の上記した作用および利得は、次に説明する発明を実施するための形態から明らかにされる。ただし本発明はこれら実施形態に限定されるものではない。   The above-mentioned operation and gain of the present invention will be clarified from the following embodiments for carrying out the invention. However, the present invention is not limited to these embodiments.

<鋼板>
鋼板の化学組成は、以下のように規定する。なお、鋼板の組成を規定する%は質量%を意味する。
Cの含有量は0.08%以上0.45%以下である。Cは、鋼板の焼き入れ性を高め、かつ成形品の強度を決定する重要な元素である。Cの含有量が0.08%未満ではその効果が十分でなく、C含有量が0.45%を超えると靭性や溶接性が劣化する虞がある。望ましいCの含有量は0.3%以下である。
MnおよびCrの合計含有量は0.5%以上3.0%以下である。ここで、当該範囲はMn、Crのいずれか一方が0%であってもよいことを含む概念ある。MnおよびCrは鋼板の焼き入れ性を高め、かつ成形品の強度を安定して確保するために有効な元素である。しかし、MnおよびCrの合計含有量が0.5%未満では、その効果は十分でなく、3.0%を超えるとその効果は飽和し、安定した強度確保が難しい。望ましい合計含有量は、0.8%以上2.0%以下である。
焼き入れ性の確保の観点からは上記したC、Mn、およびCrの含有量を確保すればよい。
<Steel plate>
The chemical composition of the steel sheet is specified as follows. In addition,% which prescribes | regulates the composition of a steel plate means the mass%.
The C content is 0.08% or more and 0.45% or less. C is an important element that enhances the hardenability of the steel sheet and determines the strength of the molded product. If the C content is less than 0.08%, the effect is not sufficient, and if the C content exceeds 0.45%, the toughness and weldability may deteriorate. Desirable C content is 0.3% or less.
The total content of Mn and Cr is 0.5% or more and 3.0% or less. Here, the range is a concept including that either Mn or Cr may be 0%. Mn and Cr are effective elements for improving the hardenability of the steel sheet and ensuring the strength of the molded product stably. However, if the total content of Mn and Cr is less than 0.5%, the effect is not sufficient, and if it exceeds 3.0%, the effect is saturated, and it is difficult to ensure stable strength. A desirable total content is 0.8% or more and 2.0% or less.
From the viewpoint of ensuring hardenability, the contents of C, Mn, and Cr described above may be ensured.

さらに強度を高めるため、または強度を一層安定して確保するために、Siを0.5%以下、Pを0.05%以下、Sを0.05%以下、Alを1%以下、およびNを0.01%以下の1種以上を任意の添加物として含有させることもできる。残部はFe、上記C、Mn、Crおよび不可避的不純物である。
また、焼き入れ性を高め、靭性を向上させる観点から、Bを0.0002%以上0.01%以下、Niを2%以下、Cuを1%以下、Moを1%以下、Vを1%以下、Tiを1%以下、Nbを1%以下、の1種以上を任意の添加物として含有させることもできる。残部は、Fe、上記C、Mn、Crおよび不可避的不純物である。
上記化学成分を含有する鋼板の表面に亜鉛やアルミニウムのめっき層を形成した亜鉛めっき鋼板やアルミニウムめっき鋼板を用いることもできる。これらのめっき鋼板は、プレス時にスケールが発生せず、事後のスケール除去も不要となる。
In order to further increase the strength or to secure the strength more stably, Si is 0.5% or less, P is 0.05% or less, S is 0.05% or less, Al is 1% or less, and N May be added as an optional additive in an amount of 0.01% or less. The balance is Fe, C, Mn, Cr and unavoidable impurities.
Further, from the viewpoint of improving hardenability and improving toughness, B is 0.0002% to 0.01%, Ni is 2% or less, Cu is 1% or less, Mo is 1% or less, and V is 1%. In the following, one or more of Ti 1% or less and Nb 1% or less may be contained as optional additives. The balance is Fe, C, Mn, Cr and unavoidable impurities.
It is also possible to use a galvanized steel plate or an aluminum plated steel plate in which a zinc or aluminum plating layer is formed on the surface of the steel plate containing the chemical component. These plated steel sheets do not generate scale during pressing and do not require subsequent scale removal.

鋼板の板厚は、厚すぎると金型による冷却で十分な焼き入れを行うことが困難になることから、2.6mm以下とするのが望ましい。板厚の下限値は、特に限定しないが、1.0mmとすることができる。   If the thickness of the steel sheet is too thick, it is difficult to perform sufficient quenching by cooling with a mold, so it is desirable that the thickness is 2.6 mm or less. The lower limit of the plate thickness is not particularly limited, but can be 1.0 mm.

次に1つの実施形態にかかる熱間プレス方法、およびこれにより得られる成形品の製造方法について説明する。図1は、当該実施形態における温度推移を表わす模式図で、横軸が経過時間、縦軸が温度(℃)を表わしている。   Next, a hot pressing method according to one embodiment and a manufacturing method of a molded product obtained thereby will be described. FIG. 1 is a schematic diagram showing temperature transition in the embodiment, in which the horizontal axis represents elapsed time and the vertical axis represents temperature (° C.).

<加熱>
鋼板はAc3点以上の温度に加熱される。Ac3点以上の温度に加熱された鋼板はオーステナイト単相となる。オーステナイト化をより確実なものとするために加熱温度は(Ac3+20)℃以上にすることが望ましい。一方、加熱温度が高温すぎると省エネルギーの面で問題がある他、裸材の場合には過剰なスケールの発生も懸念される。したがって、(Ac3+120)℃以下とすることが望ましい。上記温度域に加熱することができれば加熱方法は特に限定しない。ただし鋼板にめっき鋼板を用いる場合にはめっきが消失する懸念があるため、通電加熱のような急速加熱は適さない。裸材を用いる場合にはスケール防止のために酸素濃度の低い状態に雰囲気制御された炉を用いることが望ましい。
<Heating>
The steel sheet is heated to a temperature of Ac3 point or higher. A steel sheet heated to a temperature of Ac3 point or higher becomes an austenite single phase. In order to ensure austenitization, the heating temperature is preferably (Ac3 + 20) ° C. or higher. On the other hand, if the heating temperature is too high, there is a problem in terms of energy saving, and in the case of a bare material, there is a concern that excessive scale may be generated. Therefore, it is desirable to set it to (Ac3 + 120) ° C. or lower. If it can heat to the said temperature range, a heating method will not be specifically limited. However, when a plated steel sheet is used as the steel sheet, there is a concern that the plating may disappear, and thus rapid heating such as current heating is not suitable. When using a bare material, it is desirable to use a furnace whose atmosphere is controlled to a low oxygen concentration in order to prevent scale.

<搬送・プレス成形(プレス下降)・下死点保持>
オーステナイト単相域まで加熱された鋼板は速やかに金型に搬送され、フェライトまたはベイナイトへの変態が開始するAr3点以上の温度から金型にてプレスが開始され、所定の形状に成形される(プレス成形、プレス下降)。そして、下死点で保持されるとともに金型で急速に冷却されて焼入れされる。より詳しくは、下死点にて、金型との接触による抜熱により、臨界冷却速度以上の冷却速度で、下死点保持終了温度T1が(Ms−120)℃以下、かつ、200℃以上の温度範囲になるまで保持されて焼入れされる。これにより上記したような十分な到達硬度(例えば420HV)を得ることができる。
下死点保持終了温度T1が(Ms−120)℃を超えると、オーステナイトからマルテンサイトへの変態が不完全となり、未変態オーステナイトがその後の冷却によりフェライトやベイナイトに変態するため十分な硬度が得られない。一方、下死点保持終了温度T1が200℃未満では、強度は飽和するとともに、保持時間が長くなり、生産性が低下する。望ましくは、下死点保持終了温度T1は250℃以上(Ms−120)℃以下である。
<Conveyance, press molding (press down), bottom dead center maintenance>
The steel sheet heated to the austenite single-phase region is promptly conveyed to the mold, and pressing is started with the mold from a temperature of the Ar3 point or higher at which transformation to ferrite or bainite starts, and is formed into a predetermined shape ( Press molding, press down). And it is hold | maintained at a bottom dead center, and is rapidly cooled and hardened with a metal mold | die. More specifically, the bottom dead center holding end temperature T1 is (Ms−120) ° C. or lower and 200 ° C. or higher at a bottom dead center at a cooling rate higher than the critical cooling rate by heat removal by contact with the mold. It is kept and quenched until it reaches the temperature range of. Thereby, sufficient ultimate hardness (for example, 420 HV) as described above can be obtained.
When the bottom dead center retention end temperature T1 exceeds (Ms−120) ° C., the transformation from austenite to martensite becomes incomplete, and the untransformed austenite is transformed into ferrite and bainite by subsequent cooling, so that sufficient hardness is obtained. I can't. On the other hand, when the bottom dead center holding end temperature T1 is less than 200 ° C., the strength is saturated, the holding time is lengthened, and the productivity is lowered. Desirably, the bottom dead center retention end temperature T1 is 250 ° C. or higher and (Ms−120) ° C. or lower.

冷却速度は、生産性を高める観点から速いほど望ましい。金型に冷却手段を接触して冷却することにより金型温度を十分低く保ち、60℃/秒以上の冷却速度を確保することが望ましい。なお、上記した鋼板の臨界冷却速度は30℃/秒程度であるが、金型としてSKD11やSKD61等の熱間金型用鋼材を用いた場合、金型温度が室温程度に保たれていれば上記臨界冷却速度は比較的容易に得ることができる。金型の材料は上記のように抜熱により成形品を十分に冷却できるものであれば特に限定されるものではない。ただし、熱間成形によって過度な摩耗や変形、破損などが生じないものであることがよい。また、成形回数が増えるにともなって金型に蓄熱して高温となり、成形品の焼入に必要な冷却効果が期待できなくなるおそれがあるときには、金型内部に水管を配して冷媒を循環させる等の方法により金型への蓄熱を防止することが望ましい。   The faster the cooling rate is, the higher the productivity is. It is desirable to keep the mold temperature sufficiently low by bringing the cooling means into contact with the mold for cooling and to ensure a cooling rate of 60 ° C./second or more. In addition, although the critical cooling rate of the steel sheet described above is about 30 ° C./second, when a steel material for hot mold such as SKD11 or SKD61 is used as a mold, the mold temperature is kept at about room temperature. The critical cooling rate can be obtained relatively easily. The material of the mold is not particularly limited as long as the molded product can be sufficiently cooled by heat removal as described above. However, it is preferable that hot wear does not cause excessive wear, deformation, or damage. In addition, when the number of moldings increases, the mold accumulates heat and becomes hot, and if there is a risk that the cooling effect required for quenching the molded product may not be expected, a water pipe is placed inside the mold to circulate the refrigerant. It is desirable to prevent heat storage in the mold by such a method.

<プレス上昇・搬送・二次拘束>
下死点保持終了温度T1が(Ms−120)℃以下の温度に到達した後、下死点保持を終了し、速やかに金型から成形品を取り出し(プレス上昇)、下死点保持終了からの鋼板の温度降下量が15℃以上となる前に成形品を正規の形状に保持拘束する拘束を開始し、保持拘束した状態で200℃未満に冷却を行う。すなわち、図1の「下死点保持終了」から「二次拘束開始」までの鋼板の温度降下量を15℃未満とする。これにより、熱収縮に伴う形状変化を小さく抑えることができ、寸法精度に優れた成形品を得ることが可能となる。
上述の下死点保持の間にマルテンサイト変態が十分に完了しており、金型から成形品を取り出した後は、変態に伴う形状の変化は発生しない。しかし、金型から成形品を取り出してから正規の形状に保持して拘束(二次拘束)するまでの鋼板の温度降下量が大きすぎると、非拘束中の冷却に伴う熱応力により形状変化が生じ、寸法精度が悪化する。従って、「下死点保持終了」から「二次拘束開始」までの温度降下量は、15℃未満とする。なお、下死点保持終了から二次拘束開始までの鋼板の冷却速度は、空冷の場合で1.5℃/秒程度であり、したがって、「下死点保持終了」から10秒以内に二次拘束を開始するのが望ましい。
なお、二次拘束における冷却速度は特に規定されないが、二次冷却における効率の観点からは、強制冷却などにより冷却速度を高めることが望ましい。
<Press lift / conveyance / secondary restraint>
After the bottom dead center holding end temperature T1 reaches a temperature of (Ms−120) ° C. or lower, the bottom dead center holding is finished, and the molded product is quickly taken out from the mold (press rise). Before the temperature drop amount of the steel sheet reaches 15 ° C. or more, the restraint of holding and restraining the molded product in a regular shape is started, and cooling to less than 200 ° C. is performed in the state of keeping and restraining. That is, the temperature drop amount of the steel sheet from “end of bottom dead center holding” to “start of secondary restraint” in FIG. Thereby, the shape change accompanying heat contraction can be suppressed small, and it becomes possible to obtain a molded product excellent in dimensional accuracy.
The martensitic transformation is sufficiently completed during the above-mentioned bottom dead center holding, and after the molded product is taken out from the mold, the shape change due to the transformation does not occur. However, if the temperature drop of the steel sheet from taking out the molded product from the mold to holding it in a regular shape and restraining it (secondary restraint) is too large, the shape will change due to the thermal stress caused by cooling during non-restraining. This causes dimensional accuracy to deteriorate. Accordingly, the amount of temperature drop from “end of bottom dead center holding” to “start of secondary restraint” is set to less than 15 ° C. Note that the cooling rate of the steel sheet from the end of holding the bottom dead center to the start of secondary restraint is about 1.5 ° C./second in the case of air cooling. It is desirable to initiate restraint.
In addition, although the cooling rate in secondary restraint is not prescribed | regulated, it is desirable to raise a cooling rate by forced cooling etc. from a viewpoint of the efficiency in secondary cooling.

二次拘束に用いる治具は、寸法精度が要求される部位を正規の位置に保持できればその形態は問わない。すなわち、成形品断面の全部位を拘束可能な治具の他、一部の部位のみを拘束することが可能な治具であってもよい。
また、二次拘束の終了温度T3は、該温度が高すぎると、二次拘束終了後の冷却において形状変化が生じ、寸法精度が悪化する虞がある。従って、二次冷却終了温度T3は200℃未満が望ましい。一方、T3の下限値については特に限定はしないが、あまり低い温度まで拘束しておくのは拘束治具の使用効率の観点からは好ましくない。
The shape of the jig used for the secondary restraint is not limited as long as it can hold a portion requiring dimensional accuracy at a normal position. That is, a jig capable of restraining only a part of the part other than the jig capable of restraining all parts of the cross section of the molded product may be used.
In addition, if the temperature at which the secondary restraint ends T3 is too high, a shape change occurs in the cooling after the end of the secondary restraint, which may deteriorate the dimensional accuracy. Therefore, the secondary cooling end temperature T3 is preferably less than 200 ° C. On the other hand, the lower limit value of T3 is not particularly limited, but it is not preferable to restrain the temperature to a very low temperature from the viewpoint of the use efficiency of the restraining jig.

以上ような熱間プレス方法により得られる成形品は、バンパービーム、ドアビームなど衝突部材、サイドメンバー、フロアメンバー、フロアクロスメンバー、ルーフクロスメンバー、サイドシルなど構造部材、ピラーやルーフなどの補強部材、シート骨格などの自動車用部品に好適に用いられる。   Molded products obtained by the above hot pressing methods include bumper beams, door beams and other impact members, side members, floor members, floor cross members, roof cross members, side sill structural members, pillars, roofs and other reinforcing members, sheets It is suitably used for automotive parts such as skeletons.

実施例では、図2に示したような温度推移において、その条件を変更して熱間プレス成形をおこなった。以下に詳しく説明する。
<鋼板>
鋼板はCを0.21質量%、Siを0.25%、Mnを1.20%含有し、板厚1.6mm、長さ280mm、幅70mmとした。当該鋼材のAc3点は823℃、およびMs点は冷却速度が30℃/秒以上のときに420℃である。すなわち、(Ms−120)℃は、300℃である。Ar3点は冷却速度により変動があるが、例えば1.6mmの厚さであるときに空冷すると610℃程度となる。
In the examples, hot press molding was performed by changing the conditions in the temperature transition as shown in FIG. This will be described in detail below.
<Steel plate>
The steel sheet contained 0.21% by mass of C, 0.25% of Si, and 1.20% of Mn, and had a plate thickness of 1.6 mm, a length of 280 mm, and a width of 70 mm. The steel material has an Ac3 point of 823 ° C and an Ms point of 420 ° C when the cooling rate is 30 ° C / second or more. That is, (Ms−120) ° C. is 300 ° C. Although the Ar3 point varies depending on the cooling rate, for example, when the thickness is 1.6 mm, it becomes about 610 ° C. when air-cooled.

加熱は、鋼板を900℃に設定した大気雰囲気の電気炉で240秒間保持することによりおこなった。このときの鋼板の到達温度をTf(=900℃)とした。
出炉後速やかに常温の金型に装入して高さ70mmのハット形状にプレス成形し、下死点にてそのまま時間t1の間保持した。このときのプレス開始温度をTpで表した。また、プレス開始から下死点に達するまでの時間(プレス下降時間)は0.5秒、および下死点保持終了温度をT1とした。ここで、下死点保持の時間t1中における平均の冷却速度は30℃/秒以上である。なお、この金型の縦壁部における上型と下型のクリアランスは鋼板板厚+0.1mmに調整した。
Heating was performed by holding the steel plate for 240 seconds in an electric furnace in an air atmosphere set at 900 ° C. The ultimate temperature of the steel plate at this time was Tf (= 900 ° C.).
Immediately after leaving the furnace, it was charged into a normal temperature mold and press-molded into a hat shape having a height of 70 mm, and held at the bottom dead center for a time t1. The press start temperature at this time was represented by Tp. Further, the time from the start of pressing until reaching the bottom dead center (press lowering time) was 0.5 seconds, and the bottom dead center holding end temperature was T1. Here, the average cooling rate during the bottom dead center retention time t1 is 30 ° C./second or more. The clearance between the upper mold and the lower mold in the vertical wall portion of the mold was adjusted to a steel plate thickness +0.1 mm.

下死点保持終了後、プレス上昇および成形品の搬送をおこない、成形金型と略同形状の常温の拘束治具にて二次拘束をしてそのまま温度T3になるまで空冷した。ここで、下死点保持終了から二次拘束開始までの時間をt2、二次拘束開始から二次拘束終了までの時間をt3、二次拘束開始温度をT2とした。鋼板の温度は、鋼板の側面における縦壁中央予定部に熱電対を貼付して測定するとともに、サーモグラフィや接触式温度計を併用した。   After holding the bottom dead center, the press was raised and the molded product was transported, and was secondarily restrained by a restraining jig having a room temperature substantially the same as that of the molding die and air-cooled until the temperature reached T3. Here, the time from the end of holding the bottom dead center to the start of the secondary restraint is t2, the time from the start of the secondary restraint to the end of the secondary restraint is t3, and the secondary restraint start temperature is T2. The temperature of the steel sheet was measured by attaching a thermocouple to the central part of the vertical wall on the side surface of the steel sheet, and also using a thermography or contact thermometer.

このようにして得られた成形品についてその硬度および形状凍結性を評価した。硬度はビッカース硬度計により測定し(荷重1kgf)、引張強度換算で1370MPaが得られる420HVを基準とし、これより大きいものを良(○)、これ以下のものを不良(×)とした。
また、形状凍結性は、図3に示した成形品10の部位のフランジ角度θを測定することにより評価した。フランジ角度が1.5°未満のものを良(○)、それ以上を不良(×)とした。なお、今回のプレス成形では全ての条件で縦壁が内側へ入り込むいわゆるスプリングゴー傾向を示しており、フランジ角度が大きいほどスプリングゴーが大きいことを示しており、0°の場合が正規形状である。
生産性はプレス成形開始から下死点保持終了までの所要時間で評価し、No.8の従来例を基準とし、これより短いものを生産性良好(○)、長いものを生産性不良(×)とした。なお、プレス成形開始から下死点保持開始までの時間は一定で、0.5秒である。
表1に条件および結果を示す。
The molded product thus obtained was evaluated for its hardness and shape freezing property. Hardness was measured with a Vickers hardness tester (load 1 kgf), and 420 HV at which 1370 MPa was obtained in terms of tensile strength was used as a reference, with a higher value being good (◯) and a lower value being bad (x).
Further, the shape freezing property was evaluated by measuring the flange angle θ of the part of the molded product 10 shown in FIG. A flange angle of less than 1.5 ° was evaluated as good (◯), and more than that was determined as poor (×). In addition, in this press molding, the so-called spring go tendency that the vertical wall enters inward under all conditions shows that the larger the flange angle is, the larger the spring go is, and the case of 0 ° is a normal shape. .
Productivity was evaluated by the time required from the start of press molding to the end of holding the bottom dead center. Based on the conventional example of No. 8, the shorter one was defined as good productivity (◯) and the longer one as poor productivity (×). The time from the start of press molding to the start of holding the bottom dead center is constant and is 0.5 seconds.
Table 1 shows the conditions and results.

表1からわかるように、No.1〜No.3は、下死点保持時間(t1)を5秒以下、硬度が420HV以上、フランジ角度が1.5°未満であり、生産性、硬度、寸法精度とも良好であった。No.4〜No.6は、いずれもフランジ角度が2°を超え、形状不良であった。No.7は下死点保持終了温度T1が350℃であり、硬度が420HV未満となった。No.8およびNo.9は二次拘束をしない従来例であり、硬度と寸法精度は良好であるが、下死点保持時間t2を10秒以上とる必要があり、生産性が低い。   As can be seen from Table 1, no. 1-No. No. 3 had a bottom dead center retention time (t1) of 5 seconds or less, a hardness of 420 HV or more, a flange angle of less than 1.5 °, and good productivity, hardness and dimensional accuracy. No. 4-No. In all cases, the flange angle exceeded 2 ° and the shape was poor. No. In No. 7, the bottom dead center retention end temperature T1 was 350 ° C., and the hardness was less than 420 HV. No. 8 and no. 9 is a conventional example in which secondary restraint is not performed, and the hardness and dimensional accuracy are good, but the bottom dead center holding time t2 needs to be 10 seconds or more, and the productivity is low.

以上より、No.4〜No.7の例では、寸法精度または硬度が不十分であり、No.8およびNo.9の従来例は生産性が低くなってしまう。これに対し、No.1〜No.3の例は、生産性が高く、硬度と寸法精度も良好であった。   From the above, no. 4-No. In the example of No. 7, dimensional accuracy or hardness is insufficient. 8 and no. The conventional example of 9 is low in productivity. In contrast, no. 1-No. The example No. 3 had high productivity and good hardness and dimensional accuracy.

10 成形品
T1 下死点保持終了温度
10 Molded product T1 Bottom dead center retention end temperature

Claims (3)

質量%にて、Cを0.08%以上0.45%以下、MnおよびCrの合計が0.5%以上3.0%以下、残部が前記C、Mn、Cr以外の任意の添加物、Fe、および不可避的不純物である化学成分からなり、Ac3点以上の温度に加熱された鋼板をAr3点以上のプレス開始温度から金型にてプレス成形する方法であって、
前記鋼板を前記金型の下死点にて拘束しながら前記鋼板の臨界冷却速度以上の冷却速度で200℃以上(Ms−120)℃以下の温度にまで冷却し、次いで、前記鋼板を前記金型から取り出し、前記金型による下死点での拘束終了からの鋼板の温度降下量が15℃以上となる前に前記金型とは異なる手段で拘束を開始し、200℃未満の温度にまで冷却する過程を含むことを特徴とする熱間プレス成形方法。
In mass%, C is 0.08% or more and 0.45% or less, the total of Mn and Cr is 0.5% or more and 3.0% or less, and the balance is any additive other than C, Mn, and Cr, A method of pressing a steel plate made of Fe and a chemical component that is an inevitable impurity and heated to a temperature of Ac3 point or higher with a mold from a pressing start temperature of Ar3 point or higher,
While the steel plate is restrained at the bottom dead center of the mold, the steel plate is cooled to a temperature of 200 ° C. or more (Ms−120) ° C. or less at a cooling rate that is higher than the critical cooling rate of the steel plate. Take out from the mold, start restraint by means different from the mold before the temperature drop of the steel plate from the end of the restraint at the bottom dead center by the mold becomes 15 ℃ or more, to a temperature below 200 ℃ A hot press molding method comprising a cooling process.
前記200℃未満にまで冷却された前記鋼材の硬度が420HV以上であることを特徴とする請求項1に記載の熱間プレス成形方法。   The hot press molding method according to claim 1, wherein the steel material cooled to less than 200 ° C has a hardness of 420 HV or more. 質量%にて、Cを0.08%以上0.45%以下、MnおよびCrの合計が0.5%以上3.0%以下、残部が前記C、Mn、Cr以外の任意の添加物、Fe、および不可避的不純物である化学成分からなり、Ac3点以上の温度に加熱された鋼板をAr3点以上のプレス開始温度から金型にてプレス成形して成形品を製造する方法であって、
前記鋼板を前記金型の下死点にて拘束しながら前記鋼板の臨界冷却速度以上の冷却速度で200℃以上(Ms−120)℃以下の温度にまで冷却する工程、および該工程に次いで、前記鋼板を前記金型から取り出し、前記金型による下死点での拘束終了からの鋼板の温度降下量が15℃以上となる前に前記金型とは異なる手段で拘束を開始し、200℃未満の温度にまで冷却する工程を含む熱間プレス成形品の製造方法。
In mass%, C is 0.08% or more and 0.45% or less, the total of Mn and Cr is 0.5% or more and 3.0% or less, and the balance is any additive other than C, Mn, and Cr, A method of manufacturing a molded product by pressing a steel plate made of Fe and a chemical component that is an unavoidable impurity and heated to a temperature of Ac3 point or higher with a mold from a press start temperature of Ar3 point or higher,
Subsequent to the step of cooling the steel plate to a temperature of 200 ° C. or higher (Ms−120) ° C. or lower at a cooling rate equal to or higher than the critical cooling rate of the steel plate while restraining at the bottom dead center of the mold, The steel plate is taken out from the mold, and restraint is started by means different from the mold before the temperature drop amount of the steel plate from the end of restraint at the bottom dead center by the mold reaches 15 ° C. or more. A method for producing a hot press-formed product, which comprises a step of cooling to a temperature below.
JP2010026633A 2010-02-09 2010-02-09 HOT PRESSING METHOD AND METHOD FOR PRODUCING MOLDED ARTICLE Active JP5304678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010026633A JP5304678B2 (en) 2010-02-09 2010-02-09 HOT PRESSING METHOD AND METHOD FOR PRODUCING MOLDED ARTICLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010026633A JP5304678B2 (en) 2010-02-09 2010-02-09 HOT PRESSING METHOD AND METHOD FOR PRODUCING MOLDED ARTICLE

Publications (2)

Publication Number Publication Date
JP2011161481A JP2011161481A (en) 2011-08-25
JP5304678B2 true JP5304678B2 (en) 2013-10-02

Family

ID=44592794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026633A Active JP5304678B2 (en) 2010-02-09 2010-02-09 HOT PRESSING METHOD AND METHOD FOR PRODUCING MOLDED ARTICLE

Country Status (1)

Country Link
JP (1) JP5304678B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5834665B2 (en) * 2011-09-15 2015-12-24 Jfeスチール株式会社 Press forming analysis method
JP5861344B2 (en) * 2011-09-15 2016-02-16 Jfeスチール株式会社 Press forming analysis method
JP5910224B2 (en) * 2012-03-26 2016-04-27 Jfeスチール株式会社 Press forming analysis method
US10161892B2 (en) 2013-02-08 2018-12-25 Jfe Steel Corporation Method of analyzing press forming
JP5994748B2 (en) * 2013-08-05 2016-09-21 Jfeスチール株式会社 High-strength press parts and manufacturing method thereof
BR112016003421B1 (en) 2013-09-12 2021-02-09 Nippon Steel Corporation cooling method for hot forming and hot forming apparatus
US10301699B2 (en) 2013-09-18 2019-05-28 Nippon Steel & Sumitomo Metal Corporation Hot-stamped part and method of manufacturing the same
JP6717090B2 (en) * 2016-07-11 2020-07-01 日本製鉄株式会社 Test equipment and test method
JP7110685B2 (en) * 2018-04-03 2022-08-02 日本製鉄株式会社 Method for manufacturing press-formed product, press-formed product, and hot press-forming mold
JP7018832B2 (en) * 2018-06-21 2022-02-14 本田技研工業株式会社 Manufacturing method of vehicle body members with partially different strength and mold used for this
CN114247768B (en) * 2021-12-30 2023-08-11 重庆市庆港钢纤维有限公司 Equipment and method for producing end hook type steel fibers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700284B2 (en) * 2004-01-22 2011-06-15 新日本製鐵株式会社 Pressure forming method for hot press steel plate
JP2005288528A (en) * 2004-04-05 2005-10-20 Nippon Steel Corp Method for hot-pressing steel sheet which has high strength after forming
JP4427465B2 (en) * 2005-02-02 2010-03-10 新日本製鐵株式会社 Manufacturing method of hot-pressed high-strength steel members with excellent productivity
JP4575799B2 (en) * 2005-02-02 2010-11-04 新日本製鐵株式会社 Manufacturing method of hot-pressed high-strength steel members with excellent formability
JP2009061473A (en) * 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd Method for manufacturing high-strength component

Also Published As

Publication number Publication date
JP2011161481A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5304678B2 (en) HOT PRESSING METHOD AND METHOD FOR PRODUCING MOLDED ARTICLE
JP4681492B2 (en) Steel plate hot pressing method and press-formed product
JP5595609B2 (en) Manufacturing method of hot press-formed steel member with high strength and excellent strength-ductility balance
KR100707239B1 (en) Method for hot forming and hot formed member
KR101814949B1 (en) Hot-formed steel sheet member, and method for producing same
CN102822375B (en) Ultra high strength cold rolled steel sheet and method for producing same
JP4630188B2 (en) Steel sheet for hot forming and hot-formed product excellent in joint strength and hot formability of spot welds
US20150078956A1 (en) Warm press forming method and automobile frame component
JP5808845B2 (en) Press molded product manufacturing equipment
JP6719486B2 (en) HPF molded member excellent in peeling resistance and method for manufacturing the same
KR20140056374A (en) Method for manufacturing press-molded article and press molding equipment
JP2011179028A (en) Method for producing formed article
WO2006109490A1 (en) Method for producing hot-formed steel product
JP5994748B2 (en) High-strength press parts and manufacturing method thereof
KR20080111549A (en) Hot-pressed steel sheet member and process for production thereof
JP2011218436A (en) Hot press-forming method
KR101277874B1 (en) Hot forming parts having strength distribution and method for manufacturing the same
KR101892833B1 (en) Steel plate for hot forming and manufacturing method of hot press formed steel member
JP2014037596A (en) Hot molded steel sheet member, method for producing the same and steel sheet for hot molding
WO2012043833A1 (en) Press forming equipment
JP6003837B2 (en) Manufacturing method of high strength pressed parts
CN109468444A (en) The method of heat- treated steel
JP5612992B2 (en) Manufacturing method of hot-formed products
JP2004337923A (en) Manufacturing method of steel for hot forming
JP6205911B2 (en) Steel plate blank, laser cutting steel plate and laser cutting steel plate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R151 Written notification of patent or utility model registration

Ref document number: 5304678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350