JP2000080440A - High strength cold rolled steel sheet and its manufacture - Google Patents

High strength cold rolled steel sheet and its manufacture

Info

Publication number
JP2000080440A
JP2000080440A JP24617598A JP24617598A JP2000080440A JP 2000080440 A JP2000080440 A JP 2000080440A JP 24617598 A JP24617598 A JP 24617598A JP 24617598 A JP24617598 A JP 24617598A JP 2000080440 A JP2000080440 A JP 2000080440A
Authority
JP
Japan
Prior art keywords
less
temperature
steel sheet
rolled
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24617598A
Other languages
Japanese (ja)
Inventor
Akio Tosaka
章男 登坂
Norio Kanemoto
規生 金本
Setsuo Mejika
節男 女鹿
Takao Uchiyama
貴夫 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24617598A priority Critical patent/JP2000080440A/en
Publication of JP2000080440A publication Critical patent/JP2000080440A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high strength cold rolled steel sheet having >=780 MPa tensile strength and >=70 MPa amount of baking hardening and combining excellent stretch-flange formability, spot weldability, delayed fracture resistance, and impact resistance. SOLUTION: A steel stock, having a composition in which 1.5-3.5%, by weight, Mn and 0. 005-0.10% Nb are contained and further the amounts of C, Si, P, S, Al, and N are regulated to proper values, respectively, is heated to a temperature at which the amount of Nb unentered into solid solution becomes >=0.003%, finish rolled at 950 to 800 deg.C finish rolling delivery-side temperature, coiled at 700 to 400 deg.C coiling temperature, and cold rolled. The resultant steel sheet is annealed at >=800 deg.C annealing temperature, rapidly cooled continuously down to <=350 deg.C at (15 to 150) deg.C/s cooling rate, cooled slowly down to <=200 deg.C at >=15 deg.C/min cooling rate, and then cooled rapidly down to room temperature. By this procedure, a structure composed essentially of fine bainitic structure of <=2.5 μm average grain size is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車部品のう
ち、軽度の絞り成形、曲げ加工、ロールフォーミング等
の成形を経て製造される、衝突時に衝撃を有効に吸収す
るインパクトビームやバンパー等の部品に用いて好適な
引張強さが780MPa以上の高強度冷延鋼板およびその製造
方法に関する。本発明でいう鋼板は、鋼帯をも含み、さ
らにこれらの鋼板に電気めっきおよび溶融めっきを施し
た鋼板、鋼帯を含むものとする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automobile part, such as an impact beam or a bumper, which is manufactured through light drawing, bending, roll forming, etc., and which effectively absorbs impact at the time of collision. The present invention relates to a high-strength cold-rolled steel sheet having a tensile strength of 780 MPa or more and a method for producing the same. The steel sheet referred to in the present invention includes a steel strip, and further includes a steel sheet and a steel strip obtained by subjecting these steel sheets to electroplating and hot-dip plating.

【0002】[0002]

【従来の技術】近年、自動車の安全性向上および車体重
量の軽量化のため、自動車部品への高強度薄鋼板の使用
が強く要望されている。とくに、衝突時にキャビンの変
形を抑制するために使用されるバンパー部品やインパク
トビーム等に使用する鋼板には、590MPaを超える高強度
が従来からも要求されているが、高強度化による薄肉化
の要求を達成するためには、さらに引張強さが780MPa以
上を有することが要望されている。 また、バンパー部
品やインパクトビーム等に使用する鋼板には、高強度を
有することに加えてさらに局部延性、すなわち曲げ成形
性あるいは伸びフランジ加工性に対応する特性に優れる
ことが要求される。
2. Description of the Related Art In recent years, there has been a strong demand for the use of high-strength steel sheets for automobile parts in order to improve the safety of automobiles and reduce the weight of vehicle bodies. In particular, steel sheets used for bumper parts and impact beams used to suppress deformation of the cabin during a collision have been required to have a high strength exceeding 590MPa. In order to achieve the requirements, it is further required that the tensile strength has 780 MPa or more. Further, a steel sheet used for a bumper part, an impact beam or the like is required to have not only high strength but also excellent local ductility, that is, excellent properties corresponding to bending formability or stretch flangeability.

【0003】さらに、自動車部品はスポット溶接により
組み立てられることが多く、これら鋼板には、スポット
溶接部継手強度が高い等、優れたスポット溶接性を有す
ることが要求されている。部品によっては、スポット溶
接に限らず、TIG溶接、MAG溶接、レーザ溶接等が
適用される場合もあり、これらの溶接に際し、優れた溶
接施工性、継手部の機械的特性を有することも望まれて
いる。
Further, automobile parts are often assembled by spot welding, and these steel sheets are required to have excellent spot weldability such as high joint strength at spot welds. Depending on the part, not only spot welding but also TIG welding, MAG welding, laser welding, etc. may be applied. In these weldings, it is also desirable to have excellent welding workability and mechanical properties of the joint part. ing.

【0004】また、最近の自動車車体構造は、乗客の安
全向上に重きをおいて変化してきており、衝突時のエネ
ルギー吸収能力の高いこと、すなわち耐衝撃特性が極め
て重要な特性となっている。この耐衝撃特性は、母材の
みならず、溶接部においても重要な特性となっており、
溶接部においても母材部と同様に高い衝突エネルギー吸
収特性を有することが必要となっている。
In recent years, the structure of an automobile body has been changed with an emphasis on improving the safety of passengers, and a high energy absorbing ability at the time of collision, that is, an impact resistance is an extremely important characteristic. This impact resistance is an important characteristic not only in the base material but also in the welded part,
It is necessary for the welded portion to have high impact energy absorption characteristics as in the base metal portion.

【0005】このように、バンパー部品やインパクトビ
ーム等に使用する鋼板には、高強度と、さらに局部
延性、溶接性、耐衝撃特性、を兼備することが望ま
れている目標とする高強度鋼板を得るために、たとえ
ば、特開昭59-143027 号公報、および特開昭60-100630
号公報には、延性および加工性の良好な高強度鋼板の製
造方法が、また、特開平7-188767号公報には、伸びフラ
ンジ性に優れた高強度鋼板の製造方法が開示されてい
る。特開昭59-143027 号公報に記載された方法は、鋼板
を、600 ℃〜Ac3変態点までの加熱速度を5℃/s以上
とし、Ac3変態点以上の均熱温度に加熱したのちその温
度で10sec 〜 10 min 間保持し、ついで600 〜300 ℃間
の平均冷却速度を合金元素含有量により規定される臨界
冷却速度以上で冷却する焼鈍を施し、フェライトとマル
テンサイトを1部含むベイナイトとの混合組織として、
60kgf/mm2 以上の高強度と優れた加工性を有する鋼板と
するものである。
[0005] As described above, steel sheets used for bumper parts, impact beams, and the like are intended to have high strength and also to have high local ductility, weldability and impact resistance. In order to obtain, for example, JP-A-59-143027 and JP-A-60-100630
Japanese Patent Application Laid-Open No. 7-188767 discloses a method for producing a high-strength steel sheet having good ductility and workability, and Japanese Patent Application Laid-Open No. 7-188767 discloses a method for producing a high-strength steel sheet having excellent stretch flangeability. The method is described in JP 59-143027 discloses, after the steel sheet, the heating rate up to 600 ° C. to Ac 3 transformation point and 5 ° C. / s or higher, and heated to Ac 3 transformation point or above the soaking temperature Bainite containing one part of ferrite and martensite is maintained by holding at that temperature for 10 sec to 10 min, and then cooling at an average cooling rate of 600 to 300 ° C. at a critical cooling rate or more specified by the alloy element content. As a mixed organization with
A steel sheet having high strength of 60 kgf / mm 2 or more and excellent workability.

【0006】特開昭60-100630 号公報に記載された方法
は、鋼板を、Ac3変態点以上(Ac3変態点+50℃)以下
の均熱温度に加熱しその温度で3sec 〜60sec 間保持し
たのち、Ar3変態点とAr1変態点の間の温度範囲に冷却
しその温度範囲で20sec 以上保持し、600 〜300 ℃間の
平均冷却速度を合金元素含有量により規定される臨界冷
却速度以上で冷却する焼鈍を施し、フェライトとベイナ
イトを1部含むマルテンサイトとの混合組織とし、70kg
f/mm2 以上の高強度と優れた加工性を有する薄鋼板とす
るものである。
In the method described in Japanese Patent Application Laid-Open No. 60-100630, a steel sheet is heated to a soaking temperature of not less than the Ac 3 transformation point (Ac 3 transformation point + 50 ° C.) and held at that temperature for 3 to 60 seconds. After that, it is cooled to the temperature range between the Ar 3 transformation point and the Ar 1 transformation point, and is kept at that temperature range for at least 20 seconds, and the average cooling rate between 600 and 300 ° C. is determined by the critical cooling rate specified by the alloy element content. The steel is annealed by cooling as described above, and has a mixed structure of martensite containing one part of ferrite and bainite.
A thin steel sheet having high strength of f / mm 2 or more and excellent workability.

【0007】また、特開平7-188767号公報に記載された
方法は、鋼板を、Ar3 変態点以上900 ℃以下の温度で20
sec 〜5min間焼鈍した後、600 ℃以上の温度から100 〜
500℃/sの冷却速度で200 〜300 ℃まで急速冷却し、続
いて200 〜400 ℃の温度で1〜30min 間保温または再加
熱し、ベイナイトを主体とする組織として、引長強さが
780N/mm2以上の伸びフランジ性に優れた高強度冷延鋼板
とするものである。
Further, the method described in Japanese Patent Application Laid-Open No. 7-188767 discloses that a steel sheet is heated at a temperature of not less than the Ar 3 transformation point and not more than 900 ° C.
After annealing for sec to 5 min, the temperature is raised to a
It is rapidly cooled to 200-300 ° C at a cooling rate of 500 ° C / s, and then is kept or reheated at a temperature of 200-400 ° C for 1-30 minutes.
A high-strength cold-rolled steel sheet excellent in stretch flangeability of 780 N / mm 2 or more.

【0008】しかしながら、特開昭59-143027 号公報、
特開昭60-100630 号公報および特開平7-188767号公報に
記載された技術により製造された鋼板では、バンパー部
品やインパクトビーム等に使用する鋼板に要求される、
高強度、局部延性、溶接性、耐衝撃特性の4種
の特性を、全て満足させることは困難であった。たとえ
ば、特開昭59-143027 号公報及び特開昭60-100630 号公
報に記載された方法は、フェライト相と低温変態組織(
マルテンサイト、ベイナイトなど) の混合組織を形成す
ることにより、比較的少量の合金元素添加で高強度を得
ると共に、加工性と高強度化を両立しようとするもので
あるが、このような加工性の異なる相の混合組織とする
こと自体が局部延性の低下の原因となっていた。
However, Japanese Patent Application Laid-Open No. Sho 59-143027 discloses
In steel sheets manufactured by the techniques described in JP-A-60-100630 and JP-A-7-188767, required for steel sheets used for bumper parts and impact beams,
It has been difficult to satisfy all four characteristics of high strength, local ductility, weldability and impact resistance. For example, the methods described in JP-A-59-143027 and JP-A-60-100630 disclose a ferrite phase and a low-temperature transformation structure (
(Martensite, bainite, etc.) to form a mixed structure to obtain high strength with the addition of a relatively small amount of alloying elements and to achieve both workability and high strength. The formation of a mixed structure of different phases itself caused a reduction in local ductility.

【0009】また母材の降伏強さ(YS)が低いため、小
歪域までの吸収エネルギーが重要視される用途の部品に
ついては不利となる。また、スポット溶接等の溶接を行
うと、熱影響部の軟化すなわち熱影響部の強度低下が生
じる。これは、静的な荷重負荷の場合に限らず衝撃的な
荷重負荷の場合にも重要な問題となる。さらに、フェラ
イト相中に硬質な低温変態組織が分散する場合には、い
わゆる帯状組織となる場合が多く、割れがこの組織に沿
って容易に伝播するため、遅れ破壊特性が低下するとい
う問題がある。
[0009] Further, since the yield strength (YS) of the base material is low, it is disadvantageous for components used for applications in which absorbed energy up to a small strain range is regarded as important. Further, when welding such as spot welding is performed, the heat-affected zone softens, that is, the strength of the heat-affected zone decreases. This is an important problem not only in the case of a static load but also in the case of a shock load. Furthermore, when a hard low-temperature transformation structure is dispersed in a ferrite phase, a so-called band-like structure is often formed, and cracks are easily propagated along the structure. .

【0010】また、特開平7-188767号公報に記載される
ように、焼鈍後に水焼入れあるいはそれに匹敵する冷却
速度で急冷したのち焼戻し処理を加えベイナイトを主体
とする組織とする方法を採用した場合には、比較的少量
の合金元素で高強度が得られ、原理的には均一な組織を
得ることができる。しかし、実際には製造工程で急冷速
度を熱延鋼帯全体に渡り均一に保つのは困難で(とくに
板幅方向に分布が生じる)、部位による材質のばらつき
が大きく、プレス成形時の形状不良の原因となるという
欠点があった。さらに、加工性確保のために必要である
焼戻し処理も、100 〜300 ℃程度の比較的低温域で短時
間の処理であるため実際の工程生産では材質の不均一を
さらに拡大するものであった。
Further, as described in Japanese Patent Application Laid-Open No. Hei 7-188767, a method is employed in which a structure mainly composed of bainite is applied after annealing, followed by water quenching or quenching at a cooling rate comparable to that, followed by tempering. In this method, high strength can be obtained with a relatively small amount of alloy element, and a uniform structure can be obtained in principle. However, in practice, it is difficult to keep the quenching rate uniform throughout the hot-rolled steel strip in the manufacturing process (particularly, distribution occurs in the width direction of the strip), and the material varies greatly depending on the location, resulting in poor shape during press forming. There was a drawback that it caused. Furthermore, the tempering process necessary for ensuring workability is also a short-time process in a relatively low temperature range of about 100 to 300 ° C, which further increases the unevenness of materials in actual process production. .

【0011】このような材質の不均一は当然局部延性な
どの諸特性のばらつきにも通じ、結果的に平均的材質の
低下をもたらしていた。また、急冷により強度増加を図
っているため、スポット溶接等の溶接を行った場合に、
熱影響部が著しく軟化し、静的及び動的強度が低下する
という問題があった。さらに、旧オーステナイト粒界が
遅れ破壊の割れの起点、あるいは割れの伝播経路となり
やすいため、耐遅れ破壊特性が極めて低いという問題が
あった。
Such non-uniformity of the material naturally leads to variations in various properties such as local ductility, and as a result, the average material is reduced. Also, since the strength is increased by rapid cooling, when welding such as spot welding is performed,
There has been a problem that the heat-affected zone is remarkably softened and the static and dynamic strengths are reduced. Furthermore, since the prior austenite grain boundary is likely to be a starting point of cracks for delayed fracture or a propagation path of the cracks, there is a problem that the delayed fracture resistance is extremely low.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上記した問
題を解決し、比較的低い合金添加量からなる組成で、78
0MPa超える引張強さを有し、かつ伸びフランジ成形性や
曲げ加工性等の優れた成形性、スポット溶接等における
良好な溶接性、母材部はもとより、溶接部においても強
度に合致した衝撃エネルギー吸収特性を有する優れた耐
衝撃特性を兼備する高強度冷延鋼板を提案することを目
的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a composition having a relatively low alloy addition amount.
It has a tensile strength exceeding 0 MPa and has excellent formability such as stretch flange formability and bending workability, good weldability in spot welding, etc., impact energy that matches strength not only in the base material but also in the welded part An object of the present invention is to propose a high-strength cold-rolled steel sheet having excellent shock resistance and absorption properties.

【0013】また、本発明は上記した特性に加え、成形
時の負荷が軽減でき、かつ充分な部品強度を得るために
高い塗装焼付硬化性を有し、さらに、高強度鋼でしばし
ば問題となる耐遅れ破壊性についても優れた特性を有す
る鋼板を提案することを目的とする。なお、本発明の鋼
板の主な用途は、バンパー部品やインパクトビーム等の
軽加工を施されて使用される自動車の強度部材である。
Further, in addition to the above-mentioned characteristics, the present invention can reduce the load at the time of molding, has high paint bake hardenability in order to obtain sufficient component strength, and often poses a problem in high-strength steel. An object of the present invention is to propose a steel sheet having excellent characteristics with respect to delayed fracture resistance. The main application of the steel sheet of the present invention is a strength member of an automobile used after being subjected to light working such as a bumper part or an impact beam.

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記した
課題を達成するために、鋼板組成、製造プロセスにつて
鋭意検討した結果、組成と、熱間圧延条件および冷延板
焼鈍条件を適正範囲として、組織を平均結晶粒径2.5 μ
m 以下の均一で微細なベイナイトを主とする組織とする
ことにより、高強度で、かつ局部延性、溶接性、耐衝撃
特性を兼備した鋼板を製造できることを見いだした。な
お、本発明者らは、熱間圧延の仕上げ圧延に、先行する
シートバーと後行するシートバーを接合して圧延する連
続圧延技術を適用することは鋼板の形状・寸法精度の向
上に有効であり、同時にシートバーエッジヒータ、シー
トバーヒータを使用して鋼板温度を長手方向、幅方向に
均一化すること、さらに鋼板の幅方向エッジ部に冷却水
のマスキングを施しエッジの過冷却を防止することは、
材質の均一化には有効であることも知見した。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have conducted intensive studies on the composition of the steel sheet and the manufacturing process. As a result, the composition, the hot rolling conditions and the cold-rolled sheet annealing conditions were changed. As an appropriate range, the structure has an average crystal grain size of 2.5 μ
It has been found that a steel sheet having high strength and having both local ductility, weldability and impact resistance can be manufactured by using a structure mainly composed of uniform and fine bainite of m or less. The present inventors applied a continuous rolling technique of joining and rolling a preceding sheet bar and a succeeding sheet bar to finish rolling of hot rolling, which is effective for improving the shape and dimensional accuracy of a steel sheet. At the same time, using sheet bar edge heaters and sheet bar heaters to make the steel plate temperature uniform in the longitudinal and width directions, and to mask the cooling water on the width direction edges of the steel plate to prevent overcooling of the edges To do
It was also found that it was effective in making the material uniform.

【0015】本発明は、上記した知見をもとに構成され
たものである。すなわち、本発明は、重量%で、C:0.
05〜0.30%、Si:1.0 %以下、Mn:1.5 〜3.5 %、P:
0.02%以下、S:0.005 %以下、Al:0.150 %以下、
N:0.0200%以下、Nb:0.005 〜0.10%を含有し、残部
Feおよび不可避的不純物からなる組成を有し、かつ平均
結晶粒径:2.5 μm 以下の微細ベイナイト組織を主とす
る組織からなり、引張強さ:780MPa以上、塗装焼付け硬
化量(BH量):70MPa 以上を有することを特徴とす
る、溶接性、伸びフランジ成形性、耐遅れ破壊特性およ
び耐衝撃特性に優れた高強度冷延薄鋼板であり、また、
本発明では、前記組成に加えて、さらに重量%で、Ti:
0.005 〜0.20%、B:0.0005〜0.0040%、V:0.005 〜
0.05%のうちの1種または2種以上を含有するのが好ま
しく、また、前記組成に加えて、さらに重量%で、Cu:
0.02%以上、Ni:0.02%以上、Cr:0.02%以上、Mo:0.
02%以上のうちから選ばれた1種または2種以上を合計
で1.0 %以下、および/またはCa:0.0005〜0.0050%を
含有してもよい。
The present invention has been made based on the above findings. That is, in the present invention, C: 0.
05 to 0.30%, Si: 1.0% or less, Mn: 1.5 to 3.5%, P:
0.02% or less, S: 0.005% or less, Al: 0.150% or less,
N: 0.0200% or less, Nb: 0.005 to 0.10%, balance
It has a composition consisting of Fe and unavoidable impurities, and has a structure mainly composed of a fine bainite structure with an average crystal grain size of 2.5 μm or less, a tensile strength of 780 MPa or more, and a paint bake hardening amount (BH amount): 70 MPa. A high-strength cold-rolled thin steel sheet excellent in weldability, stretch flange formability, delayed fracture resistance and impact resistance, characterized by having the above,
In the present invention, in addition to the above composition, Ti:
0.005 to 0.20%, B: 0.0005 to 0.0040%, V: 0.005 to
It preferably contains one or more of 0.05%, and in addition to the above composition, further contains Cu:
0.02% or more, Ni: 0.02% or more, Cr: 0.02% or more, Mo: 0.
One or more selected from 02% or more may contain 1.0% or less in total and / or Ca: 0.0005 to 0.0050%.

【0016】また、本発明は、重量%で、C:0.05〜0.
30%、Si:1.0 %以下、Mn:1.5 〜3.5 %、P:0.02%
以下、S:0.005 %以下、Al:0.150 %以下、N:0.02
00%以下、Nb:0.005 〜0.10%を含み、残部Feおよび不
可避的不純物からなる組成の鋼素材を、未固溶Nb量が0.
003 %以上となる温度、好ましくは1150℃以下に加熱
し、仕上げ圧延出側温度が950 〜800 ℃の温度範囲とな
る仕上げ圧延を含む熱間圧延を施し熱延板とし、巻取り
温度:700 〜400 ℃で巻取り、ついで前記熱延板に冷間
圧延を施し冷延板としたのち、該冷延板に800 ℃以上の
焼鈍温度で焼鈍を施し、該焼鈍温度から15〜150 ℃/s
の冷却速度で350 ℃以下200 ℃超の温度まで連続的に急
冷し、その後15℃/min 以上の冷却速度で200 ℃以下の
温度まで緩冷することを特徴とする引張強さ:780MPa以
上、塗装焼付け硬化量(BH量):70MPa 以上を有し、
溶接性、伸びフランジ成形性、耐遅れ破壊特性および耐
衝撃特性に優れた高強度冷延薄鋼板の製造方法である。
なお、本発明においては、前記鋼素材の組成を、重量%
で、C:0.05〜0.30%、Si:1.0 %以下、Mn:1.5 〜3.
5 %、P:0.02%以下、S:0.005 %以下、Al:0.150
%以下、N:0.0200%以下、Nb:0.005 〜0.10%を含
み、さらにTi:0.005 〜0.20%、B:0.0005〜0.0040
%、V:0.005 〜0.050 %のうちの1種または2種以上
を含有し、残部Feおよび不可避的不純物からなる組成と
してもよく、また、前記鋼素材の組成を、重量%で、
C:0.05〜0.30%、Si:1.0 %以下、Mn:1.5 〜3.5
%、P:0.02%以下、S:0.005 %以下、Al:0.150 %
以下、N:0.0200%以下、Nb:0.005 〜0.10%を含み、
さらにCu:0.02%以上、Ni:0.02%以上、Cr:0.02%以
上、Mo:0.02%以上のうちから選ばれた1種または2種
以上を合計で1.0 %以下含有し、残部Feおよび不可避的
不純物からなる組成としてもよく、また、前記鋼素材の
組成を、重量%で、C:0.05〜0.30%、Si:1.0 %以
下、Mn:1.5 〜3.5 %、P:0.02%以下、S:0.005 %
以下、Al:0.150 %以下、N:0.0200%以下、Nb:0.00
5 〜0.10%を含み、さらにCa:0.0005〜0.0050%を含有
し、残部Feおよび不可避的不純物からなる組成としても
よく、また、前記鋼素材の組成を、重量%で、C:0.05
〜0.30%、Si:1.0 %以下、Mn:1.5 〜3.5 %、P:0.
02%以下、S:0.005 %以下、Al:0.150 %以下、N:
0.0200%以下、Nb:0.005 〜0.10%を含み、さらにTi:
0.005 〜0.20%、B:0.0005〜0.0040%、V:0.005 〜
0.050 %のうちの1種または2種以上を含有し、さらに
Cu:0.02%以上、Ni:0.02%以上、Cr:0.02%以上、M
o:0.02%以上のうちから選ばれた1種または2種以上
を合計で1.0 %以下含有し、残部Feおよび不可避的不純
物からなる組成としてもよく、また、前記鋼素材の組成
を、重量%で、C:0.05〜0.30%、Si:1.0 %以下、M
n:1.5 〜3.5 %、P:0.02%以下、S:0.005 %以
下、Al:0.150 %以下、N:0.0200%以下、Nb:0.005
〜0.10%を含み、さらにTi:0.005 〜0.20%、B:0.00
05〜0.0040%、V:0.005 〜0.050 % のうちの1種ま
たは2種以上を含み、さらにCa:0.0005〜0.0050%を含
有し、残部Feおよび不可避的不純物からなる組成として
もよく、また、前記鋼素材の組成を、重量%で、C:0.
05〜0.30%、Si:1.0 %以下、Mn:1.5 〜3.5 %、P:
0.02%以下、S:0.005 %以下、Al:0.150 %以下、
N:0.0200%以下、Nb:0.005 〜0.10%を含み、さらに
Cu:0.02%以上、Ni:0.02%以上、Cr:0.02%以上、M
o:0.02%以上のうちから選ばれた1種または2種以上
を合計で1.0 %以下、Ca:0.0005〜0.0050%を含有し、
残部Feおよび不可避的不純物からなる組成としてもよ
く、また、前記鋼素材の組成を、重量%で、C:0.05〜
0.30%、Si:1.0 %以下、Mn:1.5 〜3.5 %、P:0.02
%以下、S:0.005 %以下、Al:0.150 %以下、N:0.
0200%以下、Nb:0.005 〜0.10%を含み、さらにTi:0.
005 〜0.20%、B:0.0005〜0.0040%、V:0.005〜0.0
50 %のうちの1種または2種以上を含み、さらにCu:
0.02%以上、Ni:0.02%以上、Cr:0.02%以上、Mo:0.
02%以上のうちから選ばれた1種または2種以上を合計
で1.0 %以下、Ca:0.0005〜0.0050%を含有し、残部Fe
および不可避的不純物からなる組成としてもよい。
In the present invention, C: 0.05 to 0.5% by weight.
30%, Si: 1.0% or less, Mn: 1.5-3.5%, P: 0.02%
Below, S: 0.005% or less, Al: 0.150% or less, N: 0.02
A steel material containing not more than 00% and Nb: 0.005 to 0.10%, and having a balance of Fe and unavoidable impurities, having an undissolved Nb amount of 0.1%.
It is heated to a temperature of 003% or more, preferably 1150 ° C. or less, and subjected to hot rolling including finish rolling in which the finish-rolling exit temperature is in a temperature range of 950 to 800 ° C. to form a hot-rolled sheet, and a winding temperature of 700. After winding at ~ 400 ° C, the hot-rolled sheet is subjected to cold rolling to form a cold-rolled sheet. The cold-rolled sheet is annealed at an annealing temperature of 800 ° C or more, and 15 to 150 ° C / s
Continuously quenching to a temperature of 350 ° C or less and 200 ° C or more at a cooling rate of 350 ° C, and then slowly cooling to a temperature of 200 ° C or less at a cooling rate of 15 ° C / min or more. Tensile strength: 780MPa or more, Paint baking hardening amount (BH amount): More than 70MPa,
This is a method for producing a high-strength cold-rolled thin steel sheet having excellent weldability, stretch flangeability, delayed fracture resistance and impact resistance.
In the present invention, the composition of the steel material is expressed as a percentage by weight.
C: 0.05 to 0.30%, Si: 1.0% or less, Mn: 1.5 to 3.
5%, P: 0.02% or less, S: 0.005% or less, Al: 0.150
%, N: 0.0200% or less, Nb: 0.005 to 0.10%, Ti: 0.005 to 0.20%, B: 0.0005 to 0.0040
%, V: 0.005 to 0.050%, one or more of which may be contained, and the composition may be composed of the balance of Fe and unavoidable impurities.
C: 0.05 to 0.30%, Si: 1.0% or less, Mn: 1.5 to 3.5
%, P: 0.02% or less, S: 0.005% or less, Al: 0.150%
Hereinafter, N: 0.0200% or less, Nb: 0.005 to 0.10%,
Further, one or two or more selected from Cu: 0.02% or more, Ni: 0.02% or more, Cr: 0.02% or more, and Mo: 0.02% or more are contained in a total of 1.0% or less, with the balance being Fe and inevitable. The composition of the steel material may be composed of impurities, and the composition of the steel material is expressed in terms of% by weight: C: 0.05 to 0.30%, Si: 1.0% or less, Mn: 1.5 to 3.5%, P: 0.02% or less, S: 0.005% %
Below, Al: 0.150% or less, N: 0.0200% or less, Nb: 0.00
5 to 0.10%, and may further contain Ca: 0.0005 to 0.0050%, and may have a composition consisting of the balance of Fe and inevitable impurities.
0.30%, Si: 1.0% or less, Mn: 1.5-3.5%, P: 0.
02% or less, S: 0.005% or less, Al: 0.150% or less, N:
0.0200% or less, Nb: 0.005 to 0.10%, Ti:
0.005 to 0.20%, B: 0.0005 to 0.0040%, V: 0.005 to
Contains one or more of 0.050%,
Cu: 0.02% or more, Ni: 0.02% or more, Cr: 0.02% or more, M
o: One or two or more selected from 0.02% or more may be contained in a total of 1.0% or less, and the composition may be composed of the balance of Fe and unavoidable impurities. And C: 0.05 to 0.30%, Si: 1.0% or less, M
n: 1.5 to 3.5%, P: 0.02% or less, S: 0.005% or less, Al: 0.150% or less, N: 0.0200% or less, Nb: 0.005%
0.10%, Ti: 0.005 to 0.20%, B: 0.00
05-0.0040%, V: 0.005 to 0.050%, one or more of the following, Ca: 0.0005 to 0.0050%, the balance may be a composition comprising Fe and unavoidable impurities. The composition of the steel material is expressed by weight%, C: 0.
05 to 0.30%, Si: 1.0% or less, Mn: 1.5 to 3.5%, P:
0.02% or less, S: 0.005% or less, Al: 0.150% or less,
N: 0.0200% or less, Nb: 0.005 to 0.10%,
Cu: 0.02% or more, Ni: 0.02% or more, Cr: 0.02% or more, M
o: One or two or more selected from 0.02% or more are contained in a total of 1.0% or less, Ca: 0.0005 to 0.0050%,
The balance may be composed of Fe and unavoidable impurities, and the composition of the steel material is C: 0.05 to
0.30%, Si: 1.0% or less, Mn: 1.5 to 3.5%, P: 0.02
%, S: 0.005% or less, Al: 0.150% or less, N: 0.
0200% or less, Nb: 0.005 to 0.10%, and Ti: 0.
005 to 0.20%, B: 0.0005 to 0.0040%, V: 0.005 to 0.0
Containing one or more of 50% and further Cu:
0.02% or more, Ni: 0.02% or more, Cr: 0.02% or more, Mo: 0.
One or more selected from 02% or more, 1.0% or less in total, Ca: 0.0005-0.0050%, balance Fe
The composition may be composed of unavoidable impurities.

【0017】また、本発明では、前記仕上げ圧延を、仕
上げ圧延機入側で先行するシートバーと後行するシート
バーとを接合し連続的に圧延する連続圧延とするのが好
ましく、また、本発明では、前記仕上げ圧延において、
仕上げ圧延機入側でシートバーエッジヒータ、シートバ
ーヒーターの一方、あるいは両方を使用するのが好まし
く、また、前記仕上げ圧延を、潤滑油を使用する潤滑圧
延とするのが好ましい。
In the present invention, it is preferable that the finish rolling is continuous rolling in which a preceding sheet bar and a following sheet bar are joined and continuously rolled on the entry side of the finishing rolling machine. In the invention, in the finish rolling,
It is preferable to use one or both of a sheet bar edge heater and a sheet bar heater on the entry side of the finishing rolling machine, and it is preferable that the finishing rolling is lubricating rolling using lubricating oil.

【0018】[0018]

【発明の実施の形態】本発明が対象とする鋼板は、板厚
2.0mm 以下の冷延鋼板である。板厚が2.0mmを超えて厚
くなると、焼鈍後の冷却速度が低下しガスジェット程度
の冷却速度では目標とする高強度が得られにくく、水焼
入等の強力な冷却手段による冷却ではすでに述べたよう
な問題点がある。また、板厚が2.0mm を超えると、熱間
圧延によってより安価に製造が可能であり冷延鋼板で製
造する利点が少ない。
BEST MODE FOR CARRYING OUT THE INVENTION
It is a cold rolled steel sheet of 2.0 mm or less. If the sheet thickness exceeds 2.0 mm, the cooling rate after annealing decreases, and it is difficult to obtain the target high strength at a cooling rate of about gas jet, and cooling with strong cooling means such as water quenching has already been described. There is such a problem. On the other hand, if the sheet thickness exceeds 2.0 mm, it is possible to manufacture the sheet at a lower cost by hot rolling, and there is little advantage of manufacturing with a cold-rolled steel sheet.

【0019】また、本発明鋼板は、引張強さが780MPa以
上を有する高強度冷延鋼板であり、焼付け硬化量(BH
量)が70MPa 以上を有する鋼板である。なお、引張強さ
の上限はとくに規定しないが、鋼板が使用される強度で
ある1480MPa までを含むものとする。つぎに、本発明鋼
板の成分組成の限定理由について説明する。
The steel sheet of the present invention is a high-strength cold-rolled steel sheet having a tensile strength of 780 MPa or more, and has a bake hardening amount (BH
Is a steel sheet having an amount of 70 MPa or more. The upper limit of the tensile strength is not particularly defined, but includes up to 1480 MPa, which is the strength at which the steel sheet is used. Next, the reasons for limiting the component composition of the steel sheet of the present invention will be described.

【0020】C:0.05〜0.30% Cは、オーステナイト安定化元素であり、変態組織強化
に有効に作用する。変態組織強化は、0.05%以上の含有
で認められる。一方、0.30%を超える含有は、スポット
溶接のナゲット部が著しく硬化するなど、溶接性を顕著
に低下させる。とくに衝撃的荷重が負荷された場合に、
期待される値以下の低いエネルギー吸収で溶接部が破断
する危険性が増大する。耐衝撃特性の観点からCの上限
を0.30%とした。このようなことから、Cは0.05〜0.30
%の範囲に限定した。なお、安定して高い引張特性と溶
接性を得るという観点からは0.20%以下とするのが好ま
しい。
C: 0.05 to 0.30% C is an austenite stabilizing element and effectively acts to strengthen the transformed structure. Transformation structure strengthening is recognized at a content of 0.05% or more. On the other hand, when the content exceeds 0.30%, the weldability is remarkably reduced, for example, the nugget portion of spot welding is significantly hardened. Especially when an impact load is applied,
The risk of fracture of the weld increases with low energy absorption below the expected value. From the viewpoint of impact resistance, the upper limit of C was set to 0.30%. Therefore, C is 0.05 to 0.30.
%. In addition, from the viewpoint of stably obtaining high tensile properties and weldability, the content is preferably 0.20% or less.

【0021】Si:1.0 %以下 Siは、焼戻し軟化抵抗を高める元素であり、本発明で
は、1.0 %以下含有させる。1.0 %を超える含有は、鋼
の熱間変形抵抗を顕著に増加させ、薄物の熱間圧延が困
難となる。なお、表面のスケール性表面欠陥が問題とな
る用途では、Siは0.8 %以下とするのが望ましい。ま
た、鋼の清浄度改善の観点から、Siは0.01%以上含有さ
せるのが望ましい。
Si: 1.0% or less Si is an element for increasing the tempering softening resistance, and is contained in the present invention in an amount of 1.0% or less. When the content exceeds 1.0%, the hot deformation resistance of the steel is significantly increased, and it becomes difficult to hot-roll a thin material. In applications where surface scale defects are a problem, the content of Si is desirably 0.8% or less. Further, from the viewpoint of improving the cleanliness of steel, it is desirable that Si be contained at 0.01% or more.

【0022】Mn:1.5 〜3.5 % Mnは、Sと結合し、Sによる熱間割れを防止する有効な
元素であり含有するS量に応じ添加する必要がある。ま
た、Mnは結晶粒を微細化する作用を有し、本発明では積
極的に添加する。さらに、Mnは鋼の焼入れ性を向上させ
ベイナイトを主とする低温変態相を生成させ、鋼を顕著
に高強度化する。引張強さ780MPa以上を有する高強度冷
延製品板を製造するためには、Mnは1.5 %以上の含有が
必要となる。一方、3.5 %を超える含有は、熱間変形抵
抗が増加して圧延荷重の増大が著しく熱間圧延が困難と
なる。また、熱延板の強度が増加し冷延工程にも支障が
生じる。さらに、3.5 %を超えるMnの含有は、溶接性の
劣化、溶接部の成形性の低下などの問題もある。このよ
うなことから、Mnは1.5 〜3.5 %の範囲に限定した。な
お、耐食性、成形性の観点から、Mnは3.2 %以下とする
のが好ましい。
Mn: 1.5 to 3.5% Mn is an effective element that binds to S and prevents hot cracking due to S and must be added according to the amount of S contained. Further, Mn has an action of refining crystal grains, and is positively added in the present invention. Further, Mn improves the hardenability of the steel, generates a low-temperature transformation phase mainly composed of bainite, and significantly increases the strength of the steel. In order to produce a high-strength cold-rolled product sheet having a tensile strength of 780 MPa or more, the content of Mn must be 1.5% or more. On the other hand, if the content exceeds 3.5%, the hot deformation resistance increases and the rolling load increases significantly, making hot rolling difficult. In addition, the strength of the hot-rolled sheet increases, and the cold-rolling process is hindered. Further, if the content of Mn exceeds 3.5%, there are problems such as deterioration of weldability and deterioration of formability of a welded portion. For these reasons, Mn is limited to the range of 1.5 to 3.5%. From the viewpoint of corrosion resistance and moldability, Mn is preferably set to 3.2% or less.

【0023】P:0.02%以下 Pは、鋼を硬質化させ鋼板の伸びフランジ加工性を劣化
させる。また、Pは連鋳材においては鋼板の板厚中央部
に偏析する傾向が強く、溶接部を脆化させる。このよう
なことから、本発明ではPは可能なかぎり低減するのが
望ましいが、0.02%までは許容できる。なお、伸びフラ
ンジ加工性、溶接部靱性を重視する場合には0.01%以下
とするのが望ましい。
P: 0.02% or less P hardens steel and deteriorates stretch flangeability of a steel sheet. Further, P has a strong tendency to segregate in the central portion of the steel sheet in the continuous cast material, and embrittles the welded portion. For this reason, in the present invention, it is desirable to reduce P as much as possible, but up to 0.02% is acceptable. When the stretch flangeability and weld toughness are emphasized, the content is preferably 0.01% or less.

【0024】S:0.005 %以下 Sは、鋼中では非金属介在物として存在し、鋼板の延性
を低下させ、さらに耐食性を劣化させる。また、本発明
鋼板のような高強度鋼においては切欠き感受性が増大す
る傾向があるため、応力集中源となるMnS 等の介在物を
低減する必要がある。このため、低Sとすることが極め
て重要となるが、0.005 %までは許容できる。なお、加
工性の観点からは、0.002 %以下とするのが望ましい。
S: 0.005% or less S is present as nonmetallic inclusions in steel, and reduces the ductility of the steel sheet and further deteriorates the corrosion resistance. Further, in a high-strength steel such as the steel sheet of the present invention, the notch sensitivity tends to increase. Therefore, it is necessary to reduce inclusions such as MnS which are sources of stress concentration. For this reason, it is very important to make the S low, but up to 0.005% is acceptable. In addition, from the viewpoint of workability, the content is desirably 0.002% or less.

【0025】Al:0.150 %以下 Alは、脱酸剤として作用し鋼の清浄度を向上させ、また
組織を微細化する有用な元素である。脱酸技術に依存す
るが、好ましくは0.01%以上のAl添加で脱酸効果が顕著
に認められるようになり、さらに、組織微細化の効果も
顕著になる。一方、0.150 %を超える添加は、表面性状
の劣化を招き、鋼板強度低下に繋がるため、Alは0.150
%を上限とした。なお、材質の安定という観点からは0.
010 〜0.080 %の範囲とするのが好ましい。なお、脱酸
剤として、Ti、Ca等をAlと併用又はAlに代えて使用して
もよい。この場合には、Alは0.010 %以下とするのが酸
化物の均一微細分散化が図れるため好ましい。
Al: 0.150% or less Al is a useful element that acts as a deoxidizing agent, improves the cleanliness of steel, and refines the structure. Although it depends on the deoxidation technique, the deoxidation effect becomes remarkable when the Al content is preferably 0.01% or more, and the effect of refining the structure becomes remarkable. On the other hand, if the addition exceeds 0.150%, the surface properties are degraded, leading to a reduction in the strength of the steel sheet.
% As the upper limit. In addition, 0 from the viewpoint of material stability.
Preferably, it is in the range of 010 to 0.080%. In addition, as a deoxidizing agent, Ti, Ca, etc. may be used in combination with Al or in place of Al. In this case, it is preferable that the content of Al is not more than 0.010% because uniform fine dispersion of the oxide can be achieved.

【0026】N:0.0200%以下 Nは、多量に含有した場合には、熱間延性の低下、内部
欠陥の増加、連鋳時のスラブ割れの発生などが顕著とな
るため、0.0200%以下に限定した。なお、材質の安定、
歩留り向上という観点から、Nは0.0150%以下の範囲と
するのが好適である。また、Nは変態点を低下させる作
用を有しており、圧延温度が低下しやすい薄物の圧延で
は、Ar3変態点未満の温度での熱間圧延を回避するため
に、0.0200%以下の範囲内でN含有量を多くするのが有
効である。なお、この場合Nは少なくとも0.0020%以上
とするのが好ましい。
N: 0.0200% or less When N is contained in a large amount, the decrease in hot ductility, the increase in internal defects, and the occurrence of slab cracks during continuous casting become remarkable. did. In addition, material stability,
From the viewpoint of improving the yield, it is preferable that N is set to 0.0150% or less. In addition, N has a function of lowering the transformation point, and in rolling of a thin material in which the rolling temperature is liable to be lowered, in order to avoid hot rolling at a temperature lower than the Ar 3 transformation point, a range of 0.0200% or less. It is effective to increase the N content within. In this case, N is preferably at least 0.0020% or more.

【0027】Nb:0.005 〜0.10% Nbは、本発明では重要な元素であり、Mn含有量を高くし
たうえでNbを添加することにより、微細でかつ均一なベ
イナイトを主とする組織とすることができる。このよう
な組織とするためには、Nbは0.005 %以上の含有を必要
とする。しかし、0.10%を超える含有は、効果が飽和す
るうえ、熱間圧延時の圧延負荷が増大する。このため、
Nbは0.005 〜0.10%の範囲に限定した。
Nb: 0.005 to 0.10% Nb is an important element in the present invention. By adding Nb after increasing the Mn content, a fine and uniform structure mainly composed of bainite is obtained. Can be. In order to obtain such a structure, the content of Nb must be 0.005% or more. However, if the content exceeds 0.10%, the effect is saturated and the rolling load during hot rolling increases. For this reason,
Nb was limited to the range of 0.005 to 0.10%.

【0028】本発明では、必要に応じ上記した組成に加
えて、下記の元素を含有できる。 Ti:0.005 〜0.20%、B:0.0005〜0.0040%、V:0.00
5 〜0.050 %のうちの1種または2種以上 Ti、B、Vは、いずれも組織微細化に寄与するととも
に、鋼のフェライト変態を抑制する作用を有し、高強度
鋼板を製造する上で有用な元素である。組織の微細化
は、0.005 %以上のTi含有、0.0005%以上のB含有ある
いは0.005 %以上のV含有で認められるが、0.20%を超
えてTiを含有、0.0040%を超えてBを含有あるいは0.05
0 %を超えてVを含有しても効果が飽和する傾向を示
し、添加量に見合う効果が期待できず経済的に不利とな
る。このため、Tiは0.005 〜0.20%、Bは0.0005〜0.00
40%、Vは0.005 〜0.050 %の範囲とするのが望まし
い。なお、Bの添加はNbとの組合せで著しく強度を増加
させる。また、Ti、B、Vは複合添加してもそれぞれの
効果は相殺されることはない。
In the present invention, the following elements can be contained, if necessary, in addition to the above composition. Ti: 0.005 to 0.20%, B: 0.0005 to 0.0040%, V: 0.00
One or two or more of 5 to 0.050% Ti, B, and V all contribute to the refinement of the structure and have an effect of suppressing the ferrite transformation of the steel. It is a useful element. The refinement of the structure is observed when the content of Ti is 0.005% or more, the content of B is 0.0005% or more, or the content of V is 0.005% or more. However, the content of Ti exceeds 0.20%, the content of B exceeds 0.0040%, or the content of 0.05% or more.
Even if V is contained in excess of 0%, the effect tends to be saturated, and an effect commensurate with the added amount cannot be expected, which is economically disadvantageous. Therefore, Ti is 0.005 to 0.20% and B is 0.0005 to 0.00%.
40% and V are desirably in the range of 0.005 to 0.050%. The addition of B significantly increases the strength in combination with Nb. Even if Ti, B, and V are added in combination, their effects are not canceled out.

【0029】Cu:0.02%以上、Ni:0.02%以上、Cr:0.
02%以上、Mo:0.02%以上のうちから選ばれた1種また
は2種以上を合計で1.0 %以下 Cu、Ni、Cr、Moは、いずれもフェライト変態を抑制し焼
入れ性を向上させる元素であり、変態組織強化により製
品板を高強度化するうえで有用な元素である。このよう
な変態組織強化による高強度化は各元素とも0.02%以上
の含有で認められる。しかし、各元素とも多量の含有
は、熱間変形抵抗の増加、溶接部の硬化性の増加、ある
いは表面処理性(化成処理性、めっき性など)の劣化を
招くため、Cu、Ni、Cr、Mo各元素の含有量合計で1.0 %
を上限とした。
Cu: 0.02% or more, Ni: 0.02% or more, Cr: 0.2%
One or more selected from 02% or more and Mo: 0.02% or more 1.0% or less in total Cu, Ni, Cr and Mo are elements that suppress ferrite transformation and improve hardenability. It is a useful element for enhancing the strength of a product plate by strengthening the transformation structure. Such an increase in strength due to the strengthening of the transformed structure is recognized when the content of each element is 0.02% or more. However, a large amount of each element causes an increase in hot deformation resistance, an increase in the hardenability of the weld, or a deterioration in the surface treatment properties (chemical conversion properties, plating properties, etc.), so that Cu, Ni, Cr, Mo 1.0% in total content of each element
Was set as the upper limit.

【0030】Ca:0.0005〜0.0050% Caは、硫化物系介在物の形態を制御し鋼板の延性向上に
寄与する。とくに、高Mn組成でベイナイト組織を有する
本発明鋼板では、Ca添加により、伸びフランジ加工性が
顕著に改善される。このような効果は、0.0005%以上の
Ca添加で認められるが、0.0050%を超える添加は効果が
飽和するうえ表面性状が劣化する傾向となり、表面処理
後の外観特性が劣化する危険性が増す。このことから、
Caは0.0005〜0.0050%の範囲とするのが望ましい。な
お、0.0010〜0.0035%の範囲がより好ましい。
Ca: 0.0005 to 0.0050% Ca controls the form of the sulfide inclusions and contributes to the improvement of the ductility of the steel sheet. In particular, in the steel sheet of the present invention having a high Mn composition and a bainite structure, the stretch flangeability is significantly improved by the addition of Ca. Such an effect is more than 0.0005%
Although Ca addition is observed, the addition exceeding 0.0050% saturates the effect and tends to degrade the surface properties, increasing the risk of deteriorating appearance characteristics after surface treatment. From this,
Ca is desirably in the range of 0.0005 to 0.0050%. In addition, the range of 0.0010 to 0.0035% is more preferable.

【0031】上記した成分以外は、残部はFeおよび不可
避的不純物である。不可避的不純物としては、O:0.00
70%以下、Sn:0.01%以下、Zn:0.01%以下等が許容で
きる。上記した組成を有する本発明鋼板の組織は、平均
結晶粒径:2.5 μm 以下の微細ベイナイト組織を主とす
る組織とする。
Other than the above components, the balance is Fe and inevitable impurities. O: 0.00 as inevitable impurities
70% or less, Sn: 0.01% or less, Zn: 0.01% or less are acceptable. The structure of the steel sheet of the present invention having the above composition is a structure mainly composed of a fine bainite structure having an average crystal grain size of 2.5 μm or less.

【0032】本発明鋼板の組織は、微細なベイナイトを
主相とする組織とし、副相としてベイナイト以外のフェ
ライト、マルテンサイト、パーライトを、面積率で合計
20%以下、好ましくは10%以下含有してもよい。ベイナ
イトを主とする組織にすることにより、高強度を確保で
きしかも同一強度の焼戻しマルテンサイト組織に比し、
伸びフランジ加工性が顕著に向上する。なお、本発明で
いうベイナイトとは、炭化物が主としてラス境界あるい
はラス内に析出した組織を指し、焼戻しマルテンサイト
は炭化物が旧オーステナイト粒界にも頻度高く析出した
組織をいう。
The structure of the steel sheet of the present invention is a structure having fine bainite as a main phase, and ferrite, martensite and pearlite other than bainite as sub-phases in a total area ratio.
It may contain up to 20%, preferably up to 10%. By adopting a structure mainly composed of bainite, high strength can be ensured and compared to a tempered martensite structure of the same strength,
Stretch flange workability is significantly improved. In the present invention, bainite refers to a structure in which carbides are mainly precipitated at lath boundaries or laths, and tempered martensite refers to a structure in which carbides are frequently precipitated at former austenite grain boundaries.

【0033】ベイナイトと焼戻しマルテンサイトとは強
度は同等であるが、本発明らの調査によれば、伸びフラ
ンジ特性についてはベイナイトを主体とする組織の方が
優れている。これは、焼戻しマルテンサイト組織中の旧
オーステナイト粒界に析出、しかも粗大に析出した炭化
物が伸びフランジ加工性に悪影響をおよぼしていると考
えられる。また、同様の理由によりベイナイトを主相と
する組織にすることにより、耐遅れ破壊性、耐衝撃特性
が著しく改善される。なお、ベイナイトは、有害と思わ
れる粗大な炭化物が少ないいわゆる下部ベイナイト組織
とするのが好ましい。
Although bainite and tempered martensite have the same strength, according to the investigations of the present invention, the structure mainly composed of bainite is superior in stretch flange properties. This is considered to be due to the fact that carbides precipitated at the former austenite grain boundaries in the tempered martensite structure and coarsely precipitated adversely affect stretch flangeability. Further, by adopting a structure mainly composed of bainite for the same reason, delayed fracture resistance and impact resistance are remarkably improved. In addition, it is preferable that bainite has a so-called lower bainite structure with few harmful coarse carbides.

【0034】また、本発明鋼板の組織は、平均結晶粒
径:2.5 μm 以下の微細組織とする。本発明では、結晶
粒径の測定は、板厚の全厚について測定するものとす
る。さらに、結晶粒径は、JIS G 0552の規定に準拠して
圧延方向断面および圧延方向と直角方向断面について測
定し、それらの平均値で表示するものとする。平均結晶
粒径が2.5 μm 以下の微細組織とすることにより、伸び
フランジ加工性、耐遅れ破壊性および高速成形時の衝撃
エネルギー吸収特性が顕著に改善される。また、溶接熱
サイクルを受けても、均一微細な粒径分布がほぼ維持さ
れるので、溶接部においてもこれらの特性、とくに高速
成形時の衝撃エネルギー吸収特性が顕著に改善される。
なお、さらに高い伸びフランジ加工性が要求されるとき
には、平均結晶粒径は2.0 μm 以下とするのが望まし
い。なお、平均結晶粒径2.5 μm 以下、好ましくは2.0
μm 以下の微細なベイナイトを主相とした組織とするに
は、既に述べたごとくMn、Nb等の元素を適量添加すると
共に、後述のごとく熱間圧延条件焼鈍および焼鈍後冷却
条件を適正に制御することが必要である。 引張強さ:780MPa以上 高強度化による薄肉化の要求を満足させるために、引張
強さは780MPa以上とする。組織をベイナイトを主とする
組織にすることにより必然的に引張強さ780MPa以上が得
られる。
The structure of the steel sheet of the present invention is a fine structure having an average crystal grain size of 2.5 μm or less. In the present invention, the measurement of the crystal grain size is measured for the entire thickness of the sheet. Further, the crystal grain size is measured on a cross section in the rolling direction and a cross section in a direction perpendicular to the rolling direction in accordance with the provisions of JIS G 0552, and the average value thereof is displayed. By forming a microstructure having an average crystal grain size of 2.5 μm or less, stretch flangeability, delayed fracture resistance, and impact energy absorption characteristics during high-speed molding are remarkably improved. In addition, even when subjected to a welding heat cycle, a uniform and fine particle size distribution is substantially maintained, so that these characteristics, particularly the impact energy absorption characteristics at the time of high-speed molding, are remarkably improved even in a welded portion.
When higher stretch flangeability is required, the average crystal grain size is desirably 2.0 μm or less. The average crystal grain size is 2.5 μm or less, preferably 2.0 μm or less.
In order to obtain a structure with fine bainite of less than μm as the main phase, an appropriate amount of elements such as Mn and Nb is added as described above, and the annealing conditions under hot rolling and the cooling conditions after annealing are appropriately controlled as described later. It is necessary to. Tensile strength: 780MPa or more To satisfy the demand for thinning due to high strength, the tensile strength is made 780MPa or more. By making the structure mainly bainite, a tensile strength of 780 MPa or more is inevitably obtained.

【0035】塗装焼付け硬化量(BH量):70MPa 以上 本発明におけるBH量は、2%の引張歪を付加し、170
℃×20min の時効処理を行った後の降伏応力の増加量で
定義される。BH量が70MPa 以上とすることにより、部
品として使用される場合に、とくに大変形時の吸収エネ
ルギーの差として現れる。すなわち、同じ量だけ衝撃的
に変形しても、より多くのエネルギーを吸収することが
でき、衝撃エネルギー吸収部材としてより優れた特性を
発揮することになる。これにより、同一の吸収エネルギ
ーであれば鋼板の肉薄化を達成できる。BH量が70MPa
未満では、このような効果が十分に発揮されない。なお
BH量:70MPa 以上を確保するためには、粒径をより細
かく制御することが好ましい。これ以外にも、微量のマ
ルテンサイト相等の存在によりBH量は増加する。しか
し、降伏強さ(YS)が高いほどBH量が減少する傾向もあ
るため、これらを考慮してBH量を制御するのが望まし
い。
Baking hardening amount (BH amount): 70 MPa or more The BH amount in the present invention is obtained by adding 2% tensile strain,
It is defined as the increase in yield stress after aging at ℃ 20 min. When the BH amount is 70 MPa or more, when used as a part, it appears as a difference in absorbed energy particularly at the time of large deformation. That is, even if the same amount is deformed by impact, more energy can be absorbed and more excellent properties can be exhibited as the impact energy absorbing member. Thereby, if the absorption energy is the same, the thickness of the steel sheet can be reduced. BMP amount is 70MPa
If it is less than 30, such an effect is not sufficiently exerted. In order to secure a BH amount of 70 MPa or more, it is preferable to control the particle size more finely. In addition, the amount of BH increases due to the presence of a small amount of a martensite phase or the like. However, since the BH amount tends to decrease as the yield strength (YS) increases, it is desirable to control the BH amount in consideration of these factors.

【0036】つぎに、本発明鋼板の製造条件について説
明する。上記した組成の溶鋼を転炉、電気炉等の通常公
知の溶製方法で溶製し、連続鋳造法でスラブ等の鋼素材
とするのが望ましい。連続鋳造法により凝固させれば、
成分のマクロ偏析を防止することができる。なお、連続
鋳造法に代えて、造塊法、薄スラブ鋳造法などとしても
よいのはいうまでもない。
Next, the manufacturing conditions of the steel sheet of the present invention will be described. It is desirable to smelt the molten steel having the above-described composition by a commonly known smelting method such as a converter or an electric furnace, and to form a steel material such as slab by a continuous casting method. If solidified by continuous casting,
Macro segregation of components can be prevented. In addition, it goes without saying that an ingot making method, a thin slab casting method, or the like may be used instead of the continuous casting method.

【0037】製造された鋼素材は、一旦、室温まで冷却
されたのち再加熱されて圧延されるか、あるいは室温ま
で冷却せず温片のまま加熱炉に装入して加熱したのち圧
延する直送圧延、あるいは、わずかの保熱を行ったのち
直ちに圧延する直接圧延を施される。なお、直送圧延を
施される場合には、組織の均一性、微細化の観点から
は、一旦、オーステナイト(γ)→フェライト(α)変
態を終了させたのち、再度γ域に加熱するのが望まし
い。
The produced steel material is once cooled to room temperature and then reheated and rolled, or is directly cooled without being cooled down to room temperature and charged into a heating furnace while heating and then rolled. Rolling or direct rolling in which a slight heat retention is performed and then rolling is performed immediately. When direct rolling is performed, from the viewpoint of microstructure uniformity and miniaturization, it is necessary to temporarily stop the austenite (γ) → ferrite (α) transformation and then heat again to the γ region. desirable.

【0038】熱間圧延の加熱温度:未固溶Nb量が0.003
%以上となる温度 鋼素材を未固溶Nb量が0.003 %以上となる温度に加熱す
る。好ましくは1150℃以下である。未溶解のNbをある程
度残した状態で、かつ比較的低温で粗圧延を行うことに
より、粗圧延中に動的再結晶が生じ、その結果顕著に微
細で均一な熱延組織を得ることができる。
Heating temperature of hot rolling: the amount of undissolved Nb is 0.003
% The steel material is heated to a temperature at which the amount of undissolved Nb becomes 0.003% or more. Preferably it is 1150 ° C or lower. By performing rough rolling at a relatively low temperature with some undissolved Nb remaining, dynamic recrystallization occurs during rough rolling, and as a result, a remarkably fine and uniform hot-rolled structure can be obtained. .

【0039】Nb等を添加した従来の微細組織鋼あるいは
析出強化鋼では、加熱温度を高温として固溶Nbによる粒
成長抑制効果を利用するのが一般的であるが(例えば特
開平6-145891号公報参照) この場合は組織の不均一化が
不可避となる。これに対し、本発明では、析出Nbの活用
のため低温加熱する点に特に特徴がある。なお、従来の
高張力鋼では、圧延負荷を低減するため1250℃以上の高
温に加熱して変形抵抗を下げていたが、本発明において
は動的再結晶の進行が変形抵抗の増大を抑制するので、
低温加熱でも圧延負荷の増大は比較的小さい。なお、本
発明でいう未固溶Nbは、該当加熱温度から水焼入した試
料について、電解抽出分析法で定量された値を用いる。
電解抽出分析法は、分析試料を定電位電解分離し、フィ
ルタリングののち、吸光光度法により定量する方法であ
る。(鉄鋼協会共同研究会鉄鋼分析部会推奨法による。
例えば、成田貴一:鉄と鋼、66(1980)、P211) 鋼素材の加熱温度が、未固溶Nb量が0.003 %未満となる
高温、あるいは1150℃を超える温度では、初期γ粒が急
速に粗大化し、熱延組織の均一かつ微細化が達成できず
混粒なる。なお、組織の最適化という観点からは、鋼素
材の加熱温度は1100℃未満、より好ましくは1050℃以下
とするのが望ましい。また、圧延の負荷を軽減するため
には950 ℃以上に加熱するのが好ましい。
In conventional microstructure steels or precipitation-strengthened steels to which Nb or the like is added, it is common to use a heating temperature of a high temperature to utilize the effect of suppressing the grain growth by solid-solution Nb (for example, Japanese Patent Application Laid-Open No. H6-145891). In this case, it is inevitable that the tissue becomes uneven. On the other hand, the present invention is particularly characterized in that it is heated at a low temperature in order to utilize the precipitated Nb. Incidentally, in the conventional high-tensile steel, to reduce the rolling load, to reduce the deformation resistance by heating to a high temperature of 1250 ℃ or more, in the present invention, the progress of dynamic recrystallization suppresses the increase in deformation resistance So
Even at low temperature heating, the increase in rolling load is relatively small. As the undissolved Nb in the present invention, a value quantified by electrolytic extraction analysis on a sample that has been water-quenched from the corresponding heating temperature is used.
The electrolytic extraction analysis method is a method in which an analysis sample is subjected to constant potential electrolytic separation, filtered, and then quantified by an absorption spectrophotometry. (According to the method recommended by the Iron and Steel Institute Joint Research Group Steel Analysis Subcommittee.
For example, Kiichi Narita: Iron and Steel, 66 (1980), P211) At high temperatures where the amount of undissolved Nb is less than 0.003%, or at temperatures exceeding 1150 ° C, the initial γ grains rapidly increase. It becomes coarse and cannot achieve uniform and fine hot rolled structure, resulting in mixed grains. From the viewpoint of optimizing the structure, the heating temperature of the steel material is preferably lower than 1100 ° C, more preferably 1050 ° C or lower. In order to reduce the rolling load, it is preferable to heat to 950 ° C. or higher.

【0040】仕上げ圧延出側温度:950 〜800 ℃ 加熱された鋼素材は、ついで、粗圧延、仕上げ圧延を施
され熱延板とされる。熱延板の組織を均一微細な組織と
するために、仕上げ圧延の出側温度を950 〜800 ℃の温
度範囲とするのがよい。仕上げ圧延出側温度が800 ℃未
満では、熱延板組織が展伸して不均一となり、さらに加
工組織が鋼板エッジ部などに残存したりして成形性が劣
化する。また、仕上げ圧延出側温度が950 ℃を超える
と、熱延板組織が粗大となるため、冷延焼鈍板(製品
板)の組織が粗大化し混粒化傾向となる。このため、仕
上げ圧延出側温度は950 〜800 ℃の範囲に限定した。な
お、鋼板の機械的特性、とくに延性、耐遅れ破壊特性の
向上という観点からは900 〜840 ℃の範囲とするのが望
ましい。
Finishing roll delivery side temperature: 950 to 800 ° C. The heated steel material is then subjected to rough rolling and finish rolling to form a hot rolled sheet. In order to make the structure of the hot-rolled sheet uniform and fine, the exit temperature of the finish rolling is preferably in the temperature range of 950 to 800 ° C. If the temperature on the side of the finish rolling is less than 800 ° C., the structure of the hot-rolled sheet expands and becomes non-uniform, and furthermore, the processed structure remains at the steel sheet edge and the like, and the formability deteriorates. On the other hand, when the finish-rolling exit side temperature exceeds 950 ° C., the structure of the hot-rolled sheet becomes coarse, so that the structure of the cold-rolled annealed sheet (product sheet) becomes coarse and tends to be mixed. For this reason, the finish-rolling exit temperature is limited to the range of 950 to 800 ° C. The temperature is preferably in the range of 900 to 840 ° C. from the viewpoint of improving the mechanical properties of the steel sheet, especially the ductility and the delayed fracture resistance.

【0041】巻取り温度:700 〜400 ℃ 仕上げ圧延を終了した熱延板はコイル状に巻き取られ
る。熱延板の巻取り温度は700 〜400 ℃の範囲に限定す
る。巻取り温度が700 ℃を超えると、材質の均一性が確
保できにくくなり、一方400 ℃未満では、熱延板形状が
乱れ、後工程の酸洗、冷間圧延でライン通板性の低下と
いう問題が発生する。このため、熱延板の巻取り温度は
700 〜400 ℃の範囲とした。なお、材質の均一化の観点
から好ましくは650 〜450 ℃である。
Winding temperature: 700 to 400 ° C. The hot-rolled sheet after finishing rolling is wound into a coil. The winding temperature of the hot rolled sheet is limited to the range of 700 to 400 ° C. If the winding temperature exceeds 700 ° C, it becomes difficult to ensure the uniformity of the material, while if it is lower than 400 ° C, the shape of the hot-rolled sheet is disturbed, and the picking and cold rolling in the subsequent process may reduce the line passability. Problems arise. For this reason, the winding temperature of the hot rolled sheet is
The range was 700 to 400 ° C. The temperature is preferably 650 to 450 ° C. from the viewpoint of uniformity of the material.

【0042】熱延板は、ついで冷間圧延を施され冷延板
とされる。熱延板は、通常の方法で酸洗を施されたの
ち、冷間圧延を施される。冷延再結晶による組織の微細
化の観点からは、冷間圧延の圧下率は、40%以上とする
のが好ましい。なお、熱延板が硬質の場合には、熱延板
焼鈍を行うこともできる。 冷延板の焼鈍温度:800 ℃以上 冷延板は、ついで焼鈍を施される。焼鈍は、再結晶終了
温度以上1000℃以下で行うが、均一・微細な組織を得る
ための前組織を得るために800 ℃以上で焼鈍を施す。焼
鈍温度が800 ℃未満では、一部に未再結晶組織が混入
し、製品板で平均結晶粒径2.5 μm 以下の組織が得られ
ないという問題がある。一方、1000℃を超えると組織が
粗大化する。
The hot rolled sheet is then subjected to cold rolling to be a cold rolled sheet. The hot-rolled sheet is cold-rolled after being pickled by a usual method. From the viewpoint of refining the structure by cold rolling recrystallization, the rolling reduction of the cold rolling is preferably set to 40% or more. When the hot-rolled sheet is hard, hot-rolled sheet annealing can be performed. Annealing temperature of cold rolled sheet: 800 ° C or higher The cold rolled sheet is then annealed. Annealing is performed at a temperature not lower than the recrystallization end temperature and not higher than 1000 ° C., but annealing is performed at 800 ° C. or higher to obtain a pre-structure for obtaining a uniform and fine structure. If the annealing temperature is lower than 800 ° C., there is a problem that an unrecrystallized structure is partially mixed and a structure having an average crystal grain size of 2.5 μm or less cannot be obtained on a product plate. On the other hand, when the temperature exceeds 1000 ° C., the structure becomes coarse.

【0043】焼鈍温度から350 ℃以下200 ℃超温度域ま
での急冷冷却速度:15〜150 ℃/s焼鈍温度に加熱され
た冷延板は、ついで急冷処理を施される。急冷処理にお
ける冷却速度が15℃/s未満では、組織をベイナイトを
主とする組織とすることが困難となり780MPa以上の引張
強さが得られない。一方、焼鈍温度からの冷却速度が15
0 ℃/s を超えると強度のばらつきが大きくなる。な
お、冷却速度は好ましくは100 ℃/s 未満である。本発
明では、冷却速度:15〜150 ℃/s の急冷を350 ℃以下
200 ℃超の温度域まで連続的に実施する。急冷停止温度
が350 ℃より高い温度では、ベイナイト変態が完了せ
ず、またベイナイトが焼戻されて、炭化物が粗大に析出
し、望ましい組織を得ることができないため、強度が低
下する。急冷停止温度が200 ℃以下では、組織のマルテ
ンサイト化に繋がり好ましくない。なお、ここで「連続
的に」とは、上記急冷温度域内では、冷却工程が中断な
く継続されているいう意味である。
Rapid cooling rate from the annealing temperature to 350 ° C. or lower but higher than 200 ° C .: 15 to 150 ° C./s The cold rolled sheet heated to the annealing temperature is subjected to a rapid cooling treatment. If the cooling rate in the quenching treatment is less than 15 ° C./s, it is difficult to make the structure mainly bainite, and a tensile strength of 780 MPa or more cannot be obtained. On the other hand, the cooling rate from the annealing temperature is 15
If the temperature exceeds 0 ° C./s, the variation in strength increases. The cooling rate is preferably less than 100 ° C./s. In the present invention, the rapid cooling at a cooling rate of 15 to 150 ° C / s is performed at 350 ° C or less.
Conduct continuously up to a temperature range of over 200 ° C. If the quenching stop temperature is higher than 350 ° C., bainite transformation is not completed, and bainite is tempered, carbides are coarsely precipitated and a desired structure cannot be obtained, so that the strength decreases. If the quenching stop temperature is 200 ° C. or less, the structure becomes martensitic, which is not preferable. Here, "continuously" means that the cooling step is continued without interruption within the above-mentioned quenching temperature range.

【0044】急冷後の緩冷冷却速度:15℃/min 以上 急冷処理に続いて、15℃/min 以上好ましくは300 ℃/
min 以下の緩冷処理を施す。緩冷処理は、200 ℃以下好
ましくは100 ℃以上の温度まで行う。緩冷処理を施すこ
とにより、引張の安定化、均一化が得られる。冷却速度
が15℃/min 未満では、急冷組織が焼戻され伸びフラン
ジ加工性が低下する。また、冷却速度が300 ℃/min を
超えると、耐遅れ破壊特性が低下する傾向を示す。この
ため、急冷後の緩冷処理の冷却速度は15℃/min 以上に
限定し、好ましくは 300 ℃/min 以下とするのが望ま
しい。また、緩冷処理が200 ℃より高い温度で終了する
と、耐遅れ破壊特性が劣化するという問題がある。
Slow cooling rate after quenching: 15 ° C./min or more Following the rapid cooling treatment, 15 ° C./min or more, preferably 300 ° C./min
Apply a slow cooling process of min or less. The slow cooling treatment is performed up to a temperature of 200 ° C. or lower, preferably 100 ° C. or higher. By performing the slow cooling process, the tension can be stabilized and uniformized. If the cooling rate is less than 15 ° C./min, the rapidly cooled structure is tempered, and the stretch flangeability is reduced. When the cooling rate exceeds 300 ° C./min, the delayed fracture resistance tends to decrease. Therefore, the cooling rate of the slow cooling process after the rapid cooling is limited to 15 ° C./min or more, and preferably 300 ° C./min or less. Further, when the slow cooling treatment is completed at a temperature higher than 200 ° C., there is a problem that the delayed fracture resistance deteriorates.

【0045】200 ℃以下好ましくは100 ℃以上の温度ま
での緩冷に続いて、ハンドリングを容易にするため再度
急冷(2次急冷という)を室温まで行うのが好ましい。
2次急冷の条件はとくに限定しないが、2次急冷の開始
温度は、200 〜100 ℃とするのが好ましい。本発明で
は、熱間仕上圧延を、仕上圧延機入側で先行するシート
バーと後行するシートバーとを接合し連続的に圧延する
連続圧延とするのが望ましい。連続圧延とすることによ
り、鋼板(鋼帯)の先端、後端における非定常部がなく
なり、鋼板コイルの全長、全幅にわたって安定した熱間
圧延を行うことが可能となる。これにより、鋼板のコイ
ルの断面形状、寸法精度が向上し、その結果、焼鈍後の
機質の均一性も向上する。なお、先行するシートバーと
後行するシートバーの接合は、圧接、レーザ溶接、電子
ビーム溶接等によるのが好適であるが、これらの方法に
限定されるものではない。さらに、連続圧延とすること
により、圧延後の冷却に際しても常に鋼板に張力が付与
できるため、良好な鋼板形状を保持することができる。
また、鋼板先端部を安定して通板できるため、潤滑圧延
を適用することができ、圧延荷重の低減、ロール面圧の
低減により、ロール寿命の延長が可能となる。
Following slow cooling to a temperature of 200 ° C. or lower, preferably 100 ° C. or higher, rapid cooling (referred to as secondary rapid cooling) is preferably performed again to room temperature to facilitate handling.
The conditions for the secondary quenching are not particularly limited, but the starting temperature of the secondary quenching is preferably 200 to 100 ° C. In the present invention, the hot finish rolling is desirably a continuous rolling in which a preceding sheet bar and a succeeding sheet bar are joined at the entry side of the finishing mill and continuously rolled. By performing continuous rolling, unsteady portions at the front and rear ends of the steel sheet (steel strip) are eliminated, and stable hot rolling can be performed over the entire length and the entire width of the steel sheet coil. Thereby, the cross-sectional shape and the dimensional accuracy of the coil of the steel plate are improved, and as a result, the uniformity of the quality after annealing is also improved. The joining of the preceding sheet bar and the succeeding sheet bar is preferably performed by pressure welding, laser welding, electron beam welding, or the like, but is not limited to these methods. Furthermore, by performing continuous rolling, tension can always be applied to the steel sheet during cooling after rolling, so that a good steel sheet shape can be maintained.
Further, since the leading end portion of the steel sheet can be stably passed, lubricating rolling can be applied, and the roll life can be extended by reducing the rolling load and the roll surface pressure.

【0046】また、焼鈍後の品質の均一性を確保するた
め、熱間仕上圧延において、仕上げ圧延機入側でシート
バーエッジヒータ、シートバーヒーターの一方、あるい
は両方を使用するのが望ましい。最終的に仕上げ圧延で
の鋼板幅方向の温度差が望ましくは20℃以下となるよう
に、シートバーエッジヒータによりシートバーエッジ部
を加熱するのが望ましい。また、鋼板の先端、後端の温
度低下を補償し中央部との温度差が望ましくは20℃以下
となるように、シートバーヒーターにより、シートバー
を加熱するのが望ましい。なお、シートバーエッジヒー
タ、シートバーヒーターは、同時に使用してもなんら問
題はない。
In order to ensure uniformity of the quality after annealing, it is desirable to use one or both of a sheet bar edge heater and a sheet bar heater on the entry side of the finishing mill in hot finish rolling. Finally, the sheet bar edge heater is desirably heated by the sheet bar edge heater so that the temperature difference in the steel sheet width direction in the finish rolling is desirably 20 ° C. or less. Further, it is desirable to heat the sheet bar with a sheet bar heater so as to compensate for the temperature drop at the front and rear ends of the steel sheet and to make the temperature difference from the central part preferably 20 ° C. or less. Note that there is no problem if the sheet bar edge heater and the sheet bar heater are used at the same time.

【0047】また、熱間仕上げ圧延を、潤滑油を使用す
る潤滑圧延とするのが望ましい。潤滑圧延とすることに
より、圧延荷重の低減に加えて、鋼板形状、寸法精度の
向上、および鋼板板厚方向の組織均一化が図れる。
It is desirable that the hot finish rolling be lubricated rolling using lubricating oil. By lubricating rolling, in addition to reducing the rolling load, it is possible to improve the shape and dimensional accuracy of the steel sheet and to make the structure uniform in the thickness direction of the steel sheet.

【0048】[0048]

【実施例】(実施例1)表1に示す成分の溶鋼を転炉で
溶製し、連続鋳造法により220 mm厚のスラブとした。該
スラブを表2に示す熱間圧延条件で熱延板とした。な
お、熱間仕上圧延は、仕上圧延機入側で先行シートバー
と後行シートバーを溶融圧接して接合し、連続圧延とし
た。さらに仕上圧延機入側でシートバーヒータおよびシ
ートバーエッジヒータを使用し、シートバー温度の均一
化を図った。なお、熱間圧延終了後、鋼板巻取りまでの
間にホットランテーブルにて水冷し、巻取り温度を調節
した。なお、仕上圧延後段では潤滑圧延を行った。つい
で、熱延板に酸洗、および表2に示す冷間圧下率で冷間
圧延を施し冷延板とした。その後、これら冷延板に表2
に示す温度で焼鈍を施し、焼鈍後、表2の条件で急冷、
緩冷および2次急冷を行い室温まで冷却した。
EXAMPLES (Example 1) Molten steel having the components shown in Table 1 was smelted in a converter and made into a slab having a thickness of 220 mm by a continuous casting method. The slab was formed into a hot rolled sheet under the hot rolling conditions shown in Table 2. In the hot finish rolling, the preceding sheet bar and the succeeding sheet bar were melt-pressed and joined on the entry side of the finishing mill to form continuous rolling. Further, a sheet bar heater and a sheet bar edge heater were used on the entrance side of the finishing mill to make the sheet bar temperature uniform. After the completion of hot rolling, the steel sheet was water-cooled with a hot run table until the steel sheet was wound up, and the winding temperature was adjusted. In addition, lubrication rolling was performed after the finish rolling. Next, the hot-rolled sheet was pickled and cold-rolled at a cold reduction shown in Table 2 to obtain a cold-rolled sheet. Then, these cold rolled sheets were added to Table 2
Annealed at the temperature shown in the following, after annealing, quenched under the conditions of Table 2,
Slow cooling and secondary quenching were carried out and cooled to room temperature.

【0049】得られた冷延焼鈍板について、組織試験、
引張試験、焼付け硬化性試験、伸びフランジ加工性試
験、耐遅れ破壊性試験、スポット溶接性試験および耐衝
撃性試験を調査した。なお、未固溶Nb量は、スラブから
切り出した試験片をスラブ加熱温度と同一温度で加熱
し、水焼入れしたものを電解抽出分析で定量した値であ
る。
With respect to the obtained cold-rolled annealed sheet,
Tensile test, bake hardenability test, stretch flangeability test, delayed fracture resistance test, spot weldability test and impact resistance test were investigated. The amount of undissolved Nb is a value obtained by heating a test piece cut out of a slab at the same temperature as the slab heating temperature and quenching it with water and quantifying it by electrolytic extraction analysis.

【0050】試験方法を、下記に示す。 (1)組織試験 各冷延焼鈍板の圧延方向および圧延方向と直角方向から
試験片を採取し、圧延方向断面、圧延方向と直角方向断
面の組織を観察するとともに、結晶粒径を測定した。結
晶粒径の測定は、圧延方向断面および圧延方向と直角方
向断面で板厚の全厚について、JIS G 0552の規定に準拠
して測定し、それらの平均値で表した。 (2)引張試験 各冷延焼鈍板からJIS 5号引張試験片を採取し、引張特
性(降伏応力YS、引張強さTS、伸びEl)を調査し
た。 (3)焼付け硬化性試験 各冷延焼鈍板からJIS 5号引張試験片を採取し、2%引
張予歪を付与したのち170 ℃×20min の熱処理を施し、
ついで引張試験を行い、熱処理前後の降伏応力の増加量
をもとめ、BH量とした。 (4)伸びフランジ加工性試験 各冷延焼鈍板から採取した試験片(板厚×100 ×100 m
m)に、10mmφの穴を打ち抜き、ついで頂角60°の円錐
ポンチをカエリ側( 剪断面に「かえり」のある側) の反
対側から挿入して穴を拡げる成形を行い、亀裂が板厚を
貫通したときの穴径D(mm)を求め、限界穴拡がり率λ
を計算した。なお、限界穴拡がり率λは、λ(%)=
{(D−10)/10)}×100 で定義される。 (5)耐遅れ破壊性試験 各冷延焼鈍板から打抜きにより採取した59mmφの円盤
に、33mmφのポンチと肩半径4mmの絞りダイス(クライ
アンス:板厚+10%)を用いて深絞り成形を施し、その
後純水中に1週間浸漬して割れの有無を観察した。割れ
の発生が見られた場合を×、割れの発生がない場合を○
とした。 (6)スポット溶接性試験 各冷延焼鈍板同士を重ねて、下記条件でスポット溶接
し、JIS Z 3140に準拠して幅25mmの剪断引張試験を作成
し、スポット溶接部の剪断引張強さを測定した。溶接部
の剪断引張強さが母材の引張強さに比例して増加し、ナ
ゲット内に破断が及んでいない場合を○として評価し
た。強度低下がある場合、あるいは、ナゲット内に破断
が及んでいる場合を×とした。
The test method is shown below. (1) Microstructure test A test piece was sampled from the rolling direction and the direction perpendicular to the rolling direction of each cold-rolled annealed sheet, and the cross-section in the rolling direction, the structure in the direction perpendicular to the rolling direction, and the crystal grain size were measured. The crystal grain size was measured in accordance with the provisions of JIS G 0552 for the entire thickness of the cross section in the rolling direction and the cross section perpendicular to the rolling direction, and expressed as an average value thereof. (2) Tensile test A JIS No. 5 tensile test piece was collected from each cold-rolled annealed plate, and its tensile properties (yield stress YS, tensile strength TS, elongation El) were examined. (3) Bake hardenability test A JIS No. 5 tensile test specimen was collected from each cold-rolled annealed sheet, subjected to a 2% tensile prestrain, and then subjected to a heat treatment at 170 ° C. for 20 minutes.
Next, a tensile test was performed, and the amount of increase in yield stress before and after the heat treatment was determined to be the BH amount. (4) Stretch flangeability test A test piece (sheet thickness x 100 x 100 m) taken from each cold-rolled annealed sheet
m), a hole with a diameter of 10 mm is punched out, and then a conical punch with a vertex angle of 60 ° is inserted from the opposite side of the burrs (the side with the “burr” on the shear surface) to form a hole to expand the hole. The hole diameter D (mm) when penetrating through is determined, and the critical hole expansion rate λ
Was calculated. Note that the critical hole spread rate λ is λ (%) =
{(D-10) / 10)} × 100. (5) Delayed fracture resistance test A 59 mmφ disk sampled by punching from each cold-rolled annealed plate was subjected to deep drawing using a 33 mmφ punch and a drawing die with a shoulder radius of 4 mm (client: plate thickness + 10%). Then, it was immersed in pure water for one week and observed for cracks. × when cracks were found, ○ when cracks were not found
And (6) Spot weldability test Each cold-rolled annealed plate is overlapped and spot-welded under the following conditions to create a shear tensile test having a width of 25 mm in accordance with JIS Z 3140. It was measured. The case where the shear tensile strength of the welded portion increased in proportion to the tensile strength of the base material and the fracture did not reach inside the nugget was evaluated as ○. The case where there was a decrease in strength, or the case where the inside of the nugget was broken was evaluated as x.

【0051】スポット溶接条件: (a) 電極:6mmφCF (b) 通電時間:8サイクル (c) 初期加圧力:250kgf (d) 保持時間:15サイクル (e) 溶接電流:チリ発生直下電流 (7)耐衝撃性試験 各冷延焼鈍板、およびスポット溶接部につき(2)、
(6)の試験と同様の引張試験片を用いて、油圧サーボ
型高速引張試験機で引張速度:7m /sの高速引張を実
施し、破断強度、破断形態を調査した。
Spot welding conditions: (a) Electrode: 6 mmφCF (b) Energizing time: 8 cycles (c) Initial pressing force: 250 kgf (d) Holding time: 15 cycles (e) Welding current: current immediately below dust generation (7) Impact test (2) for each cold rolled annealed plate and spot weld
Using the same tensile test piece as in the test of (6), high-speed tension was applied at a tensile speed of 7 m / s by a hydraulic servo type high-speed tensile tester, and the breaking strength and the breaking mode were investigated.

【0052】各試験の結果を表3に示す。Table 3 shows the results of each test.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【表3】 [Table 3]

【0056】表3から、本発明例は、いずれも引張強さ
990MPa以上の高強度で、焼付け硬化量も155MPa以上と大
きく、伸びフランジ加工性、溶接性、耐遅れ破壊性およ
び耐衝撃性に優れていることがわかる。これに比較し
て、本発明の範囲を外れる比較例は、強度、焼付け硬化
量のいずれかが低いか、あるいは伸びフランジ加工性、
溶接性、耐遅れ破壊性および耐衝撃性のいずれかが劣化
しており、これら特性すべてに優れるということはなか
った。 (実施例2)表1に示す鋼No、AとCa以外の成分組織が
同じスラブ(Ca無添加)を用いて、表4に示す熱間圧延
条件で熱延板とした。なお、一部の板では、熱間仕上げ
圧延を、仕上げ圧延機入側で先行シートバーと後行シー
トバーを溶融圧接して接合し圧延する、連続圧延した。
また、1部については、仕上げ圧延後段で潤滑圧延を行
った。ついで、熱延板に酸洗、および表4に示す冷間圧
下率で冷間圧延を施し冷延板とした。その後、これら冷
延板に表4に示す温度で焼鈍を施し、焼鈍後、表4の条
件で急冷、徐冷および2次急冷を行い室温まで冷却し
た。
From Table 3, it can be seen that each of the examples of the present invention has a tensile strength.
It has a high strength of 990MPa or more and a large bake hardening amount of 155MPa or more, which indicates that it has excellent stretch flangeability, weldability, delayed fracture resistance and impact resistance. In comparison, comparative examples outside the scope of the present invention have lower strength or bake hardening amount, or stretch flangeability,
Any of the weldability, delayed fracture resistance, and impact resistance was deteriorated, and none of these properties was excellent. (Example 2) A slab having the same composition as steel No. A, Ca and Ca shown in Table 1 (without addition of Ca) was used to obtain a hot-rolled sheet under hot rolling conditions shown in Table 4. In some of the sheets, hot finish rolling was performed by continuous rolling, in which the preceding sheet bar and the succeeding sheet bar were melt-welded and joined at the entry side of the finishing rolling machine and then rolled.
For one part, lubrication rolling was performed after the finish rolling. Next, the hot-rolled sheet was pickled and cold-rolled at a cold rolling reduction shown in Table 4 to obtain a cold-rolled sheet. Thereafter, these cold-rolled sheets were annealed at the temperatures shown in Table 4, and after annealing, quenched, gradually cooled and secondary quenched under the conditions shown in Table 4, and cooled to room temperature.

【0057】得られた冷延焼鈍板について、実施例1と
同様に組織試験、引張試験、焼付け硬化性試験、伸びフ
ランジ加工性試験、耐遅れ破壊性試験、スポット溶接性
試験および耐衝撃性試験を調査した。それらの結果を表
5に示す。
With respect to the obtained cold-rolled annealed sheet, a structure test, a tensile test, a bake hardening test, a stretch flangeability test, a delayed fracture resistance test, a spot weldability test and an impact resistance test were conducted in the same manner as in Example 1. investigated. Table 5 shows the results.

【0058】[0058]

【表4】 [Table 4]

【0059】[0059]

【表5】 [Table 5]

【0060】表5から、本発明例は、いずれも引張強さ
985MPa以上の高強度で、焼付け硬化量も 85MPa以上と大
きく、伸びフランジ加工性、溶接性、耐遅れ破壊性およ
び耐衝撃性に優れていることがわかる。これに比較し
て、本発明の範囲を外れる比較例は、強度、焼付け硬化
量のいずれかが低いか、あるいは伸びフランジ加工性、
溶接性、耐遅れ破壊性および耐衝撃性のいずれかが劣化
しており、これら特性すべてに優れるということはなか
った。
From Table 5, it can be seen that all of the inventive examples have tensile strengths.
It has a high strength of 985MPa or more, and has a large bake hardening amount of 85MPa or more, indicating that it has excellent stretch flangeability, weldability, delayed fracture resistance and impact resistance. In comparison, comparative examples outside the scope of the present invention have lower strength or bake hardening amount, or stretch flangeability,
Any of the weldability, delayed fracture resistance, and impact resistance was deteriorated, and none of these properties was excellent.

【0061】[0061]

【発明の効果】本発明によれば、比較的少ない合金添加
量で、引張強さ780MPa超える高強度を有し、かつ伸びフ
ランジ成形性や曲げ加工性等の優れた成形性、スポット
溶接等における良好な溶接性、母材部はもとより溶接部
においても強度に見合った衝撃エネルギー吸収特性を有
する優れた耐衝撃性を兼備し、さらに高い塗装焼付硬化
性と、優れた耐遅れ破壊特性を有する高強度冷延薄鋼板
が提供できる。本発明鋼板は、バンパー部品やインパク
トビーム等の自動車の強度部材として、自動車の軽量化
と、安全性向上に大きく貢献することが期待でき、産業
上格段の効果を奏する。また、本発明の鋼板は、冷延鋼
板のみではなく、各種のめっき鋼板(電気めっき、溶融
めっき)への適用も可能である。
According to the present invention, with a relatively small alloy addition amount, it has high tensile strength exceeding 780 MPa, and has excellent formability such as stretch flange formability and bending workability, and spot welding. Excellent weldability, excellent impact resistance with impact energy absorption characteristics commensurate with strength not only in the base metal part but also in the welded part, and also with high paint bake hardenability and excellent delayed fracture resistance A cold-rolled thin steel sheet can be provided. INDUSTRIAL APPLICABILITY The steel sheet of the present invention can be expected to greatly contribute to weight reduction and improvement of safety of automobiles as automobile strength members such as bumper parts and impact beams, and has a remarkable industrial effect. Further, the steel sheet of the present invention can be applied not only to cold-rolled steel sheets but also to various types of plated steel sheets (electroplating, hot-dip coating).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 女鹿 節男 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 内山 貴夫 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4K037 EA01 EA02 EA05 EA06 EA09 EA11 EA13 EA15 EA16 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA31 EA32 EB05 EB09 FC03 FC04 FE01 FE02 FE03 FJ05 FJ06 FJ07 FK03 JA01 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Setsuo Megga 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Inside the Chiba Works of Steel Corporation (72) Inventor Takao Uchiyama 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki F term in Chiba Works (reference) 4K037 EA01 EA02 EA05 EA06 EA09 EA11 EA13 EA15 EA16 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA31 EA32 EB05 EB09 FC03 FC04 FE01 FE02 F03 F07 F05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.05〜0.30%、 Si:1.0 %以下、 Mn:1.5 〜3.5 %、 P:0.02%以下、 S:0.005 %以下、 Al:0.150 %以下、 N:0.0200%以下、 Nb:0.005 〜0.10% を含有し、残部Feおよび不可避的不純物からなる組成を
有し、かつ平均結晶粒径:2.5 μm 以下の微細ベイナイ
ト組織を主とする組織からなり、引張強さ:780MPa以
上、塗装焼付け硬化量(BH量):70MPa 以上を有する
ことを特徴とする、溶接性、伸びフランジ成形性、耐遅
れ破壊特性および耐衝撃特性に優れた高強度冷延薄鋼
板。
C. 0.05 to 0.30%, Si: 1.0% or less, Mn: 1.5 to 3.5%, P: 0.02% or less, S: 0.005% or less, Al: 0.150% or less, N: 0.0200 %, Nb: 0.005 to 0.10%, has a composition consisting of the balance of Fe and unavoidable impurities, and has a structure mainly composed of a fine bainite structure having an average crystal grain size of 2.5 μm or less. : High-strength cold-rolled thin steel sheet having excellent weldability, stretch flangeability, delayed fracture resistance and impact resistance, characterized by having a 780 MPa or more and a paint bake hardening amount (BH amount): 70 MPa or more.
【請求項2】 前記組成に加えて、さらに重量%で、T
i:0.005 〜0.20%:B:0.0005〜0.0040%、V:0.005
〜0.050 %のうちの1種または2種以上を含有するこ
とを特徴とする請求項1に記載の高強度冷延薄鋼板。
2. In addition to the above composition, further in weight%, T
i: 0.005 to 0.20%: B: 0.0005 to 0.0040%, V: 0.005
2. The high-strength cold-rolled thin steel sheet according to claim 1, wherein the steel sheet contains one or more of 0.05% to 0.050%.
【請求項3】 前記組成に加えて、さらに重量%で、C
u:0.02%以上、Ni:0.02%以上、Cr:0.02%以上、M
o:0.02%以上のうちから選ばれた1種または2種以上
を合計で1.0 %以下、および/またはCa:0.0005〜0.00
50%を含有することを特徴とする請求項1または2に記
載の高強度冷延薄鋼板。
3. In addition to the above composition, further in weight percent C
u: 0.02% or more, Ni: 0.02% or more, Cr: 0.02% or more, M
o: One or more selected from 0.02% or more, 1.0% or less in total, and / or Ca: 0.0005 to 0.00
The high-strength cold-rolled thin steel sheet according to claim 1 or 2, which contains 50%.
【請求項4】 重量%で、 C:0.05〜0.30%、 Si:1.0 %以下、 Mn:1.5 〜3.5 %、 P:0.02%以下、 S:0.005 %以下、 Al:0.150 %以下、 N:0.0200%以下、 Nb:0.005 〜0.10% を含む組成の鋼素材を、未固溶Nb量が0.003 %以上とな
る温度に加熱し、仕上げ圧延出側温度が950 〜800 ℃の
温度範囲となる仕上げ圧延を含む熱間圧延を施し熱延板
とし、巻取り温度:700 〜400 ℃で巻取り、ついで前記
熱延板に冷間圧延を施し冷延板としたのち、該冷延板に
800 ℃以上の焼鈍温度で焼鈍を施し、該焼鈍温度から15
〜150 ℃/s の冷却速度で350 ℃以下200 ℃超の温度ま
で連続的に急冷し、その後15℃/min 以上の冷却速度で
200 ℃以下の温度まで緩冷することを特徴とする引張強
さ:780MPa以上、塗装焼付け硬化量(BH量):70MPa
以上を有し、溶接性、伸びフランジ成形性、耐遅れ破壊
特性および耐衝撃特性に優れた高強度冷延薄鋼板の製造
方法。
4. In% by weight, C: 0.05 to 0.30%, Si: 1.0% or less, Mn: 1.5 to 3.5%, P: 0.02% or less, S: 0.005% or less, Al: 0.150% or less, N: 0.0200 %, Nb: 0.005 to 0.10%, steel material is heated to a temperature at which the amount of undissolved Nb becomes 0.003% or more, and the finish rolling exit temperature is in the temperature range of 950 to 800 ° C. And hot-rolled at a temperature of 700 to 400 ° C., and then cold-rolled to form a cold-rolled sheet.
Anneal at an annealing temperature of 800 ° C or more,
Cools continuously at a cooling rate of ~ 150 ° C / s to a temperature of 350 ° C or less and over 200 ° C, and then at a cooling rate of 15 ° C / min or more.
Tensile strength characterized by slow cooling to a temperature of 200 ° C or less: 780MPa or more, paint bake hardening amount (BH amount): 70MPa
A method for producing a high-strength cold-rolled thin steel sheet having the above features and excellent in weldability, stretch flangeability, delayed fracture resistance and impact resistance.
JP24617598A 1998-08-31 1998-08-31 High strength cold rolled steel sheet and its manufacture Pending JP2000080440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24617598A JP2000080440A (en) 1998-08-31 1998-08-31 High strength cold rolled steel sheet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24617598A JP2000080440A (en) 1998-08-31 1998-08-31 High strength cold rolled steel sheet and its manufacture

Publications (1)

Publication Number Publication Date
JP2000080440A true JP2000080440A (en) 2000-03-21

Family

ID=17144641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24617598A Pending JP2000080440A (en) 1998-08-31 1998-08-31 High strength cold rolled steel sheet and its manufacture

Country Status (1)

Country Link
JP (1) JP2000080440A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1391526A3 (en) * 2002-08-20 2004-04-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Dual phase steel sheet with good bake-hardening properties
JP2004323951A (en) * 2003-04-28 2004-11-18 Nippon Steel Corp High strength galvanized steel sheet having excellent hydrogen embrittlement resistance, weldability and hole expansibility, and its production method
JP2004332100A (en) * 2003-04-17 2004-11-25 Nippon Steel Corp High-strength thin steel sheet superior in hydrogen embrittlement resistance, weldability, and hole-expandability and manufacturing method therefor
JP2005068548A (en) * 2003-02-28 2005-03-17 Nippon Steel Corp High strength thin steel sheet excellent in hydrogen embitterment resistance and its manufacturing method
JP2005248240A (en) * 2004-03-03 2005-09-15 Nippon Steel Corp High burring hot rolled steel sheet with bake hardenability, and its manufacturing method
JP2005528519A (en) * 2001-08-29 2005-09-22 シドマール エヌ.ヴイ. Ultra high strength steel composition, manufacturing method of ultra high strength steel product and product obtained
EP1990431A1 (en) * 2007-05-11 2008-11-12 ArcelorMittal France Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby
JP2010106343A (en) * 2008-10-31 2010-05-13 Kobe Steel Ltd Steel sheet for automotive member having excellent nut projection weldability and member
JP2010144229A (en) * 2008-12-19 2010-07-01 Jfe Steel Corp Method for manufacturing high-strength member and operation method therefor
EP2309012A1 (en) 2003-09-30 2011-04-13 Nippon Steel Corporation High yield ratio and high-strength cold rolled thin steel sheet superior in weldability and ductility, high-yield ratio high-strength hot-dip galvanized cold rolled thin steel sheet, high-yield ratio high-strength hot-dip galvannealed cold rolled thin steel sheet, and methods of production of same
JP2012167338A (en) * 2011-02-15 2012-09-06 Nippon Steel Corp HIGH STRENGTH STEEL PLATE FOR SPOT WELDING HAVING TENSILE STRENGTH OF 980 MPa OR MORE
JP2012219284A (en) * 2011-04-04 2012-11-12 Nippon Steel Corp High-strength cold-rolled steel sheet excellent in local deformability and method for manufacturing the same
CN103987866A (en) * 2011-12-15 2014-08-13 新日铁住金株式会社 High-strength extra-thick steel H-beam
US9482005B2 (en) 2012-11-26 2016-11-01 Nippon Steel & Sumitomo Metal Corporation H-Section steel
JP2017510703A (en) * 2014-02-05 2017-04-13 アルセロールミタル・エス・ア Hot forming air hardenability weldable steel plate
US9834931B2 (en) 2013-03-14 2017-12-05 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
CN109563588A (en) * 2016-08-22 2019-04-02 杰富意钢铁株式会社 Member for automobile with resistance weld
WO2019093429A1 (en) * 2017-11-08 2019-05-16 日本製鉄株式会社 Steel sheet

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005528519A (en) * 2001-08-29 2005-09-22 シドマール エヌ.ヴイ. Ultra high strength steel composition, manufacturing method of ultra high strength steel product and product obtained
US8715427B2 (en) 2001-08-29 2014-05-06 Arcelormittal France Sa Ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
JP4738735B2 (en) * 2001-08-29 2011-08-03 アルセロールミタル フランス Ultra high strength steel sheet, method for producing ultra high strength steel sheet, and ultra high strength steel sheet obtained by the method
JP2011063883A (en) * 2001-08-29 2011-03-31 Arcelormittal France Ultra high strength steel composition, process of production of ultrahigh strength steel product, and the product obtained
EP1391526A3 (en) * 2002-08-20 2004-04-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Dual phase steel sheet with good bake-hardening properties
US9194015B2 (en) 2002-08-20 2015-11-24 Kobe Steel, Ltd. Dual phase steel sheet with good bake-hardening properties
JP2005068548A (en) * 2003-02-28 2005-03-17 Nippon Steel Corp High strength thin steel sheet excellent in hydrogen embitterment resistance and its manufacturing method
JP2004332100A (en) * 2003-04-17 2004-11-25 Nippon Steel Corp High-strength thin steel sheet superior in hydrogen embrittlement resistance, weldability, and hole-expandability and manufacturing method therefor
JP2004323951A (en) * 2003-04-28 2004-11-18 Nippon Steel Corp High strength galvanized steel sheet having excellent hydrogen embrittlement resistance, weldability and hole expansibility, and its production method
EP2309012A1 (en) 2003-09-30 2011-04-13 Nippon Steel Corporation High yield ratio and high-strength cold rolled thin steel sheet superior in weldability and ductility, high-yield ratio high-strength hot-dip galvanized cold rolled thin steel sheet, high-yield ratio high-strength hot-dip galvannealed cold rolled thin steel sheet, and methods of production of same
US8747577B2 (en) 2003-09-30 2014-06-10 Nippon Steel & Sumitomo Metal Corporation High yield ratio and high-strength thin steel sheet superior in weldability and ductility, high-yield ratio high-strength hot-dip galvanized thin steel sheet, high-yield ratio high-strength hot-dip galvannealed thin steel sheet, and methods of production of same
US8084143B2 (en) * 2003-09-30 2011-12-27 Nippon Steel Corporation High-yield-ratio and high-strength thin steel sheet superior in weldability and ductility, high-yield-ratio high-strength hot-dip galvanized thin steel sheet, high-yield ratio high-strength hot-dip galvannealed thin steel sheet, and methods of production of same
JP2005248240A (en) * 2004-03-03 2005-09-15 Nippon Steel Corp High burring hot rolled steel sheet with bake hardenability, and its manufacturing method
WO2008145871A3 (en) * 2007-05-11 2009-02-19 Arcelormittal France Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced
US10612106B2 (en) 2007-05-11 2020-04-07 Arcelormittal Process for manufacturing cold-rolled and annealed steel sheet with a very high strength, and sheet thus produced
WO2008145871A2 (en) * 2007-05-11 2008-12-04 Arcelormittal France Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced
EP1990431A1 (en) * 2007-05-11 2008-11-12 ArcelorMittal France Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby
US11414722B2 (en) 2007-05-11 2022-08-16 Arcelormittal Process for manufacturing cold-rolled and annealed steel sheet with a very high strength, and sheet thus produced
JP2010106343A (en) * 2008-10-31 2010-05-13 Kobe Steel Ltd Steel sheet for automotive member having excellent nut projection weldability and member
JP2010144229A (en) * 2008-12-19 2010-07-01 Jfe Steel Corp Method for manufacturing high-strength member and operation method therefor
JP2012167338A (en) * 2011-02-15 2012-09-06 Nippon Steel Corp HIGH STRENGTH STEEL PLATE FOR SPOT WELDING HAVING TENSILE STRENGTH OF 980 MPa OR MORE
JP2012219284A (en) * 2011-04-04 2012-11-12 Nippon Steel Corp High-strength cold-rolled steel sheet excellent in local deformability and method for manufacturing the same
EP2792761A4 (en) * 2011-12-15 2015-06-03 Nippon Steel & Sumitomo Metal Corp High-strength extra-thick steel h-beam
US9863022B2 (en) 2011-12-15 2018-01-09 Nippon Steel & Sumitomo Metal Corporation High-strength ultra-thick H-beam steel
CN103987866A (en) * 2011-12-15 2014-08-13 新日铁住金株式会社 High-strength extra-thick steel H-beam
US9482005B2 (en) 2012-11-26 2016-11-01 Nippon Steel & Sumitomo Metal Corporation H-Section steel
US9834931B2 (en) 2013-03-14 2017-12-05 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
JP2017510703A (en) * 2014-02-05 2017-04-13 アルセロールミタル・エス・ア Hot forming air hardenability weldable steel plate
EP3114246A4 (en) * 2014-02-05 2018-04-04 Arcelormittal S.A. Hot formable, air hardenable, weldable, steel sheet
CN109563588A (en) * 2016-08-22 2019-04-02 杰富意钢铁株式会社 Member for automobile with resistance weld
EP3473740A4 (en) * 2016-08-22 2019-05-22 JFE Steel Corporation Automobile member having resistance weld
US10940556B2 (en) 2016-08-22 2021-03-09 Jfe Steel Corporation Automotive member having resistance weld
WO2019093429A1 (en) * 2017-11-08 2019-05-16 日本製鉄株式会社 Steel sheet
JP6573054B1 (en) * 2017-11-08 2019-09-11 日本製鉄株式会社 steel sheet
US11242583B2 (en) 2017-11-08 2022-02-08 Nippon Steel Corporation Steel sheet

Similar Documents

Publication Publication Date Title
JP3440894B2 (en) High strength hot rolled steel sheet excellent in stretch flangeability and method for producing the same
JP4265545B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP7261822B2 (en) Al-Fe alloy plated steel sheet for hot forming with excellent TWB welding properties, and method for producing hot formed member
KR102508575B1 (en) High-strength steel sheet and its manufacturing method
JP3846206B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
EP2527484B1 (en) Method for manufacturing a high-strength galvanized steel sheet having excellent formability and spot weldability
JP7001204B1 (en) Steel plate and members
JPWO2019106894A1 (en) High strength galvanized steel sheet and manufacturing method thereof
JP2000080440A (en) High strength cold rolled steel sheet and its manufacture
JP6432705B2 (en) High strength plated steel sheet and manufacturing method thereof
WO2020099473A1 (en) Hot-rolled steel strip &amp; manufacturing method
EP3901293B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method therefor
JP3812279B2 (en) High yield ratio type high-tensile hot dip galvanized steel sheet excellent in workability and strain age hardening characteristics and method for producing the same
JP4211520B2 (en) High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same
JP2022024145A (en) Method for manufacturing steel sheet and method for manufacturing member
JP4665302B2 (en) High-tensile cold-rolled steel sheet having high r value, excellent strain age hardening characteristics and non-aging at room temperature, and method for producing the same
JP2006183140A (en) High-strength cold rolled steel sheet and its production method
JP4519373B2 (en) High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
JP7028379B1 (en) Steel sheets, members and their manufacturing methods
KR20230086778A (en) Steel plate and its manufacturing method
JP7031800B1 (en) Steel sheets, members and their manufacturing methods
JP7151737B2 (en) High-strength steel plate and manufacturing method thereof, member and manufacturing method thereof
WO2023162190A1 (en) Steel sheet, member, methods for manufacturing same, method for manufacturing hot-rolled steel sheet for cold-rolled steel sheet, and method for manufacturing cold-rolled steel sheet
WO2023063288A1 (en) Cold-rolled steel sheet, method for manufacturing same, and welded joint
JP2001335889A (en) High tensile cold rolled sheet excellent in strain aging hardenability, impact resistance and workability, and its production method