JP2913426B2 - Manufacturing method of thick high strength steel sheet with excellent low temperature toughness - Google Patents

Manufacturing method of thick high strength steel sheet with excellent low temperature toughness

Info

Publication number
JP2913426B2
JP2913426B2 JP7204391A JP7204391A JP2913426B2 JP 2913426 B2 JP2913426 B2 JP 2913426B2 JP 7204391 A JP7204391 A JP 7204391A JP 7204391 A JP7204391 A JP 7204391A JP 2913426 B2 JP2913426 B2 JP 2913426B2
Authority
JP
Japan
Prior art keywords
temperature
less
rolling
toughness
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7204391A
Other languages
Japanese (ja)
Other versions
JPH04285119A (en
Inventor
義弘 岡村
良太 山場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7204391A priority Critical patent/JP2913426B2/en
Publication of JPH04285119A publication Critical patent/JPH04285119A/en
Application granted granted Critical
Publication of JP2913426B2 publication Critical patent/JP2913426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、厚鋼板の板厚方向の低
温靱性に優れ、さらに脆性破壊伝播停止性能を有する引
張強さ70〜100kgf/mm2 級高張力鋼の製造方
法に関するものである。
The present invention relates to a superior thickness direction of the low temperature toughness of the steel plate, the present invention relates method of manufacturing a tensile strength 70~100kgf / mm 2 class high strength steel having a brittle fracture propagation stopping performance is there.

【0002】[0002]

【従来の技術】近年、エネルギー需要が益々増加の傾向
にあり、海底資源開発につながる海洋構造物の建造ある
いは火力発電の夜間余剰電力調整用の揚水発電用高落差
ペンストックの建造などエネルギー関連の鋼構造物の建
設が活発化している。これらに使用される鋼材も大型
化、厚肉化され、安全性の確保が重要課題である。その
ため、これらに使用される材料として、構造上高強度で
かつ低温靱性の優れた鋼の開発が望まれている。このよ
うなより安全で信頼性の高い材料の要求に応えるため、
種々の厚肉高張力鋼の開発および品質改善が行われてき
ている。
2. Description of the Related Art In recent years, the demand for energy has been increasing more and more, and the construction of marine structures leading to the development of submarine resources or the construction of high-fall penstocks for pumped-storage power generation for nighttime surplus power adjustment of thermal power generation, etc. Construction of steel structures is active. The steel materials used for these are also becoming larger and thicker, and ensuring safety is an important issue. Therefore, development of a steel having high structural strength and excellent low-temperature toughness is desired as a material used for these. To meet the demand for safer and more reliable materials,
Development and quality improvement of various thick-walled high-strength steels have been performed.

【0003】従来から、高強度材の熱処理法としては再
加熱焼入れ焼戻し法が主流となっているが、特に厚肉材
に対して、板厚中心まできちんと焼きを入れ良好な強
度、靱性を得ることは困難であった。したがって、少な
い合金元素で焼入性を向上させるためには、Bによる焼
入性向上効果を活用する方法が多く適用されている。例
えば、特公昭60−20461号公報のように、厚肉材
の板厚中心部までBの焼入性を高めるため、sol.A
l−全B量線図を作製し、有効B範囲を制限し、かつ、
溶接性の点から炭素当量(Ceq)および溶接割れ感受
性指数(Pcm)を制限した引張強さ70〜80kgf
/mm2 級の厚肉高張力鋼の製造法がある。
Conventionally, reheating, quenching and tempering methods have been the mainstream heat treatment method for high-strength materials. Particularly, for thick-walled materials, good strength and toughness can be obtained by sintering them to the center of the sheet thickness. It was difficult. Therefore, in order to improve the hardenability with a small number of alloying elements, a method that utilizes the hardenability improving effect of B is often used. For example, as disclosed in Japanese Examined Patent Publication No. 60-20461, sol. A
make an l-total B mass diagram, limit the effective B range, and
Tensile strength of 70 to 80 kgf with limited carbon equivalent (Ceq) and weld crack susceptibility index (Pcm) from the viewpoint of weldability
/ Mm 2 class thick high strength steel.

【0004】一方、最近になって、圧延後冷却すること
なく直ちに焼入れし、焼戻しを行う直接焼入れ焼戻し法
が、経済性を低下させることなく強度も増加できるとい
うことから注目されるようになってきた。例えば、特公
昭63−66368号公報のように、低N鋼に微量のT
iを添加し、さらにNbを含有した鋼に直接焼入れ焼戻
しを施せば、Tiによって加熱オーステナイト結晶粒の
粗大化が防止され、熱間圧延によってオーステナイト結
晶粒が微細化され、さらに特定温度以上で圧延を終了す
ればオーステナイトの再結晶が促進されて加工歪みによ
る焼入性の低下が防止され、焼戻し時のNb(C、N)
の析出で強度がより向上し、強度、靱性バランスの優れ
た高張力鋼が得られる。
On the other hand, recently, a direct quenching and tempering method in which quenching is immediately performed without cooling after rolling and tempering is performed has attracted attention because the strength can be increased without lowering the economic efficiency. Was. For example, as disclosed in JP-B-63-66368, a small amount of T
If i is added and the steel containing Nb is directly quenched and tempered, Ti prevents the austenite crystal grains from being coarsened, and the austenite crystal grains are refined by hot rolling. Is completed, the recrystallization of austenite is promoted, and the deterioration of hardenability due to processing strain is prevented, and Nb (C, N) during tempering is reduced.
Precipitation improves the strength and provides a high-tensile steel with excellent strength and toughness balance.

【0005】[0005]

【発明が解決しようとする課題】しかし、再加熱焼入れ
焼戻し法は、板厚中心部の焼入れ性改善により強度、靱
性が向上する反面、板厚表層下については十分な靱性が
得られない問題があった。これは、板厚中心部の焼入性
向上に伴い、板厚表層下は必然的に焼入れ時において冷
却速度が速いため完全マルテンサイト組織になるためで
あり、特に厚肉材についてはその傾向が強く現れる。ま
た、直接焼入れ焼戻し法も、厚肉材においては板厚中心
部の焼入れ性を確保するために再結晶温度域から焼入れ
る必要があり、このため表層下は粗粒のオーステナイト
結晶粒からのマルテンサイト組織になり、再加熱焼入れ
焼戻し法と同様に表層下部については十分な靱性が得ら
れない。
However, in the reheating quenching and tempering method, although the strength and toughness are improved by improving the hardenability at the center of the sheet thickness, there is a problem that sufficient toughness cannot be obtained below the sheet thickness surface layer. there were. This is because with the improvement in hardenability at the center of the sheet thickness, the cooling rate is high at the time of quenching inevitably under the sheet thickness layer, resulting in a complete martensitic structure, especially for thick materials. Appear strongly. The direct quenching and tempering method also requires quenching from the recrystallization temperature range in order to secure hardenability at the center of the sheet thickness in the case of thick-walled materials. A site structure is formed, and sufficient toughness cannot be obtained in the lower part of the surface layer as in the reheating quenching and tempering method.

【0006】また、前述の直接焼入れ焼戻し法は板厚が
30mm以下の比較的薄肉材については強度、靱性が向
上するが、厚肉材については、再加熱焼入焼戻し法と同
様に板厚方向全域に渡って十分な強度、靱性が確保され
ているとはいえない。
[0006] In the above-mentioned direct quenching and tempering method, the strength and toughness of a relatively thin material having a thickness of 30 mm or less are improved. It cannot be said that sufficient strength and toughness are secured over the entire area.

【0007】更に、使用環境の苛酷な条件における安全
性の確保から、構造物は変形もしくは破壊してはなら
ず、特に鋼材に対しては、低温における脆性破壊伝播停
止性能も考慮せねばならない。前述の製造法により得ら
れた鋼板は、このような配慮が十分なされていない。し
たがって、厚肉材の場合、使用上十分安全であるとは言
えない。
Further, in order to ensure safety under severe conditions of use environment, the structure must not be deformed or broken, and especially for steel materials, the ability to stop brittle fracture propagation at low temperatures must be considered. Such considerations are not sufficiently given to the steel sheet obtained by the above-mentioned manufacturing method. Therefore, it cannot be said that thick materials are sufficiently safe for use.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は、重量%
で、C:0.03〜0.15%、Si:0.02〜0.
5%、Mn:0.4〜2.0%、Ni:0.05〜3.
0%、Cr:0.2〜1.0%、Mo:0.1〜1.0
%、V:0.01〜0.1%、Al:0.03〜0.1
0%、B:0.0005〜0.0020%、N:0.0
060%以下を含有し、あるいは更にCu:0.1〜
1.5%、Nb:0.005〜0.05%、Ti:0.
005〜0.02%からなる強度改善元素群、または介
在物形態制御作用のあるCa:0.0005〜0.00
5%の一種または二種以上を含有し、残部がFeおよび
不可避的不純物からなる鋼片を950〜1150℃に加
熱して鋼片まゝあるいは粗圧延後900℃以上の温度か
ら水冷し、鋼片両表面から厚みの1/10以上2/10
以下の厚み比率までの表層部をAr3点以下に冷却し、
引き続き、鋼片表層部がAc1点以上Ac3点以下の温度
まで復熱させた後仕上げ圧延を開始し、仕上がり厚に対
し累積圧下率40%以上で圧延し、かつ、圧延中または
圧延終了後表層部をAc3点−50℃以上Ac3点+30
℃以下の温度まで復熱させた後、Ar3点以上の温度か
ら水冷する焼入れ処理を行い、続いてAc1点以下の温
度で焼戻し処理することを特徴とする低温靱性の優れた
厚肉高張力鋼の製造法である。
Means for Solving the Problems The gist of the present invention is that the weight%
, C: 0.03 to 0.15%, Si: 0.02 to 0.
5%, Mn: 0.4-2.0%, Ni: 0.05-3.
0%, Cr: 0.2 to 1.0%, Mo: 0.1 to 1.0
%, V: 0.01 to 0.1%, Al: 0.03 to 0.1
0%, B: 0.0005 to 0.0020%, N: 0.0
060% or less, or further Cu: 0.1 to
1.5%, Nb: 0.005 to 0.05%, Ti: 0.
005-0.02% strength-improving element group or Ca having an inclusion morphology controlling action: 0.0005-0.00
A steel slab containing 5% of one or more kinds and the remainder consisting of Fe and unavoidable impurities is heated to 950 to 1150 ° C., and is then cooled to 900 ° C. or higher after the steel slab or rough rolling. 1/10 or more 2/10 of the thickness from both surfaces
Cool the surface layer up to the following thickness ratio to Ar 3 points or less,
Subsequently, after the surface layer of the slab is reheated to a temperature of not less than Ac 1 point and not more than Ac 3 points, finish rolling is started, rolling is performed at a cumulative reduction ratio of 40% or more with respect to the finished thickness, and rolling or rolling is completed. After the surface part, Ac 3 points -50 ° C or higher Ac 3 points +30
After being reheated to a temperature of not more than 3 ° C., a quenching treatment is performed by cooling with water from a temperature of not less than 3 points of Ar, followed by a tempering treatment at a temperature of not more than 1 point of Ac. This is a method for manufacturing tensile steel.

【0009】[0009]

【作用】本発明者らは、厚肉材の再加熱焼入れ焼戻し型
および直接焼入れ焼戻し型に見られる板厚表層下の靱性
低下に着目し、その靱性改善を図り、板厚方向全位置に
高強度で均質な低温靱性および脆性破壊伝播停止性能を
有する高張力鋼を開発することを目的に、種々の製造法
について実験した結果、B添加した低合金鋼片の厚板圧
延−直接焼入れ処理工程において、粗圧延後鋼片の表裏
面を水冷し、続いて表層部を復熱させつつ仕上げ圧延し
た後直接焼入れを行うことにより、焼入れ組織は、表層
が細粒のオーステナイト結晶粒からなるマルテンサイ
ト+下部ベイナイト組織、板厚中心部が比較的粗粒のオ
ーステナイト結晶粒からなるマルテンサイト+下部ベイ
ナイト組織となり、それを焼戻しすることで表層部の靱
性が著しく改善され、板厚方向全位置において均質な低
温靱性が得られ、かつ、脆性破壊伝播停止性能を有する
目的の鋼が製造できることを知見した。
The present inventors have focused on the reduction in toughness under the surface layer of the sheet thickness observed in the reheating quenching and tempering type and the direct quenching and tempering type of thick-walled material. In order to develop a high-strength steel with high strength, homogeneous low-temperature toughness and brittle fracture propagation stopping performance, we conducted experiments on various manufacturing methods. In, after rough rolling, the front and back surfaces of the steel slab are water-cooled, followed by finish rolling while reheating the surface layer, and then directly quenched, the quenched structure is the surface layer
Part martensite + lower bainite structure consisting austenite grains fine, becomes a martensite + lower bainite tissue thickness center portion is made of relatively coarse austenite grains, toughness of the surface layer portion by tempering it Has been remarkably improved, uniform low-temperature toughness can be obtained at all positions in the thickness direction, and it is found that a target steel having brittle fracture arrestability can be produced.

【0010】以下、本発明の作用を詳細に説明する。Hereinafter, the operation of the present invention will be described in detail.

【0011】まず、本発明に適用する鋼を上記のような
鋼成分に限定した理由について述べる。
First, the reason why the steel applied to the present invention is limited to the above steel components will be described.

【0012】C:Cは焼入性を向上させ強度を容易に上
昇させるのに有効な元素である。しかし、0.03%未
満では強度的に不十分であり、0.15%を超えると低
温靱性および溶接性が低下する。したがって、C含有量
の範囲を0.03〜0.15%とした。
C: C is an element effective for improving hardenability and easily increasing strength. However, if it is less than 0.03%, the strength is insufficient, and if it exceeds 0.15%, the low-temperature toughness and the weldability decrease. Therefore, the range of the C content is set to 0.03 to 0.15%.

【0013】Si:Siは製鋼上不可避な元素であり、
0.02%は鋼中に含まれることになるが、0.5%を
超えると低温靱性が低下する。したがって、ある程度の
強度を確保し、低温靱性を低下させないために0.02
〜0.5%とした。
Si: Si is an unavoidable element in steel making,
0.02% is contained in the steel, but if it exceeds 0.5%, the low-temperature toughness decreases. Therefore, in order to secure a certain level of strength and not lower the low-temperature toughness, 0.02
-0.5%.

【0014】Mn:Mnは焼入性を向上させ、強度、靱
性確保に有効であるが、0.4%未満では強度および靱
性が低下し、また、2.0%を超えると焼戻し脆性が大
きくなり、低温靱性を低下させる。したがって、Mnの
含有量を0.4〜2.0%とした。
Mn: Mn improves quenching properties and is effective for securing strength and toughness. However, if it is less than 0.4%, strength and toughness decrease, and if it exceeds 2.0%, tempering brittleness increases. And lower the low temperature toughness. Therefore, the content of Mn is set to 0.4 to 2.0%.

【0015】Ni:Niは強度と靱性を向上させるため
に最も有効な元素である。0.05%未満ではその効果
がなく、また、3.0%を超えると強度の割には靱性改
善の効果が小さく、経済性で不利となる。したがって、
Niの含有量を0.05〜3.0%とした。
Ni: Ni is the most effective element for improving strength and toughness. If it is less than 0.05%, the effect is not obtained, and if it exceeds 3.0%, the effect of improving the toughness is small for the strength, which is disadvantageous in economy. Therefore,
The content of Ni was set to 0.05 to 3.0%.

【0016】Cr:Crは焼入性を向上させ強度確保に
有効であるが、0.2%未満ではその効果がなく、ま
た、1.0%を超えると靱性および溶接性が低下する。
したがって、Crの含有量を0.2〜1.0%とした。
Cr: Cr is effective for improving hardenability and ensuring strength. However, if it is less than 0.2%, it has no effect, and if it exceeds 1.0%, toughness and weldability decrease.
Therefore, the content of Cr is set to 0.2 to 1.0%.

【0017】Mo:Moは焼入性向上による強度確保、
および焼戻し脆性の防止のために有効な元素である。し
かし、0.1%未満ではその効果がなく、また、1.0
%を超えると低温靱性および溶接性が低下する。したが
って、Moの含有量を0.1〜1.0%とした。
Mo: Mo secures strength by improving hardenability,
It is an element effective for preventing temper embrittlement. However, at less than 0.1%, the effect is not obtained.
%, The low-temperature toughness and weldability decrease. Therefore, the content of Mo is set to 0.1 to 1.0%.

【0018】V:Vは焼戻し処理において炭窒化物を形
成し、析出強化により強度確保に有効である。特に、直
接焼入れ焼戻し法は焼入れ処理前に炭窒化物が十分に固
溶化されるため、効果的な析出強化を図ることができ
る。しかし、0.01%未満では目標とする強度が得ら
れず、また、0.1%を超えると低温靱性が低下する。
したがって、Vの含有量を0.01〜0.1%とした。
V: V forms carbonitrides during tempering and is effective for securing strength by precipitation strengthening. In particular, in the direct quenching and tempering method, carbonitride is sufficiently dissolved before the quenching treatment, so that effective precipitation strengthening can be achieved. However, if it is less than 0.01%, the desired strength cannot be obtained, and if it exceeds 0.1%, the low-temperature toughness decreases.
Therefore, the content of V is set to 0.01 to 0.1%.

【0019】Al:Alは鋼片加熱時、鋼中のNと結び
ついて、その後の焼入れ処理において焼入性に有効なB
を確保するため0.03%以上の添加が必要である。ま
た、AlNの微細析出物によりオーステナイト粒の細粒
化にも有効である。しかし、0.10%を超えるとAl
2 3 等の介在物が増大し、低温靱性を阻害する。した
がって、Alの含有量を0.03〜0.10%とした。
Al: Al is combined with N in the steel when heating the slab, and B is effective for hardenability in the subsequent quenching treatment.
Is required to be added in an amount of 0.03% or more. Further, the fine precipitates of AlN are also effective in reducing austenite grains. However, if it exceeds 0.10%, Al
Inclusions such as 2 O 3 increase and hinder low-temperature toughness. Therefore, the content of Al is set to 0.03 to 0.10%.

【0020】B:Bは焼入性を向上させるのに有効な元
素であり、C、Mn、Cr、Mo、Niの焼入性元素と
の兼ね合いにおいて、これら元素のより少量の添加で焼
入性が発揮できる。更に、本発明においては鋼片まゝま
たは粗圧延後水冷により鋼片表裏面を冷却し、その後復
熱しながら圧延するため、表層部はオーステナイト結晶
粒が微細化され、かつ、加工歪みが形成されるため焼入
性が低下する。しかし、B添加によりオーステナイト粒
界からのフェライトの生成が抑制でき、表層部において
も下部ベイナイトあるいは下部ベイナイト+マルテンサ
イトの混合組織を生成させることができる。また、板厚
中心部は、本発明の場合、十分に高い再結晶温度から焼
入れるためBによる焼入性向上効果が十分に発揮でき
る。0.0005%未満ではその効果がなく、また、
0.0020%を超えるとその効果が飽和してかえって
靱性を低下させる。したがって、Bの含有量を0.00
05〜0.0020%とした。
B: B is an element effective for improving the hardenability, and in combination with the hardenable elements of C, Mn, Cr, Mo and Ni, B is hardened by adding a smaller amount of these elements. It can demonstrate the nature. Furthermore, in the present invention, since the front and back surfaces of the slab are cooled by water cooling after slab or rough rolling, and then rolled while recuperating, the austenite crystal grains are refined in the surface layer , and processing strain is formed. Therefore, hardenability decreases. However, the addition of B can suppress the formation of ferrite from austenite grain boundaries, and can also form a lower bainite or a mixed structure of lower bainite and martensite in the surface layer . Further, in the case of the present invention, the plate thickness center portion is quenched from a sufficiently high recrystallization temperature, so that the effect of improving the hardenability by B can be sufficiently exhibited. Less than 0.0005% has no effect.
If it exceeds 0.0020%, the effect is saturated and the toughness is reduced. Therefore, the content of B is 0.00
05 to 0.0020%.

【0021】N:Nは0.0060%以下にすることに
よりBによる焼入性向上効果が安定化し、0.0060
%を超えると溶接性が低下する。したがって、Nの含有
量を0.0060%以下とした。
N: By making N less than 0.0060%, the effect of improving the hardenability by B is stabilized, and 0.0060%.
%, The weldability decreases. Therefore, the content of N is set to 0.0060% or less.

【0022】本発明では、上記基本成分の他に、Cu、
Nb、TiおよびCaの一種または二種以上を添加す
る。
In the present invention, in addition to the above basic components, Cu,
One or more of Nb, Ti and Ca are added.

【0023】Cu、Nb、Ti成分は、鋼の強度を向上
させるという均等的作用をもち、所望の効果を確保する
ためにはそれぞれ下限含有量をCu:0.1%、Nb:
0.005%、Ti:0.005%とする必要がある。
しかし、それぞれCu:1.5%、Nb:0.05%、
Ti:0.02%を超えて含有させると、低温靱性およ
び溶接性が低下するため、上記の通り限定する。
The Cu, Nb, and Ti components have a uniform effect of improving the strength of the steel. In order to ensure the desired effects, the lower limit contents are Cu: 0.1% and Nb:
Must be 0.005% and Ti: 0.005%.
However, Cu: 1.5%, Nb: 0.05%,
If the content of Ti exceeds 0.02%, the low-temperature toughness and the weldability are reduced, so that the content is limited as described above.

【0024】Ca:Caは非金属介在物の球状化に有効
であり、靱性の異方性を小さくする効果がある。また、
溶接後の残留応力除去焼鈍による割れ防止に効果を発揮
する。そのためには0.0005%以上必要である。し
かし、0.0050%を超えると介在物増加により靱性
を低下させる。したがって、Caの含有量を0.000
5〜0.0050%とした。
Ca: Ca is effective for spheroidizing nonmetallic inclusions and has the effect of reducing the anisotropy of toughness. Also,
Effective for preventing cracking due to residual stress removal annealing after welding. For this purpose, 0.0005% or more is required. However, if it exceeds 0.0050%, toughness is reduced due to an increase in inclusions. Therefore, the content of Ca is 0.000
5 to 0.0050%.

【0025】上記の成分の他に、不可避的不純物として
P、S等は低温靱性を低下させる有害な元素であるか
ら、その量は少ない方がよい。好ましくは、P≦0.0
10%、S≦0.005%である。
In addition to the above components, P and S as unavoidable impurities are harmful elements that lower the low-temperature toughness. Preferably, P ≦ 0.0
10%, S ≦ 0.005%.

【0026】次に、本発明のもう一つの骨子である製造
法について述べる。すなわち、上記のような鋼成分組成
であっても、厚肉材の板厚方向各位置の靱性を高靱化さ
せ、かつ、脆性破壊伝播停止性能を向上させるために
は、製造方法が適切でなければならない。ここで鋼片の
加熱、粗圧延冷却、復熱・圧延、冷却および焼戻し条件
の限定理由について説明する。
Next, a manufacturing method which is another gist of the present invention will be described. That is, even with the steel component composition as described above, in order to increase the toughness of each position in the thickness direction of the thick material, and to improve the brittle fracture propagation stopping performance, a manufacturing method is appropriate. There must be. Here, the reasons for limiting the heating, rough rolling cooling, recuperation / rolling, cooling and tempering conditions of the billet will be described.

【0027】まず、上記成分組成の鋼片を950〜11
50℃に加熱し熱間圧延を行う。この加熱はNをAlで
固定し、AlNの微細析出を図り、焼入れ処理前の固溶
Bを増加させ、焼入性を高める処理であり、また、加熱
オーステナイト粒を細粒化し、更に焼戻し処理時にM
o、V等の微細炭窒化物を十分に固溶化させる処理であ
る。したがって、950℃未満の低い温度では、Mo、
V等の固溶化作用が不十分となる。一方、1150℃を
超える温度では、Mo、V等の炭窒化物は十分固溶する
ものの、AlNの微細析出物も再分解し、この固溶Nは
圧延時Bと結びつきBNとして再析出するため、焼入れ
時の固溶Bが減少し焼入性が低下する。また、加熱オー
ステナイト粒が粗大化し、その後の圧延において、特に
表層下部のオーステナイト粒が細粒化しにくく、表層下
部の靱性低下の原因となる。したがって、これらの問題
を考慮して、鋼片の加熱温度を950〜1150℃とし
た。
First, a slab having the above-mentioned component composition was prepared for 950 to 11
It is heated to 50 ° C. and hot rolled. This heating is a process of fixing N with Al, achieving fine precipitation of AlN, increasing solid solution B before quenching, and improving hardenability. In addition, the heating austenite grains are refined and tempered. Sometimes M
This is a process for sufficiently dissolving fine carbonitrides such as o and V. Therefore, at low temperatures below 950 ° C., Mo,
The solution effect of V and the like becomes insufficient. On the other hand, at a temperature exceeding 1150 ° C., although carbonitrides such as Mo and V are sufficiently dissolved, fine precipitates of AlN are re-decomposed, and the dissolved N is combined with B during rolling and re-precipitated as BN. In addition, the amount of solid solution B during quenching decreases, and the hardenability decreases. Further, the heated austenite grains are coarsened, and in the subsequent rolling, particularly, the austenite grains in the lower part of the surface layer are less likely to become finer, which causes a decrease in toughness in the lower part of the surface layer. Therefore, in consideration of these problems, the heating temperature of the steel slab was set to 950 to 1150 ° C.

【0028】次に、このように加熱された鋼片を、鋼片
まゝあるいは粗圧延を行った後900℃以上の温度から
水冷し、鋼片両表面から厚みの1/10以上2/10以
下の厚み比率までの表層部をAr3点以下まで冷却する
(図1の(a)に本発明の鋼片水冷直後の厚み方向の温
度曲線を示す)。ここで、鋼片まゝあるいは粗圧延後の
鋼片の水冷開始温度を900℃以上と限定した理由は、
仕上げ圧延後の板厚中心部の焼入性の確保のためであ
る。図2は表1、2に示す鋼Mについて、1050℃加
熱し、鋼片水冷開始表面温度を800〜1100℃に変
化させ、その後本発明の製造条件で圧延、水冷、焼戻し
を行った後の板厚50mm材の中心部の靱性を示したも
のである。水冷開始温度が900℃では明らかに高靱性
が得られる。しかし、900℃未満の温度では板厚中心
部の焼入れ温度も低くくなり、焼入性が低下し、上部ベ
イナイト組織が生成され靱性が低下する。また、鋼片両
表面から厚みの1/10以上2/10以下の厚み比率
での表層部をAr3点以下に冷却する理由は、表層部
γ→α→復熱圧延→γ変態を通すことによりオーステナ
イト粒の細粒化が効率良く達成できるためである。しか
し、表層部がAr3点以下とする厚み比率が1/10未
満では、表層細粒化層が薄くなり、低温靱性および脆
性破壊伝播停止性能が低下する。また、厚み比率が2/
10超では、仕上げ圧延において表面部をAc3点−5
0℃以上の温度に復熱させることができず、細粒化が不
十分となる。また、板厚中心部の温度も同時に低くな
り、焼入性が低下し靱性も低下する。
Next, the steel slab thus heated is subjected to blanking or rough rolling, and then water-cooled from a temperature of 900 ° C. or more, and from both surfaces of the steel slab to 1/10 to 2/10 of the thickness. Less than
The surface portion up to the lower thickness ratio is cooled to the Ar 3 point or lower (FIG. 1 (a) shows a temperature curve in the thickness direction immediately after water cooling of the slab of the present invention). Here, the reason for limiting the water cooling start temperature of the billet or the billet after the rough rolling to 900 ° C or more is as follows.
This is to ensure the hardenability of the central part of the sheet thickness after finish rolling. FIG. 2 shows the steel M shown in Tables 1 and 2, heated at 1050 ° C., the slab water cooling start surface temperature was changed to 800 to 1100 ° C., and then rolled, water cooled, and tempered under the production conditions of the present invention. It shows the toughness of the central part of a 50 mm thick material. When the water cooling start temperature is 900 ° C., high toughness is clearly obtained. However, if the temperature is lower than 900 ° C., the quenching temperature at the center of the sheet thickness also becomes low, the hardenability decreases, an upper bainite structure is generated, and the toughness decreases. The reason for cooling the surface portion from the both surfaces of the slab to a thickness ratio of 1/10 or more and 2/10 or less to Ar 3 points or less is that the surface portion is γ → α → recuperation rolling. → It is because refinement of austenite grains can be efficiently achieved by passing through γ transformation. However, if the thickness ratio of the surface layer portion to the Ar 3 point or less is less than 1/10, the surface layer portion fine-grained layer becomes thin, and the low-temperature toughness and the brittle fracture propagation stopping performance decrease. The thickness ratio is 2 /
If it exceeds 10, the surface portion is Ac 3 points-5 in finish rolling.
It cannot be reheated to a temperature of 0 ° C. or higher, and grain refinement becomes insufficient. In addition, the temperature at the center of the sheet thickness also decreases at the same time, and the hardenability decreases and the toughness also decreases.

【0029】次に、このように鋼片表層部がAr3 点以
下に冷却された鋼片を、表層部がAc1 点以上Ac3
以下に復熱させた後仕上げ圧延を開始する。この理由
は、表層部をα+γ二相域温度から圧延すると、圧延中
または圧延終了後復熱によるα→γ逆変態により最もオ
ーステナイト粒が細粒化されるからである。しかし、A
1 点未満から圧延を開始した場合は、復熱後の微細オ
ーステナイト粒の生成が少なく、伸長粗大フェライト粒
との混合粒となり、強度、靱性が低下する。また、Ac
3 点超に復熱してから圧延を開始した場合は、オーステ
ナイト粒の微細化が不十分となり靱性および脆性破壊伝
播停止性能が低下する。
Next, after the surface slab of the slab having been cooled to the Ar 3 point or lower is reheated to the point of the Ac 1 point or more and the Ac 3 point or less, the finish rolling is started. The reason for this is that when the surface layer is rolled from the α + γ two-phase region temperature, the austenite grains are most refined due to α → γ reverse transformation due to reheating during or after rolling. But A
c When rolling is started from less than one point, the generation of fine austenite grains after reheating is small, and the mixed grains with elongated coarse ferrite grains are formed, and strength and toughness are reduced. Also, Ac
If the rolling is started after reheating to more than three points, the austenite grains are insufficiently refined, and the toughness and the ability to stop brittle fracture propagation are reduced.

【0030】このような温度域に表層部が復熱された鋼
片を仕上がり厚に対し累積圧下率40%以上で圧延し、
かつ、圧延中または圧延終了後表面部をAc3点−50
℃以上Ac3点+30℃以下の温度まで復熱させる必要
がある。累積圧下率が40%以上必要である理由は、
層部に二相域温度で加工歪みを導入し、それにより微細
オーステナイト粒生成のための核サイトを増加させるた
めである。しかし、累積圧下率40%未満では加工歪み
の導入が小さく、オーステナイト粒の細粒化が不十分と
なる。更に、板厚中心部においても、再結晶温度域で圧
延再結晶を起こさせ、ある程度細粒化させるためにも累
積圧下率40%以上必要である。また、圧延中または圧
延終了後表面部をAc3点−50℃以上Ac3点+30℃
以下の温度まで復熱させる必要がある(図1の(b)に
本発明の圧延中または圧延終了後の復熱温度曲線を示
す)。この理由は、表層部にα→γ逆変態により微細オ
ーステナイト粒を生成させるためである。しかし、Ac
3点−50℃未満の温度では、微細オーステナイト粒の
生成が小さく、また、Ac3点+30℃超の温度では、
生成された微細オーステナイト粒の成長が起こり、靱性
の低下が生じる。図3は表1、2に示す鋼Mについて仕
上げ圧延前までは本発明範囲で製造した鋼片を圧延中ま
たは圧延終了後の表部を復熱変化させたときの靱性の
影響について調査したものである。本発明範囲内の温度
で復熱圧延終了した鋼板は、表層部および中心部共高靱
性が得られる。しかし、本発明範囲を逸脱した復熱圧延
終了材は、表層部または中心部の靱性が低下することが
分かる。
The slab whose surface layer has been reheated to such a temperature range is rolled at a cumulative draft of 40% or more with respect to the finished thickness.
Also, during rolling or after rolling, the surface portion is Ac 3 points-50.
It is necessary to reheat to a temperature not lower than 3 ° C. and not higher than Ac 3 points + 30 ° C. Reason cumulative rolling reduction is required more than 40%, the table
This is because a work strain is introduced into the layer at a temperature in the two-phase region, thereby increasing the number of nucleus sites for generating fine austenite grains. However, when the cumulative rolling reduction is less than 40%, the introduction of working strain is small, and the austenite grains are insufficiently refined. Furthermore, even in the center of the sheet thickness, the rolling reduction is required to be 40% or more in order to cause rolling recrystallization in the recrystallization temperature range and to reduce the grain size to some extent. Further, during or after rolling, the surface portion is set to an Ac 3 point of −50 ° C. or more and an Ac 3 point of + 30 ° C.
It is necessary to reheat to the following temperature (FIG. 1 (b) shows a reheating temperature curve during or after the rolling of the present invention). The reason for this is that fine austenite grains are generated in the surface layer by α → γ reverse transformation. But Ac
At a temperature lower than 3 points −50 ° C., the formation of fine austenite grains is small, and at a temperature higher than Ac 3 points + 30 ° C.,
The generated fine austenite grains grow, resulting in a decrease in toughness. 3 was investigated the effect of toughness obtained while recuperation changing tables layer portion during and after rolling or rolling end steel slabs before rolling produced by the present invention range finishing the steel M as shown in Tables 1 and 2 Things. The steel sheet which has been subjected to recuperation rolling at a temperature within the range of the present invention has high toughness in both the surface layer portion and the central portion. However, it can be seen that the reheat-rolled finished material that deviates from the scope of the present invention has reduced toughness in the surface layer portion or the central portion.

【0031】熱間圧延−復熱された鋼は、その後Ar3
点以上の温度から水冷する焼入れ処理を行う必要があ
る。この理由は、上記のごとく圧延された鋼板を、焼入
処理によって、表層部は加工歪みのある微細オーステナ
イト粒からのマルテンサイト+下部ベイナイト組織、板
厚中心部は表層部に比べ加工歪みの無い比較的粗粒オー
ステナイト粒からの下部ベイナイト+マルテンサイト組
織とするためである。しかし、Ar3点未満の温度では
フェライトが生成し表層部の焼入れ性が著しく低下し、
板厚中心部においても焼入れ性が低下する傾向にあり、
上部ベイナイト組織が生成し強度、靱性が得られない。
The hot rolling - recuperator steel is then Ar 3
It is necessary to perform a quenching process of water cooling from a temperature higher than the temperature. The reason for this is that the steel layer rolled as described above is subjected to quenching treatment to form a martensite + lower bainite structure from fine austenite grains having a work strain in the surface layer portion and a work center portion having less work strain than the surface layer portion. This is because a lower bainite + martensite structure is formed from relatively coarse austenite grains. However, at a temperature lower than the Ar 3 point, ferrite is formed and the hardenability of the surface layer portion is significantly reduced,
Even in the center of the thickness, the hardenability tends to decrease,
An upper bainite structure is formed, and strength and toughness cannot be obtained.

【0032】熱間圧延後水冷された鋼は、更にその後A
1 点以下の温度で焼戻し処理を行う必要がある。この
焼戻し処理は、Mo、V等の炭窒化物を十分に析出強化
させ、強度および靱性を得るためである。しかし、Ac
1点を超えた温度では強度が著しく低下する。
The steel that has been hot-rolled and water-cooled is then
c It is necessary to perform tempering at a temperature of one point or less. This tempering treatment is for sufficiently strengthening the precipitation and strengthening of carbonitrides such as Mo and V to obtain strength and toughness. But Ac
At temperatures above one point, the strength drops significantly.

【0033】このような製造工程で得られた鋼は、板厚
方向全位置において高強度および高靱性が得られ、更に
脆性破壊伝播停止性能が著しく改善される。
The steel obtained by such a manufacturing process has high strength and high toughness at all positions in the sheet thickness direction, and further has a remarkable improvement in brittle fracture propagation stopping performance.

【0034】[0034]

【実施例】表1、2に示す組成を有する鋼を溶製して得
た鋼片から、表3、4に示す本発明法と比較法の各々の
製造条件に基づいて板厚30〜150mmの鋼板を製造
した。これらについての母材の機械的性質と、温度勾配
型ESSO試験による脆性破壊伝播停止性能について調
査した。
EXAMPLE From a steel slab obtained by smelting steel having the composition shown in Tables 1 and 2, a plate thickness of 30 to 150 mm was obtained based on the production conditions of the present invention method and comparative method shown in Tables 3 and 4. Was manufactured. The mechanical properties of the base material and the brittle fracture arrestability by a temperature gradient type ESSO test were investigated.

【0035】これらの表1、2の化学組成を有する鋼と
表3、4で示す製造条件とによって得られた板厚方向各
部の機械的性質、および脆性破壊伝播停止性能のKca
試験結果を表5〜7に示す。
The mechanical properties of each part in the thickness direction obtained by the steel having the chemical composition shown in Tables 1 and 2 and the manufacturing conditions shown in Tables 3 and 4 and the Kca of the brittle fracture propagation stopping performance were obtained.
The test results are shown in Tables 5 to 7.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【表6】 [Table 6]

【0042】[0042]

【表7】 [Table 7]

【0043】表5〜7に見られるように、本発明例1−
A〜13−Mにおいては、母材の強度、靱性は板厚方向
差も小さく、かつ十分に高い値である。また、ESSO
試験のKca値も十分高い値である。
As shown in Tables 5 to 7, the present invention example 1
In A to 13-M, the strength and toughness of the base material are small enough in the thickness direction difference and sufficiently high. Also, ESSO
The Kca value of the test is also a sufficiently high value.

【0044】これに対し、鋼組成が要件を満たしても製
造条件が要件を満たさない場合において、比較例14−
Mでは、鋼片加熱温度が高くAlNが溶解し、固溶Bが
減少し、焼入性が低下したため中心部の強度、靱性が低
下し、また、圧延後の復熱ピーク温度も高くなり、表層
部が粗粒化し靱性が低下している。比較例15−Mで
は、鋼片の水冷開始温度が低いため、その後の仕上げ圧
延中の復熱ピーク温度も低くなり、中心部の焼入性が低
下し強度、靱性共低下している。比較例16−Mおよび
21−Bでは、鋼片両表面から厚み比率3/10までの
表層部をAr3 点以下に冷却したため、中心部が未再結
晶圧延となり焼入性が低下し、強度および靱性が低下
し、また、圧延中の表層部の復熱温度も低くなり、フェ
ライトが生成し強度、靱性が低下している。比較例17
−Mでは、鋼片水冷がなく、仕上げ圧延開始温度も高い
ため中心部の焼入性は向上するが、表層部は焼入組織が
粗粒のマルテンサイト組織となり靱性が低下し、このた
め脆性破壊伝播停止性能も低下している。比較例18−
Iおよび20−Bでは、鋼片冷却後鋼片表層部の温度が
Ac3 点より更に高い温度に復熱されてから仕上げ圧延
を開始したため、表層部が細粒化されず靱性が低下して
いる。比較例19−Iでは、仕上げ圧延後の鋼板の焼入
れ温度がAr3 点より低くなったためフェライトの生成
が起こり、板厚方向全域に渡って焼入性が低下し、強
度、靱性共低下している。比較例22−Eでは、制御圧
延を実施せず普通圧延により鋼板を製造し、再加熱焼入
処理を行ったので、表層部が粗粒となり靱性が低下して
いる。
On the other hand, in the case where the steel composition satisfies the requirements but the manufacturing conditions do not satisfy the requirements, the comparative example 14-
In the case of M, the slab heating temperature is high, AlN is dissolved, solute B is reduced, and the hardenability is reduced, so that the strength and toughness of the central part are reduced, and the reheating peak temperature after rolling is also increased, The surface layer is coarse and the toughness is reduced. In Comparative Example 15-M, since the water cooling start temperature of the slab was low, the recuperation peak temperature during the subsequent finish rolling was also low, the hardenability at the center was reduced, and both the strength and toughness were reduced. In Comparative Examples 16-M and 21-B, since the surface layer portion having a thickness ratio of up to 3/10 from both surfaces of the slab was cooled to the Ar 3 point or less, the center portion was not recrystallized and the hardenability was reduced, and the strength was reduced. In addition, the toughness is reduced, and the reheat temperature of the surface layer during rolling is also reduced, and ferrite is formed, and the strength and toughness are reduced. Comparative Example 17
In -M, the quenching property of the central part is improved because there is no slab water cooling and the finish rolling start temperature is high, but the quenched structure of the surface layer becomes a coarse-grained martensite structure, and the toughness is reduced. The rupture propagation stopping performance is also reduced. Comparative Example 18-
In I and 20-B, since the temperature of the steel strip after cooling the steel strip surface layer portion starts to finish rolling after being recuperation to a higher temperature than 3 points Ac, toughness is not fine of the surface layer portion is reduced I have. In Comparative Example 19-I, the quenching temperature of the steel sheet after the finish rolling was lower than the Ar 3 point, ferrite was generated, the hardenability was reduced over the entire area in the thickness direction, and both the strength and the toughness were reduced. I have. In Comparative Example 22-E, a steel sheet was manufactured by ordinary rolling without performing controlled rolling, and reheating and quenching was performed, so that the surface layer became coarse and the toughness was reduced.

【0045】[0045]

【発明の効果】本発明により、板厚表層部から中心部ま
で高強度、高靱性の厚肉高張力鋼板の製造が可能とな
る。特に厚肉材では、従来の製造法では板厚表層部から
中心部まで高靱性を得ようとすると、表層部については
未再結晶域圧延を行ってγ粒を細粒化していたが、反
面、中心部の焼入性が低下し、また、中心部については
再結晶域圧延により高い温度から焼入れする必要があ
り、反面、表層部が粗粒となる心配があったのを解消す
る。その結果、脆性破壊伝播停止性能が著しく向上し、
十分な安全性が確保される。
According to the present invention, it is possible to produce a high-strength, high-strength steel sheet having high strength and high toughness from the surface layer to the center. Particularly in the case of thick materials, in the conventional manufacturing method, in order to obtain high toughness from the surface layer part to the center part of the sheet thickness, the non-recrystallization zone rolling was performed on the surface layer part to reduce γ grains, but on the other hand, In addition, the hardenability of the central part is reduced, and the central part needs to be hardened from a high temperature by rolling in the recrystallization zone. On the other hand, there is no fear that the surface layer becomes coarse. As a result, the brittle fracture propagation stopping performance is significantly improved,
Sufficient safety is ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の鋼片水冷直後の厚み方向の温度曲線
(a)および圧延中または圧延終了後の鋼板の厚み方向
の復熱温度曲線(b)を示す図である。
FIG. 1 is a diagram showing a temperature curve (a) in the thickness direction immediately after water cooling of a slab of the present invention and a recuperation temperature curve (b) in the thickness direction of a steel sheet during or after rolling.

【図2】鋼Mについて板厚中心部の靱性と鋼片水冷開始
温度の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the toughness of a steel sheet M at the center in the plate thickness and the steel slab water cooling start temperature.

【図3】鋼Mについて板厚方向各位置の靱性と圧延中ま
たは圧延終了後の鋼板表面温度との関係を示す図であ
る。
FIG. 3 is a diagram showing the relationship between the toughness of each position in the thickness direction of steel M and the surface temperature of the steel sheet during or after rolling.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C21D 8/02 Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) C21D 8/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.03〜0.15%、 Si:0.02〜0.5%、 Mn:0.4〜2.0%、 Ni:0.05〜3.0%、 Cr:0.2〜1.0%、 Mo:0.1〜1.0%、 V :0.01〜0.1%、 Al:0.03〜0.10%、 B :0.0005〜0.0020%、 N :0.0060%以下 を含有し、残部がFeおよび不可避的不純物からなる鋼
片を950〜1150℃に加熱して鋼片まゝあるいは粗
圧延後900℃以上の温度から水冷し、鋼片両表面から
厚みの1/10以上2/10以下の厚み比率までの表層
部をAr3点以下に冷却し、引き続き、鋼片表層部がA
1点以上Ac3点以下の温度まで復熱させた後仕上げ圧
延を開始し、仕上がり厚に対し累積圧下率40%以上で
圧延し、かつ、圧延中または圧延終了後表層部をAc3
点−50℃以上Ac3点+30℃以下の温度まで復熱さ
せた後、Ar3点以上の温度から水冷する焼入れ処理を
行い、続いてAc1点以下の温度で焼戻し処理すること
を特徴とする低温靱性の優れた厚肉高張力鋼の製造法。
1. C .: 0.03-0.15%, Si: 0.02-0.5%, Mn: 0.4-2.0%, Ni: 0.05-3. 0%, Cr: 0.2 to 1.0%, Mo: 0.1 to 1.0%, V: 0.01 to 0.1%, Al: 0.03 to 0.10%, B: 0 0.0005% to 0.0020%, N: 0.0060% or less, the balance being Fe and unavoidable impurities. , And the surface layer from the both surfaces of the slab to the thickness ratio of 1/10 or more and 2/10 or less of the thickness is cooled to 3 points or less of Ar.
c After reheating to a temperature of not less than 1 point and not more than Ac 3 points, finish rolling is started, rolling is performed at a cumulative reduction ratio of 40% or more with respect to the finished thickness, and the surface layer is subjected to Ac 3 rolling during or after rolling.
After reheating to a temperature of −50 ° C. or more and Ac 3 points + 30 ° C. or less, a quenching treatment is performed by water cooling from a temperature of Ar 3 points or more, followed by a tempering treatment at a temperature of Ac 1 point or less. Of high-strength high-strength steel with excellent low-temperature toughness.
【請求項2】 重量%で、 C :0.03〜0.15%、 Si:0.02〜0.5%、 Mn:0.4〜2.0%、 Ni:0.05〜3.0%、 Cr:0.2〜1.0%、 Mo:0.1〜1.0%、 V :0.01〜0.1%、 Al:0.03〜0.10%、 B :0.0005〜0.0020%、 N :0.0060%以下 を含有し、更に Cu:0.1〜1.5%、 Nb:0.005〜0.05%、 Ti:0.005〜0.02% からなる強度改善元素群、または介在物形態制御作用の
ある Ca:0.0005〜0.005% の一種または二種以上を含有し、残部がFeおよび不可
避的不純物からなる鋼片を950〜1150℃に加熱し
て鋼片まゝあるいは粗圧延後900℃以上の温度から水
冷し、鋼片両表面から厚みの1/10以上2/10以下
の厚み比率までの表層部をAr3点以下に冷却し、引き
続き、鋼片表層部がAc1点以上Ac3点以下の温度まで
復熱させた後仕上げ圧延を開始し、仕上がり厚に対し累
積圧下率40%以上で圧延し、かつ、圧延中または圧延
終了後表層部をAc3点−50℃以上Ac3点+30℃以
下の温度まで復熱させた後、Ar3点以上の温度から水
冷する焼入れ処理を行い、続いてAc1点以下の温度で
焼戻し処理することを特徴とする低温靱性の優れた厚肉
高張力鋼の製造法。
2. In% by weight, C: 0.03-0.15%, Si: 0.02-0.5%, Mn: 0.4-2.0%, Ni: 0.05-3. 0%, Cr: 0.2 to 1.0%, Mo: 0.1 to 1.0%, V: 0.01 to 0.1%, Al: 0.03 to 0.10%, B: 0 0.0005 to 0.0020%, N: 0.0060% or less, Cu: 0.1 to 1.5%, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.5%. A steel slab containing one or two or more of a strength-improving element group consisting of 02% or Ca: 0.0005% to 0.005% having an inclusion morphology controlling action, and the balance being Fe and unavoidable impurities is 950. After heating to ~ 1150 ° C, the steel slab or rough rolling is water-cooled from a temperature of 900 ° C or higher, and 1/10 or more of the thickness 2 / 10 or less
The surface layer up to the thickness ratio of 3 is cooled to Ar 3 points or less, and then the billet surface layer is reheated to a temperature of Ac 1 point or more and Ac 3 points or less, and then finish rolling is started. It rolled at a reduction ratio of 40% or more, and, after recuperation through the rolling or rolling after the end surface portion to a temperature below Ac 3 point + 30 ° C. Ac 3 point -50 ° C. or higher, water cooling from Ar 3 point or more temperature A high-strength high-strength steel excellent in low-temperature toughness, characterized by performing a quenching treatment followed by a tempering treatment at a temperature of 1 point or less of Ac.
JP7204391A 1991-03-13 1991-03-13 Manufacturing method of thick high strength steel sheet with excellent low temperature toughness Expired - Fee Related JP2913426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7204391A JP2913426B2 (en) 1991-03-13 1991-03-13 Manufacturing method of thick high strength steel sheet with excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7204391A JP2913426B2 (en) 1991-03-13 1991-03-13 Manufacturing method of thick high strength steel sheet with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JPH04285119A JPH04285119A (en) 1992-10-09
JP2913426B2 true JP2913426B2 (en) 1999-06-28

Family

ID=13477976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7204391A Expired - Fee Related JP2913426B2 (en) 1991-03-13 1991-03-13 Manufacturing method of thick high strength steel sheet with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP2913426B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135787A4 (en) * 2014-04-24 2017-03-01 JFE Steel Corporation Steel plate and method of producing same
US10443110B2 (en) 2014-03-20 2019-10-15 Jfe Steel Corporation High toughness and high tensile strength thick steel plate and production method therefor
WO2023113220A1 (en) * 2021-12-14 2023-06-22 주식회사 포스코 Steel having excellent hydrogen-induced craking resistance and low-temperature impact toughness, and method for manufacturing same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462069B2 (en) * 2009-07-27 2014-04-02 株式会社神戸製鋼所 High-strength steel plate with excellent drop weight characteristics and base metal toughness
CN103014554B (en) 2011-09-26 2014-12-03 宝山钢铁股份有限公司 Low-yield-ratio high-tenacity steel plate and manufacture method thereof
CN103014539B (en) * 2011-09-26 2015-10-28 宝山钢铁股份有限公司 A kind of yield strength 700MPa grade high-strength high-tenacity steel plate and manufacture method thereof
EP2876180B1 (en) 2012-12-28 2017-09-13 Nippon Steel & Sumitomo Metal Corporation STEEL PLATE HAVING YIELD STRENGTH OF 670 TO 870 N/mm² AND TENSILE STRENGTH OF 780 TO 940 N/mm²
CN103320693B (en) 2013-06-19 2015-11-18 宝山钢铁股份有限公司 Anti-zinc fracturing line steel plate and manufacture method thereof
CA2969200C (en) * 2015-01-16 2020-06-02 Jfe Steel Corporation Thick-walled high-toughness high-strength steel plate and method for manufacturing the same
JP7381838B2 (en) * 2019-06-17 2023-11-16 日本製鉄株式会社 steel plate
KR102255821B1 (en) * 2019-09-17 2021-05-25 주식회사 포스코 Ultra-thick steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
CN114672731A (en) * 2022-03-30 2022-06-28 鞍钢股份有限公司 Production method of high-strength and high-toughness hot continuous rolling thin steel plate with Brinell hardness of 360HBW
CN115369319B (en) * 2022-08-05 2023-08-29 张家口三信同达机械制造有限公司 Weldable high-strength high-toughness wear-resistant material and heat treatment process thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10443110B2 (en) 2014-03-20 2019-10-15 Jfe Steel Corporation High toughness and high tensile strength thick steel plate and production method therefor
EP3135787A4 (en) * 2014-04-24 2017-03-01 JFE Steel Corporation Steel plate and method of producing same
US10358688B2 (en) 2014-04-24 2019-07-23 Jfe Steel Corporation Steel plate and method of producing same
WO2023113220A1 (en) * 2021-12-14 2023-06-22 주식회사 포스코 Steel having excellent hydrogen-induced craking resistance and low-temperature impact toughness, and method for manufacturing same

Also Published As

Publication number Publication date
JPH04285119A (en) 1992-10-09

Similar Documents

Publication Publication Date Title
EP1025271B1 (en) Ultra-high strength, weldable, essentially boron-free steels wit h superior toughness
JP2913426B2 (en) Manufacturing method of thick high strength steel sheet with excellent low temperature toughness
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JPH10265846A (en) Production of thermally refined high tensile strength steel plate by continuous casting excellent in toughness
JPH08176659A (en) Production of high tensile strength steel with low yield ratio
JP2003321727A (en) Low yield ratio high-tensile steel plate of excellent bendability and method for manufacturing the same
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JP3499705B2 (en) 950N / mm2 class tempered high-strength steel sheet having excellent homogeneity in thickness direction and low anisotropy of toughness, and method for producing the same
JPH09256037A (en) Production of thick high tensile strength steel plate for stress relieving annealing treatment
JP2537118B2 (en) Method of manufacturing stress corrosion corrosion resistant ultra high strength steel
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JP2020033585A (en) steel sheet
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JP3255004B2 (en) High strength steel material for welding excellent in toughness and arrestability and method for producing the same
JP3367388B2 (en) High ductility and high toughness steel sheet and manufacturing method thereof
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
JP7535028B2 (en) High strength steel plate and method for manufacturing same
JPS6156268A (en) High toughness and high tensile steel and its manufacture
JPH08283838A (en) Production of low yield ratio, high ductility steel excellent in strength, toughness and ductility
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JP2562771B2 (en) Method for producing ultra-high strength steel with excellent resistance to stress corrosion cracking

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees