JPS6156268A - High toughness and high tensile steel and its manufacture - Google Patents

High toughness and high tensile steel and its manufacture

Info

Publication number
JPS6156268A
JPS6156268A JP17603984A JP17603984A JPS6156268A JP S6156268 A JPS6156268 A JP S6156268A JP 17603984 A JP17603984 A JP 17603984A JP 17603984 A JP17603984 A JP 17603984A JP S6156268 A JPS6156268 A JP S6156268A
Authority
JP
Japan
Prior art keywords
toughness
steel
temperature
plate thickness
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17603984A
Other languages
Japanese (ja)
Other versions
JPS6358906B2 (en
Inventor
Yoshihiro Okamura
岡村 義弘
Seinosuke Yano
矢野 清之助
Akinori Toyofuku
豊福 昭典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17603984A priority Critical patent/JPS6156268A/en
Publication of JPS6156268A publication Critical patent/JPS6156268A/en
Publication of JPS6358906B2 publication Critical patent/JPS6358906B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a high tensile steel sheet superior in toughness in sheet thickness direction, by combining solution treatment and working heat treatment in hot working steel slab having a specified compsn. to thick plate material. CONSTITUTION:Low alloy steel slab contg. 0.07-0.20% C, <0.5% Si, 0.6-2.0% Mn, 0.2-1.0% Cr, 0.05-1.0% Mo, <=0.02% both P and S, 0.01-0.10% SolAl, 0.0005-0.0020% B, <=0.0060% N, further specified quantities of >=one kind among Ni, Cr, V, Nb, Ca is solution treated. Next, said slab is heated to 900- 1,150 deg.C and hot rolled at 800-930 deg.C finish biting temp., >=40% cummulative draft against finished thickness, and at >=750 deg.C finishing temp. Next, said plate is cooled rapidly so that austenite grain is elongated and quenched structure is martensite under the surface layer, and austenite is granular and quenched structure is martensite + lower bainite at center part in plate thickness. This is tempered at <=AC1 point temp. to obtain high tensile steel plate of 70-100kg/mm.<2> class superior toughness.

Description

【発明の詳細な説明】 (産業上の利用分計) 本発明は、靭性のすぐれた引張強さ70〜100kg/
vn2級高張力鋼およびその製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Applicability) The present invention has a tensile strength of 70 to 100 kg/
This invention relates to VN2 class high tensile strength steel and its manufacturing method.

近年、エネルギー需要が益々増加の傾向にあシ、海底資
源開発につながる海洋構造物の建造あるいは火力発電の
夜間余剰電力調整用の揚水発電用高落差ペンストックの
建造等エネルギー関連の鋼構造物の建設が活発化してい
る。これらに使用さ九る鋼材も大型化、厚肉化にともな
い、より安全性確保から強度と靭性のすぐれた鋼の開発
が望まれている。
In recent years, energy demand has been on the rise, and energy-related steel structures such as the construction of offshore structures leading to the development of seabed resources and the construction of high-head penstocks for pumped storage power generation to adjust nighttime surplus power from thermal power generation have become increasingly popular. Construction is picking up steam. As the steel materials used in these products become larger and thicker, there is a desire to develop steel with superior strength and toughness to ensure greater safety.

(従来技術) 従来から、高強度材においては、再加熱焼入れ焼戻し型
が主流となっており、特に厚内材は、板厚全域にわたっ
て強度、靭性を満足させることが困難であり、N+ l
 Cr * Mo  等の焼入れ性増大元素の添加が広
く用いられていた。しかし、心安以上のNl 、 Cr
 、 Mo  等の合金元素は、溶接性の指標の1つで
ある炭素当計の増加をともない好1しぐない。従って今
日迄Bの焼入れ性を最大に発揮させる方法が多く発表さ
れている。例えば再加熱焼入れ処理時にBをできるだけ
固溶状態にしておく   □ため1000℃〜1050
℃の加熱圧延時にktNとしてNを固定する方法がある
。又、特公昭56−52970号公報のように、低N 
、 Ti添加により粗大TIN析出物による靭性劣化を
おさえ、Ticによる強度上昇と、さらにB添加による
焼入れ性向上効果を利用した方法がある。又、特公昭5
5−40091号公報のように、厚肉材について調質前
処理として微細AtN ’i析出させる処理を行なって
、固溶Bの均斉分散をおこなって焼入れ性を向上させる
方法もある。これらは、いずれも再加熱焼入れ焼戻し型
の高張力鋼の製造法に関するもので、厚内化に対し、板
厚中心部の焼入れ性が安定して確保できる。
(Prior art) Conventionally, reheating, quenching and tempering type materials have been the mainstream for high-strength materials, and it is difficult to satisfy strength and toughness over the entire thickness of the material, especially for thick materials.
Addition of hardenability-enhancing elements such as Cr*Mo has been widely used. However, more than reassuring Nl, Cr
, Mo, and other alloying elements are not favorable as they increase the carbon content, which is one of the indicators of weldability. Therefore, to date, many methods have been published to maximize the hardenability of B. For example, during reheating and quenching, keep B in a solid solution state as much as possible to 1000°C to 1050°C.
There is a method of fixing N as ktN during hot rolling at .degree. Also, as in Japanese Patent Publication No. 56-52970, low N
There is a method that uses the addition of Ti to suppress the deterioration of toughness caused by coarse TIN precipitates, the increase in strength due to Ti, and the effect of improving hardenability due to the addition of B. Also, special public service in Showa 5
5-40091, there is also a method of performing fine AtN'i precipitation on thick-walled materials as a pre-temperature treatment to homogeneously disperse solid solution B to improve hardenability. All of these relate to methods for producing high-strength steel of reheating, quenching, and tempering type, and can stably ensure hardenability at the center of the plate thickness even when the thickness is increased.

(発明が解決しようとする問題点) しかし、これらの方法による再加熱焼入れ焼戻し型は、
板厚中心部の焼入れ住改善により強度、靭性が向上する
反面、板厚表層下については、十分な靭性が得られない
問題があった。これは、板厚中心部の焼入れ性向上にと
もない、板厚表層下は、必然的に焼入れ時において完全
マルテンサイト組織となるためであυ、特に厚肉材につ
いてはその傾向が強く表われる。従って、この板厚表層
下の靭性改善の1つとして、再加熱焼入れ処理を2回以
上繰返すことによりオーステナイト粒を細粒化すること
で靭性改善をはかつていた。しかしながら、この方法も
製造コスト面で好ましくない。
(Problems to be solved by the invention) However, the reheating, quenching and tempering molds produced by these methods,
Although strength and toughness were improved by improving the hardness in the center of the plate thickness, there was a problem in that sufficient toughness could not be obtained below the surface layer of the plate thickness. This is because as hardenability improves at the center of the plate thickness, the subsurface layer of the plate inevitably becomes a completely martensitic structure during quenching, and this tendency is particularly strong for thick-walled materials. Therefore, as one way to improve the toughness below the surface layer of the plate thickness, the toughness has been improved by repeating the reheating and quenching process two or more times to make the austenite grains finer. However, this method is also unfavorable in terms of manufacturing costs.

(問題点を解決するための手段) 本発明者等は、厚肉材の再加熱焼入れ焼戻し型に見られ
る板厚表層下の靭性劣化に着目し、その靭性改善を計り
、板厚方向の靭性をより一層改善し、さらには脆性破壊
伝播停止特性および溶接性を具備した高張力鋼を開発す
ることを目的に、種種の製造法について実験した結果、
溶体化処理と加工熱処理を組合わせることにより、板厚
表層下の靭性が著しく改善され、目的の鋼が製造できる
ことを知見した・ 本発明は、このような知見に基いて構成したもので、そ
の要旨はC0,07〜0,20%、810.5%以下、
Mh O16〜2.0%、P≦0.02優、S<0.0
2チ、Cr 0.2〜1.0 %、Mo0.05〜1.
0%、5otAtO101〜0.10%、B Q、 O
OO5〜0.0020チ、N<0.0060俤を含み、
さらにNI 0.01〜3.0チ、CuO505〜1.
0%、Vo、01〜0.2%、Nb0.005〜0.1
 0  %、Ca0.00 1 0〜0.008 0チ
の1種又は2種以上を含有し、残部がFeからなる鋼で
、かつ板厚表層下が伸長のオーステナイト粒でかつ焼戻
しマルテンサイト組織で板厚中心部が粒状のオーステナ
イト粒でかつ焼戻しマルテンサイト+下部ベイナイト組
織からなる高靭性高張力鋼であり、又、そのような鋼は
スラブを溶体化処理した後、900〜1150℃に加熱
し、熱間圧延において、仕上かみ込温度8oo〜930
℃で仕上厚に対し、40%以上の累積圧下を行ない、仕
上温度750℃以上とし、この圧延完了後直ちに急冷し
、続いてAc1点以下の温度で焼戻しを行なって製造す
るものである。
(Means for Solving the Problems) The present inventors focused on the deterioration of toughness under the surface layer of the plate thickness observed in reheating, quenching and tempering molds for thick-walled materials, and aimed to improve the toughness and improve the toughness in the thickness direction. As a result of experiments on various manufacturing methods, with the aim of further improving high-strength steel with brittle fracture propagation arresting properties and weldability,
It has been discovered that by combining solution treatment and processing heat treatment, the toughness below the plate thickness surface layer can be significantly improved and the desired steel can be manufactured. The present invention was constructed based on this knowledge, and The abstract is C0.07-0.20%, 810.5% or less,
Mh O16~2.0%, P≦0.02 excellent, S<0.0
2chi, Cr 0.2-1.0%, Mo 0.05-1.
0%, 5otAtO101~0.10%, B Q, O
Including OO5~0.0020chi, N<0.0060won,
Furthermore, NI is 0.01 to 3.0, CuO is 505 to 1.
0%, Vo, 01-0.2%, Nb0.005-0.1
Steel containing one or more of the following: 0%, Ca0.0010~0.0080%, with the balance consisting of Fe, and has elongated austenite grains below the plate thickness surface layer and a tempered martensitic structure. It is a high-toughness, high-strength steel with granular austenite grains in the center of the plate thickness and a tempered martensite + lower bainite structure.Such steel is made by heating the slab to 900-1150℃ after solution treatment. , in hot rolling, finish biting temperature 8oo~930
It is produced by applying a cumulative reduction of 40% or more with respect to the finished thickness at a temperature of 750°C or more, and immediately after the completion of rolling, quenching is performed, followed by tempering at a temperature of 1 Ac or less.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

先ず、本発明鋼を上記のような鋼成分に限定した理由を
述べる。
First, the reason why the steel of the present invention is limited to the above-mentioned steel components will be described.

C;Cは0.07%未満では強度的に不十分であり、0
.20%を越えると溶接性、靭性が劣化する。
C: If C is less than 0.07%, the strength is insufficient;
.. If it exceeds 20%, weldability and toughness will deteriorate.

81;Stは強度向上に有効であるが、0.5%i越え
ると靭性を低下させる。
81: St is effective in improving strength, but if it exceeds 0.5%i, it reduces toughness.

Mn : 0.6%未満では強度および靭性が低く、又
、2.0チを越えると溶接性、靭性を劣化させるO p、s;p、sは可及的に少なくすることが望ましく、
Pを0.02%未満としたのは、Pは焼戻し脆性を牛じ
靭性を劣化させる。
Mn: If it is less than 0.6%, the strength and toughness will be low, and if it exceeds 2.0%, it will deteriorate weldability and toughness. It is desirable to reduce Op, s; p, s as much as possible.
The reason why P is less than 0.02% is that P deteriorates tempering brittleness and toughness.

又、Sは非金属介在物Mn5k生じ、圧延によりMnS
が伸長し、延性および靭性の異方性を牛しるため0.0
2%未満とした6Cr ; Crは焼入れ性を確保する
ため0.2チ以上添加するが、1.0%を越えると溶接
硬化性が増大する。
In addition, S produces non-metallic inclusions Mn5k, and MnS is formed by rolling.
0.0 to elongate and demonstrate the anisotropy of ductility and toughness.
6Cr: Less than 2%; 0.2 or more Cr is added to ensure hardenability, but if it exceeds 1.0%, weld hardenability increases.

Mo ; MoもCrと同様に焼入れ性を増加させるた
めで0.05%未満では効果がなく、又、1.0%を越
えると溶接性、靭性が劣化する。
Mo: Like Cr, Mo also increases hardenability, so if it is less than 0.05% it has no effect, and if it exceeds 1.0%, weldability and toughness deteriorate.

5otkt ; Atは焼入れ性に有効なりを確保する
ため0.01%以上の添加が必要であるが、0.10%
金越えると介在物が増大する。
5otkt; At should be added in an amount of 0.01% or more to ensure that it is effective for hardenability, but 0.10%
When gold is exceeded, inclusions increase.

BIBは焼入れ性を向上させ、本発明において焼入れ組
織が得られ、強度、・靭性確保に最も有効な元素である
が、0.0020優を越えるとその効果が飽和してかえ
って靭性を低下させる。
BIB is the most effective element for improving hardenability, obtaining a hardened structure in the present invention, and ensuring strength and toughness, but when it exceeds 0.0020 or more, its effect is saturated and the toughness is reduced.

NUNは0.0060%以下にすることにより、Bによ
る焼入れ性向上効果が安定化するためであり、0.00
60%を越えると溶接性が低下するからである。
This is because the hardenability improvement effect of B is stabilized by setting NUN to 0.0060% or less, and NUN is 0.0060% or less.
This is because if it exceeds 60%, weldability deteriorates.

上記の成分組成では、強度、靭性が得られる。The above component composition provides strength and toughness.

さらに本発明は、その性質を改善するために以下の成分
を選択添加する。
Furthermore, in the present invention, the following components are selectively added to improve the properties.

Nl:NIは強度および靭性全確保するために添加する
もので0.01%未満では効果は十分でなく、又、3.
0%を越えると強反の割には靭性改善の効果が小さく、
コスト上昇を招くので望ましくない。
Nl: NI is added to ensure total strength and toughness, and if it is less than 0.01%, the effect is not sufficient;
If it exceeds 0%, the effect of improving toughness is small considering the strong rebound.
This is undesirable because it increases costs.

Cu;Cu1t焼入れ性および靭性を確保するために0
.05チ必要とするが1.0%を越えると靭性を劣化さ
せる。
Cu; Cu1t0 to ensure hardenability and toughness
.. 0.05% is required, but if it exceeds 1.0%, the toughness will deteriorate.

v;vは強度を確保するため0.01チ以上必要である
。しかし0.2%を越えると靭性を著しく劣化させる。
v; v is required to be 0.01 inch or more to ensure strength. However, if it exceeds 0.2%, the toughness will be significantly deteriorated.

Nb ; Nbは強度を上げる一方、特に本工程におい
てはオーステナイト粒を微細にして靭性を向上するのに
0.OQ5%以上で有効であるが、0.10%を越える
と靭性を劣化させる。
Nb: While Nb increases the strength, it is used especially in this process to make the austenite grains finer and improve toughness. It is effective when OQ is 5% or more, but when it exceeds 0.10%, toughness deteriorates.

Ca ; Caは非金属介在物の球状化に極めて有効で
あり、異方性を小さくするために0.0010チは必要
であるが、o、oosoチを越えると介在物増加によシ
靭性を低下させる。
Ca; Ca is extremely effective in spheroidizing non-metallic inclusions, and 0.0010 mm is necessary to reduce anisotropy, but if it exceeds o, 00 mm, inclusions increase and toughness decreases. lower.

さらに本発明において結晶組織を特定する理由を述べる
。すなわち主なる焼入れ組織が、板厚表層下が伸長のオ
ーステナイト粒でかつマルテンサイト組織で板厚中心部
が粒状(球状)なオーステナイト粒でかつマルテンサイ
ト+下部ベイナイト組織でなくてはならない理由につい
て述べる。一般に、焼入れ組織は冷却速度が速い順にマ
ルテンサイト組織、マルテンサイト+下部ベイナイト組
織、上部ベイナイト組織等になる。ここで、上部ベイナ
イト組織は焼入不足により得られる組織で強度および靭
性が低下するため好ましくない。一方、マルテンサイト
組織も、粒状のオーステナイト粒でかつ粗粒の場合も靭
性が劣化する。従って、マルテンサイト+下部ベイナイ
ト組織が最も高靭性が得られる組織である。すなわち、
下部ベイナイト組織を含むと、有効粒径がより一層細粒
化するためである。一方、伸長のオーステナイト粒でか
つマルテンサイト組織はオーステナイト粒径が細かくな
ると同時に、さらに変形帯等の形成から、有効粒径が細
粒化されるので粒状のものよりも靭性がすぐれている。
Furthermore, the reason for specifying the crystal structure in the present invention will be described. In other words, we will explain why the main quenched structure must be elongated austenite grains and martensite grains below the surface layer of the sheet thickness, granular (spherical) austenite grains at the center of the sheet thickness, and a martensite + lower bainite structure. . Generally, the quenched structure becomes a martensite structure, a martensite+lower bainite structure, an upper bainite structure, etc. in descending order of cooling rate. Here, the upper bainite structure is a structure obtained due to insufficient quenching and is undesirable because it reduces strength and toughness. On the other hand, if the martensitic structure is coarse austenite grains, the toughness is also deteriorated. Therefore, the martensite + lower bainite structure is the structure that provides the highest toughness. That is,
This is because when the lower bainite structure is included, the effective grain size becomes even finer. On the other hand, in the case of elongated austenite grains and martensite structure, the austenite grain size becomes finer and at the same time, the effective grain size becomes finer due to the formation of deformation bands, etc., so the toughness is superior to that of granular grains.

一方、板厚中心部が伸長粒となると、オーステナイト粒
径が細かくなり、変態点の上昇および板厚中心部の焼入
れ冷却速度が遅いことと相まって焼入れ性が低下し上部
ベイナイトが生成し靭性が低下する問題が起こる。以上
のごとく上記組織に限定した場合にのみ板厚方向の靭性
が均一でかつ高強度が得られる。さらに、本発明を用い
て工場規模で安定な品質を得る製造法について述べる。
On the other hand, when the central part of the plate thickness becomes elongated grains, the austenite grain size becomes finer, which increases the transformation point and reduces the hardenability due to the slow quenching cooling rate at the center of the plate thickness, forming upper bainite and decreasing toughness. A problem arises. As described above, only when the structure is limited to the above, uniform toughness in the thickness direction and high strength can be obtained. Furthermore, a manufacturing method for obtaining stable quality on a factory scale using the present invention will be described.

まず、上記のような成分組成に構成された低合金鋼の溶
鋼を連続鋳造法もしくは造塊分塊法によって鋼片にする
。さらに銅片は熱間圧延前に溶体化処理をおこなう。こ
の病体化処理は鋼片製造時の緩冷却で生成した粗大炭窒
化物を溶解し、オーステナイト中に固溶させるだめの処
理で、溶体化温度はオーステナイト化温度以上、好まし
くは1200℃以上に加熱し、保定して析出物を完全に
溶体化させた後直ちに急冷する。その場合の平均冷却速
度はI O’C/min以上の速さで冷却する処理であ
る。この溶体化処理は一上記のよう々再加熱によらず連
続鋳造後あるいは造塊分塊後の高温度の熱を利用して行
なってもよい。次に、この溶体化処理された鋼片ヲ90
0〜1150℃に加熱し、熱間圧延をおこなう。ここで
加熱温度900〜1150℃に限定した理由は、加熱時
に微細な炭窒化物を多く形成させ、加熱オーステナイト
の細粒化と、Nがktで固定されるため、固溶Bが増加
し、熱間圧延後急冷時の焼入れ性向上のためである。す
なわち微細に析出した炭窒化物が溶解しない温度である
必要から1150℃を一ヒ限とした。又、900℃未満
の低い温度では、熱間圧延時の変形抵抗が大きく、圧延
形状が不良となる。さらに、好ましい温度は950〜1
050℃である。第1図は連続鋳造により溶製した低合
金鋼鋼片(C;0.11%、s+;0.25%r Mn
 ; 0.91%、P:0.003%、S:0.001
%#NI : 1.04 % sCr: 0.56%、
Mo;0.45%、 5otAt; 0.056%、B
;0.00116 % 、 N : 0.(1031%
、V:0.047%。
First, molten low-alloy steel having the above-mentioned composition is made into steel slabs by continuous casting or ingot blooming. Furthermore, the copper piece is subjected to solution treatment before hot rolling. This disease treatment is a treatment for dissolving coarse carbonitrides generated during slow cooling during billet production and dissolving them into austenite.The solution temperature is heated to a temperature higher than the austenitization temperature, preferably 1200℃ or higher. Then, after holding and completely solutionizing the precipitate, it is immediately quenched. In this case, the average cooling rate is a process of cooling at a rate of I O'C/min or more. This solution treatment may be performed using high-temperature heat after continuous casting or after agglomeration, instead of reheating as described above. Next, this solution-treated steel piece is
It is heated to 0 to 1150°C and hot rolled. The reason why the heating temperature is limited to 900 to 1150°C is that many fine carbonitrides are formed during heating, the heated austenite becomes finer, and since N is fixed at kt, solid solution B increases. This is to improve hardenability during rapid cooling after hot rolling. In other words, the temperature was set at 1150° C. as a temperature that would not dissolve finely precipitated carbonitrides. Moreover, at a low temperature of less than 900° C., the deformation resistance during hot rolling is large and the rolled shape becomes poor. Furthermore, the preferred temperature is 950-1
The temperature is 050°C. Figure 1 shows a low-alloy steel billet (C: 0.11%, s+: 0.25%r Mn) produced by continuous casting.
; 0.91%, P: 0.003%, S: 0.001
%#NI: 1.04% sCr: 0.56%,
Mo; 0.45%, 5otAt; 0.056%, B
;0.00116%, N: 0. (1031%
, V: 0.047%.

Ca;0.0019 % ) ’r−溶体化処理し、加
熱温度950Cおよび1250℃に加熱後、熱間圧延し
、850℃の仕上温度から、直ちに急冷した鋼板の焼入
れ硬さを示したものであり、加熱温度950℃圧延材は
、板厚中心迄焼入硬さHv350以上あるのに対(7、
加熱温度125 (1℃圧延材はHv280程度で焼入
性が不十分である。
Ca; 0.0019%) 'r--Solution treatment, hot rolling after heating to heating temperatures of 950°C and 1250°C, and quenching hardness of a steel plate immediately quenched from a finishing temperature of 850°C. However, the material rolled at a heating temperature of 950°C has a quenching hardness of Hv350 or more up to the center of the plate thickness (7,
Heating temperature: 125 (1°C rolled material has insufficient hardenability at Hv of about 280.

第1図中(1)は俗体比処理→1250℃→850℃仕
上庄9J1(累積川下率62チ)→水冷、■は溶体化処
理→950℃加熱→850℃仕上圧延(累積ITg下率
62%)→水冷を示す。
In Figure 1, (1) shows general ratio treatment → 1250°C → 850°C finishing 9J1 (cumulative downstream rate 62 inches) → water cooling, ■ shows solution treatment → 950°C heating → 850°C finishing rolling (cumulative ITg reduction rate) 62%) → indicates water cooling.

次に熱間圧延工程であるが、前述の溶体化処理と900
〜1150℃の加熱温度の必要性は、主に、板厚中心部
における細粒化と焼入れ性向上を得るだめの必要手段で
ある。しかしながら細粒化と硬質化された圧延鋼材の靭
性は高く評価されるものでない。その原因は、板厚方向
結晶粒組織のバラツキである。したがって本発明者等は
板厚表層下のり性の改善と板厚中心部の靭性付与のため
、この熱間圧延工程において板厚表層下が伸長オーステ
ナイト粒で板厚中心部が粒状オーステナイト粒となる圧
延を行なう必要があることを知見した。
Next is the hot rolling process, which includes the above-mentioned solution treatment and 900
The need for a heating temperature of ~1150°C is primarily a necessary means of obtaining grain refinement and improved hardenability at the center of the plate thickness. However, the toughness of rolled steel materials that have been refined and hardened is not highly evaluated. The cause is variation in the grain structure in the thickness direction. Therefore, in order to improve the rolling properties under the surface layer of the sheet and to impart toughness at the center of the sheet thickness, the present inventors have determined that in this hot rolling process, the layer below the surface layer of the sheet becomes elongated austenite grains and the center of the sheet thickness becomes granular austenite grains. It was discovered that rolling was necessary.

すなわち、熱間圧延において、仕上かみ込み温度800
〜930℃で仕上厚に対し40%以上の累積圧下を行な
い、仕上温度750℃以上とし、この圧延完了後直ちに
急冷する。ここで仕上かみ温度800〜930℃に限定
;−た理由は、板厚表層下が伸長オーステナイト粒を得
る圧延温度域であり、930℃以上を越えると伸長オー
ステナイト粒が得られず、又800℃未満の温度では、
板厚中心部迄伸長オーステナイト粒となり、細粒化によ
り板厚中心部の焼入れ性が阻害される。一方、仕上厚に
対し40チ以上の累積圧下率を限定したことは、板厚表
層下が伸長粒を得る十分な圧下率であるからである。第
2図は強度、靭性およびオーステナイト粒度におよぼす
累積圧下率の影響について示したものであシ、40チ以
上の累積圧下により、板厚表層下の靭性(vTrg )
が著しく向上することが分かる。次に仕上温度750℃
以上に限定した理由は、熱間圧延完了後急冷処理を施し
板厚表層下がマルテンサイト組織、板厚中心部がマルテ
ンサイト」−下部ペイナイト組織の焼入れ組織を得るた
めに必要である。従って、750℃以下の温度では、特
に板厚中心部の焼入れ組織が十分に得られない。第3図
(a)は、かくして得られた本発明材(鋼F:t=50
瓢、仕上温度870℃、圧下率67%)の焼入れ時のオ
ーステナイト粒組織写真であシ通常の再加熱焼入れ材(
b)と比較して示す。本発明にかかわる鋼材(、)は、
板厚表層下が伸長オーステナイト粒でかつ焼入組織はマ
ルテンサイト組織で板厚中心が粒状オーステナイト粒で
鋼材に比べすぐれている。
That is, in hot rolling, the finish biting temperature is 800
A cumulative reduction of 40% or more with respect to the finished thickness is carried out at ~930°C, the finishing temperature is set at 750°C or more, and immediately after this rolling is completed, it is rapidly cooled. Here, the finishing temperature is limited to 800 to 930°C; the reason for this is that the rolling temperature range below the surface layer of the sheet thickness is where elongated austenite grains are obtained, and if it exceeds 930°C, elongated austenite grains cannot be obtained; At temperatures below
The austenite grains extend to the center of the plate thickness, and the grain refinement impedes hardenability in the center of the plate thickness. On the other hand, the reason why the cumulative reduction ratio is limited to 40 inches or more with respect to the finished thickness is that the reduction ratio is sufficient to obtain elongated grains below the surface layer of the plate thickness. Figure 2 shows the effects of cumulative reduction on strength, toughness, and austenite grain size.
It can be seen that the results are significantly improved. Next, the finishing temperature is 750℃
The reason for the above limitation is that it is necessary to perform a rapid cooling treatment after the completion of hot rolling to obtain a quenched structure with a martensite structure below the surface layer of the plate thickness and a martensite-lower paynite structure in the center of the plate thickness. Therefore, at a temperature of 750° C. or lower, a sufficient hardened structure cannot be obtained particularly at the center of the plate thickness. FIG. 3(a) shows the thus obtained inventive material (steel F: t=50
This is a photograph of the austenite grain structure during quenching of gourd, finishing temperature 870°C, rolling reduction 67%).
A comparison with b) is shown. The steel materials (,) related to the present invention are:
The lower part of the plate thickness has elongated austenite grains, the quenched structure is a martensitic structure, and the center of the plate thickness has granular austenite grains, which is superior to steel materials.

かつ焼入組織はマルテンサイト+下部ベイナイト組織と
からなる。しかし、このままでは高強度が得られる反面
、靭性が不十分であり、A(11点以下の温度で焼戻し
処理を行なう必要がある。以上のごとく製造された鋼は
、板厚表層下の靭性が著しく向上し、板厚方向に均質で
かつ優れた強度、靭性が得られるものである。
Moreover, the quenched structure consists of martensite + lower bainite structure. However, while high strength can be obtained in this state, the toughness is insufficient, and it is necessary to perform tempering treatment at a temperature of A (11 points or lower). This results in significantly improved strength and toughness that is uniform in the thickness direction of the plate.

(実施例及び発明の効果) 次に、本発明の実施例について説明する。転炉で溶製し
、連続鋳造法で製造した第1表に示す各成分組成の鋼片
を第2表に示す本発明法と比較法の各々の製造条件に基
いて板厚50〜100mの鋼板に製造した。その時の試
験結果を第3表に示す。上記の第3表に示す結果から明
らかなように本発明法で得られた鋼板の機械的性質は、
比較法で得られた鋼板に比べ、強度および靭性が高く、
特に板厚表層下の靭性が著しく向上し、オーステナイト
粒度も比較法による鋼材に比べ伸長粒で、かつ細粒化し
ている。又、温度勾配型ESSO試験による脆性破壊伝
播停止特性Kea値も比較法による
(Examples and effects of the invention) Next, examples of the present invention will be described. Based on the manufacturing conditions of the inventive method and the comparative method shown in Table 2, steel slabs with the respective compositions shown in Table 1, which were melted in a converter and manufactured by the continuous casting method, were cast into plates with a thickness of 50 to 100 m. Manufactured from steel plate. The test results at that time are shown in Table 3. As is clear from the results shown in Table 3 above, the mechanical properties of the steel plate obtained by the method of the present invention are as follows:
It has higher strength and toughness than steel plates obtained using comparative methods.
In particular, the toughness under the surface layer of the plate is significantly improved, and the austenite grain size is elongated and finer than that of steel made by the comparative method. In addition, the Kea value of the brittle fracture propagation arrest characteristic by the temperature gradient type ESSO test is also determined by the comparative method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、低合金鋼鋼片を溶体化処理し、加熱後、熱間
圧延し、直ちに水焼入れした時の板厚方向の焼入れ硬さ
に及ぼすスラゾ加熱温度の影響について示した図、第2
図は、本発明材における強度、靭性およびオーステナイ
ト粒度におよぼす熱間圧延時の累積圧下率の影響につい
て示した図、第3図(、)は、本発明材の特徴を示した
オーステナイト粒組織写真(X200)、第3図(b)
は、通常の再加熱焼入れ材のオーステナイト粒組織写真
(X200)である。 第1図 ←−−JOsポ
Figure 1 is a diagram showing the effect of slazo heating temperature on quenching hardness in the thickness direction when a low alloy steel billet is solution-treated, heated, hot-rolled, and immediately water-quenched. 2
The figure shows the influence of the cumulative reduction during hot rolling on the strength, toughness, and austenite grain size of the material of the present invention. Figure 3 (,) is a photograph of the austenite grain structure showing the characteristics of the material of the present invention. (X200), Figure 3(b)
is a photograph (X200) of the austenite grain structure of a normal reheated and quenched material. Figure 1←--JOs port

Claims (2)

【特許請求の範囲】[Claims] (1)C 0.07〜0.20% Si 0.5%以下 Mn 0.6〜2.0% Cr 0.2〜1.0% Mo 0.05〜1.0% P≦0.02% S≦0.02% solAl 0.01〜0.10% B 0.0005〜0.0020% N≦0.0060% を含み、さらに Ni 0.01〜3.0% Cu 0.05〜1.0% V 0.01〜0.2% Nb 0.005〜0.10% Ca 0.0010〜0.0080% の1種又は2種以上を含有し、残部がFeからなる鋼で
、かつ板厚表層下が伸長のオーステナイト粒でかつ焼戻
しマルテンサイト組織で板厚中心部が粒状のオーステナ
イト粒でかつ焼戻しマルテンサイト+下部ベイナイト組
織からなることを特徴とする高靭性高張力鋼。
(1) C 0.07-0.20% Si 0.5% or less Mn 0.6-2.0% Cr 0.2-1.0% Mo 0.05-1.0% P≦0.02 % S≦0.02% solAl 0.01-0.10% B 0.0005-0.0020% N≦0.0060%, further including Ni 0.01-3.0% Cu 0.05-1 .0% V 0.01-0.2% Nb 0.005-0.10% Ca 0.0010-0.0080% A steel containing one or more of the following, the balance being Fe, and A high-toughness, high-strength steel characterized by having elongated austenite grains and a tempered martensite structure in the lower surface layer of the plate thickness, and granular austenite grains in the center of the plate thickness, and consisting of tempered martensite + lower bainite structure.
(2)C 0.07〜0.20% Si 0.5%以下 Mn 0.6〜2.0% Cr 0.2 1.0% Mo 0.05〜1.0% P≦0.02% S≦0.02% solAl 0.01〜0.10% B 0.0005〜0.0020% N≦0.0060% を含み、さらに Ni 0.01〜3.0% Cu 0.05〜1.0% V 0.01〜0.2%、 Nb 0.005〜0.10%、 Ca 0.0010〜0.0080% の1種又は2種以上を含有し、残部がFeからなる鋼の
スラブを溶体化処理した後、900〜1150℃に加熱
し、熱間圧延において、仕上かみ込み温度800〜93
0℃で仕上り厚に対し40%以上の累積圧下を行い、仕
上温度750℃以上とし、この圧延完了後直ちに急冷し
て板厚表層下が伸長のオーステナイト粒でかつマルテン
サイト組織で板厚中心部が粒状のオーステナイト粒でか
つマルテンサイト+下部ベイナイト組織とし、続いてA
c_1点以下の温度で焼戻しすることを特徴とする高靭
性高張力鋼の製造法。
(2) C 0.07-0.20% Si 0.5% or less Mn 0.6-2.0% Cr 0.2 1.0% Mo 0.05-1.0% P≦0.02% S≦0.02% solAl 0.01-0.10% B 0.0005-0.0020% N≦0.0060%, and further contains Ni 0.01-3.0% Cu 0.05-1. Steel slab containing one or more of the following: 0% V 0.01-0.2%, Nb 0.005-0.10%, Ca 0.0010-0.0080%, with the remainder being Fe. After solution treatment, it is heated to 900-1150°C, and in hot rolling, the finishing biting temperature is 800-93°C.
A cumulative reduction of 40% or more of the finished thickness is carried out at 0°C, the finishing temperature is set to 750°C or more, and immediately after the completion of rolling, the plate is rapidly cooled to produce elongated austenite grains below the surface layer and a martensitic structure in the center of the plate thickness. is a granular austenite grain with a martensite + lower bainite structure, followed by A
A method for producing high toughness and high tensile strength steel, characterized by tempering at a temperature of c_1 point or lower.
JP17603984A 1984-08-24 1984-08-24 High toughness and high tensile steel and its manufacture Granted JPS6156268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17603984A JPS6156268A (en) 1984-08-24 1984-08-24 High toughness and high tensile steel and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17603984A JPS6156268A (en) 1984-08-24 1984-08-24 High toughness and high tensile steel and its manufacture

Publications (2)

Publication Number Publication Date
JPS6156268A true JPS6156268A (en) 1986-03-20
JPS6358906B2 JPS6358906B2 (en) 1988-11-17

Family

ID=16006648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17603984A Granted JPS6156268A (en) 1984-08-24 1984-08-24 High toughness and high tensile steel and its manufacture

Country Status (1)

Country Link
JP (1) JPS6156268A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177323A (en) * 1988-01-08 1989-07-13 Veb Stahl & Walzwerk Wilhelm Florin Highly tough steel
JPH03223420A (en) * 1990-01-25 1991-10-02 Nippon Steel Corp Production of high strength steel
CN105316015A (en) * 2014-05-31 2016-02-10 肖自江 Upper-heating down-moving low-temperature pyrolysis furnace for powdered coal and oil shale powder
JP2020204072A (en) * 2019-06-17 2020-12-24 日本製鉄株式会社 High strength steel sheet for high heat input welding
WO2022267173A1 (en) * 2021-06-21 2022-12-29 山东钢铁股份有限公司 High-strength, low-temperature-resistant h-shaped steel for marine engineering tempering treatment and preparation method thereoffor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159409A (en) * 1974-06-14 1975-12-24
JPS5140325A (en) * 1974-10-03 1976-04-05 Kawasaki Steel Co Hitsuparitsuyosa 70kg*mm2 ijono kojinseichoshitsugatakokyoryokukono seizoho
JPS5219111A (en) * 1975-08-05 1977-02-14 Sumitomo Metal Ind Ltd Heat treated high tensile steel plate cont. b
JPS5526163A (en) * 1978-08-15 1980-02-25 Harada Kogyo Kk Method of heaping tiles on pallet
JPS5792125A (en) * 1980-11-28 1982-06-08 Nippon Steel Corp Production of b-v-containing steel of low stress relief annealing crack sensitivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159409A (en) * 1974-06-14 1975-12-24
JPS5140325A (en) * 1974-10-03 1976-04-05 Kawasaki Steel Co Hitsuparitsuyosa 70kg*mm2 ijono kojinseichoshitsugatakokyoryokukono seizoho
JPS5219111A (en) * 1975-08-05 1977-02-14 Sumitomo Metal Ind Ltd Heat treated high tensile steel plate cont. b
JPS5526163A (en) * 1978-08-15 1980-02-25 Harada Kogyo Kk Method of heaping tiles on pallet
JPS5792125A (en) * 1980-11-28 1982-06-08 Nippon Steel Corp Production of b-v-containing steel of low stress relief annealing crack sensitivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177323A (en) * 1988-01-08 1989-07-13 Veb Stahl & Walzwerk Wilhelm Florin Highly tough steel
JPH03223420A (en) * 1990-01-25 1991-10-02 Nippon Steel Corp Production of high strength steel
CN105316015A (en) * 2014-05-31 2016-02-10 肖自江 Upper-heating down-moving low-temperature pyrolysis furnace for powdered coal and oil shale powder
JP2020204072A (en) * 2019-06-17 2020-12-24 日本製鉄株式会社 High strength steel sheet for high heat input welding
WO2022267173A1 (en) * 2021-06-21 2022-12-29 山东钢铁股份有限公司 High-strength, low-temperature-resistant h-shaped steel for marine engineering tempering treatment and preparation method thereoffor

Also Published As

Publication number Publication date
JPS6358906B2 (en) 1988-11-17

Similar Documents

Publication Publication Date Title
CA2962472C (en) High-toughness hot-rolled high-strength steel with yield strength of grade 800 mpa and preparation method thereof
JP3990724B2 (en) High strength secondary hardened steel with excellent toughness and weldability
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
CN108431272B (en) Steel sheet for low-temperature pressure vessel having excellent resistance to PWHT and method for producing same
US4946516A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
CN112011725A (en) Steel plate with excellent low-temperature toughness and manufacturing method thereof
JP2913426B2 (en) Manufacturing method of thick high strength steel sheet with excellent low temperature toughness
CN115572901B (en) 630 MPa-grade high-tempering-stability low-carbon low-alloy steel plate and manufacturing method thereof
KR101677350B1 (en) Multiple heat treatment steel having excellent low temperature toughness for energyand manufacturing method thereof
JPH0320408A (en) Production of high tensile steel stock excellent in toughness at low temperature
JPS6156268A (en) High toughness and high tensile steel and its manufacture
JPS60121228A (en) Manufacture of tempered high tension steel plate
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production
KR102222244B1 (en) Martensit-based precipitation hardening type lightweight steel and manufacturing method for the same
JP2537118B2 (en) Method of manufacturing stress corrosion corrosion resistant ultra high strength steel
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPH0219175B2 (en)
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JPH04358026A (en) Production of seamless low alloy steel tube having fine-grained structure
JPS6117885B2 (en)
JPS63190117A (en) Production of high tension steel plate having high toughness and less than 90% low yield ratio by direct quenching method
JPH0867950A (en) Martensitic stainless steel excellent in strength and toughness and its production
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JPH0670250B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JP2562771B2 (en) Method for producing ultra-high strength steel with excellent resistance to stress corrosion cracking