JP2562771B2 - Method for producing ultra-high strength steel with excellent resistance to stress corrosion cracking - Google Patents

Method for producing ultra-high strength steel with excellent resistance to stress corrosion cracking

Info

Publication number
JP2562771B2
JP2562771B2 JP4268377A JP26837792A JP2562771B2 JP 2562771 B2 JP2562771 B2 JP 2562771B2 JP 4268377 A JP4268377 A JP 4268377A JP 26837792 A JP26837792 A JP 26837792A JP 2562771 B2 JP2562771 B2 JP 2562771B2
Authority
JP
Japan
Prior art keywords
steel
temperature
strength
stress corrosion
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4268377A
Other languages
Japanese (ja)
Other versions
JPH06116637A (en
Inventor
義弘 岡村
良太 山場
智也 小関
一郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Kawasaki Steel Corp filed Critical Nippon Steel Corp
Priority to JP4268377A priority Critical patent/JP2562771B2/en
Publication of JPH06116637A publication Critical patent/JPH06116637A/en
Application granted granted Critical
Publication of JP2562771B2 publication Critical patent/JP2562771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭素量が低いにも拘らず
高強度を有し、海水あるいは塩水などの応力腐食環境中
における耐応力腐食割れ性に優れた降伏強さ1080M
Pa以上の超高張力・高靱性鋼の製造法に関するもので
ある。
BACKGROUND OF THE INVENTION The present invention has a high strength despite a low carbon content and a yield strength of 1080M which is excellent in stress corrosion cracking resistance in a stress corrosion environment such as seawater or salt water.
The present invention relates to a method for producing an ultrahigh tensile strength / high toughness steel of Pa or more.

【0002】[0002]

【従来の技術】近年、エネルギー資源の探索・掘削や地
震発生など地球規模での地球物理学的探求から、深海へ
の海洋開発に対する関心が急速に高まり、各種深海用容
器の製作・設置及び深海調査船の開発が活発化してい
る。深海で使用される場合、各種容器には非常に高い圧
力がかかるため、使用される鋼材には、構造上非常に高
い強度において高靱性を有することが望まれている。こ
のような安全で信頼性のある高強度で高靱性材料の要求
に応えるため、Ni含有低合金鋼の開発及びその品質改
善が行なわれている。例えば、特開昭56−9358号
公報のようにNi−Cr−Mo−V系でC+1/8Mo
+V>0.26でCr<0.8Moとした高強度高靱性
鋼、あるいは、特開昭57−188655号公報のよう
に、焼入処理において広範な冷却速度で安定して高強度
高靱性が得られるNi−Cr−Mo−V系の超高張力
鋼、更に、高靱性を確保するために極低P、極低S処理
した含Ni鋼材の製造法など多くの製造法が提案されて
いる。しかし、これらは、超高張力化や高靱性化に効果
的であるが、本願の対象とする環境では信頼性に劣るこ
とが懸念される。すなわち、深海で使用される容器は、
海水にさらされることになり、鋼材には十分良好な耐海
水腐食特性、すなわち、高い耐海水中応力腐食割れ性を
具備することが要求される。
2. Description of the Related Art In recent years, interest in ocean development in the deep sea has rapidly increased due to global geophysical quests such as exploration and excavation of energy resources and occurrence of earthquakes. The development of research vessels is becoming active. When used in the deep sea, very high pressure is applied to various containers, so that the steel materials used are desired to have high toughness in terms of structurally high strength. In order to meet the demand for such safe and reliable high strength and high toughness materials, Ni-containing low alloy steels have been developed and their quality has been improved. For example, C + 1 / 8Mo in Ni-Cr-Mo-V system as disclosed in JP-A-56-9358.
High strength and high toughness steel with + V> 0.26 and Cr <0.8Mo, or stable high strength and high toughness at a wide range of cooling rates during quenching treatment, as in JP-A-57-188655. Many production methods have been proposed, such as the obtained Ni-Cr-Mo-V ultrahigh-strength steel and a method for producing a Ni-containing steel material treated with extremely low P and extremely low S in order to secure high toughness. . However, although these are effective in achieving ultra-high tensile strength and high toughness, there is a concern that they are inferior in reliability in the environment targeted by the present application. That is, the container used in the deep sea is
Since it is exposed to seawater, the steel material is required to have sufficiently good seawater corrosion resistance, that is, high seawater stress corrosion cracking resistance.

【0003】深海中での高い信頼性を有した超高張力鋼
材としては、例えば、特公昭64−11105号公報の
ように、Ni含有鋼でNとOを低減し、Al(%)×N
(%)×104 <1.5となる関係を満足することを特
徴としたNi−Cr−Mo−V系の高靱性超高張力鋼が
提案されており、大きな効果がみられる。しかし、溶接
熱影響部は、母材に比べ海水中での耐応力腐食割れ性は
大気中のそれよりも低下しており、より一層の安全性・
信頼性改善に向けた創意・工夫が必要とされる。又、特
公平1−51526号公報のように、Ni5〜8%含有
したNi−Mo−Nb系鋼を直接焼入れ−焼戻し処理
し、優れた耐応力腐食割れ性を有する超高張力鋼の製造
方法が提案されている。しかし、鋼材の強度は、本発明
の対象とするものより低く、又、一般に厚肉の高張力鋼
の製造においては、板厚方向の材質均一性及び異方性の
点からみて直接焼入れ焼戻し法で製造するには厳密な制
御が必要であり、更に鋼板内の幅方向及び長手方向に対
しての材質の安定性が低下することが懸念される。
As an ultra-high-strength steel material having high reliability in deep sea, for example, as in Japanese Patent Publication No. Sho 64-11105, Ni-containing steel is used to reduce N and O, and Al (%) × N.
(%) × 10 4 <1.5, a Ni—Cr—Mo—V based high toughness ultra-high tensile steel has been proposed, and a great effect is observed. However, the weld heat affected zone has lower stress corrosion cracking resistance in seawater than that in the base metal compared to that in the base metal, and therefore, the
Ingenuity and ingenuity are required to improve reliability. Further, as in Japanese Patent Publication No. 1-51526, a method for producing an ultra-high-strength steel having excellent stress corrosion cracking resistance by directly quenching and tempering a Ni-Mo-Nb steel containing 5-8% Ni. Is proposed. However, the strength of the steel material is lower than that of the object of the present invention, and in the production of thick high-strength steel, in general, in view of material uniformity and anisotropy in the plate thickness direction, the direct quenching and tempering method is used. Strict control is required to manufacture the steel sheet, and there is a concern that the stability of the material in the width direction and the longitudinal direction in the steel sheet may be reduced.

【0004】[0004]

【発明が解決しようとする課題】このように、従来技術
による超高張力・高靱性鋼材では、耐応力腐食割れ性、
特に、溶接熱影響部においては海水中での耐応力腐食割
れ性は大気中でのそれより低下していたり、又、厚肉材
の板厚方向の材質均一性や鋼板内の材質安定性に不利な
製造法であったり、鋼材及び製造法ともに一層の改善が
望まれる。
As described above, in the conventional super high tensile strength and high toughness steel materials, stress corrosion cracking resistance,
In particular, in the heat-affected zone of welding, the resistance to stress corrosion cracking in seawater is lower than that in air, and the material uniformity in the thickness direction of thick-walled materials and the stability of material in steel sheets are It is a disadvantageous manufacturing method, and further improvement of steel materials and manufacturing methods is desired.

【0005】[0005]

【課題を解決するための手段】本発明者らは、海水中あ
るいは塩水中での耐応力腐食割れ性、特に溶接熱影響部
の耐応力腐食割れ性を具備することを基本に、超高張力
で高靱性を有するNi含有低合金鋼の安定製造を目的
に、鋼成分及びその製造法、特に、熱間圧延−再加熱焼
入れ焼戻し処理について種々検討した結果、C,Si及
びMnを低減したNi含有鋼にMo,V及びNbを添加
し、熱間圧延工程でこれら元素を十分に固溶化した後、
再加熱焼入れ工程で加熱速度と加熱温度範囲を制御する
ことにより、固溶していたMo,VやNbが加熱中に析
出し、高転位密度を持つ針状オーステナイト群からなる
無拡散型逆変態γ粒が形成され、本Ni含有鋼で特有の
強化機構が働き高強度化が達成でき、目的の鋼が製造で
きることを知見した。
DISCLOSURE OF THE INVENTION The inventors of the present invention are based on the fact that they have a resistance to stress corrosion cracking in seawater or salt water, in particular, a stress corrosion cracking resistance of a heat-affected zone of a weld, and have an ultrahigh tensile strength. In order to stably produce a Ni-containing low alloy steel having high toughness with a high temperature, various examinations have been made on steel components and their production method, in particular, hot rolling-reheating quenching and tempering treatment. As a result, Ni with reduced C, Si and Mn has been obtained. After adding Mo, V and Nb to the contained steel and sufficiently solidifying these elements in the hot rolling step,
By controlling the heating rate and heating temperature range in the reheating and quenching process, solid-solution Mo, V and Nb are precipitated during heating and non-diffusion type reverse transformation consisting of acicular austenite group with high dislocation density It has been found that γ grains are formed, a unique strengthening mechanism works in the Ni-containing steel, high strength can be achieved, and the target steel can be manufactured.

【0006】本発明はこのような知見に基づいて構成し
たもので、その要旨はC:0.04〜0.09%,S
i:0.01〜0.10%,Mn:0.05〜0.65
%,Ni:8.0〜11.0%,Mo:0.5〜1.5
%,Cr:0.2〜1.5%,V:0.02〜0.20
%,Al:0.01〜0.08%を含有し、残部が鉄及
び不可避的不純物からなる鋼片、あるいは、更にCu:
0.2〜1.5%,Nb:0.005〜0.10%,T
i:0.005〜0.03%からなる強度改善元素群、
又は介在物形態制御作用のあるCa:0.0005〜
0.005%,REM:0.0005〜0.0100%
の一種又は二種以上を含有し、残部が鉄及び不可避的不
純物からなる鋼片を、1000〜1250℃の間に加熱
し、Ar′点温度以上までで仕上げる熱間圧延を施した
後、空冷し、その後更に、120℃/min以下の加熱
速度でAc3 点−40℃〜Ac3 点+40℃の温度域
に、再加熱した後、焼入れ処理を行ない、続いてAc1
点以下の温度で焼戻し処理することを特徴とする耐応力
腐食割れ性に優れた超高張力鋼の製造方法である。
The present invention is constructed on the basis of such knowledge, and the gist thereof is C: 0.04 to 0.09%, S
i: 0.01 to 0.10%, Mn: 0.05 to 0.65
%, Ni: 8.0 to 11.0%, Mo: 0.5 to 1.5
%, Cr: 0.2 to 1.5%, V: 0.02 to 0.20
%, Al: 0.01 to 0.08%, with the balance being iron and inevitable impurities, or Cu:
0.2-1.5%, Nb: 0.005-0.10%, T
i: Strength improving element group consisting of 0.005 to 0.03%,
Or Ca with an inclusion morphology control effect: 0.0005-
0.005%, REM: 0.0005-0.0100%
1 or 2 or more, and the balance is iron and unavoidable impurities, the steel slab is heated between 1000 and 1250 ° C., and hot-rolled to finish at an Ar ′ point temperature or higher, and then air-cooled. Then, after further reheating to a temperature range of Ac 3 points −40 ° C. to Ac 3 points + 40 ° C. at a heating rate of 120 ° C./min or less, quenching treatment is performed, and then Ac 1
A method for producing an ultra-high-strength steel excellent in stress corrosion cracking resistance, characterized by performing tempering treatment at a temperature below the point.

【0007】[0007]

【作用】以下、本発明について詳細に説明する。まず、
本発明の鋼成分の限定理由について述べる。C:Cは焼
入性を向上させ強度を容易に上昇させる有効な元素であ
る。反面、本発明の超高張力鋼の溶接熱影響部の耐応力
腐食割れ性の向上に対しては最も影響を与える元素であ
る。0.09%を超えると著しく溶接熱影響部の耐応力
腐食割れ性が低下する。又、0.04%未満であると強
度が不十分となる。従って、C含有量を0.04〜0.
09%とする。Si:Siは強度向上に有効である。
又、製鋼上不可避な元素であり、0.01%は鋼中に含
まれることになるが、0.10%超になると、本鋼のよ
うに高Ni含有の場合、焼戻し脆性が大きくなり、低温
靱性が低下する。従って、Si含有量を0.01〜0.
10%とする。
The present invention will be described in detail below. First,
The reasons for limiting the steel components of the present invention will be described. C: C is an effective element that improves hardenability and easily increases strength. On the other hand, it is an element that most affects the improvement of the stress corrosion cracking resistance of the weld heat affected zone of the ultra-high strength steel of the present invention. If it exceeds 0.09%, the stress corrosion cracking resistance of the heat-affected zone of the weld markedly deteriorates. Further, if it is less than 0.04%, the strength becomes insufficient. Therefore, the C content is 0.04 to 0.
It is set to 09%. Si: Si is effective for improving strength.
Further, it is an unavoidable element in steel making, and 0.01% will be contained in the steel, but if it exceeds 0.10%, in the case of high Ni content as in the present steel, temper embrittlement becomes large, Low temperature toughness decreases. Therefore, the Si content is 0.01 to 0.
10%.

【0008】Mn:Mnは焼入性及び熱間加工性の向上
のために必要であるが、0.05%未満ではその効果が
ない。一方、本発明のNi含有鋼の場合には、Mn添加
は焼戻し脆性感受性を増大させ、又、母材及び溶接熱影
響部の耐応力腐食割れ性を低下させるため0.65%以
下にする必要がある。図1は、0.06%C−9.9%
Ni−1.0%Mo−0.1%V組成でMn添加量0.
15〜1.05%まで変化させた鋼片を用い、熱間圧延
−空冷後、770℃に再加熱焼入れ・540℃焼戻し処
理した鋼板の靱性と人工海水中での応力腐食割れ試験
(KIscc試験)結果を示す。Mnの低減に伴い、低
温靱性と耐応力腐食割れ性が改善されることが分かる。
従って、Mnの含有量を0.05〜0.65%とする。
Mn: Mn is necessary for improving hardenability and hot workability, but if it is less than 0.05%, its effect is not obtained. On the other hand, in the case of the Ni-containing steel of the present invention, the addition of Mn increases the susceptibility to temper embrittlement and lowers the stress corrosion cracking resistance of the base metal and the weld heat affected zone. There is. Figure 1 shows 0.06% C-9.9%
Ni-1.0% Mo-0.1% V composition and Mn addition amount of 0.
Using a steel slab changed to 15 to 1.05%, after hot rolling-air cooling, the toughness of a steel sheet reheat-quenched at 770 ° C and tempered at 540 ° C and a stress corrosion cracking test in artificial seawater (KIscc test) ) The results are shown. It is understood that the low temperature toughness and the stress corrosion cracking resistance are improved as the Mn is reduced.
Therefore, the Mn content is set to 0.05 to 0.65%.

【0009】Ni:Niは積層欠陥エネルギーを上げ、
交叉すべりを増し、応力緩和を生じやすくし、衝撃吸収
エネルギーを増し低温靱性の向上に有効である。更にN
iは本発明に含まれるMoやV等との共存で最も効果を
発揮する。すなわち、熱間圧延後、Ac3 点−40℃〜
Ac3 点+40℃の温度域に再加熱されると、炭化物の
溶解によって生成する塊状オーステナイトからなる拡散
型逆変態γ粒と炭化物の溶解を伴わない針状オーステナ
イト群からなる無拡散型逆変態γ粒との混合粒が形成さ
れるが、この無拡散型逆変態γ粒は拡散型逆変態γ粒に
比べ高転位密度を持ち強度上昇に極めて有効に作用す
る。すなわち、NiはMoやVなどの炭化物の溶解を遅
らせる作用があり、針状オーステナイトを高温まで安定
に保持することができる。従って、無拡散型逆変態γ粒
の高温安定化による強度確保のため8.0%以上の添加
が必要である。又、11.0%を超えて添加すると焼戻
し時にオーステナイトが析出して強度・靱性を低下させ
る。従ってNiの含有量を8.0〜11.0%とする。
Ni: Ni increases stacking fault energy,
It is effective in increasing cross-slip, making stress relaxation easier, increasing impact absorption energy, and improving low temperature toughness. Furthermore N
i is most effective in coexistence with Mo, V, etc. included in the present invention. That is, after hot rolling, Ac 3 points −40 ° C.
When reheated to a temperature range of Ac 3 point + 40 ° C., diffusion-type reverse transformation γ composed of massive austenite formed by melting of carbides and non-diffusion-type reverse transformation γ composed of acicular austenite groups not accompanied by dissolution of carbides Although mixed grains are formed with the grains, the non-diffusion type reverse transformation γ grains have a higher dislocation density than the diffusion type reverse transformation γ grains and act extremely effectively for increasing the strength. That is, Ni has the effect of delaying the dissolution of carbides such as Mo and V, and can hold acicular austenite stably up to a high temperature. Therefore, it is necessary to add 8.0% or more to secure the strength of the non-diffusion type reverse transformation γ grains by stabilizing at high temperature. Further, if added in excess of 11.0%, austenite precipitates during tempering and reduces strength / toughness. Therefore, the Ni content is set to 8.0 to 11.0%.

【0010】Mo:Moは焼戻しによる析出硬化と焼戻
し脆性の抑制に有効な元素であると同時にNiと同様に
本発明の重要な元素である。すなわち、再加熱焼入れ処
理時、加熱過程で析出したMoを主体とする微細炭化物
が高温まで未溶解炭化物として残存するために高転位密
度を持つ針状オーステナイト群を高温保持でき強度確保
に必要である。しかし、0.5%未満では、再加熱焼入
れ処理時でMo炭化物が溶解し、無拡散型逆変態γ粒が
急速に拡散型逆変態γ粒に侵食され、目標とする強度が
得られず、又、1.5%を超えると強度向上効果が飽和
し、かえって粗大な合金炭化物が増加し靱性を低下させ
る。従って、Moの含有量を0.5〜1.5%とする。
Mo: Mo is an element effective in suppressing precipitation hardening by tempering and temper embrittlement, and at the same time, is an important element of the present invention like Ni. That is, during the reheating and quenching treatment, fine carbides mainly composed of Mo precipitated in the heating process remain as undissolved carbides up to a high temperature, and thus it is necessary to maintain the acicular austenite group having a high dislocation density at a high temperature and secure the strength. . However, if it is less than 0.5%, the Mo carbide is dissolved during the reheating quenching treatment, the non-diffusion type reverse transformation γ grains are rapidly eroded by the diffusion type reverse transformation γ grains, and the target strength cannot be obtained. On the other hand, if it exceeds 1.5%, the strength improving effect is saturated, and rather coarse alloy carbides increase and the toughness decreases. Therefore, the content of Mo is set to 0.5 to 1.5%.

【0011】Cr:Crは焼入れ性を向上させ、強度確
保に有効であり、少なくとも0.2%必要であるが、
1.5%を超えると強度上昇が飽和し靱性が低下する。
従って、Crの含有量を0.2〜1.5%とする。 V:Vは焼戻し処理の時、炭窒化物を形成して析出硬化
により強度確保に有効である。又、Moと同様に再加熱
焼入れ処理時において、Vが加熱中に微細析出すること
により針状オーステナイト群からなる無拡散型逆変態γ
粒の安定性を増し、強度確保に有効である。0.02%
未満では目標の強度が得られず、又、0.20%を超え
ると靱性が低下する。従って、Vの含有量を0.02〜
0.20%とする。 Al:Alは脱酸のために必要な元素であると同時に、
鋼中のNと結びついてAlNの窒化物を形成し、組織の
微細化に効果がある。しかし、0.01%未満ではその
効果が小さく、又、0.08%を超えるとアルミナ系介
在物が増加し靱性を阻害する。従って、Alの含有量を
0.01〜0.08%とする。
Cr: Cr improves the hardenability and is effective for securing the strength. At least 0.2% is necessary.
If it exceeds 1.5%, the increase in strength is saturated and the toughness decreases.
Therefore, the content of Cr is set to 0.2 to 1.5%. V: V is effective for securing strength by forming carbonitrides during precipitation treatment and precipitation hardening. Further, as in the case of Mo, during the reheating and quenching treatment, V is finely precipitated during heating, so that the non-diffusion type reverse transformation γ composed of acicular austenite group is formed.
It is effective in increasing the grain stability and ensuring strength. 0.02%
If it is less than 0.2%, the target strength cannot be obtained, and if it exceeds 0.20%, the toughness decreases. Therefore, the content of V is 0.02
0.20%. Al: Al is an element necessary for deoxidation, and at the same time,
It combines with N in the steel to form a nitride of AlN, which is effective in refining the structure. However, if it is less than 0.01%, its effect is small, and if it exceeds 0.08%, alumina-based inclusions increase to impair the toughness. Therefore, the content of Al is set to 0.01 to 0.08%.

【0012】本発明では上記成分の他に(Cu,Nb,
Ti)及び(Ca,REM)の一種または二種以上添加
する。Cu,Nb,Ti成分は鋼の強度を向上させると
いう均等的作用をもち、更にNbおよびTi成分はオー
ステナイト粒の細粒化にも有効であり、所望の効果を確
保するためには、それぞれ含有下限量をCu:0.2
%,Nb:0.005%,Ti:0.005%とする必
要がある。しかし、それぞれCu;1.5%,Nb:
0.10%,Ti;0.03%を超えて含有させると低
温靱性が低下し、又、耐応力腐食割れ感受性を高めたり
するため、上記の通り限定する。
In the present invention, in addition to the above components, (Cu, Nb,
One or more of Ti) and (Ca, REM) are added. The Cu, Nb, and Ti components have an equal effect of improving the strength of the steel, and the Nb and Ti components are also effective for making the austenite grains finer. The lower limit is Cu: 0.2
%, Nb: 0.005%, Ti: 0.005%. However, Cu: 1.5%, Nb:
If the content exceeds 0.10%, Ti; 0.03%, the low temperature toughness is lowered and the stress corrosion cracking susceptibility is increased.

【0013】Ca,REM:CaとREMは非金属介在
物の球状化効果をもち、靱性と異方性の向上に有効であ
り、それには0.0005%必要であるが、Caが0.
005%、REMが0.0100%を超えると介在物増
加により靱性を低下させる。従って、その含有量をC
a:0.0005〜0.005%、REM:0.000
5〜0.0100%とする。上記の成分の他に不可避的
不純物としてP,S,N,O等は本発明の特性である靱
性及び耐応力腐食割れ性を低下させる有害な元素である
から、その量は少ない方がよい。好ましくはP:0.0
05%以下、S:0.003%以下、N:0.0050
%,O:0.0030%に調整する。
Ca, REM: Ca and REM have a spheroidizing effect of non-metallic inclusions and are effective in improving toughness and anisotropy, which requires 0.0005%, but Ca is less than 0.
If 005% and REM exceed 0.0100%, the inclusions increase and the toughness decreases. Therefore, its content is C
a: 0.0005 to 0.005%, REM: 0.000
5 to 0.0100%. In addition to the above-mentioned components, P, S, N, O and the like as unavoidable impurities are harmful elements that lower the toughness and the stress corrosion cracking resistance, which are the characteristics of the present invention, so their amounts should be small. Preferably P: 0.0
05% or less, S: 0.003% or less, N: 0.0050
%, O: 0.0030%.

【0014】次に本発明のもう一つの骨子である製造法
について述べる。すなわち、上記のような鋼成分組成で
あっても、目的の強度,靱性及び耐応力腐食割れ性を得
るには、製造法が適切でなければならない。このため、
鋼片の加熱、圧延、及び再加熱焼入れ・焼戻し条件を限
定した理由について説明する。まず、上記の鋼成分組成
の鋼片を1000〜1250℃に加熱する。この加熱に
おいては、加熱オーステナイト粒の細粒化の他、熱間圧
延後の再加熱焼入れ−焼戻し処理で上述の無拡散型逆変
態γと微細析出による強化を利用するためには、100
0℃以上に鋼片を加熱しMo,Cr,V,Nb等を十分
に固溶しておく必要がある。この時1000℃未満の低
い温度では、この固溶化作用が不十分となり、未溶解合
金炭化物(M6 C)が粗大化し、かえって、焼戻しの際
の十分な析出硬化が期待できないと共に靱性低下の原因
ともなる。一方、1250℃を超える温度では、Mo,
Cr,V等の合金炭化物は十分固溶するものの、本発明
のNi含有鋼においては、鋼片の表面に酸化物が増加
し、最終的に圧延後の表面きずを生じる。又、加熱オー
ステナイト粒が粗大化し、その後の圧延においてオース
テナイト粒が細粒化しにくく、靱性低下の原因ともな
る。従って、これらを考慮して鋼片の加熱温度を100
0〜1250℃とする。
Next, a manufacturing method which is another skeleton of the present invention will be described. That is, even with the above steel composition, the manufacturing method must be appropriate in order to obtain the desired strength, toughness, and stress corrosion cracking resistance. For this reason,
The reason for limiting the heating, rolling, and reheating quenching / tempering conditions of the steel piece will be described. First, a steel slab having the above steel composition is heated to 1000 to 1250 ° C. In this heating, in addition to refining the heated austenite grains, in order to utilize the above-mentioned non-diffusion type reverse transformation γ and strengthening by fine precipitation in the reheating quenching-tempering treatment after hot rolling, 100
It is necessary to heat the steel slab to 0 ° C. or higher and sufficiently dissolve Mo, Cr, V, Nb, etc. At this time, at a low temperature of less than 1000 ° C., this solid solution action becomes insufficient, the undissolved alloy carbide (M 6 C) becomes coarse, and on the contrary, sufficient precipitation hardening cannot be expected at the time of tempering, and the cause of decrease in toughness. Will also be. On the other hand, at temperatures above 1250 ° C, Mo,
Although alloyed carbides such as Cr and V are sufficiently solid-solved, in the Ni-containing steel of the present invention, oxides increase on the surface of the steel slab and finally surface flaws after rolling occur. Further, the heated austenite grains become coarse, and it is difficult for the austenite grains to become finer in the subsequent rolling, which causes a decrease in toughness. Therefore, considering these, the heating temperature of the billet is 100
It shall be 0-1250 ° C.

【0015】次にこのように加熱された鋼片Ar′変態
点以上の温度までに熱間圧延を施し、空冷する。本発明
鋼においては、Ar′点温度が約400℃と低く、通常
の圧延工程で処理するだけで本条件を満足する。尚、本
発明鋼は、焼入性が十分に高い成分であるため、空冷の
みで十分多量に転位を含んだマルテンサイト単相組織に
なる。尚、強化に寄与する無拡散型逆変態γ粒は、熱間
圧延後のγ粒径と同じになるため、より低温靱性の確保
が必要な場合には、圧延−再結晶によるγ粒の細粒化を
目的に、適宜圧延仕上げ温度を低下する方法が好ましい
が、特に限定しない。
Next, hot rolling is carried out to a temperature above the Ar ′ transformation point of the thus heated steel slab and air cooling is carried out. The steel of the present invention has a low Ar ′ point temperature of about 400 ° C. and satisfies this condition only by being processed in a normal rolling process. Since the steel of the present invention has a sufficiently high hardenability, it becomes a martensite single-phase structure containing a sufficiently large amount of dislocations only by air cooling. Since the non-diffusion type reverse transformation γ grains that contribute to strengthening are the same as the γ grain size after hot rolling, if it is necessary to secure lower temperature toughness, the γ grain size by rolling-recrystallization is reduced. A method of appropriately lowering the rolling finishing temperature for the purpose of granulation is preferable, but not particularly limited.

【0016】次に熱間圧延・空冷後の鋼板はAc3 点−
40℃〜Ac3 点+40℃の温度範囲に再加熱し、焼入
れ処理を行なう。マルテンサイト組織を前組織とし、再
加熱する熱処理工程において、α−γ二相共存温度域に
加熱されると旧オーステナイト粒界には一般的な塊状オ
ーステナイトからなる拡散型逆変態γ粒が、粒内のマル
テンサイトからは針状オーステナイト群が生成し、炭化
物とフェライトとともに共存する。針状オーステナイト
は無拡散(マルテンサイト型)逆変態によって生成する
ため転位を多量に持ち、高強度化に寄与する。更にAc
3 点−40℃〜Ac3 点+40℃に加熱されると針状オ
ーステナイト群は面積を増し、無拡散型逆変態γ粒を形
成し、これが高温まで安定保持され、且つ拡散型逆変態
γ粒との混合したオーステナイト組織となり、この温度
域から焼入れとより一層多くの転位が導入されたマルテ
ンサイト組織となり、超高張力鋼化が達成できる。
Next, the steel sheet after hot rolling and air cooling has Ac 3 points-
Reheat to a temperature range of 40 ° C to Ac 3 points + 40 ° C, and perform quenching treatment. In the heat treatment step of reheating with a martensite structure as a pre-structure, the diffusion-type reverse transformation γ-grains composed of general agglomerated austenite in the old austenite grain boundaries when heated to the α-γ two-phase coexistence temperature range Needle-like austenite groups are formed from the martensite inside and coexist with carbides and ferrite. Since acicular austenite is produced by non-diffusion (martensite type) reverse transformation, it has a large amount of dislocations and contributes to strengthening. Further Ac
When heated to 3 points −40 ° C. to Ac 3 points + 40 ° C., the acicular austenite group increases in area and forms non-diffusion type reverse transformation γ grains, which are stably maintained up to high temperature and diffusion type reverse transformation γ grains. And a martensite structure in which more dislocations have been introduced from this temperature range, and ultrahigh-strength steel can be achieved.

【0017】更に、Ac3 点+40℃以上の温度に加熱
した場合、焼入れ後の強化に寄与する無拡散型逆変態γ
粒が一般的な拡散型逆変態γ粒に変化し、鋼板の強度が
低下する。従って、再加熱焼入れ温度はAc3 点−40
℃〜Ac3 点+40℃の範囲内で無拡散型逆変態γ粒の
安定化のためには、好ましくはAc3 点±20℃の範囲
にすることが望ましい。
Further, when heated to a temperature of Ac 3 point + 40 ° C. or higher, a non-diffusion type reverse transformation γ which contributes to strengthening after quenching.
The grains change to general diffusion type reverse transformation γ grains, and the strength of the steel sheet decreases. Therefore, the reheating and quenching temperature is Ac 3 points -40.
In order to stabilize the non-diffusion type reverse transformation γ grains within the range of 0 ° C to Ac 3 points + 40 ° C, it is preferable to set the range of Ac 3 points ± 20 ° C.

【0018】再加熱時の加熱速度は、120℃/min
以下の加熱速度とすることも本発明の特徴の一つであ
る。図2は0.06%C−9.9%Ni−1.0%Mo
−0.1%V組成の鋼片を1150℃加熱−圧延−空冷
した後、再加熱焼入れ温度790℃までの加熱速度を変
化させ、その後540℃焼戻し処理した鋼板の降伏強度
の試験結果を示す。加熱速度が遅くなるほど強度が向上
することが分かる。一般に、無拡散型逆変態γは急速加
熱した場合に生成することが報告されているが、Niを
多量に含有した本成分鋼においては、急速加熱しなくと
も無拡散型逆変態γが生成し、しかも、従来の常識とは
逆に120℃/min以下の加熱速度にした方が鋼の高
強度化に有利であるという新知見を得た。この原因につ
いて詳細検討した結果、徐加熱過程で析出してくるM
o,Cr,V,Nbなどの炭・窒化物により、一旦生成
した無拡散型逆変態γの安定性が増加し、強化に寄与す
る無拡散型逆変態γ粒の面積率が高くなっていることに
起因することが分かった。
The heating rate during reheating is 120 ° C./min.
The following heating rate is also one of the features of the present invention. FIG. 2 shows 0.06% C-9.9% Ni-1.0% Mo.
-Showing the test result of the yield strength of the steel plate which was obtained by heating-rolling-air-cooling a steel piece having a 0.1% V composition to 1150 ° C, varying the heating rate up to a reheating quenching temperature of 790 ° C, and then tempering at 540 ° C. . It can be seen that the strength increases as the heating rate decreases. Generally, it has been reported that the non-diffusion type reverse transformation γ is generated when rapidly heated, but in the steel of this component containing a large amount of Ni, the non-diffusion type reverse transformation γ is formed even without rapid heating. Moreover, contrary to the conventional wisdom, a new finding has been obtained that a heating rate of 120 ° C./min or less is advantageous for increasing the strength of steel. As a result of a detailed examination of this cause, M that precipitates during the slow heating process
The stability of the non-diffusion type reverse transformation γ once generated is increased by the carbon / nitrides such as o, Cr, V, and Nb, and the area ratio of the non-diffusion type reverse transformation γ grains that contribute to strengthening is increased. It was found to be due to that.

【0019】次に、再加熱焼入処理された鋼板は、その
後Ac1 点以下の温度で焼戻し処理する。Ac1 点を超
えた温度では不安定オーステナイトの生成により強度及
び靱性が低下する。従って、Mo,Cr,V等の微細析
出により十分に析出強化させ、高強度・高靱性を得るた
め焼戻し温度をAc1 点以下と限定する。このような製
造工程で得られた鋼は、低炭素にも拘らず超高張力、高
靱性が得られ、且つ、超高張力鋼の耐応力腐食割れ性、
特に溶接熱影響部の特性が著しく改善される。
Next, the reheat-quenched steel sheet is then tempered at a temperature not higher than the Ac 1 point. When the temperature exceeds the Ac 1 point, the strength and toughness deteriorate due to the formation of unstable austenite. Therefore, the tempering temperature is limited to the Ac 1 point or less in order to sufficiently strengthen the precipitation by fine precipitation of Mo, Cr, V, etc. and obtain high strength and high toughness. The steel obtained by such a manufacturing process has ultra-high tensile strength and high toughness in spite of low carbon, and the stress corrosion cracking resistance of ultra-high-strength steel,
In particular, the characteristics of the weld heat affected zone are remarkably improved.

【0020】[0020]

【実施例】表1に示す組成を有する鋼を溶製して得た鋼
片を、表2に示す本発明法と比較法の各々の製造条件に
基づいて板厚20〜80mm鋼板に製造した。これらに
ついて母材の機械的性質及び母材部及び溶接熱影響部の
KIscc値(耐応力腐食割れ性に対する限界破壊靱性
値)を調査した。溶接は入熱25kJ/cmでティグ溶
接で溶接を行なった。これら表1の化学組成を有する鋼
と、表2で示す製造条件とによって得られた母材の機械
的性質および3.5%NaClの人工海水中でのAST
M E 399に示される試験片を使った母材部及び溶
接熱影響部のKIscc試験結果を表3に示す。表中の
太い下線の部分は、発明範囲をはずれる箇所および特性
が不十分なものを示す。
EXAMPLES Steel pieces obtained by smelting steel having the composition shown in Table 1 were manufactured into steel plates with a thickness of 20 to 80 mm based on the respective manufacturing conditions of the present invention method and comparative method shown in Table 2. . For these, the mechanical properties of the base metal and the KIscc value (critical fracture toughness value for stress corrosion cracking resistance) of the base metal portion and the weld heat affected zone were investigated. The welding was performed by TIG welding with a heat input of 25 kJ / cm. Mechanical properties of the base materials obtained by the steels having the chemical compositions shown in Table 1 and the production conditions shown in Table 2 and AST in artificial seawater containing 3.5% NaCl
Table 3 shows the KIscc test results of the base metal portion and the weld heat affected zone using the test piece shown in ME 399. The thick underlined parts in the table show the parts outside the scope of the invention and those with insufficient properties.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】本発明例(本発明鋼と本発明法との組合わ
せた1−A〜12−O)においては、母材の機械的性質
は高強度、高靱性であり、且つ本発明の意図する耐応力
腐食割れ性も母材および溶接熱影響部共に十分に高いK
Iscc値である。これに対し、本発明法であっても本
発明により限定された化学組成範囲を逸脱した比較鋼
(P〜V)と組合わせた比較例においては、例16−
P,17−QではそれぞれMo量及びV量が低いため無
拡散型逆変態γ粒が生成されず、且つ析出強化も小さく
強度が不十分である。例18−RはNi量が低いため無
拡散型逆変態γ粒が生成されず強度が不十分である。例
19−S,20−Tは、それぞれMn量及びCとMn量
共に高いため靱性及び母材,溶接熱影響部のKIscc
値が低くなっている。例21−UではC量とNi量が高
いため靱性と溶接熱影響部のKIscc値が低くなって
いる。例22−Vは、C量が高いため溶接熱影響部のK
Iscc値が低くなっている。
In the examples of the present invention (1-A to 12-O in which the steel of the present invention and the method of the present invention are combined), the mechanical properties of the base material are high strength and high toughness, and the intent of the present invention is Sufficiently high stress corrosion cracking resistance for both base metal and weld heat affected zone K
Iscc value. On the other hand, even in the case of the method of the present invention, in the comparative example in which the comparative steels (P to V) deviating from the chemical composition range limited by the present invention were combined, Example 16-
In P and 17-Q, since the amounts of Mo and V are low, non-diffusion type reverse transformation γ grains are not generated, precipitation strengthening is small, and strength is insufficient. In Example 18-R, since the amount of Ni is low, non-diffusion type reverse transformation γ grains are not generated and the strength is insufficient. In Examples 19-S and 20-T, since the Mn content and the C and Mn contents are high, the toughness, the base material, and the KIscc of the weld heat affected zone are high.
The value is low. In Example 21-U, since the C content and Ni content are high, the toughness and the KIscc value of the weld heat affected zone are low. In Example 22-V, since the amount of C is high, the K of the welding heat affected zone
The Iscc value is low.

【0025】次に、本発明鋼であっても本発明法の範囲
を逸脱した比較法(23〜29)と組合わせた比較例に
おいては、例23−D,28−Jは再加熱焼入れ処理の
加熱速度が速いため無拡散型逆変態γ粒が不安定となり
拡散型逆変態γ粒が増加し強度が不十分である。例24
−Dは再加熱焼入れ温度が低いため、針状γ群間にフェ
ライトが多く残存しているため強度と靱性が低下してい
る。例25−B,27−Fは鋼片加熱温度が低いため炭
化物の粗大未溶解析出物の存在及び析出強化が小さく、
強度と靱性が不十分である。例26−B,29−Lは再
加熱焼入れ温度が高いため拡散型逆変態γ粒が生成し強
度が不十分であり、更に母材のKIscc値が若干低下
している。
Next, even in the case of the steel of the present invention, in the comparative examples combined with the comparative methods (23 to 29) deviating from the scope of the method of the present invention, Examples 23-D and 28-J were reheat-quenched. Since the heating rate is high, the non-diffusion type reverse transformation γ grains become unstable and the diffusion type reverse transformation γ grains increase, resulting in insufficient strength. Example 24
Since -D has a low reheating and quenching temperature, a large amount of ferrite remains between the acicular γ groups, resulting in a decrease in strength and toughness. In Examples 25-B and 27-F, since the heating temperature of the billet is low, the presence of coarse undissolved precipitates of carbide and the precipitation strengthening are small,
Insufficient strength and toughness. In Examples 26-B and 29-L, since the reheating and quenching temperature is high, diffusion type reverse transformation γ grains are generated and the strength is insufficient, and further, the KIscc value of the base material is slightly lowered.

【0026】[0026]

【発明の効果】本発明の成分範囲及び製造法の組み合わ
せにより、良好な低温靱性を有し、且つ溶接熱影響部の
耐応力腐食割れ性に優れた降伏強度1080MPa以上
の超高張力鋼が、安定して製造・供給できるようにな
り、深海で使用される容器や装置の信頼性を著しく向上
することが可能となった。
EFFECTS OF THE INVENTION Due to the combination of the composition range and the manufacturing method of the present invention, an ultra-high tensile steel having a yield strength of 1080 MPa or more, which has good low temperature toughness and excellent stress corrosion cracking resistance of a weld heat affected zone, It has become possible to stably manufacture and supply, and it has become possible to significantly improve the reliability of containers and equipment used in the deep sea.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼材のMn量と応力腐食割れ性の関係を示す図
表、
FIG. 1 is a chart showing the relationship between the Mn content of steel and stress corrosion cracking resistance,

【図2】再加熱時の加熱速度と降伏強度の関係を示す図
表である。
FIG. 2 is a table showing the relationship between the heating rate and the yield strength during reheating.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小関 智也 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社技術研究本部内 (72)発明者 中川 一郎 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社 水島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomoya Koseki, 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. (72) Ichiro Nakagawa 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama None) Inside Kawashima Steel Works Mizushima Steel Works

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で C:0.04〜0.09% Si:0.01〜0.10% Mn:0.05〜0.65% Ni:8.0〜11.0% Mo:0.5〜1.5% Cr:0.2〜1.5% V:0.02〜0.20% Al:0.01〜0.08% を含有し、残部が鉄及び不可避的不純物からなる鋼片
を、1000〜1250℃の間に加熱し、Ar´点温度
以上まで仕上げる熱間圧延を施した後、空冷し、その
後更に、120℃/min以下の加熱温度でAc点−
40℃−Ac点+40℃の温度域に、再加熱した後、
焼入れ処理を行ない、続いてAc点以下の温度で焼戻
し処理することを特徴とする耐応力腐食割れ性に優れた
超高張力鋼の製造方法。
1. By weight%, C: 0.04 to 0.09% Si: 0.01 to 0.10% Mn: 0.05 to 0.65% Ni: 8.0 to 11.0% Mo: 0.5 to 1.5% Cr: 0.2 to 1.5% V: 0.02 to 0.20% Al: 0.01 to 0.08% with the balance being iron and unavoidable impurities the composed slab was heated to between 1000 to 1250 ° C., was subjected to hot rolling to finish up Ar' point temperature or more, air cooled, then further, Ac 3 point or less of the heating temperature of 120 ° C. / min -
After reheating to a temperature range of 40 ° C-Ac 3 points + 40 ° C,
A method for producing an ultra-high-strength steel excellent in stress corrosion cracking resistance, which comprises performing a quenching treatment and subsequently a tempering treatment at a temperature of Ac 1 point or less.
【請求項2】 重量%で C :0.04〜0.09% Si:0.01〜0.10% Mn:0.05〜0.65% Ni:8.0〜11.0% Mo:0.5〜1.5% Cr:0.2〜1.5% V :0.02〜0.20% Al:0.01〜0.08% を含有し、更に Cu:0.2〜1.5% Nb:0.005〜0.10% Ti:0.005〜0.03% からなる強度改善元素群、又は介在物形態制御作用のあ
る Ca:0.0005〜0.005% REM:0.0005〜0.0100% の一種又は二種以上を含有し、残部が鉄及び不可避的不
純物からなる鋼片を、1000〜1250℃の間に加熱
し、Ar´点温度以上までで仕上げる熱間圧延を施した
後、空冷し、その後更に、120℃/min以下の加熱
温度でAc3 点−40℃〜Ac3 点+40℃の温度域
に、再加熱した後、焼入れ処理を行ない、続いてAc1
点以下の温度で焼戻し処理することを特徴とする耐応力
腐食割れ性に優れた超高張力鋼の製造方法。
2. By weight%, C: 0.04 to 0.09% Si: 0.01 to 0.10% Mn: 0.05 to 0.65% Ni: 8.0 to 11.0% Mo: 0.5 to 1.5% Cr: 0.2 to 1.5% V: 0.02 to 0.20% Al: 0.01 to 0.08%, further Cu: 0.2 to 1 0.5% Nb: 0.005 to 0.10% Ti: 0.005 to 0.03%, which has a strength improving element group or inclusion morphology control action Ca: 0.0005 to 0.005% REM: Heat that heats a steel slab containing 0.0005 to 0.0100% of one or more kinds, the balance of which is iron and unavoidable impurities, at a temperature of 1000 to 1250 ° C and finishes at a temperature of Ar 'or higher. After hot rolling, it is air-cooled, and then, at a heating temperature of 120 ° C./min or less, Ac 3 point −40 ° C. to Ac 3 After reheating to the temperature range of + 40 ° C, quenching is performed, then Ac 1
A method for producing an ultra-high-strength steel excellent in stress corrosion cracking resistance, characterized by performing tempering treatment at a temperature below the point.
JP4268377A 1992-10-07 1992-10-07 Method for producing ultra-high strength steel with excellent resistance to stress corrosion cracking Expired - Lifetime JP2562771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4268377A JP2562771B2 (en) 1992-10-07 1992-10-07 Method for producing ultra-high strength steel with excellent resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4268377A JP2562771B2 (en) 1992-10-07 1992-10-07 Method for producing ultra-high strength steel with excellent resistance to stress corrosion cracking

Publications (2)

Publication Number Publication Date
JPH06116637A JPH06116637A (en) 1994-04-26
JP2562771B2 true JP2562771B2 (en) 1996-12-11

Family

ID=17457650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4268377A Expired - Lifetime JP2562771B2 (en) 1992-10-07 1992-10-07 Method for producing ultra-high strength steel with excellent resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JP2562771B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101639845B1 (en) 2013-12-24 2016-07-14 주식회사 포스코 High strength thick sheet with cutting crack resistance and method for manufacturing the same
JP6984320B2 (en) * 2017-10-31 2021-12-17 日本製鉄株式会社 Nickel-containing steel sheet for low temperature with excellent toughness and its manufacturing method

Also Published As

Publication number Publication date
JPH06116637A (en) 1994-04-26

Similar Documents

Publication Publication Date Title
JP3990724B2 (en) High strength secondary hardened steel with excellent toughness and weldability
US4946516A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
JP2005256169A (en) Wear resistant steel sheet having excellent low temperature toughness and production method therefor
US4826543A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
JP2024500851A (en) Extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method
CN108368589B (en) High hardness wear resistant steel having excellent toughness and cut crack resistance and method for manufacturing the same
JP2913426B2 (en) Manufacturing method of thick high strength steel sheet with excellent low temperature toughness
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JP2537118B2 (en) Method of manufacturing stress corrosion corrosion resistant ultra high strength steel
JP7048379B2 (en) High strength and high ductility steel sheet
JP7048378B2 (en) High strength and high ductility steel sheet
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production
JP2562771B2 (en) Method for producing ultra-high strength steel with excellent resistance to stress corrosion cracking
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JPH04358023A (en) Production of high strength steel
KR20180073207A (en) High strength steel sheet havig good low temperature toughness and resistance of stress corrosion cracking, and manufacturing method thereof
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP2001020035A (en) Steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance and its production
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JP2004339550A (en) LOW YIELD RATIO 570 MPa CLASS HIGH-TENSILE STRENGTH STEEL HAVING EXCELLENT WELD ZONE TOUGHNESS AND THREAD CUTTABILITY, AND ITS PRODUCTION METHOD
JPH06240406A (en) Steel plate with high strength and high toughness
JPH059570A (en) Production of high weldability and high strength steel
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960709

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 16