JPH09256039A - Production of high yield strength and high toughness nickel-containing thick steel plate - Google Patents

Production of high yield strength and high toughness nickel-containing thick steel plate

Info

Publication number
JPH09256039A
JPH09256039A JP6824596A JP6824596A JPH09256039A JP H09256039 A JPH09256039 A JP H09256039A JP 6824596 A JP6824596 A JP 6824596A JP 6824596 A JP6824596 A JP 6824596A JP H09256039 A JPH09256039 A JP H09256039A
Authority
JP
Japan
Prior art keywords
yield strength
toughness
thick steel
austenite
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6824596A
Other languages
Japanese (ja)
Inventor
Akio Omori
章夫 大森
Takahiro Kubo
高宏 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6824596A priority Critical patent/JPH09256039A/en
Publication of JPH09256039A publication Critical patent/JPH09256039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an Ni-contg. thick steel plate with >=50mm plate thickness having high yield strength and excellent low temp. toughness. SOLUTION: An Ni-contg. thick steel plate contg. 7.5 to 12.0wt.% Ni is subjected to primary quenching treatment of heating to the Ac3 point or above and executing cooling, is then subjected to secondary quenching treatment of holding under heating in such a manner that the temp. range is regulated to (Ac1 +10) to (Ac3 -10) deg.C and the amt. of austenite (γ) formed in the same temp. range is regulated to 20 to 65% or 85 to 95% by area ratio and is furthermore subjected to tempering treatment at 500 to (Ac1 -10) deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、板厚50mm以上の含
Ni厚鋼板の製造方法に関し、とくに、降伏強度が高く、
かつ−160 ℃以下の極低温での使用においてもなお靱性
を失うことのない、高降伏強さ、高靱性含Ni厚鋼板の製
造方法に関する。
TECHNICAL FIELD The present invention relates to a sheet having a thickness of 50 mm or more.
Regarding the manufacturing method of Ni thick steel plate, especially the high yield strength,
The present invention also relates to a method for producing a high yield strength, high toughness Ni-containing thick steel sheet which does not lose its toughness even when used at an extremely low temperature of -160 ° C or lower.

【0002】[0002]

【従来の技術】近年のエネルギー需要の増大、あるいは
原子力発電の安全性に対する危惧などを背景として、ク
リーンなエネルギー源である液化天然ガス(以下LNG
と示す)の需要が急増している。これに伴って、LNG
を貯蔵するためのタンクの建設が促進されている。この
LNG貯蔵用タンクには、当然圧力容器用鋼板を使用す
るが、タンク内は極低温雰囲気に晒されるため、とくに
低温靱性に優れた材料が推奨される。従って、LNG貯
蔵用タンクには、Ni鋼、中でも9wt%Ni鋼板が多用され
ている。
BACKGROUND OF THE INVENTION Liquefied natural gas (hereinafter referred to as LNG), which is a clean energy source, against the backdrop of the recent increase in energy demand and fear of safety of nuclear power generation.
Demand) is rapidly increasing. Along with this, LNG
Construction of tanks for storing water is being promoted. A steel plate for a pressure vessel is naturally used for this LNG storage tank, but since the inside of the tank is exposed to an extremely low temperature atmosphere, a material particularly excellent in low temperature toughness is recommended. Therefore, Ni steel, especially 9 wt% Ni steel sheet, is often used for the LNG storage tank.

【0003】また、LNGの貯蔵効率を高めるためにタ
ンクの容量を増大させる傾向にあり、LNG貯蔵タンク
用材に供する9wt%Ni鋼板には、その板厚が在来鋼板の
上限である30mmを超える、とりわけ50mm以上の厚みを有
するものが必要になってきている。低温靱性の優れた9
wt%Ni鋼板の製造方法に関しては、多くの提案がなされ
ている。例えば特公昭47−23317 号公報や特公平4-4041
1 号公報には、Ac1〜Ac3変態点間の二相域に加熱焼入
れした後Ac1変態点以下で焼戻す低温靱性の改善方法が
提案されている。
In addition, there is a tendency to increase the capacity of the tank in order to increase the storage efficiency of LNG, and the 9 wt% Ni steel sheet used for LNG storage tank material has a thickness exceeding the upper limit of 30 mm of the conventional steel sheet. Especially, those having a thickness of 50 mm or more are required. Excellent low temperature toughness 9
Many proposals have been made regarding the manufacturing method of the wt% Ni steel sheet. For example, Japanese Patent Publication No. 47-23317 and Japanese Patent Publication No. 4-4041.
Japanese Patent Laid-Open No. 1-1993 proposes a method of improving low temperature toughness in which the material is heated and quenched in the two-phase region between the Ac 1 to Ac 3 transformation points and then tempered at the Ac 1 transformation point or lower.

【0004】しかしながらこれらの技術は、板厚が30mm
以下の鋼板には有効であるが、板厚が50mmを超えるよう
な厚鋼板に同様に適用することは難しい。すなわち、板
厚が50mmを超える厚さになると、圧延による結晶粒の微
細化が難しくなるとともに、焼入れ冷却時の冷却速度が
必然的に小さくなるなどの理由から、強度および靱性が
ともに低下するという問題がある。
However, these techniques have a plate thickness of 30 mm.
Although it is effective for the following steel plates, it is difficult to apply it to thick steel plates having a plate thickness of more than 50 mm. That is, when the plate thickness is more than 50 mm, it becomes difficult to refine the crystal grains by rolling, and the cooling rate during quenching cooling is necessarily reduced, so that both strength and toughness decrease. There's a problem.

【0005】また、特開平3-264617号公報には、スラブ
を 800〜1000℃の比較的低温に加熱した後熱間圧延を施
し、次いで焼入れ、二相域加熱の中間焼入れを施したの
ちAc1点以下で焼戻し処理を施すことによって、高降伏
強さを有する9wt%Ni鋼厚鋼板を製造する方法が提案さ
れている。特開平4-371520号公報には、スラブを加熱
後、700 〜850 ℃での累積圧下率が30〜80%の熱間圧延
を施し、次いで焼入れ、二相域加熱の中間焼入れ処理を
施したのち、550 〜Ac1変態点で焼戻す、母材と溶接熱
影響部のCTOD特性の優れた板厚40mm以上の厚肉9%
Ni鋼の製造方法が提案されている。
In Japanese Patent Laid-Open No. 3-264617, a slab is heated to a relatively low temperature of 800 to 1000 ° C., hot rolled, then quenched and then an intermediate quench of two-phase region heating is performed. A method for producing a 9 wt% Ni thick steel plate having a high yield strength by performing a tempering treatment at 1 point or less has been proposed. In Japanese Patent Laid-Open No. 4-371520, after heating a slab, hot rolling with a cumulative rolling reduction of 30 to 80% at 700 to 850 ° C. was performed, followed by quenching and intermediate quenching by heating in a two-phase region. After that, tempering at the transformation point from 550 to Ac 1 and excellent CTOD characteristics of the base metal and the weld heat affected zone 9% thick plate thickness of 40 mm or more
A method for manufacturing Ni steel has been proposed.

【0006】特開昭58-73717号公報には、低Ni鋼にCa、
Laを添加し、二相域焼入れを含む二段焼入れ・焼戻し処
理による低温靱性を高める技術が提案されている。特開
平6-240348号公報には、P、S量を低減したスラブを熱
間圧延により厚鋼板としたのち、 800〜900 ℃に加熱焼
入れ後さらにAc3〜800 ℃に加熱したのち、再度焼入れ
し、Ac1点以上で焼戻すNi鋼の製造方法が提案されてい
る。
Japanese Unexamined Patent Publication (Kokai) No. 58-73717 discloses that low Ni steel contains Ca,
A technique has been proposed in which La is added and the low temperature toughness is enhanced by a two-step quenching / tempering treatment including quenching in the two-phase region. In Japanese Unexamined Patent Publication (Kokai) No. 6-240348, a slab with a reduced amount of P and S is formed into a thick steel plate by hot rolling, then heated and quenched at 800 to 900 ° C, further heated to Ac 3 to 800 ° C, and then quenched again. However, there has been proposed a method for manufacturing a Ni steel that is tempered at an Ac of 1 point or more.

【0007】しかしながら、上記した技術でも、板厚が
厚い場合には、高強度と高靱性を安定して得られないと
ころに問題を残していた。
However, even the above-mentioned technique has a problem that high strength and high toughness cannot be stably obtained when the plate thickness is large.

【0008】[0008]

【発明が解決しようとする課題】本発明は、高い降伏強
さおよび優れた低温靱性を有する板厚50mm以上の含Ni厚
鋼板の製造方法を提案することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to propose a method for producing a Ni-containing thick steel plate having a plate thickness of 50 mm or more, which has high yield strength and excellent low temperature toughness.

【0009】[0009]

【課題を解決するための手段】まず、本発明の基礎とな
った実験結果について説明する。50mm以上の板厚を有す
る厚肉の9%Ni鋼では、例えば図3に示すように、低温
靱性とともに、降伏強さを高く保持することが困難にな
る。本発明者らは、9%Ni鋼の組織を詳細に調査し、機
械的性質、とくに降伏強さと微細組織との関係について
検討した。
First, experimental results on which the present invention is based will be described. With a thick 9% Ni steel having a plate thickness of 50 mm or more, it becomes difficult to maintain high yield strength as well as low temperature toughness as shown in FIG. 3, for example. The present inventors investigated the structure of 9% Ni steel in detail and examined the mechanical properties, especially the relationship between the yield strength and the microstructure.

【0010】9%Ni鋼は、従来から低温靱性を高めるた
め、オーステナイト(γ)域に加熱し冷却する1次焼入
れ(Q)とγ+α二相域に加熱し冷却する2次焼入れ処
理およびAc1点以下で焼戻す焼戻し処理からなる熱処理
を施される。このようにして得られた9%Ni鋼の微細組
織は、 2次焼入れ加熱時にフェライト(α)である軟らかい
マトリックス 2次焼入れ時に生じたマルテンサイト 2次焼入れ時に生じたベイナイト 焼戻し時に析出したオーステナイト からなる複合組織であり、本発明者らは強度はマルテン
サイト、ベイナイトの組織分率と硬さ、析出オーステナ
イトの組織分率、存在形態と安定性に依存している。
In order to improve low temperature toughness, 9% Ni steel has conventionally been subjected to a primary quenching (Q) which is heated and cooled in the austenite (γ) region and a secondary quenching treatment which is heated and cooled in the γ + α two-phase region and Ac 1 A heat treatment consisting of a tempering process for tempering below the point is performed. The microstructure of the 9% Ni steel thus obtained is composed of a soft matrix that is ferrite (α) during the secondary quenching heating, martensite that occurs during secondary quenching, bainite that occurs during secondary quenching, and austenite that precipitates during tempering. The strength depends on the structure fraction and hardness of martensite and bainite, the structure fraction of precipitated austenite, the existence form and stability.

【0011】とくに本発明者らは、板厚50mm以上の厚肉
の9%Ni鋼において、降伏強さの低下は図1に示すよう
に、二相域加熱時に形成されるγ量に大きく影響されて
いることを見い出した。γ量が65%超85%未満では降伏
強さが著しく低下する。すなわち、降伏強さ590MPa以上
を得るためには、二相域加熱時に形成されるγ量は、65
%以下、好ましくは20〜65%あるいは85%以上、好まし
くは85〜95%を必要とする。
In particular, the inventors of the present invention have found that in 9% Ni steel having a plate thickness of 50 mm or more, the decrease in yield strength has a large effect on the amount of γ formed during heating in the two-phase region, as shown in FIG. I found out that it is being done. If the amount of γ is more than 65% and less than 85%, the yield strength will be significantly reduced. That is, in order to obtain a yield strength of 590 MPa or more, the amount of γ formed during heating in the two-phase region is 65
% Or less, preferably 20 to 65% or 85% or more, preferably 85 to 95%.

【0012】例えば、2次焼入れ時の生成オーステナイ
ト量を40%としたのち、焼入れ冷却速度を変えて冷却
し、さらに 570℃で焼戻ししたのちの降伏強さ(Y
S)、引張強さ(TS)と2次焼入れ冷却速度との関係
を図2に実線として示す。比較として、2次焼入れ時の
生成オーステナイト量を75%としたのち焼入れ、焼戻し
た例を破線で示す。このように、2次焼入れ時の生成オ
ーステナイト量を40%とすることにより、冷却の遅い厚
肉鋼板でも降伏強度の低下を少なくすることができる。
For example, after the amount of austenite formed during the secondary quenching is set to 40%, the quenching cooling rate is changed to cool, and the yield strength (Y) after tempering at 570 ° C.
The relationship between S), tensile strength (TS) and the secondary quenching cooling rate is shown in FIG. 2 as a solid line. For comparison, an example in which the amount of generated austenite at the time of secondary quenching is set to 75% and then quenching and tempering is shown by a broken line. In this way, by setting the amount of austenite produced during the secondary quenching to 40%, it is possible to reduce the decrease in yield strength even for thick steel plates that cool slowly.

【0013】本発明は、上記した知見に基づき構成され
たものである。すなわち、本発明は、 7.5〜12.0wt%Ni
を含有する含Ni厚鋼板をAc3点以上の温度に加熱し冷却
する1次焼入れ処理を施し、ついでAc1+10℃以上、A
c3−10℃以下の温度範囲でかつ該温度範囲で生成するオ
ーステナイト(γ)量が面積率で20〜65%とする加熱保
持を行い、冷却する2次焼入れ処理を施したのち、さら
に500 ℃以上、(Ac1−10℃)以下での焼戻し処理を行
うことを特徴とする板厚50mm以上の高降伏強さ、高靱性
含Ni厚鋼板の製造方法であり、また、本発明は、7.5〜1
2.0wt%Niを含有する含Ni厚鋼板をAc3点以上の温度に
加熱し冷却する1次焼入れ処理を施し、ついでAc1+10
℃以上、Ac3−10℃以下の温度範囲でかつ該温度範囲で
生成するオーステナイト(γ)量が面積率で85〜95%と
する加熱保持を行い、冷却する2次焼入れ処理を施した
のち、さらに500 ℃以上、(Ac1−10℃)以下での焼戻
し処理を行うことを特徴とする板厚50mm以上の高降伏強
さ、高靱性含Ni厚鋼板の製造方法である。
The present invention is constructed based on the above findings. That is, the present invention relates to 7.5 to 12.0 wt% Ni
A nickel-containing thick steel plate containing Al is subjected to a primary quenching treatment in which it is heated to a temperature of Ac 3 points or higher and cooled, and then Ac 1 + 10 ° C. or higher, A
c 3 −10 ° C. or less, and the amount of austenite (γ) produced in the temperature range is maintained at 20 to 65% in area ratio by heating and holding, followed by secondary quenching treatment of cooling, and then 500 A high yield strength, high toughness Ni-containing thick steel sheet having a plate thickness of 50 mm or more, which is characterized by performing a tempering treatment at a temperature of ℃ or more and (Ac 1 -10 ℃) or less, and the present invention provides: 7.5 ~ 1
Ni-containing thick steel plate containing 2.0 wt% Ni was subjected to a primary quenching treatment of heating and cooling to a temperature of Ac 3 points or higher, and then Ac 1 +10
After carrying out a secondary quenching treatment in which the austenite (γ) produced in the temperature range of ℃ or more and Ac 3 -10 ℃ or less and the area ratio is 85 to 95% by heating and holding, and cooling is performed. A method for producing a high yield strength, high toughness Ni-containing steel plate having a plate thickness of 50 mm or more, which is characterized by performing a tempering treatment at 500 ° C. or more and (Ac 1-10 ° C.) or less.

【0014】[0014]

【発明の実施の形態】以下、この発明について詳細に説
明する。本発明は、板厚50mm以上の厚鋼板を対象とす
る。熱間圧延を経た鋼板は、一旦冷却されたのち、Ac3
点以上の温度に加熱し冷却する1次焼入れ処理を施す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The present invention is intended for a thick steel plate having a plate thickness of 50 mm or more. The steel sheet that has undergone hot rolling is cooled once and then Ac 3
A primary quenching treatment of heating to a temperature above the point and cooling is performed.

【0015】ここで、1次焼入れ処理は、微細なマルテ
ンサイト(+ベイナイト)組織を生成して、次工程の熱
処理と組み合わせることで高い降伏強さと優れた低温靱
性を得るために行われる。したがって、均一なオーステ
ナイト(γ)組織から冷却する必要がある。そのため、
Ac3点以上に加熱する必要がある。しかし、加熱温度が
高すぎると、オーステナイト粒の粗大化が生じて靱性が
低下するため、好ましくは、850 ℃以下とする。なお、
加熱後の冷却速度は1℃/sec 以上とすることが好まし
い。
Here, the primary quenching treatment is performed in order to obtain a high yield strength and excellent low temperature toughness by forming a fine martensite (+ bainite) structure and combining it with the heat treatment of the next step. Therefore, it is necessary to cool from a uniform austenite (γ) structure. for that reason,
Ac It is necessary to heat to 3 points or more. However, if the heating temperature is too high, the austenite grains become coarse and the toughness decreases, so the temperature is preferably 850 ° C. or less. In addition,
The cooling rate after heating is preferably 1 ° C./sec or more.

【0016】引き続いて行う2次焼入れ処理は、焼戻し
処理後に析出するオーステナイトを、強度および靱性に
有利な析出量と形態、安定性にするため行うものであ
る。すなわち、鋼板をAc1+10℃〜Ac3−10℃の間の温
度範囲の二相域で、かつこの温度範囲で生成するオース
テナイト量を面積率で65%以下、好ましくは20〜65また
は85%以上、好ましくは85〜95%の範囲になるように加
熱保持する。生成するオーステナイト量が20%未満で
は、焼戻し処理時に析出するオーステナイト量が少な
く、低温靱性が劣化する。また、生成するオーステナイ
ト量が65%超85%未満では、降伏強さが590MPa以上を満
足しない。この範囲では、焼戻し時に析出するオーステ
ナイト量が増加し安定性に欠けるため、変形しやすく、
降伏強さが低下する。また、95%を超えると、焼戻し時
に安定して析出するオーステナイト量が減少するため、
低温靱性が劣化する。
The subsequent secondary quenching treatment is carried out in order to make the austenite that precipitates after the tempering treatment have a precipitation amount, a morphology, and stability that are advantageous for strength and toughness. That is, the steel sheet is in the two-phase region of the temperature range between Ac 1 + 10 ° C. and Ac 3 −10 ° C., and the amount of austenite produced in this temperature range is 65% or less, preferably 20 to 65 or 85% in area ratio. As described above, heating and holding is preferably performed so as to be in the range of 85 to 95%. If the amount of austenite produced is less than 20%, the amount of austenite precipitated during the tempering treatment is small and the low temperature toughness deteriorates. Further, when the amount of austenite produced is more than 65% and less than 85%, the yield strength does not satisfy 590 MPa or more. In this range, since the amount of austenite precipitated during tempering increases and lacks stability, it easily deforms,
Yield strength decreases. Also, if it exceeds 95%, the amount of austenite that precipitates stably during tempering decreases,
Low temperature toughness deteriorates.

【0017】このようなことから、2次焼入れ処理は、
Ac1+10℃〜Ac3−10℃の温度範囲でかつ生成するオー
ステナイト量を65%以下、好ましくは20〜65%あるいは
85%以上、好ましくは85〜95%とする加熱保持条件とし
た。生成するオーステナイト量は、加熱する温度、保持
時間および化学組成の組合せで決定されるが、例えば、
0.05%C− 0.6%Mn− 9.4%Ni鋼の場合、保持時間を20
min と一定とした場合には、好ましくは 620〜 660℃の
範囲、あるいは 680〜690 ℃が好適である。低温で長時
間の保持は、上記範囲の2次焼入れ時にオーステナイト
量が生成されれば、析出オーステナイトの安定性からも
好適である。むしろ、変態初期においては時間依存性が
強く、保持時間が短いときには、わずかの保持時間の差
により組織に大きな違いが生じる。厚肉材では表面部と
中心部において熱処理温度に保持される時間が異なるた
め、保持時間が短いと表面と中心部の組織が異なってく
る。板厚中心部において目標の熱処理温度に10min 以上
保持されれば、ほぼ一様な組織が得られるため、保持時
間は10min 以上が好ましい。
From the above, the secondary quenching treatment is
In the temperature range of Ac 1 + 10 ° C to Ac 3 -10 ° C and the amount of austenite produced is 65% or less, preferably 20 to 65% or
The heating and holding condition was 85% or more, preferably 85 to 95%. The amount of austenite to be generated is determined by the combination of heating temperature, holding time and chemical composition.
For 0.05% C-0.6% Mn-9.4% Ni steel, hold time is 20
When min is kept constant, it is preferably in the range of 620 to 660 ° C, or 680 to 690 ° C. Holding at low temperature for a long time is also suitable from the viewpoint of stability of precipitated austenite as long as the amount of austenite is generated during secondary quenching in the above range. Rather, it has a strong time dependency in the early stage of transformation, and when the retention time is short, a slight difference in retention time causes a large difference in the structure. In thick-walled materials, the time for holding at the heat treatment temperature is different between the surface part and the central part, so if the holding time is short, the structure of the surface and the central part will be different. If the target heat treatment temperature is held for 10 minutes or longer in the center of the plate thickness, a substantially uniform structure is obtained. Therefore, the holding time is preferably 10 minutes or longer.

【0018】保持時間を十分にとることにより、二相域
加熱中に生成するオーステナイト中にはNiなどの合金元
素が十分濃化する。それにより、冷却時に硬いマルテン
サイトを生成させ、焼戻し処理時には微細で安定なγを
析出させることができ、強度と靱性に優れた組織が得ら
れる。つぎに、500 ℃以上、Ac1−10℃以下の焼戻し処
理を施す。
By making the holding time sufficient, alloying elements such as Ni are sufficiently concentrated in the austenite formed during heating in the two-phase region. As a result, hard martensite can be generated during cooling, and fine and stable γ can be precipitated during tempering, and a structure excellent in strength and toughness can be obtained. Next, a tempering treatment is performed at 500 ° C. or higher and Ac 1-10 ° C. or lower.

【0019】焼戻し処理は、上記した焼入れ組織の転位
密度を低下させると同時に、安定な析出オーステナイト
を生成するために行われるものであるが、焼戻し温度が
Ac1変態点に近づくにつれて、析出オーステナイト量が
増加し、降伏強さが低下するため、および低温靱性に有
効な微細なオーステナイトの析出を得るためにAc1−10
℃以下の温度域で行われる必要がある。なお、焼戻し温
度の下限は焼戻し効果を確保するため、500 ℃以上とす
ることが好ましい。焼戻し後の冷却は2℃/sec 以上と
することがさらなる靱性の改善を図ることが可能となり
好ましい。冷却が遅いと、Pの粒界偏析あるいはFeリ
ン化物の形成を招いて、靱性に悪影響を及ぼすことにな
る。
The tempering treatment is carried out in order to reduce the dislocation density of the above-mentioned quenched structure and at the same time to produce stable precipitated austenite. However, as the tempering temperature approaches the Ac 1 transformation point, the amount of precipitated austenite is increased. To reduce the yield strength and to obtain fine austenite precipitation effective for low temperature toughness, Ac 1-10
It needs to be performed in a temperature range of ℃ or less. The lower limit of the tempering temperature is preferably 500 ° C. or higher in order to secure the tempering effect. Cooling after tempering is preferably set to 2 ° C./sec or more because the toughness can be further improved. If cooling is slow, grain boundary segregation of P or formation of Fe phosphide is caused, which adversely affects toughness.

【0020】本発明の厚鋼板に用いるスラブは、造塊一
分塊でも、連続鋳造いずれでも好適に製造できる。上記
方法で製造されたスラブは、熱間圧延を施され、板厚が
50mm以上の厚鋼板に仕上げられる。ここで、熱間圧延は
スラブを好ましくは1100〜1300℃に加熱する。
The slab used for the thick steel plate of the present invention can be suitably manufactured by either ingot ingot or continuous casting. The slab manufactured by the above method is hot-rolled and has a plate thickness of
Finished with thick steel plate of 50 mm or more. Here, the hot rolling preferably heats the slab to 1100-1300 ° C.

【0021】この温度域に、スラブ中のMnS を溶解させ
るためと、次工程の圧延工程において結晶粒を微細化す
るためであり、それには1100℃以上の加熱が必要であ
り、一方1300℃を超えるとγ粒が著しく粗大化し、圧延
後の結晶粒が微細化しない。MnS の固溶を十分に行うた
めに、好ましくは1200〜1300℃に加熱する。熱間圧延
は、結晶粒の微細化のために、 700〜900 ℃で累積圧下
率20〜90%で行う必要がある。
This temperature range is for melting MnS in the slab and for refining the crystal grains in the subsequent rolling step, which requires heating at 1100 ° C. or higher, while 1300 ° C. If it exceeds, the γ grains are remarkably coarsened and the crystal grains after rolling are not refined. In order to sufficiently form a solid solution of MnS, heating is preferably performed at 1200 to 1300 ° C. Hot rolling must be performed at 700 to 900 ° C with a cumulative reduction of 20 to 90% in order to refine the crystal grains.

【0022】700℃未満の温度域における圧延では靱性
を阻害する集合組織が発達し、また900℃を超える温度
域における圧延ではγ粒の再結晶が瞬時に起こるため、
圧延による結晶粒の微細化が達成できない。なお、仕上
げ温度は、圧延生産性の観点から 750〜900 ℃とするこ
とが好ましい。700〜900 ℃の範囲での累積圧下率が20
%未満では、結晶粒の微細化が達成できない。また、累
積圧下率が90%を超えると、異方性が強くなりすぎる。
In rolling in a temperature range of less than 700 ° C., a texture that inhibits toughness develops, and in rolling in a temperature range of more than 900 ° C., γ grains recrystallize instantly,
The grain refinement by rolling cannot be achieved. The finishing temperature is preferably 750 to 900 ° C from the viewpoint of rolling productivity. Cumulative rolling reduction in the range of 700 to 900 ℃ is 20
If it is less than%, the grain refinement cannot be achieved. If the cumulative rolling reduction exceeds 90%, the anisotropy becomes too strong.

【0023】本発明の含Ni厚鋼板は、下記に示す成分組
成が好適である。 C:0.03〜0.06wt% Cは強度を確保するのに0.03wt%以上は必要であるが、
0.06wt%を超えると母材およびHAZの靱性低下をまね
くため、0.03〜0.06wt%の範囲とする。 Si:0.20wt%以下 Siは強度の上昇に寄与するため、好ましくは0.01wt%以
上は必要であるが、多量の含有は靱性の低下をもたらす
ため、0.20wt%以下とする。靱性の点からさらに好まし
くは、0.02〜0.15wt%である。
The Ni-containing thick steel plate of the present invention preferably has the following component composition. C: 0.03 to 0.06 wt% C requires 0.03 wt% or more to secure the strength,
If it exceeds 0.06 wt%, the toughness of the base material and HAZ will be deteriorated, so the range is 0.03 to 0.06 wt%. Si: 0.20 wt% or less Si contributes to an increase in strength, so 0.01 wt% or more is preferable, but if a large amount of Si causes a decrease in toughness, it is 0.20 wt% or less. From the viewpoint of toughness, it is more preferably 0.02 to 0.15 wt%.

【0024】Mn:0.30〜0.70wt% Mnも強度の上昇に寄与する成分であり、強度確保の点か
ら0.30wt%以上の含有が必要であるが、0.70wt%を超え
ると靱性の低下をまねくため、0.30〜0.70wt%の範囲と
する。さらに好ましくは、0.50〜0.60wt%である。 Ni: 7.5〜12.0wt% Niは鋼に低温靱性を付与すると同時に、焼入れ処理によ
りマルテンサイトを主体とする組織を得るために含有さ
せる成分であり、 7.5wt%以上の含有が必要であるが、
12.0wt%を超えて含有してもその効果は飽和するため、
12.0wt%を上限とする。
Mn: 0.30 to 0.70 wt% Mn is also a component that contributes to an increase in strength, and it is necessary to contain 0.30 wt% or more from the viewpoint of securing strength, but if it exceeds 0.70 wt%, toughness may decrease. Therefore, the range is 0.30 to 0.70 wt%. More preferably, it is 0.50 to 0.60 wt%. Ni: 7.5 to 12.0 wt% Ni is a component that is added in order to impart low temperature toughness to steel and at the same time obtain a structure mainly composed of martensite by quenching treatment, and it is necessary to contain 7.5 wt% or more.
Even if the content exceeds 12.0wt%, its effect will be saturated,
The upper limit is 12.0wt%.

【0025】Al:0.01〜0.05wt% Alは脱酸剤として含有され、また鋼中でAlN となって結
晶粒を微細化する効果を有し、この効果を得るためには
0.01wt%以上の含有が必要であるが、0.05wt%を超える
と靱性の低下をまねくため、0.01〜0.05wt%の範囲とす
る。 P:0.005 wt%以下 Pは靱性を、とくに溶接熱影響部の靱性を低下させる成
分であるためできるだけ低減するが、0.005 wt%以下ま
で許容できるため、P含有量は0.005 wt%以下とする。
Al: 0.01 to 0.05 wt% Al is contained as a deoxidizing agent and has the effect of becoming AlN in steel to refine the crystal grains. To obtain this effect,
The content is required to be 0.01 wt% or more, but if it exceeds 0.05 wt%, toughness may be deteriorated, so the content is made 0.01 to 0.05 wt%. P: 0.005 wt% or less P reduces the toughness as much as possible because it is a component that lowers the toughness of the weld heat affected zone, but since it can be up to 0.005 wt% or less, the P content is 0.005 wt% or less.

【0026】S:0.002 wt%以下 SはMnS の形成により靱性を、とくに鋼板母材の靱性を
低下する成分であるためできるだけ低減する。本発明の
鋼板では、−196 ℃の衝撃試験においても延性破壊が支
配的となる。延性破壊エネルギーを高めるためには、介
在物の量の低減や形態制御が必要であることは知られて
いる。本発明ではSの低減によりMnS 量の低減をはか
り、低温靱性を向上させる。そのため、S含有量は0.00
2 wt%以下とする。
S: 0.002 wt% or less S is a component that lowers the toughness due to the formation of MnS, especially the toughness of the steel sheet base material, and therefore reduces it as much as possible. In the steel sheet of the present invention, ductile fracture becomes dominant even in an impact test at -196 ° C. It is known that in order to increase the ductile fracture energy, it is necessary to reduce the amount of inclusions and control the morphology. In the present invention, the amount of MnS is reduced by reducing S, and the low temperature toughness is improved. Therefore, the S content is 0.00
2 wt% or less.

【0027】N:0.005 wt%以下 Nは固溶状態では靱性を、とくに溶接熱影響部の靱性を
低下させるが、AlN となり結晶粒を微細化する作用も有
している。したがって、Nは結晶粒が粗大しない範囲で
できるだけ低減する。 0.005wt%以下、好ましくは 0.0
05〜0.003 wt%であれば粒の粗大化は生じないため、N
含有量は 0.005wt%以下とした。
N: 0.005 wt% or less N reduces the toughness in the solid solution state, particularly the toughness of the heat-affected zone of the weld, but also acts as AlN to refine the crystal grains. Therefore, N is reduced as much as possible within the range where the crystal grains are not coarse. 0.005 wt% or less, preferably 0.0
If it is 05 to 0.003 wt%, grain coarsening does not occur, so N
The content was 0.005 wt% or less.

【0028】本発明では、上記した組成に加えて、必要
に応じ下記元素を添加できる。 Cu:0.05〜0.30wt%、Mo:0.02〜0.20wt%、Cr:0.05〜
0.30wt%のうちから選ばれた1種以上 Cu、MoおよびCrはおのおの固溶硬化により強度を上昇さ
せるのに有効な成分である。Cuでは0.05wt%、Moでは0.
02wt%、Crでは0.05wt%以上含有することにより効果が
認められる。しかし、Cuでは0.30wt%、Moでは0.20wt
%、Crでは0.30wt%を超えると靱性が低下するため、こ
れらの値を上限とする。
In the present invention, in addition to the composition described above, the following elements can be added if necessary. Cu: 0.05-0.30wt%, Mo: 0.02-0.20wt%, Cr: 0.05-
One or more selected from 0.30 wt% Cu, Mo and Cr are effective components for increasing strength by solid solution hardening. Cu is 0.05 wt% and Mo is 0.
The effect is recognized when the content of 02 wt% and Cr is 0.05 wt% or more. However, 0.30 wt% for Cu and 0.20 wt% for Mo
%, And Cr, if over 0.30 wt%, the toughness decreases, so these values are made upper limits.

【0029】Nb, V: 0.005〜0.030 wt% Nb, Vは析出硬化あるいは結晶粒微細化による強度の上
昇に有効な成分で、さらに、靱性の向上にも効果を有し
ている。Vは0.005 wt%以上で有効であるが、0.030 wt
%を超えると溶接部の靱性が低下するため、0.030 wt%
を上限とする。
Nb, V: 0.005 to 0.030 wt% Nb, V is a component effective in increasing the strength due to precipitation hardening or grain refinement, and is also effective in improving the toughness. V is effective at 0.005 wt% or more, but 0.030 wt
%, The toughness of the weld will decrease, so 0.030 wt%
Is the upper limit.

【0030】[0030]

【実施例】以下、実施例をもとに説明する。表1に示す
化学組成の連鋳製鋼スラブを、表2に示す熱間圧延条件
で、板厚50〜100 mmの厚鋼板とした。その後、表2に示
す熱処理条件で、1次焼入れ、2次焼入れおよび焼戻し
処理を行った。2次焼入れの冷却速度は 2.2〜8.8 ℃/
secの範囲であった。
EXAMPLES Examples will be described below. The continuously cast steel slab having the chemical composition shown in Table 1 was formed into a thick steel plate having a plate thickness of 50 to 100 mm under the hot rolling conditions shown in Table 2. Then, under the heat treatment conditions shown in Table 2, primary quenching, secondary quenching and tempering were performed. Cooling rate of secondary quenching is 2.2-8.8 ℃ /
It was in the range of sec.

【0031】上記条件で処理した厚鋼板について、引張
特性(降伏強さ、引張強さ、伸び)およびシャルピー衝
撃試験の−196 ℃における吸収エネルギーを求め、それ
らの結果を表2に併記する。
The tensile properties (yield strength, tensile strength, elongation) and the absorbed energy at -196 ° C. of the Charpy impact test of the thick steel sheet treated under the above conditions were determined, and the results are also shown in Table 2.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】表2に示すように、本発明の適用例である
鋼板No. 1〜10は、降伏強さ590MPa以上、E-196 30kgf
・m以上と板厚50mm以上の厚鋼板でも優れた強度と靱性
を有している。これに対し、鋼板No. 11、12、13、14
は、2次焼入れ加熱時の生成オーステナイト量が70〜80
%の範囲のため、降伏強さが低下している。鋼板No. 15
は焼戻し温度が高すぎ、降伏強さが低く、鋼板No. 16は
焼戻し温度が低すぎるため、低温靱性が劣化している。
As shown in Table 2, steel sheets Nos. 1 to 10 to which the present invention is applied have a yield strength of 590 MPa or more and E -196 30 kgf.
-It has excellent strength and toughness even for thick steel plates with a thickness of m or more and a thickness of 50 mm or more. On the other hand, steel plate Nos. 11, 12, 13, 14
Is 70-80 in the amount of austenite produced during secondary quenching and heating.
The yield strength is reduced due to the range of%. Steel plate No. 15
The tempering temperature is too high and the yield strength is low, and the tempering temperature of steel sheet No. 16 is too low, so the low temperature toughness is deteriorated.

【0035】[0035]

【発明の効果】本発明によれば、50mm以上の厚鋼板にお
いても、優れた降伏強さと低温靱性を有する含Ni厚鋼板
が安定して得られ、実用に耐えうる厚鋼板を供給するこ
とができる。
According to the present invention, it is possible to stably obtain a Ni-containing thick steel sheet having excellent yield strength and low temperature toughness even in a thick steel sheet having a thickness of 50 mm or more, and to supply a thick steel sheet that can withstand practical use. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】2次焼入加熱時に生成するオーステナイト
(γ)量と−196 ℃における吸収エネルギー
v-196)と降伏強さ(YS)の関係を示すグラフで
ある。
FIG. 1 is a graph showing the relationship between the amount of austenite (γ) generated during secondary quenching heating, absorbed energy ( v E −196 ) at −196 ° C., and yield strength (YS).

【図2】2次焼入れ冷却速度と降伏強さ(YS)、引張
強さ(TS)の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the secondary quenching cooling rate and the yield strength (YS) and tensile strength (TS).

【図3】2次焼入れ冷却速度と降伏強さ(YS)、引張
強さ(TS)、−196 ℃における吸収エネルギー( v
-196)の関係を示すグラフである。
FIG. 3 Secondary quenching cooling rate and yield strength (YS), tensile strength (TS), absorbed energy at −196 ° C. ( v E
-196 ) is a graph showing the relationship.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 7.5〜12.0wt%Niを含有する含Ni厚鋼板
をAc3点以上の温度に加熱し冷却する1次焼入れ処理を
施し、ついでAc1+10℃以上、Ac3−10℃以下の温度範
囲でかつ該温度範囲で生成するオーステナイト(γ)量
が面積率で20〜65%とする加熱保持を行い、冷却する2
次焼入れ処理を施したのち、さらに500 ℃以上、(Ac1
−10℃)以下での焼戻し処理を行うことを特徴とする板
厚50mm以上の高降伏強さ、高靱性含Ni厚鋼板の製造方
法。
1. A primary quenching treatment in which a Ni-containing thick steel sheet containing 7.5 to 12.0 wt% Ni is heated to a temperature of Ac 3 points or higher and cooled, and then Ac 1 + 10 ° C. or higher and Ac 3 -10 ° C. or lower. In the temperature range of and the amount of austenite (γ) produced in the temperature range is 20 to 65% in area ratio, and is held by heating and cooled.
After the next quenching treatment, further (500 ° C or more, (Ac 1
A method for producing a high yield strength, high toughness Ni-containing steel plate having a plate thickness of 50 mm or more, characterized by performing a tempering treatment at -10 ° C or less.
【請求項2】 7.5〜12.0wt%Niを含有する含Ni厚鋼板
をAc3点以上の温度に加熱し冷却する1次焼入れ処理を
施し、ついでAc1+10℃以上、Ac3−10℃以下の温度範
囲でかつ該温度範囲で生成するオーステナイト(γ)量
が面積率で85〜95%とする加熱保持を行い、冷却する2
次焼入れ処理を施したのち、さらに500 ℃以上、(Ac1
−10℃)以下での焼戻し処理を行うことを特徴とする板
厚50mm以上の高降伏強さ、高靱性含Ni厚鋼板の製造方
法。
2. A Ni-containing thick steel sheet containing 7.5 to 12.0 wt% Ni is subjected to a primary quenching treatment of heating to a temperature of Ac 3 points or higher and cooling, and then Ac 1 + 10 ° C. or higher and Ac 3 -10 ° C. or lower. In the temperature range of and the amount of austenite (γ) generated in the temperature range is 85 to 95% in area ratio, and heating and holding are performed. 2
After the next quenching treatment, further (500 ° C or more, (Ac 1
A method for producing a high yield strength, high toughness Ni-containing steel plate having a plate thickness of 50 mm or more, characterized by performing a tempering treatment at -10 ° C or less.
JP6824596A 1996-03-25 1996-03-25 Production of high yield strength and high toughness nickel-containing thick steel plate Pending JPH09256039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6824596A JPH09256039A (en) 1996-03-25 1996-03-25 Production of high yield strength and high toughness nickel-containing thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6824596A JPH09256039A (en) 1996-03-25 1996-03-25 Production of high yield strength and high toughness nickel-containing thick steel plate

Publications (1)

Publication Number Publication Date
JPH09256039A true JPH09256039A (en) 1997-09-30

Family

ID=13368198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6824596A Pending JPH09256039A (en) 1996-03-25 1996-03-25 Production of high yield strength and high toughness nickel-containing thick steel plate

Country Status (1)

Country Link
JP (1) JPH09256039A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017197791A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 Ni steel for liquid hydrogen
JP2017197793A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 Ni steel for liquid hydrogen
JP2018080367A (en) * 2016-11-17 2018-05-24 新日鐵住金株式会社 Nickel-containing thick steel sheet for low temperature and manufacturing method therefor
WO2019039339A1 (en) * 2017-08-25 2019-02-28 株式会社神戸製鋼所 Method for production of ni-containing steel sheet
JP2019039065A (en) * 2017-08-25 2019-03-14 株式会社神戸製鋼所 MANUFACTURING METHOD OF Ni CONTAINING STEEL PLATE
KR20190056783A (en) * 2017-11-17 2019-05-27 주식회사 포스코 Low temperature steeel plate having excellent impact toughness property and method for manufacturing the same
KR20190056782A (en) * 2017-11-17 2019-05-27 주식회사 포스코 Cryogenic steel plate and method for manufacturing the same
US11371127B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11371121B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11371126B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11384416B2 (en) 2017-10-26 2022-07-12 Nippon Steel Corporation Nickel-containing steel for low temperature

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017197793A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 Ni steel for liquid hydrogen
JP2017197791A (en) * 2016-04-25 2017-11-02 新日鐵住金株式会社 Ni steel for liquid hydrogen
JP2018080367A (en) * 2016-11-17 2018-05-24 新日鐵住金株式会社 Nickel-containing thick steel sheet for low temperature and manufacturing method therefor
EP3674426A4 (en) * 2017-08-25 2020-12-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for production of ni-containing steel sheet
WO2019039339A1 (en) * 2017-08-25 2019-02-28 株式会社神戸製鋼所 Method for production of ni-containing steel sheet
JP2019039065A (en) * 2017-08-25 2019-03-14 株式会社神戸製鋼所 MANUFACTURING METHOD OF Ni CONTAINING STEEL PLATE
CN110997952B (en) * 2017-08-25 2021-09-03 株式会社神户制钢所 Method for producing Ni-containing steel sheet
CN110997952A (en) * 2017-08-25 2020-04-10 株式会社神户制钢所 Method for producing Ni-containing steel sheet
US11371121B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11371127B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11371126B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11384416B2 (en) 2017-10-26 2022-07-12 Nippon Steel Corporation Nickel-containing steel for low temperature
US11578391B2 (en) 2017-10-26 2023-02-14 Nippon Steel Corporation Nickel-containing steel for low temperature
US11578394B2 (en) 2017-10-26 2023-02-14 Nippon Steel Corporation Nickel-containing steel for low temperature
EP3712290A4 (en) * 2017-11-17 2020-09-23 Posco Cryogenic steel plate and method for manufacturing same
KR20190056782A (en) * 2017-11-17 2019-05-27 주식회사 포스코 Cryogenic steel plate and method for manufacturing the same
KR20190056783A (en) * 2017-11-17 2019-05-27 주식회사 포스코 Low temperature steeel plate having excellent impact toughness property and method for manufacturing the same
US11434557B2 (en) 2017-11-17 2022-09-06 Posco Low-temperature steel plate having excellent impact toughness, and method for manufacturing same
US11608549B2 (en) 2017-11-17 2023-03-21 Posco Co., Ltd Cryogenic steel plate and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP4317321B2 (en) Method for producing weldable super strong steel with excellent toughness
WO1995017532A1 (en) Rail of high abrasion resistance and high tenacity having pearlite metallographic structure and method of manufacturing the same
JP6989606B2 (en) High-strength steel with excellent fracture initiation and propagation resistance at low temperatures, and its manufacturing method
JP5741260B2 (en) Cryogenic steel material excellent in CTOD characteristics after imparting strain and method for producing the same
JP2020510749A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature and method for producing the same
JPH09256039A (en) Production of high yield strength and high toughness nickel-containing thick steel plate
JP4134355B2 (en) Manufacturing method of continuous cast tempered high strength steel plate with excellent toughness
JPH09143557A (en) Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JP2024500851A (en) Extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method
KR100957929B1 (en) Method for manufacturing high-tensile steel sheets having excellent low temperature toughness
JPH0941088A (en) Production of high toughness steel plate for low temperature use
JPH0920922A (en) Production of high toughness steel plate for low temperature use
CN115572901B (en) 630 MPa-grade high-tempering-stability low-carbon low-alloy steel plate and manufacturing method thereof
JPH0941036A (en) Production of high toughness steel sheet for low temperature use
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production
JPH05195058A (en) Production of thick steel plate having high toughness and high tensile strength
KR102498135B1 (en) High-strength steel material having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JPH06184630A (en) Production of thick 9% ni steel excellent in low temperature toughness
KR102349426B1 (en) Steel having excellent low-temperature fracture toughness and method of manufacturing the same
KR20000043762A (en) Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility
JPH05195156A (en) High-manganese ultrahigh tensile strength steel excellent in toughness in heat affected zone and its production
JPH0827517A (en) Heat treatment for 9%ni steel excellent in yield strength and toughness
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP2022510934A (en) Steel materials for pressure vessels with excellent hydrogen-induced crack resistance and their manufacturing methods