JPH0941088A - Production of high toughness steel plate for low temperature use - Google Patents
Production of high toughness steel plate for low temperature useInfo
- Publication number
- JPH0941088A JPH0941088A JP19545195A JP19545195A JPH0941088A JP H0941088 A JPH0941088 A JP H0941088A JP 19545195 A JP19545195 A JP 19545195A JP 19545195 A JP19545195 A JP 19545195A JP H0941088 A JPH0941088 A JP H0941088A
- Authority
- JP
- Japan
- Prior art keywords
- transformation point
- less
- toughness
- heat treatment
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、靱性に優れる低
温用鋼板の製造方法に関わり、特に液化天然ガス(LN
G)用鋼板など−160 ℃以下の極低温度域で使用して好
適な、低温用Ni含有鋼板の製造方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low temperature steel sheet having excellent toughness, and particularly to liquefied natural gas (LN
The present invention relates to a method for producing a Ni-containing steel sheet for low temperature, which is suitable for use in an extremely low temperature range of −160 ° C. or less such as a steel sheet for G).
【0002】[0002]
【従来の技術】LNGタンクなどに用いられる低温用鋼
材として、9%Ni鋼などのNi含有鋼板が古くから知られ
ている。低温用鋼材はいずれも、低温における高靱性が
要求されており、例えば9%Ni鋼では、ASTM A5
53や同A844に規格化されているように、再加熱焼
入れ−焼もどし処理(RQ−T)や直接焼入れ−焼もど
し処理(DQ−T)によって製造されるのが一般的であ
る。このほかに、再加熱焼きならし−焼もどし処理(R
N−T)も多用されている製造方法である。これら処理
法の中でも、特にRQ−T処理やRN−T処理などの再
加熱工程を含む熱処理は靱性向上の観点から好ましい製
造方法である。この他に、上記再加熱工程を含む製造法
においても、従来から、靱性向上のための努力が続けら
れてきた。例えば、特開昭58−73717号公報に
は、0.5〜10.0wt%のNiを含有する鋼を、Ac3点以上の
温度領域からの焼入れ処理(1次焼入れ)後、Ac1点以
上Ac3点以下の二相域から焼入れ(2次焼入れ)して、
焼もどし処理する方法が、また、特開平2−19412
1号公報には、低Si−低Mn化した鋼を、1次焼きならし
の後、2次焼きならしを行い、焼もどし処理する方法が
それぞれ提案されている。2. Description of the Related Art Ni-containing steel sheets such as 9% Ni steel have long been known as low-temperature steel materials used in LNG tanks and the like. All low-temperature steel materials are required to have high toughness at low temperatures. For example, 9% Ni steel requires ASTM A5
It is generally manufactured by reheating quenching-tempering treatment (RQ-T) or direct quenching-tempering treatment (DQ-T) as standardized in No. 53 and A844. In addition to this, reheating and normalizing-tempering (R
N-T) is also a frequently used manufacturing method. Among these treatment methods, heat treatment including a reheating step such as RQ-T treatment and RN-T treatment is a preferable manufacturing method from the viewpoint of improving toughness. In addition to this, even in the manufacturing method including the above-mentioned reheating step, efforts have been conventionally made to improve the toughness. For example, in JP-A-58-73717, steel containing 0.5 to 10.0 wt% of Ni is subjected to quenching treatment (primary quenching) from a temperature range of Ac 3 points or more, and then Ac 1 point or more Ac 3 Quench from the two-phase region below the point (secondary quench),
A method of performing tempering treatment is also disclosed in JP-A-2-19412.
Japanese Patent Laid-Open No. 1-1985 proposes a method of performing a normalizing process on a steel having a low Si-low Mn content, followed by a secondary normalizing process.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、近年、
低温靱性に対する要求はますます高まってきており、上
記既知技術によっては要求に見合う靱性(現在の要求特
性は、 vE-196=25 kgf・m級)を満足することが難し
くなってきた。また、従来の製造方法によって、例えば
20 kgf・m級以上の高靱性を得るためには、ある限られ
た熱処理温度範囲、具体的には焼入れ温度をAc3〜(A
c3+50℃)といった極めて狭い温度範囲に制御しないけ
れば達成できないという問題があった。However, in recent years,
The demand for low temperature toughness is increasing more and more, and it has become difficult to satisfy the toughness (currently required characteristic is vE-196 = 25 kgf · m class) that meets the requirement by the above-mentioned known techniques. Further, according to the conventional manufacturing method, for example,
In order to obtain a high toughness of 20 kgf · m or higher, a certain limited heat treatment temperature range, specifically, the quenching temperature is Ac 3 to (A
There was a problem that it could not be achieved unless it was controlled within an extremely narrow temperature range such as c 3 + 50 ° C.
【0004】この発明の目的は、再加熱工程を含む熱処
理をによる9%Ni鋼の製造にあたり、低温靱性を改善す
るとともに、焼入れ、焼きならし等の熱処理温度範囲を
広範囲に許容しうる製造技術を提案するものである。The object of the present invention is to improve the low temperature toughness in the production of 9% Ni steel by a heat treatment including a reheating step, and to allow a wide range of heat treatment temperature ranges such as quenching and normalizing. Is proposed.
【0005】[0005]
【課題を解決するための手段】さて発明者らは、まず、
従来の方法で製造した9%Ni鋼では、高い低温靱性が得
難く、また所望の低温靱性を得るための焼き入れ条件が
極めて狭い温度範囲に制限される原因について追求した
結果、鋼板中の成分偏析に因るものであることをつきと
めた。すなわち、造塊時にデンドライト組織が形成さ
れ、Ni, Mnなどの偏析がおこり、これらの偏析は圧延、
熱処理後も厚さ方向に層状となって残る。この偏析の程
度は、例えば、Niを 9.0wt%含有する鋼であれば、厚さ
方向で8.0 〜10.8wt%ものNi量の差を生ずる。このよう
なNi濃度の違いから、厚さ方向の変態点の差が生じ、最
終組織も不均一となる。このために、鋼板の最終組織を
均一にし、高靱性を得るためには、焼入れ温度は狭い範
囲に限定されていたのである。そこで、発明者らは、上
記原因の解消のための製造条件について鋭意検討した結
果、特に、Ni, Mnなどの成分偏析を拡散熱処理により低
減し、鋼組織の均一化を図ることによって、靱性の向上
と、熱処理( 焼入れまたは焼きならし) 温度条件の緩和
を図ることが可能であるとの結論に達し、この発明を完
成するに到った。その要旨構成は以下のとおりである。[Means for Solving the Problems] First, the inventors
In the 9% Ni steel manufactured by the conventional method, it was difficult to obtain high low temperature toughness, and as a result of pursuing the reason that the quenching conditions for obtaining the desired low temperature toughness are limited to an extremely narrow temperature range, the components in the steel sheet We found that it was due to segregation. That is, a dendrite structure is formed during ingot formation, segregation of Ni, Mn, etc. occurs, and these segregations are rolled,
After the heat treatment, it remains as a layer in the thickness direction. With respect to the degree of this segregation, for example, in the case of steel containing 9.0 wt% of Ni, a difference in Ni amount of 8.0 to 10.8 wt% occurs in the thickness direction. Due to such a difference in Ni concentration, a difference in transformation point in the thickness direction occurs, and the final structure also becomes nonuniform. Therefore, in order to make the final structure of the steel sheet uniform and to obtain high toughness, the quenching temperature was limited to a narrow range. Therefore, as a result of diligent studies on the manufacturing conditions for eliminating the above causes, the inventors have reduced the segregation of components such as Ni and Mn by diffusion heat treatment, and attempted to make the steel structure uniform by reducing the toughness. We have reached the conclusion that it is possible to improve and relax the heat treatment (quenching or normalizing) temperature conditions, and have completed the present invention. The summary structure is as follows.
【0006】(1) C:0.04〜0.12wt%、 Si:0.02〜0.
80wt%、Mn:0.05〜0.8 wt%、 P:0.01wt%以下、
S:0.005 wt%以下、 Ni:6.5 〜12.0wt%、Al:0.01
〜0.10wt%およびN:0.0035wt%以下を含有し、残部は
実質的にFeからなるスラブを、1200〜1350℃で24hr以上
保持する拡散熱処理を施して室温まで冷却し、次いで所
定板厚まで熱間圧延し、その後Ac3変態点〜(Ac3変態
点+200 ℃)の温度範囲に加熱後冷却し、次いで 450℃
〜(Ac1変態点+70℃)の温度範囲で焼もどすことを特
徴とする高靱性低温用鋼板の製造方法。(1) C: 0.04 to 0.12 wt%, Si: 0.02 to 0.
80 wt%, Mn: 0.05 to 0.8 wt%, P: 0.01 wt% or less,
S: 0.005 wt% or less, Ni: 6.5 to 12.0 wt%, Al: 0.01
~ 0.10 wt% and N: 0.0035 wt% or less, the balance consisting essentially of Fe is subjected to a diffusion heat treatment of holding at 1200 to 1350 ° C for 24 hours or more, cooled to room temperature, and then to a predetermined plate thickness. Hot rolling, heating to a temperature range from Ac 3 transformation point to (Ac 3 transformation point + 200 ° C), then cooling, and then 450 ° C
A method for producing a high-toughness low-temperature steel sheet, which comprises tempering in a temperature range of to (Ac 1 transformation point + 70 ° C).
【0007】(2) C:0.04〜0.12wt%、 Si:0.02〜0.
80wt%、Mn:0.05〜0.8 wt%、 P:0.01wt%以下、
S:0.005 wt%以下、 Ni:6.5 〜12.0wt%、Al:0.01
〜0.10wt%およびN:0.0035wt%以下を含み、さらにN
b:0.005 〜0.06wt%、V:0.005 〜0.07wt%およびC
u:0.05〜0.50wt%のうちから選ばれる1種または2種
以上を含有し、残部は実質的にFeからなるスラブを、12
00〜1350℃で24hr以上保持する拡散熱処理を施して室温
まで冷却し、次いで所定板厚まで熱間圧延し、その後A
c3変態点〜(Ac3変態点+200 ℃)の温度範囲に加熱後
冷却し、次いで 450℃〜(Ac1変態点+70℃)の温度範
囲で焼もどすことを特徴とする高靱性低温用鋼板の製造
方法。(2) C: 0.04 to 0.12 wt%, Si: 0.02 to 0.
80 wt%, Mn: 0.05 to 0.8 wt%, P: 0.01 wt% or less,
S: 0.005 wt% or less, Ni: 6.5 to 12.0 wt%, Al: 0.01
Up to 0.10 wt% and N: 0.0035 wt% or less, and further N
b: 0.005-0.06wt%, V: 0.005-0.07wt% and C
u: a slab containing one or more selected from 0.05 to 0.50 wt% and the balance consisting essentially of Fe, 12
Diffusion heat treatment is carried out at 00 to 1350 ° C for 24 hours or more, cooling is performed to room temperature, and then hot rolling is performed to a predetermined plate thickness.
Steel sheet for high toughness low temperature, characterized by heating to a temperature range of c 3 transformation point to (Ac 3 transformation point + 200 ° C), cooling, and then tempering in a temperature range of 450 ° C to (Ac 1 transformation point + 70 ° C). Manufacturing method.
【0008】[0008]
【発明の実施の形態】まず、この発明における鋼の成分
組成の限定理由について説明する。 C:0.04〜0.12wt% Cは、十分な高張力を得るために有用な元素である。C
含有量が0.04wt%未満では、強度確保の上からSi, Mnを
増加する必要が生じて、前述したとおり 700〜900 ℃に
加熱された部分の靱性が低くなるという問題があり、一
方、0.12wt%を超えても靱性が低下するので、0.04〜0.
12wt%の範囲とする。なお、C含有量の好ましい範囲は
0.05〜0.09wt%である。BEST MODE FOR CARRYING OUT THE INVENTION First, the reasons for limiting the composition of steel in the present invention will be explained. C: 0.04 to 0.12 wt% C is an element useful for obtaining a sufficiently high tension. C
If the content is less than 0.04 wt%, it is necessary to increase Si and Mn in order to secure the strength, and as described above, there is a problem that the toughness of the part heated to 700 to 900 ° C becomes low. Even if it exceeds wt%, toughness decreases, so 0.04 to 0.
The range is 12wt%. The preferred range of C content is
It is 0.05 to 0.09 wt%.
【0009】Si:0.02〜0.80wt% Siは、溶接部靱性に悪影響を及ぼすので減少させるのが
好ましいが、0.02wt%未満にしても漸進的効果は認めら
れないので下限を0.02wt%とした。一方、0.80wt%を超
えると、かえって靱性の劣化を招くだけでなく、強度を
過剰に上昇させるので、0.80wt%を上限とする。なお、
Si含有量の好ましい範囲は0.1 〜0.5 wt%である。Si: 0.02 to 0.80 wt% Si has an adverse effect on the toughness of the welded portion, so it is preferable to reduce it. However, even if it is less than 0.02 wt%, no gradual effect is observed, so the lower limit was made 0.02 wt%. . On the other hand, if it exceeds 0.80 wt%, not only the toughness is deteriorated but also the strength is excessively increased, so 0.80 wt% is made the upper limit. In addition,
The preferable range of Si content is 0.1 to 0.5 wt%.
【0010】Mn:0.05〜0.8 wt% Mnは、Siと同様に溶接部靱性に悪影響を及ぼすので減少
させるのが好ましいが、0.05wt%未満に低減しても漸進
的効果を示さないので、下限を0.05wt%とした。一方、
0.8 wt%を超えて添加すると靱性を劣化させるだけでな
く、強度を過剰に上昇させるため、0.8 wt%を上限とし
た。Mnはこの範囲で低減すれば漸進的に溶接部靱性を改
善し、特に0.3 wt%以下の範囲でその効果が顕著であ
る。Mn: 0.05-0.8 wt% Mn, like Si, adversely affects the toughness of the weld zone, so it is preferable to reduce it, but even if it is reduced to less than 0.05 wt% it does not show a gradual effect, so the lower limit is Was set to 0.05 wt%. on the other hand,
The addition of more than 0.8 wt% not only deteriorates the toughness but also increases the strength excessively, so 0.8 wt% was made the upper limit. If Mn is reduced in this range, the toughness of the welded portion is gradually improved, and the effect is remarkable especially in the range of 0.3 wt% or less.
【0011】P:0.01wt%以下、S:0.005 wt%以下 P, Sは、いずれも母材および溶接部の靱性を害するの
で極力低減することが望ましいが、それぞれ0.01wt%以
下、0.005 wt%以下の範囲で許容できる。好ましくは、
それぞれ0.005 wt%以下、0.002 wt%以下に制限するの
がよい。P: 0.01 wt% or less, S: 0.005 wt% or less P and S both impair the toughness of the base material and the welded portion, so it is desirable to reduce them as much as possible, but 0.01 wt% or less and 0.005 wt% respectively. The following range is acceptable. Preferably,
It is recommended to limit the content to 0.005 wt% or less and 0.002 wt% or less, respectively.
【0012】Ni:6.5 〜12.0wt% Niは、この発明の低温用鋼には必須の元素であり、低温
における靱性の確保に著効を有するが、6.5 wt%未満で
はその効果は乏しく、一方12.0wt%を超えて添加しても
その効果は飽和し、不経済でもあるので、6.5 〜12.0wt
%の範囲に限定する。なお、Ni含有量の好ましい範囲は
7.5 〜10.0wt%である。Ni: 6.5 to 12.0 wt% Ni is an essential element for the steel for low temperature use of the present invention, and has a remarkable effect in securing toughness at low temperatures, but if it is less than 6.5 wt%, its effect is poor. Even if added in excess of 12.0wt%, its effect is saturated and it is uneconomical, so 6.5-12.0wt%
%. The preferred range of Ni content is
7.5 to 10.0 wt%.
【0013】Al:0.01〜0.10wt% Alは、鋼の脱酸に必要な元素である。Alの添加量が、0.
01wt%未満ではその効果に乏しく、一方0.10wt%を超え
ると清浄性を損なうので、0.01〜0.10wt%の範囲とす
る。Al: 0.01 to 0.10 wt% Al is an element necessary for deoxidizing steel. The amount of Al added is 0.
If it is less than 01 wt%, the effect is poor, while if it exceeds 0.10 wt%, the cleanliness is impaired, so the range is 0.01 to 0.10 wt%.
【0014】N:0.0035wt%以下 Nは、可動転位を増加させ、また、島状マルテンサイト
を増加させて靱性を劣化させる元素である。N含有量が
0.0035wt%を超えると、とくに 700〜900 ℃の温度範囲
に加熱される熱影響部の靱性を低下させるので、上限を
0.0035wt%とする。N: 0.0035 wt% or less N is an element that increases mobile dislocations and increases island martensite to deteriorate toughness. N content is
Above 0.0035 wt%, especially in the temperature range of 700 to 900 ° C
Since it lowers the toughness of the heat-affected zone that is heated to
The amount is 0.0035wt%.
【0015】上記C, Si,Mn,P, S, Ni, Al, Nをこ
の発明における鋼の基本成分とするが、さらに、Nb、V
およびCuのうち少なくとも1種を含有させることもでき
る。これらの限定理由について次に説明する。The above C, Si, Mn, P, S, Ni, Al, and N are the basic components of the steel in the present invention.
It is also possible to contain at least one of Cu and Cu. The reasons for these limitations will be described below.
【0016】Nb:0.0055〜0.06wt% Nbは、析出強化により強度を向上させるのに有効に寄与
するが、0.005 wt%未満では添加効果が少なく、一方0.
06wt%を超えるとかえって靱性を損なうので、0.0055〜
0.06wt%、好ましくは0.008 〜0.03wt%とする。Nb: 0.0055 to 0.06 wt% Nb effectively contributes to improving the strength by precipitation strengthening, but if it is less than 0.005 wt%, the addition effect is small, while
If it exceeds 06wt%, the toughness will be impaired, so 0.0055〜
The amount is 0.06 wt%, preferably 0.008 to 0.03 wt%.
【0017】V:0.005 〜0.07wt% Vは、析出強化により強度を向上させるのに有効な元素
である。Vの添加量が0.005 wt%未満ではその効果が少
なく、一方0.07wt%を超えるとかえって靱性を損なうの
で、0.005 〜0.07wt%、好ましくは0.008 〜0.03wt%と
する。V: 0.005 to 0.07 wt% V is an element effective for improving the strength by precipitation strengthening. If the addition amount of V is less than 0.005 wt%, its effect is small, while if it exceeds 0.07 wt%, the toughness is impaired, so 0.005 to 0.07 wt%, preferably 0.008 to 0.03 wt% is set.
【0018】Cu:0.05〜0.50wt% Cuは、焼入れ性向上により強度を改善するのに有効な元
素であるが、0.05wt%未満ではその添加効果に乏しく、
一方0.50wt%を超えるとかえって靱性を損なうので、0.
05〜0.50wt%、好ましくは0.05〜0.10wt%とする。Cu: 0.05 to 0.50 wt% Cu is an element effective for improving the strength by improving the hardenability, but if it is less than 0.05 wt%, its effect of addition is poor.
On the other hand, if it exceeds 0.50 wt%, the toughness is rather deteriorated.
It is set to 05 to 0.50 wt%, preferably 0.05 to 0.10 wt%.
【0019】以上述べた成分範囲になる鋼を、拡散熱処
理ののち、再加熱熱処理を行うことによって目指した目
的が達成される。以下にこれらの製造条件について説明
する。 ・拡散熱処理 この発明法における重要なポイントは、再加熱熱処理に
先立って、拡散熱処理を施すところにある。拡散熱処理
条件は、1200〜1350℃の温度範囲に加熱して24hr以上保
持した後室温まで空冷する。加熱温度が1200℃未満で
は、Niの拡散速度が急激に低下するために成分の均一化
が困難となる。一方、1350℃を超えて加熱すると長時間
の加熱に対して鋼塊自体が溶解してしまう可能性をはら
んでいるので、拡散焼鈍処理は1200〜1350℃の温度範
囲、好ましくは1300〜1350℃の温度範囲とする。また、
保持時間が24hr未満ではNiの拡散が十分ではなく、成分
が均一化されないため、保持時間は24hr以上、好ましく
は36〜48hrとする。なお、拡散焼鈍後一旦室温まで
冷却するのは、焼鈍後に粗大化した結晶粒を圧延前の再
加熱により細粒化するためである。The intended purpose can be achieved by subjecting the steel having the above-mentioned compositional range to the diffusion heat treatment and then the reheating heat treatment. These manufacturing conditions will be described below. Diffusion heat treatment An important point in this invention method is that the diffusion heat treatment is performed prior to the reheating heat treatment. The diffusion heat treatment conditions are heating within a temperature range of 1200 to 1350 ° C., holding for 24 hours or more, and then air cooling to room temperature. If the heating temperature is less than 1200 ° C., it becomes difficult to make the components uniform because the diffusion rate of Ni sharply decreases. On the other hand, since the steel ingot itself may be melted by heating for a long time when heated above 1350 ° C, the diffusion annealing treatment is performed in the temperature range of 1200 to 1350 ° C, preferably 1300 to 1350. The temperature range is ° C. Also,
When the holding time is less than 24 hours, the diffusion of Ni is not sufficient and the components are not made uniform. Therefore, the holding time is set to 24 hours or more, preferably 36 to 48 hours. Note that the reason for temporarily cooling to room temperature after the diffusion annealing is to make the crystal grains coarsened after the annealing finer by reheating before rolling.
【0020】・熱間圧延後の再加熱熱処理 上記拡散熱処理ののち、引き続いて通常の熱間圧延を施
し、鋼板とする。この鋼板を、まずAc3変態点〜(Ac3
変態点+200 ℃)の温度範囲に加熱後冷却(水冷、空冷
など)する再加熱熱処理を施す。加熱温度がAc3変態点
未満では、鋼のオーステナイト化が不完全となり、最終
的に粗大な炭化物を有する高温焼もどしマルテンサイト
を含んだ組織となり、靱性および強度に悪影響を及ぼ
す。また、(Ac3変態点+200 ℃)を超えて加熱する
と、オーステナイト粒が粗大化して低温靱性に悪影響を
およぼす。このため、加熱温度範囲はAc3変態点〜(A
c3変態点+200 ℃)、好ましくはAc3変態点〜(Ac3変
態点+100 ℃)とする。Reheating heat treatment after hot rolling After the above diffusion heat treatment, ordinary hot rolling is subsequently performed to obtain a steel sheet. This steel sheet is first subjected to the Ac 3 transformation point ~ (Ac 3
Reheat heat treatment is performed by heating (water cooling, air cooling, etc.) after heating in the temperature range of transformation point + 200 ° C. If the heating temperature is below the Ac 3 transformation point, the austenitization of the steel will be incomplete, and the structure will eventually contain a high temperature tempered martensite containing coarse carbides, adversely affecting toughness and strength. Further, if heating is performed above (Ac 3 transformation point + 200 ° C.), the austenite grains are coarsened and the low temperature toughness is adversely affected. Therefore, the heating temperature range is from the Ac 3 transformation point to (A
c 3 transformation point + 200 ° C.), preferably Ac 3 transformation point to (Ac 3 transformation point + 100 ° C.).
【0021】・焼もどし 上記再加熱熱処理の後、 450℃以上(Ac1点変態点+70
℃)以下の条件で焼もどし処理を施す。焼もどし処理温
度が450 ℃未満では十分な靱性が確保できず、一方、
(Ac1点変態点+70℃)を超えると強度が低下してしま
う。· Tempering After the above reheating heat treatment, 450 ℃ or more (Ac 1 point transformation point +70
Tempering treatment is performed under the following conditions. If the tempering temperature is less than 450 ° C, sufficient toughness cannot be secured, while
If it exceeds (Ac 1 point transformation point + 70 ° C), the strength decreases.
【0022】[0022]
【実施例】表1に示す化学組成になる鋼を、表2に示す
条件で拡散焼鈍熱処理して室温まで冷却し, 加熱、圧延
して鋼板とし、再加熱熱処理を行い、その後焼もどし処
理を施した。なお、上記熱処理時の保持時間は70min で
冷却は水冷とし、焼もどし時の保持時間は70min で冷却
は空冷とした。[Examples] Steels having the chemical compositions shown in Table 1 were subjected to diffusion annealing heat treatment under the conditions shown in Table 2, cooled to room temperature, heated and rolled into steel sheets, subjected to reheat heat treatment, and then tempered. gave. The holding time during the heat treatment was 70 min, the cooling was water cooling, and the holding time during the tempering was 70 min, and the cooling was air cooling.
【0023】[0023]
【表1】 [Table 1]
【0024】[0024]
【表2】 [Table 2]
【0025】得られた各鋼板について、母材の引張特性
およびシャルピー衝撃特性を調査した。結果を表2に合
わせて示す。表2において、発明法を適用し拡散焼鈍熱
処理を施したNo. 1〜9の場合には、 vE-196はすべて
25 kgf・mを超える値を示している。また、拡散焼鈍に
より組織が均一化されているから、示されるように熱処
理の温度が広い範囲で許容される。これに対し、No.10
〜13、に代表される比較法及び従来法の vE-196は、す
べて18〜20 kgf・mとなっている。また、許容される熱
処理温度範囲も狭い。なお、比較法は、拡散焼鈍処理時
の加熱温度が低過ぎたか、あるいは保持時間が短過ぎた
ものである。従来法は拡散焼鈍処理を施さなかったもの
である。The tensile properties and Charpy impact properties of the base metal of each of the obtained steel sheets were investigated. The results are shown in Table 2. In Table 2, in the case of Nos. 1 to 9 in which the invention method is applied and the diffusion annealing heat treatment is applied, vE-196 is all
The value exceeds 25 kgf ・ m. Further, since the structure is made uniform by diffusion annealing, the temperature of heat treatment is allowed in a wide range as shown. In contrast, No.10
The vE-196 of the comparative method typified by ~ 13, and vE-196 of the conventional method all have 18 to 20 kgf · m. Also, the allowable heat treatment temperature range is narrow. In the comparison method, the heating temperature during the diffusion annealing treatment was too low or the holding time was too short. The conventional method is one in which no diffusion annealing treatment is applied.
【0026】[0026]
【発明の効果】かくしてこの発明に従う製造方法によれ
ば、低温靱性に優れた鋼板が再加熱熱処理法により製造
することが可能となる。しかも、熱処理(焼き入れまた
は焼きならし)温度範囲を広範囲に許容できるので、焼
き入れ処理等の再加熱熱処理がしやすく、製造性が改善
されるので、産業上の寄与は極めて大きい。As described above, according to the manufacturing method of the present invention, a steel sheet having excellent low temperature toughness can be manufactured by the reheating heat treatment method. In addition, since the heat treatment (quenching or normalizing) temperature range can be allowed in a wide range, reheating heat treatment such as quenching treatment is easy and the manufacturability is improved, so that the industrial contribution is extremely large.
Claims (2)
%、 Mn:0.05〜0.8 wt%、 P:0.01wt%以下、 S:0.005 wt%以下、 Ni:6.5 〜12.0wt%、 Al:0.01〜0.10wt%およびN:0.0035wt%以下を含有
し、残部は実質的にFeからなるスラブを、1200〜1350℃
で24hr以上保持する拡散熱処理を施して室温まで冷却
し、次いで所定板厚まで熱間圧延し、その後Ac3変態点
〜(Ac3変態点+200 ℃)の温度範囲に加熱後冷却し、
次いで 450℃〜(Ac1変態点+70℃)の温度範囲で焼も
どすことを特徴とする高靱性低温用鋼板の製造方法。1. C: 0.04 to 0.12 wt%, Si: 0.02 to 0.80 wt%
%, Mn: 0.05 to 0.8 wt%, P: 0.01 wt% or less, S: 0.005 wt% or less, Ni: 6.5 to 12.0 wt%, Al: 0.01 to 0.10 wt% and N: 0.0035 wt% or less, The rest is a slab consisting essentially of Fe, 1200-1350 ℃
Diffusion heat treatment for 24 hours or more, cooling to room temperature, hot rolling to a predetermined plate thickness, heating to a temperature range from Ac 3 transformation point to (Ac 3 transformation point + 200 ° C), and then cooling.
Next, a method for producing a high-toughness low-temperature steel sheet, which comprises tempering in a temperature range of 450 ° C to (Ac 1 transformation point + 70 ° C).
%、 Mn:0.05〜0.8 wt%、 P:0.01wt%以下、 S:0.005 wt%以下、 Ni:6.5 〜12.0wt%、 Al:0.01〜0.10wt%およびN:0.0035wt%以下を含み、
さらにNb:0.005 〜0.06wt%、V:0.005 〜0.07wt%お
よびCu:0.05〜0.50wt%のうちから選ばれる1種または
2種以上を含有し、残部は実質的にFeからなるスラブ
を、1200〜1350℃で24hr以上保持する拡散熱処理を施し
て室温まで冷却し、次いで所定板厚まで熱間圧延し、そ
の後Ac3変態点〜(Ac3変態点+200 ℃)の温度範囲に
加熱後冷却し、次いで 450℃〜(Ac1変態点+70℃)の
温度範囲で焼もどすことを特徴とする高靱性低温用鋼板
の製造方法。2. C: 0.04 to 0.12 wt%, Si: 0.02 to 0.80 wt
%, Mn: 0.05 to 0.8 wt%, P: 0.01 wt% or less, S: 0.005 wt% or less, Ni: 6.5 to 12.0 wt%, Al: 0.01 to 0.10 wt% and N: 0.0035 wt% or less,
Furthermore, a slab containing one or more selected from Nb: 0.005 to 0.06 wt%, V: 0.005 to 0.07 wt% and Cu: 0.05 to 0.50 wt%, and the balance substantially consisting of Fe, Diffusion heat treatment at 1200 to 1350 ° C for 24 hours or more, cooling to room temperature, then hot rolling to a prescribed plate thickness, and then heating and cooling to a temperature range of Ac 3 transformation point to (Ac 3 transformation point + 200 ° C). And then tempering in the temperature range of 450 ° C to (Ac 1 transformation point + 70 ° C).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19545195A JPH0941088A (en) | 1995-07-31 | 1995-07-31 | Production of high toughness steel plate for low temperature use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19545195A JPH0941088A (en) | 1995-07-31 | 1995-07-31 | Production of high toughness steel plate for low temperature use |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0941088A true JPH0941088A (en) | 1997-02-10 |
Family
ID=16341292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19545195A Pending JPH0941088A (en) | 1995-07-31 | 1995-07-31 | Production of high toughness steel plate for low temperature use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0941088A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008081776A (en) * | 2006-09-27 | 2008-04-10 | Jfe Steel Kk | METHOD FOR MANUFACTURING Ni-CONTAINING STEEL SHEET |
WO2012005330A1 (en) | 2010-07-09 | 2012-01-12 | 新日本製鐵株式会社 | Ni-CONTAINING STEEL SHEET AND PROCESS FOR PRODUCING SAME |
CN102766802A (en) * | 2012-08-06 | 2012-11-07 | 山西太钢不锈钢股份有限公司 | Low-temperature high-nickel steel plate and production method thereof |
US9260771B2 (en) | 2011-09-28 | 2016-02-16 | Nippon Steel & Sumitomo Metal Corporation | Ni-added steel plate and method of manufacturing the same |
JP2017197793A (en) * | 2016-04-25 | 2017-11-02 | 新日鐵住金株式会社 | Ni steel for liquid hydrogen |
JP2017197790A (en) * | 2016-04-25 | 2017-11-02 | 新日鐵住金株式会社 | Ni steel for liquid hydrogen |
JP2017197792A (en) * | 2016-04-25 | 2017-11-02 | 新日鐵住金株式会社 | Ni steel for liquid hydrogen |
JP2017197791A (en) * | 2016-04-25 | 2017-11-02 | 新日鐵住金株式会社 | Ni steel for liquid hydrogen |
US11371121B2 (en) | 2017-10-26 | 2022-06-28 | Nippon Steel Corporation | Nickel-containing steel for low temperature |
US11371127B2 (en) | 2017-10-26 | 2022-06-28 | Nippon Steel Corporation | Nickel-containing steel for low temperature |
US11371126B2 (en) | 2017-10-26 | 2022-06-28 | Nippon Steel Corporation | Nickel-containing steel for low temperature |
US11384416B2 (en) | 2017-10-26 | 2022-07-12 | Nippon Steel Corporation | Nickel-containing steel for low temperature |
-
1995
- 1995-07-31 JP JP19545195A patent/JPH0941088A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008081776A (en) * | 2006-09-27 | 2008-04-10 | Jfe Steel Kk | METHOD FOR MANUFACTURING Ni-CONTAINING STEEL SHEET |
WO2012005330A1 (en) | 2010-07-09 | 2012-01-12 | 新日本製鐵株式会社 | Ni-CONTAINING STEEL SHEET AND PROCESS FOR PRODUCING SAME |
US8882942B2 (en) | 2010-07-09 | 2014-11-11 | Nippon Steel & Sumitomo Metal Corporation | Ni-added steel plate and method of manufacturing the same |
US9260771B2 (en) | 2011-09-28 | 2016-02-16 | Nippon Steel & Sumitomo Metal Corporation | Ni-added steel plate and method of manufacturing the same |
CN102766802A (en) * | 2012-08-06 | 2012-11-07 | 山西太钢不锈钢股份有限公司 | Low-temperature high-nickel steel plate and production method thereof |
JP2017197790A (en) * | 2016-04-25 | 2017-11-02 | 新日鐵住金株式会社 | Ni steel for liquid hydrogen |
JP2017197793A (en) * | 2016-04-25 | 2017-11-02 | 新日鐵住金株式会社 | Ni steel for liquid hydrogen |
JP2017197792A (en) * | 2016-04-25 | 2017-11-02 | 新日鐵住金株式会社 | Ni steel for liquid hydrogen |
JP2017197791A (en) * | 2016-04-25 | 2017-11-02 | 新日鐵住金株式会社 | Ni steel for liquid hydrogen |
US11371121B2 (en) | 2017-10-26 | 2022-06-28 | Nippon Steel Corporation | Nickel-containing steel for low temperature |
US11371127B2 (en) | 2017-10-26 | 2022-06-28 | Nippon Steel Corporation | Nickel-containing steel for low temperature |
US11371126B2 (en) | 2017-10-26 | 2022-06-28 | Nippon Steel Corporation | Nickel-containing steel for low temperature |
US11384416B2 (en) | 2017-10-26 | 2022-07-12 | Nippon Steel Corporation | Nickel-containing steel for low temperature |
US11578394B2 (en) | 2017-10-26 | 2023-02-14 | Nippon Steel Corporation | Nickel-containing steel for low temperature |
US11578391B2 (en) | 2017-10-26 | 2023-02-14 | Nippon Steel Corporation | Nickel-containing steel for low temperature |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3857939B2 (en) | High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate | |
JP5069863B2 (en) | 490 MPa class low yield ratio cold-formed steel pipe excellent in weldability and manufacturing method thereof | |
JPH10509768A (en) | High strength secondary hardened steel with excellent toughness and weldability | |
JP2008208454A (en) | High-strength steel excellent in delayed fracture resistance and its production method | |
JP4529549B2 (en) | Manufacturing method of high-strength cold-rolled steel sheets with excellent ductility and hole-expansion workability | |
JP2003013138A (en) | Method for manufacturing steel sheet for high-strength line pipe | |
JP2003253331A (en) | Method for manufacturing high-tensile-strength steel with high toughness and high ductility | |
JP2004010991A (en) | Method of producing ultrahigh strength cold rolled steel sheet having excellent spot weldability | |
JP2020509181A (en) | Sour-resistant thick steel plate excellent in low-temperature toughness and post-heat treatment characteristics and method for producing the same | |
JPH0941088A (en) | Production of high toughness steel plate for low temperature use | |
JPH0941036A (en) | Production of high toughness steel sheet for low temperature use | |
JPH0920922A (en) | Production of high toughness steel plate for low temperature use | |
JP2004018912A (en) | High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same | |
JPH09143557A (en) | Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength | |
JPH01184226A (en) | Production of steel sheet having high-ductility high-strength multiple structure | |
JP3422864B2 (en) | Stainless steel with excellent workability and method for producing the same | |
JPH0827517A (en) | Heat treatment for 9%ni steel excellent in yield strength and toughness | |
JPH07216451A (en) | Production of stainless steel material having high welding softening resistance, high strength, and high ductility | |
JPH0717947B2 (en) | Low yield ratio high strength steel sheet manufacturing method | |
JP2020503445A (en) | Thick steel material having excellent tensile strength of 450 MPa class having excellent resistance to hydrogen-induced cracking and method for producing the same | |
KR100447925B1 (en) | Method of manufacturing high strength steel with high toughness | |
JPH07233414A (en) | Production of low yield ratio high tensile strength steel plate excellent in uniform elongation | |
KR950003547B1 (en) | Making method of low temperature ni-steel | |
KR20240098674A (en) | Steel sheet and method for manufacturing the same | |
KR20220088201A (en) | Steel sheet and steel pipe having uniforme tensile properties and excellent transverse crack resistance onto welded part and method for manufacturing thereof |