JP3739997B2 - High-tensile steel plate with excellent weldability - Google Patents

High-tensile steel plate with excellent weldability Download PDF

Info

Publication number
JP3739997B2
JP3739997B2 JP2000153714A JP2000153714A JP3739997B2 JP 3739997 B2 JP3739997 B2 JP 3739997B2 JP 2000153714 A JP2000153714 A JP 2000153714A JP 2000153714 A JP2000153714 A JP 2000153714A JP 3739997 B2 JP3739997 B2 JP 3739997B2
Authority
JP
Japan
Prior art keywords
less
heat input
present
base material
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000153714A
Other languages
Japanese (ja)
Other versions
JP2001335883A (en
Inventor
等 畑野
浩一 槙井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000153714A priority Critical patent/JP3739997B2/en
Publication of JP2001335883A publication Critical patent/JP2001335883A/en
Application granted granted Critical
Publication of JP3739997B2 publication Critical patent/JP3739997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶接性(大入熱HAZ靭性および耐溶接割れ性)に優れた590MPa以上の鋼板(以下、単に「590MPa級鋼板」と称す)に関するものである。本発明の高張力鋼板は、特に建築物、橋梁などの大型構造物に好適に用いられる。
【0002】
【従来の技術】
590MPa級鋼板では、母材強度の確保という観点から合金成分を多量に添加するため、冷却速度の速い小入熱溶接条件ではHAZ(溶接熱影響部)が硬化して溶接割れ(低温割れ)が生じやすく、かかる溶接割れの防止を目的として、溶接施工時に75℃程度の予熱を行う必要がある。従って、この予熱工程を省略できれば施工効率が大幅に向上し、且つコストダウンにもつながるため、耐溶接割れ性に優れた590MPa級鋼板の提供が切望されている。
【0003】
ところで、耐溶接割れ性の指標としては下式で定義されるPcm(%)というパラメーターが一般に用いられている。
Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5×[B]
《式中、[ ]は各元素の含有量(質量%)を示す》
例えば、特開平10‐68045号公報に、このPcmを0.20以下に制限することで耐溶接割れ性を改善することが開示されている。
【0004】
一方、同じ590MPa級鋼板において、大入熱溶接時にHAZ靭性が劣化する問題がある。これは、入熱が大きくなるとHAZ部の冷却速度が遅くなり、それに伴いHAZ部の焼入れ性が低下し、粗大な島状マルテンサイトを生成することに基づく。この問題は厚物、薄物いずれにおいても発生し、実際の溶接施工時に入熱制限が行われ、溶接効率が悪かった。
【0005】
大入熱溶接時のHAZ靭性の改善に当たっては、上記特開平10‐68045号公報の他、特開平10‐121191号公報において、下式で表される炭素当量(Ceq)を0.35〜0.40と低く制限することが開示されている。
Ceq=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14
《式中、[ ]は各元素の含有量(質量%)を示す》。
【0006】
このように、従来はPcmを制御することにより小入熱溶接時の耐溶接割れ性を改善したり、あるいはCeqを制御することにより大入熱HAZ靭性を改善すると共に、合金成分の含有量制限に伴う母材強度低下を、製造プロセスを改良するなどして補っていた。これにより、590MPa級鋼板において、母材製造時の焼入れにおける冷却速度が比較的速い薄物では溶接時の予熱フリーを達成できたが、冷却速度が遅い厚物では溶接時の予熱フリーと母材強度の両立を達成することが困難であった。また、Cuの析出を利用して母材強度を確保する方法も開示されているが、冷却速度が遅い厚物では充分な母材強度が得られなかった。
【0007】
このように、小入熱溶接においてHAZ部は高温に加熱された後の冷却速度が速いため、硬化して溶接割れ(低温割れ)を起こしやすい。一方、母材は板厚が厚くなるほど冷却速度が遅くなるため、圧延後の焼入れ効果による強度確保が難しくなる。従って、590MPa級鋼板の厚物では、小入熱溶接時の溶接割れを防止するため冷却速度が速くなっても硬くならないようにした上で、鋼板製造時の冷却速度が遅く、焼入れ効果が得難い場合であっても如何に強度を確保するかが重要課題となる。
【0008】
また、厚物、薄物いずれにおいても、大入熱溶接においては、HAZ部の冷却速度が遅くなり、それに伴いHAZ部の焼入れ性が低下し、粗大な島状マルテンサイト組織を生成して靭性が低下するが、このHAZ靭性を改善するには、冷却速度が遅い場合であっても島状マルテンサイト組織の生成を如何なる方法で抑制するかが重要課題となる。
【0009】
一方、特開平11−124652号公報には、鋼材中に酸化物を微細に分散させてオーステナイト粒の微細化および粒内変態フェライトの生成を促進することでHAZ組織を微細化し、大入熱溶接時におけるHAZ靭性(以下、単に「大入熱HAZ靭性」と言うことがある)を改善することが開示されている。しかし、オーステナイト粒を十分に微細化するには酸化物の数が少なすぎ、これを増量することは製造上困難であること、および酸化物が粒内変態フェライトの変態核として十分に働かないことから、この方法によっても大入熱HAZ靭性を十分に確保することはできなかった。
【0010】
【発明が解決しようとする課題】
本発明は、上記事情に着目してなされたものであり、その目的は、溶接性(大入熱HAZ靭性および耐溶接割れ性)に優れた590MPa級鋼板を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決し得た本発明に係る溶接性に優れた高張力鋼板とは、C:0.010〜0.06%(質量%の意味、以下同じ),Mn:1.25〜2.5%,Cr:0.1〜2.0%,Mo:1.5%以下(0%を含む),Ti:0.005〜0.03%,B:0.0006〜0.005%,O:0.0025〜0.015%,Si:1%以下(0%を含まない)を満足し、残部Feおよび不可避的不純物からなる鋼よりなり、下式(1)で表されるKPがKP≧2.4であるところに要旨を有するものである。
KP=[Mn]+1.5×[Cr]+2×[Mo] ・・・ (1)
《式中、[ ]は各元素の含有量(質量%)を意味する》。
【0012】
本発明において、さらにNi:5%以下および/またはCu:1.2%以下を含有する高張力鋼板や、さらにV:0.1%以下および/またはNb:0.1%以下を含有する高張力鋼板や、さらにCa:0.0005〜0.005%を含有する高張力鋼板や、さらにN:0.0020〜0.010%を含有する高張力鋼板や、さらにP:0.020%以下,S:0.010%以下,Al:0.2%以下に夫々抑えられている高張力鋼板は、溶接性が一層高められるので好ましい態様である。
【0013】
また、本発明の高張力鋼板は、肉厚が80mm以上のものでも良好な溶接性と母材強度を有するものである。
【0014】
なお、本発明に係る上記高張力鋼板の化学組成は、典型的には上記元素の他は残部Feおよび不可避不純物からなるが、その他の化学成分についても、本発明の効果を阻害しない範囲内で含有されていてもよい。
【0015】
【発明の実施の形態】
前記の通り、490MPa級の鋼板では、Pcmの制御によって耐溶接割れ性の改善と母材強度の確保を両立することができたが、590MPa級鋼板ではPcmによる成分制御を行ったとしても、特に厚物において両特性の満足を図ることは困難であった。
【0016】
また、一般に、大入熱溶接時に上部ベイナイトを生成させると島状マルテンサイトが生成し、鋼のHAZ靭性が劣化するため、490MPa級の鋼板では、HAZにおいてフェライトを積極的に生成させるべく、Ceqを制御して大入熱HAZ靭性の改善が試みられてきたが、これは高強度化・厚肉化とは相反することであり、590MPa級鋼板での大入熱HAZ靭性の改善と厚肉化の両立を図ることも困難であった。
【0017】
さらに、鋼材中に酸化物を微細に分散させてオーステナイト粒の微細化および粒内変態フェライトの生成を促進することでHAZ組織を微細化し、大入熱HAZ靭性を改善することも試みられているが、従来の手法では、既述のように酸化物の数が少なすぎ、大入熱HAZ靭性を十分に確保することはできなかった。
【0018】
そこで、本発明では成分設計に当たり、これまで耐溶接割れ性の指標とされてきたPcmおよび大入熱HAZ靭性確保の指標とされてきたCeqではなく、全く別のパラメーターにより耐溶接割れ性および大入熱HAZ靭性を制御できないか鋭意検討した。その結果、鋼組織を考慮した上式(1)で表されるKPを用い、さらにC量を極低減化し、BおよびOを添加することにより良好な耐溶接割れ性、大入熱HAZ靭性と母材強度を達成できることを見出し、本発明を完成するに至ったのである。
【0019】
まず、本発明において耐溶接割れ性および大入熱HAZ靭性を改善する技術について説明する。上記の通り、本発明では、Cを極低Cに制限した上で、焼入れ性向上元素であるMnおよびCr、場合によってはMoを積極的に添加し、該焼入れ向上元素の含有量によって定められるKP値を適切に制御すると共に、Bを添加し、さらにOを添加することで酸化物を分散させたところにポイントがある。これらの成分を適切に添加することにより、ベイナイトの連続冷却曲線(図3のCCT線図を参照)が短時間側且つ低温度側に移動すると共に、フェライトのCCT線が長時間側に移動する(実線から破線へ移動)。
【0020】
従って、従来は、高冷却速度ではマルテンサイト、低冷却速度ではフェライトまたは上部ベイナイトを生成するために、硬さの冷却速度感受性が大きく、小入熱溶接時のHAZ部の硬さ低減(耐溶接割れ性の改善)と母材強度の確保が両立できず、予熱フリーの達成が困難であったが、本発明によれば、高冷却速度、低冷却速度のいずれにおいても下部ベイナイトを生成し、硬さの冷却速度感受性が低下し、溶接時のHAZ部の硬さ低減(耐溶接割れ性の改善)と母材強度確保を両立ならしめたのである。
【0021】
一方、大入熱溶接の場合、HAZの冷却速度が遅くなるため、従来はフェライトまたは上部ベイナイトを生成し、それに伴い粗大且つ塊状の島状マルテンサイト組織が生成してHAZ靭性が劣化していたが、本発明では、冷却速度が遅くても下部ベイナイトが生成するため塊状ではなくフィルム状のマルテンサイト組織になると同時に、極低Cであるため生成するマルテンサイト組織が微細となる。さらに、Oの添加により生ずる酸化物が、粒内変態フェライトの変態核としては十分に働かないものの、ベイナイトの変態核として有効に働き、ベイナイトが微細化される。これらの効果によってHAZ靭性を確保できたのである。
【0022】
以下、耐溶接割れ性および大入熱HAZ靭性向上に寄与する成分およびKP値について説明する。
【0023】
C:0.010〜0.06%
Cは、溶接時におけるHAZ部の耐溶接割れ性と母材強度を両立させ、且つ大入熱HAZ靭性を改善するために重要な元素である。Cが0.06%を超えると高冷却速度側で下部ベイナイトでなくマルテンサイトが生成するようになり、耐溶接割れ性および大入熱HAZ靭性が改善されない。好ましくは0.055%以下である。なお、0.010%未満では必要最小限の母材強度が得られない。好ましくは0.020%である。
【0024】
Mn:1.25〜2.5%
Cr:0.1〜2.0%
Mo:1.5%以下(0%を含む)
これらの元素は焼入れ性を改善する作用を有し、高冷却速度〜低冷却速度で下部ベイナイトを生成しやすくすると共に、上記の通り、極低Cとし、同時に所定のB量を添加することにより小入熱溶接時におけるHAZ部の耐溶接割れ性と母材強度確保を両立させ、且つ大入熱HAZ靭性を改善できる点で有用である。
【0025】
まず、MnおよびCrの含有量は、夫々1.25%以上、0.1%以上であることが必要である。これらの含有量に満たないと所望の焼入れ性改善作用が発揮されず、母材強度が不足する。好ましくはMn:1.3%以上、Cr:0.3%以上である。但し、Mn,CrおよびMoの含有量が、夫々2.5%、2.0%、1.5%を超えると母材の靭性が低下する。好ましくはMn:2.2%以下、Cr:1.5%以下、Mo:1.3%以下である。
【0026】
さらに、これらの元素で定められるKP値は2.4以上であることが必要である。KP値が2.4未満では上記作用を有効に発揮させることができず、上部ベイナイトまたはフェライトが生成するようになり、590MPa以上の母材強度が得られなくなる(後記する図1参照)。KP値は大きい程良く、好ましくは2.7以上である。なお、その上限は、Mn,Cr,Moの各添加量の上限に基づいて定められる範囲であれば特に制限されないが、母材靭性などを考慮すれば7以下、より好ましくは6以下に制御することが推奨される。
【0027】
Ti:0.005〜0.03%
TiはOと酸化物を形成し、これにMn,Siが固溶してベイナイトの変態核となり、ベイナイトを微細化したり、Nと窒化物を形成して大入熱溶接時におけるHAZ部のγ粒を微細化し、HAZ靭性改善に寄与する点で有用である。但し、Tiが0.03%を超えると逆にHAZ靭性が低下する。好ましくは0.02%以下である。なお、0.005%未満では大入熱HAZ靭性改善の効果が十分でない。好ましくは0.007%以上である。
【0028】
B:0.0006〜0.005%
Bは焼入れ性改善元素で、低冷却速度で下部ベイナイトを生成しやすくすると共に、上記の通り、極低Cとし、同時に適量のMn,Cr,Moを添加することにより小入熱溶接時におけるHAZ部の耐溶接割れ性と母材強度確保を両立させることができる点で有用である。Bが0.0006%未満では焼入れ性改善効果が期待できず、母材強度が不足してしまう。好ましくは0.0007%以上である。但し、Bが0.005%を超えるとかえって焼入れ性が低下し、母材強度が不足する。好ましくは0.003%以下である。
【0029】
O:0.0025〜0.015%
OはTi,Alと酸化物を形成し、これらの酸化物がベイナイトの変態核となってベイナイトの微細化に寄与し、大入熱HAZ靭性を著しく改善する点で有用である。Oが0.0025%未満では生成する酸化物の量が不十分となる。好ましくは0.0040%以上である。但し、Oが0.015%を超えるとHAZ靭性が低下する。好ましくは0.010%以下である。
【0030】
さらに本発明では、溶接性の一層の向上を目指して、下記の元素を積極的に添加すること、あるいはその含有量を抑制することが推奨される。
【0031】
Ni:5%以下
Niは母材靭性向上に有用な元素であるが、5%を超えて添加するとスケール疵が発生しやすくなるため、その上限を5%とすることが好ましい。より好ましくは4%以下である。
【0032】
Cu:1.2%以下
Cuは固溶強化および析出強化により母材強度を向上させると共に、焼入れ性向上作用も有する元素である。但し、1.2%を超えて添加すると大入熱HAZ靭性が低下するため、その上限を1.2%とすることが好ましい。より好ましくは1.0%以下である。
【0033】
V:0.1%以下(0%を含む)
Nb:0.1%以下(0%を含む)
Vは少量の添加により焼入れ性および焼戻し軟化抵抗を高める作用がある。但し、0.1%を超えて添加すると大入熱HAZ靭性が低下する。好ましくはV:0.06%以下である。Nbはγ粒径を微細化し、これにより変態後のベイナイトブロックサイズが微細化されるため母材靭性の向上に寄与する。但し、Nbの添加量が0.1%を超えると大入熱HAZ靭性が低下する。好ましくはNb:0.03%以下である。
【0034】
Ca:0.0005〜0.005%
CaはMnSを球状化するので、介在物の異方性を低減する効果を有する元素である。このような作用を発揮させるためには0.0005%以上添加することが好ましい。より好ましくは0.0010%以上である。但し、0.005%を超えて過剰に添加すると母材靭性が低下するのでその上限を0.005%とすることが好ましい。より好ましくは0.004%以下である。
【0035】
N:0.0020〜0.010%
Nは上記の通り、Tiと窒化物を形成して大入熱溶接時におけるHAZ靭性改善に寄与する点で有用である。但し、NはBと結合して固溶Bを減少させ、Bの焼入れ性向上作用を阻害し、母材の靭性および大入熱HAZ靭性を低下させる作用も有しており、Nの含有量が0.010%を超えるとその作用が顕著になる。好ましくは0.008%以下である。なお、0.0020%未満ではTiとの窒化物形成による大入熱HAZ靭性改善の効果が十分でない。好ましくは0.0030%以上である。
【0036】
Si:1%以下
Siは脱酸剤として有用な元素であるが、1%を超えて添加すると溶接性および母材靭性が低下するのでその上限を1%とすることが好ましい。より好ましくは0.6%以下である。
【0037】
P:0.020%以下,S:0.010%以下
PおよびSは不純物元素である。よって夫々0.020%以下、0.010%以下に抑えられていることが好ましい。
【0038】
Al:0.2%以下
AlはOと酸化物を形成し、ベイナイトの微細化に寄与してHAZ靭性を高めたり、Nを固定して固溶Bを増加させることによりBに基づく焼入れ性向上作用を高める元素であるが、0.2%を超えて添加すると母材の靭性が低下するので、その上限を0.2%とすることが好ましい。より好ましくは0.1%以下である。
【0040】
次に、本発明の鋼板を製造する方法について説明する。
【0041】
本発明の鋼板は、上記成分組成を満足する鋼を用い、加熱、熱間圧延、および焼入れをした後、焼戻しすることにより所望の高張力鋼板を得ることができる。各工程の条件(温度、時間など)は特に限定されず,通常用いられる高張力鋼板の製造条件を適宜採用することができる。具体的には、例えば950〜1200℃で2時間以上加熱した後、熱間圧延を行い、850〜950℃で圧延を完了し、その後冷却する。次いで880〜950℃のγ単相域温度で30分以上保持した後、水冷することが推奨される。また、焼戻し工程では、450〜650℃で10〜40分保持して行うことが推奨される。
【0042】
このように、本発明によれば、高張力鋼板の製造に当たり、通常実施される製造条件を適用することにより、溶接性に優れた高張力鋼板が得られる。
【0043】
【実施例】
以下、実施例に基づいて本発明を詳細に述べる。但し、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術的範囲に包含される。
【0044】
表1および2に示す成分組成の鋼を通常の溶製法により溶製し、スラブとした後、通常の加熱、熱間圧延を行った後、表3および4に示す条件で焼入れ、焼戻しを行い、所定の板厚からなる高張力鋼板を製造した。
【0045】
このようにして得られた各鋼板について、下記の要領で母材特性[強度および靭性(vE-40)]を評価し、本発明で基準とする母材レベル(引張強さ≧590MPa、vE-40≧47J)をクリアしたものについては、さらに溶接性(耐溶接割れ性および大入熱HAZ靭性)を評価した。
【0046】
[母材特性試験]
▲1▼引張試験:各鋼板の板厚1/4部位からJIS4号試験片を採取し、引張試験を行うことにより0.2%耐力および引張強さを測定した。引張強さ≧590MPaを合格とした。
▲2▼衝撃試験:各鋼板の板厚1/4部位からJIS4号試験片を採取し、シャルピー衝撃試験をおこなうことにより吸収エネルギー(vE-40)を得た。vE-40≧47Jを合格とした。
【0047】
[溶接性試験]
▲1▼HAZ靭性:入熱100あるいは120kJ/mm(エレクトロスラグ溶接法)で溶接を行い、図2に示す部位からJIS4号試験片を採取してシャルピー衝撃試験を行い、ボンド部の吸収エネルギー(vE-20)を求めた。vE-20≧100Jを合格とした。
▲2▼耐溶接割れ性:JIS Z 3158に記載のy形溶接割れ試験法に基づいて、入熱1.7kJ/mmで被覆アーク溶接を行い、ルート割れ防止予熱温度を測定した。本発明では25℃以下を合格とした。
【0048】
これらの結果を表3および4に併記する。
【0049】
【表1】

Figure 0003739997
【0050】
【表2】
Figure 0003739997
【0051】
【表3】
Figure 0003739997
【0052】
【表4】
Figure 0003739997
【0053】
表3および4より以下のように考察することができる。
【0054】
まず、表1の鋼板は本発明の要件を満足する実施例であり、表3に示す通り、いずれの鋼板も母材特性および溶接性に優れていた。
【0055】
これに対し、表2の鋼板は本発明の要件を満足しない比較例であるが、これらは表4に示す不具合を有している。
【0056】
まず、No.23はC量が本発明の下限値を下回る例であり、所望の母材強度が得られなかった。また、No.24はC量が本発明の上限値を超える例であり、耐溶接割れ性が低下した。
【0057】
No.25およびNo.26はKP値が本発明の下限値を下回る例であり、所望の母材強度が得られなかった。
【0058】
No.27はMn量が本発明の下限値を下回る例であり、所望の母材強度が得られなかった。また、No.28はMn量が本発明の上限値を超える例であり、所望の母材靭性が得られなかった。
【0059】
No.29はCr量が本発明の下限値を下回る例であり、所望の母材強度が得られなかった。また、No.30はCr量が本発明の上限値を超える例であり、所望の母材靭性が得られなかった。
【0060】
No.31はMo量が本発明の上限値を超える例であり、所望の母材靭性が得られなかった。
【0061】
No.32はV量が本発明の上限値を超える例であり、大入熱HAZ靭性が低下した。
【0062】
No.33はNb量が本発明の上限値を超える例であり、大入熱HAZ靭性が低下した。
【0063】
No.34はCu値が本発明の上限値を超える例であり、大入熱HAZ靭性が低下した。
【0064】
No.35はB値が本発明の下限値を下回る例であり、所望の母材強度が得られなかった。また、No.36はB値が本発明の上限値を超える例であり、所望の母材強度が得られなかった。
【0065】
No.37はTi量が本発明の下限値を下回る例であり、大入熱HAZ靭性が低下した。また、No.38はTi量が本発明の上限値を超える例であり、大入熱HAZ靭性が低下した。
【0066】
No.39はCa量が本発明の上限値を超える例であり、所望の母材靭性が得られなかった。
【0067】
No.40はO量が本発明の下限値を下回る例であり、大入熱HAZ靭性が低下した。また、No.41はO量が本発明の上限値を超える例であり、大入熱HAZ靭性が低下した。
【0068】
No.42はN量が本発明の下限値を下回る例であり、大入熱HAZ靭性が低下した。また、No.43はN量が本発明の上限値を超える例であり、大入熱HAZ靭性が低下した。
【0069】
図1は、上記結果に基づき、母材強度(引張強さ)とKP値の関係をグラフ化したものであるが、KP値を2.4よりも大きく制御することで590MPa以上の引張強さが得られていることがわかる。
【0070】
【発明の効果】
本発明は以上のように構成されており、溶接性(耐溶接割れ性および大入熱HAZ靭性)に優れた、590MPa級以上の鋼板を提供することができた。本発明によれば板厚が80mm以上の厚物であっても、上記の特性を備えた高張力鋼板を提供できる。
【図面の簡単な説明】
【図1】母材強度とKP値の関係を示すグラフである。
【図2】エレクトロスラグ溶接時のボンド靭性の試験片採取位置を示す概略説明図である。
【図3】本発明の成分設計の考え方を説明するための模式的なCCT線図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel plate of 590 MPa or more (hereinafter simply referred to as “590 MPa class steel plate”) excellent in weldability (high heat input HAZ toughness and weld crack resistance). The high-tensile steel plate of the present invention is particularly suitably used for large structures such as buildings and bridges.
[0002]
[Prior art]
In a 590 MPa grade steel plate, a large amount of alloy components are added from the viewpoint of ensuring the strength of the base metal, so that HAZ (welding heat affected zone) hardens and weld cracking (cold cracking) occurs under small heat input welding conditions with a fast cooling rate. It is easy to occur, and it is necessary to preheat at about 75 ° C. at the time of welding for the purpose of preventing such weld cracking. Therefore, if this preheating step can be omitted, the construction efficiency is greatly improved and the cost is reduced. Therefore, it is desired to provide a 590 MPa class steel plate having excellent weld crack resistance.
[0003]
By the way, a parameter called Pcm (%) defined by the following formula is generally used as an index of resistance to weld cracking.
Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 × [B]
<< In formula, [] shows content (mass%) of each element >>
For example, JP-A-10-68045 discloses that welding crack resistance is improved by limiting the Pcm to 0.20 or less.
[0004]
On the other hand, in the same 590 MPa class steel plate, there is a problem that the HAZ toughness deteriorates during high heat input welding. This is based on the fact that when the heat input is increased, the cooling rate of the HAZ part is lowered, and the hardenability of the HAZ part is lowered accordingly, and coarse island martensite is generated. This problem occurred in both thick and thin objects, heat input was restricted during actual welding work, and welding efficiency was poor.
[0005]
In improving the HAZ toughness at the time of high heat input welding, in addition to the above-mentioned JP-A-10-68045, JP-A-10-121191 discloses a carbon equivalent (Ceq) represented by the following formula: 0.35 to 0 It is disclosed that the limit is as low as .40.
Ceq = [C] + [Mn] / 6 + [Si] / 24 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 14
<< In formula, [] shows content (mass%) of each element >>.
[0006]
Thus, conventionally, controlling Pcm improves weld cracking resistance during small heat input welding, or controlling Ceq improves large heat input HAZ toughness and limits the alloy component content. This was compensated for by the improvement of the manufacturing process. As a result, in a 590 MPa class steel sheet, preheating free during welding was achieved for thin materials with a relatively fast cooling rate during quenching at the time of manufacturing the base material, but preheating free during welding and base material strength for thick materials with a slow cooling rate. It was difficult to achieve both. Moreover, although the method of ensuring the base material strength using precipitation of Cu is also disclosed, sufficient base material strength was not obtained with a thick material having a slow cooling rate.
[0007]
As described above, in the small heat input welding, the HAZ portion has a high cooling rate after being heated to a high temperature, and is thus hardened and easily causes a weld crack (low temperature crack). On the other hand, since the cooling rate of the base material increases as the plate thickness increases, it is difficult to ensure the strength due to the quenching effect after rolling. Therefore, in the case of a thick 590 MPa grade steel plate, it is difficult to obtain a quenching effect because the cooling rate is slow at the time of manufacturing the steel plate after preventing the steel from becoming hard even if the cooling rate is high in order to prevent weld cracking at the time of small heat input welding. Even in this case, how to secure the strength is an important issue.
[0008]
Moreover, in both thick and thin objects, in high heat input welding, the cooling rate of the HAZ part is slowed, and the hardenability of the HAZ part is lowered accordingly, and a coarse island martensite structure is generated to produce toughness. However, in order to improve the HAZ toughness, an important issue is how to suppress the formation of island martensite structures even when the cooling rate is low.
[0009]
On the other hand, Japanese Patent Application Laid-Open No. 11-124652 discloses a high heat input welding by refining the HAZ structure by finely dispersing oxides in a steel material to promote the refinement of austenite grains and the formation of intragranular transformed ferrite. It is disclosed to improve the HAZ toughness at the time (hereinafter sometimes simply referred to as “high heat input HAZ toughness”). However, since the number of oxides is too small to make the austenite grains sufficiently fine, it is difficult to increase the number of oxides, and the oxides do not work sufficiently as transformation nuclei of intragranular transformed ferrite. Even with this method, sufficient heat input HAZ toughness could not be secured.
[0010]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above circumstances, and an object of the present invention is to provide a 590 MPa grade steel plate excellent in weldability (high heat input HAZ toughness and weld crack resistance).
[0011]
[Means for Solving the Problems]
The high-tensile steel sheet having excellent weldability according to the present invention that has solved the above problems is C: 0.010 to 0.06% (meaning mass%, the same applies hereinafter), Mn: 1.25 to 2.2. 5%, Cr: 0.1-2.0%, Mo: 1.5% or less (including 0%), Ti: 0.005-0.03%, B: 0.0006-0.005%, O: 0.0025 to 0.015%, Si: 1% or less (excluding 0%), made of steel consisting of the balance Fe and inevitable impurities, and KP represented by the following formula (1) is It has a gist where KP ≧ 2.4.
KP = [Mn] + 1.5 × [Cr] + 2 × [Mo] (1)
<< In formula, [] means content (mass%) of each element >>.
[0012]
In the present invention, a high-tensile steel plate further containing Ni: 5% or less and / or Cu: 1.2% or less, and further, a high content containing V: 0.1% or less and / or Nb: 0.1% or less. Tensile steel plate, high strength steel plate containing Ca: 0.0005-0.005%, high strength steel plate containing N: 0.0020-0.010%, and P: 0.020% or less , S: 0.010% or less, and Al: 0.2% or less, respectively, is a preferable embodiment because weldability is further improved.
[0013]
Moreover, the high-tensile steel sheet of the present invention has good weldability and base material strength even when the wall thickness is 80 mm or more.
[0014]
The chemical composition of the high-strength steel sheet according to the present invention typically consists of the balance of the above elements and the remainder Fe and unavoidable impurities, but other chemical components are within a range that does not impair the effects of the present invention. It may be contained.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
As described above, in the 490 MPa class steel sheet, it was possible to achieve both the improvement of weld crack resistance and the securing of the base material strength by controlling the Pcm. It was difficult to satisfy both characteristics in the thick material.
[0016]
In general, when upper bainite is generated during high heat input welding, island martensite is generated, and the HAZ toughness of the steel deteriorates. Therefore, in the case of a 490 MPa grade steel plate, Ceq is used to actively generate ferrite in the HAZ. Has been tried to improve the high heat input HAZ toughness, which is contrary to the increase in strength and thickness, and the improvement in the high heat input HAZ toughness and the thick wall in the 590 MPa class steel plate. It was also difficult to achieve compatibility.
[0017]
Furthermore, it has been attempted to refine the HAZ structure and improve the high heat input HAZ toughness by finely dispersing oxides in the steel to promote the refinement of austenite grains and the formation of intragranular transformed ferrite. However, in the conventional method, as described above, the number of oxides is too small, and the high heat input HAZ toughness cannot be sufficiently ensured.
[0018]
Therefore, in the present invention, in the component design, the weld crack resistance and large resistance are not determined by completely different parameters, but Pcm, which has been used as an index of weld crack resistance, and Ceq, which has been used as an index of ensuring high heat input HAZ toughness. The inventors studied diligently whether the heat input HAZ toughness could be controlled. As a result, by using KP represented by the above formula (1) considering the steel structure, further reducing the amount of C and adding B and O, good weld crack resistance, high heat input HAZ toughness and The inventors have found that the strength of the base material can be achieved and have completed the present invention.
[0019]
First, a technique for improving weld crack resistance and high heat input HAZ toughness in the present invention will be described. As described above, in the present invention, C is limited to an extremely low C, and Mn and Cr, which are hardenability improving elements, and Mo in some cases are actively added, and are determined by the content of the quenching improving element. The point is that the oxide is dispersed by appropriately controlling the KP value, adding B, and further adding O. By appropriately adding these components, the continuous cooling curve of bainite (see the CCT diagram in FIG. 3) moves to the short time side and the low temperature side, and the CCT line of ferrite moves to the long time side. (Move from solid line to broken line).
[0020]
Therefore, conventionally, since martensite is generated at a high cooling rate and ferrite or upper bainite is generated at a low cooling rate, the hardness is highly sensitive to the cooling rate, and the hardness of the HAZ part at the time of small heat input welding is reduced (welding resistance). Improvement in crackability) and securing of the base material strength were incompatible, and it was difficult to achieve preheating-free, but according to the present invention, lower bainite was produced at both high cooling rate and low cooling rate, The sensitivity to the cooling rate of the hardness was lowered, and the reduction in hardness of the HAZ part during welding (improvement of weld crack resistance) and the securing of the base material strength were achieved at the same time.
[0021]
On the other hand, in the case of high heat input welding, since the cooling rate of HAZ is slow, conventionally, ferrite or upper bainite was generated, and a coarse and massive island-like martensite structure was generated accordingly, and HAZ toughness was deteriorated. However, in the present invention, even if the cooling rate is low, the lower bainite is generated, so that it becomes a film-like martensite structure instead of a lump, and at the same time, the generated martensite structure becomes fine because it is extremely low C. Furthermore, although the oxide produced by the addition of O does not sufficiently function as a transformation nucleus of intragranular transformed ferrite, it effectively acts as a transformation nucleus of bainite, and bainite is refined. These effects ensured the HAZ toughness.
[0022]
Hereinafter, components and KP values that contribute to improving weld crack resistance and high heat input HAZ toughness will be described.
[0023]
C: 0.010 to 0.06%
C is an important element for achieving both the weld crack resistance of the HAZ part during welding and the strength of the base material and improving the high heat input HAZ toughness. If C exceeds 0.06%, martensite is generated instead of lower bainite on the high cooling rate side, and the weld crack resistance and high heat input HAZ toughness are not improved. Preferably it is 0.055% or less. In addition, if it is less than 0.010%, the necessary minimum base material strength cannot be obtained. Preferably it is 0.020%.
[0024]
Mn: 1.25 to 2.5%
Cr: 0.1 to 2.0%
Mo: 1.5% or less (including 0%)
These elements have the effect of improving the hardenability, make it easy to produce lower bainite at a high cooling rate to a low cooling rate, and, as described above, make it extremely low C and simultaneously add a predetermined amount of B. This is useful in that both the weld cracking resistance of the HAZ part and the strength of the base metal can be ensured at the time of small heat input welding, and the high heat input HAZ toughness can be improved.
[0025]
First, the contents of Mn and Cr are required to be 1.25% or more and 0.1% or more, respectively. If these contents are not satisfied, the desired hardenability improving effect is not exhibited and the base material strength is insufficient. Preferably, Mn: 1.3% or more and Cr: 0.3% or more. However, if the contents of Mn, Cr, and Mo exceed 2.5%, 2.0%, and 1.5%, respectively, the toughness of the base material decreases. Preferably, Mn is 2.2% or less, Cr is 1.5% or less, and Mo is 1.3% or less.
[0026]
Furthermore, the KP value determined by these elements needs to be 2.4 or more. If the KP value is less than 2.4, the above effect cannot be exhibited effectively, and upper bainite or ferrite is generated, and a base material strength of 590 MPa or more cannot be obtained (see FIG. 1 described later). A larger KP value is better, and preferably 2.7 or more. The upper limit is not particularly limited as long as it is a range determined based on the upper limit of each addition amount of Mn, Cr, and Mo, but is controlled to 7 or less, more preferably 6 or less in consideration of the base material toughness and the like. It is recommended.
[0027]
Ti: 0.005 to 0.03%
Ti forms an oxide with O, and Mn and Si form a solid solution to form a transformation nucleus of bainite, and bainite is refined or N and nitride are formed to form a γ in the HAZ part during high heat input welding. This is useful in that the grains are refined and contribute to HAZ toughness improvement. However, if Ti exceeds 0.03%, the HAZ toughness decreases. Preferably it is 0.02% or less. If it is less than 0.005%, the effect of improving the high heat input HAZ toughness is not sufficient. Preferably it is 0.007% or more.
[0028]
B: 0.0006 to 0.005%
B is an element for improving hardenability and makes it easy to form lower bainite at a low cooling rate. As described above, it is extremely low C, and at the same time, HAZ at the time of small heat input welding is added by adding an appropriate amount of Mn, Cr, Mo. This is useful in that it is possible to achieve both weld crack resistance of the part and ensuring the strength of the base material. If B is less than 0.0006%, the effect of improving hardenability cannot be expected, and the base material strength is insufficient. Preferably it is 0.0007% or more. However, if B exceeds 0.005%, the hardenability deteriorates and the base material strength is insufficient. Preferably it is 0.003% or less.
[0029]
O: 0.0025 to 0.015%
O forms oxides with Ti and Al, and these oxides are useful in that the transformation nuclei of bainite contribute to the refinement of bainite and the high heat input HAZ toughness is remarkably improved. If O is less than 0.0025%, the amount of oxide produced is insufficient. Preferably it is 0.0040% or more. However, if O exceeds 0.015%, the HAZ toughness decreases. Preferably it is 0.010% or less.
[0030]
Furthermore, in the present invention, it is recommended to positively add the following elements or to suppress the content thereof with the aim of further improving the weldability.
[0031]
Ni: 5% or less Ni is an element useful for improving the toughness of the base metal, but if added over 5%, scale wrinkles are likely to occur, so the upper limit is preferably made 5%. More preferably, it is 4% or less.
[0032]
Cu: 1.2% or less Cu is an element that improves the strength of the base metal by solid solution strengthening and precipitation strengthening and also has an effect of improving hardenability. However, if the addition exceeds 1.2%, the high heat input HAZ toughness decreases, so the upper limit is preferably made 1.2%. More preferably, it is 1.0% or less.
[0033]
V: 0.1% or less (including 0%)
Nb: 0.1% or less (including 0%)
V has the effect of increasing hardenability and temper softening resistance when added in a small amount. However, if added over 0.1%, the high heat input HAZ toughness decreases. V is preferably 0.06% or less. Nb refines the γ grain size, thereby minimizing the bainite block size after transformation, contributing to the improvement of the base metal toughness. However, if the amount of Nb added exceeds 0.1%, the high heat input HAZ toughness decreases. Preferably it is Nb: 0.03% or less.
[0034]
Ca: 0.0005 to 0.005%
Since Ca spheroidizes MnS, it is an element having an effect of reducing the anisotropy of inclusions. In order to exert such an effect, it is preferable to add 0.0005% or more. More preferably, it is 0.0010% or more. However, if the addition exceeds 0.005% excessively, the base material toughness decreases, so the upper limit is preferably made 0.005%. More preferably, it is 0.004% or less.
[0035]
N: 0.0020 to 0.010%
As described above, N is useful in that it forms Ti and nitrides and contributes to the improvement of HAZ toughness during high heat input welding. However, N combines with B to reduce the solid solution B, inhibits the hardenability improving effect of B, and also has the effect of lowering the toughness of the base metal and the high heat input HAZ toughness. When it exceeds 0.010%, the effect becomes remarkable. Preferably it is 0.008% or less. If it is less than 0.0020%, the effect of improving the high heat input HAZ toughness by forming a nitride with Ti is not sufficient. Preferably it is 0.0030% or more.
[0036]
Si: 1% or less Si is an element useful as a deoxidizer, but if added over 1%, weldability and base metal toughness are lowered, so the upper limit is preferably made 1%. More preferably, it is 0.6% or less.
[0037]
P: 0.020% or less, S: 0.010% or less P and S are impurity elements. Therefore, it is preferable to be suppressed to 0.020% or less and 0.010% or less, respectively.
[0038]
Al: 0.2% or less Al forms an oxide with O and contributes to the refinement of bainite to improve HAZ toughness, or to improve the hardenability based on B by fixing N and increasing solid solution B Although it is an element which raises an effect | action, since the toughness of a base material will fall if it adds exceeding 0.2%, it is preferable to make the upper limit into 0.2%. More preferably, it is 0.1% or less.
[0040]
Next, a method for producing the steel plate of the present invention will be described.
[0041]
The steel plate of the present invention uses steel that satisfies the above component composition, and after heating, hot rolling, and quenching, it can be tempered to obtain a desired high-tensile steel plate. Conditions for each step (temperature, time, etc.) are not particularly limited, and commonly used production conditions for high-tensile steel sheets can be adopted as appropriate. Specifically, for example, after heating at 950 to 1200 ° C. for 2 hours or more, hot rolling is performed, rolling is completed at 850 to 950 ° C., and then cooled. Next, it is recommended that the temperature is kept at γ single phase temperature of 880 to 950 ° C. for 30 minutes or more, followed by water cooling. In the tempering step, it is recommended to hold at 450 to 650 ° C. for 10 to 40 minutes.
[0042]
Thus, according to the present invention, a high-strength steel sheet having excellent weldability can be obtained by applying the manufacturing conditions that are usually performed in the production of a high-strength steel sheet.
[0043]
【Example】
Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are encompassed in the technical scope of the present invention.
[0044]
Steels having the composition shown in Tables 1 and 2 were melted by a normal melting method to form a slab, followed by normal heating and hot rolling, followed by quenching and tempering under the conditions shown in Tables 3 and 4. A high-tensile steel plate having a predetermined thickness was manufactured.
[0045]
With respect to each steel plate thus obtained, the base material properties [strength and toughness (vE -40 )] were evaluated in the following manner, and the base material level (tensile strength ≧ 590 MPa, vE ) based on the present invention. About what cleared 40 > = 47J), weldability (weld crack resistance and large heat input HAZ toughness) was evaluated further.
[0046]
[Base material characteristics test]
(1) Tensile test: A JIS No. 4 test piece was taken from a 1/4 thickness portion of each steel plate, and 0.2% proof stress and tensile strength were measured by conducting a tensile test. Tensile strength ≧ 590 MPa was regarded as acceptable.
(2) Impact test: JIS No. 4 test piece was collected from a 1/4 thickness part of each steel plate and subjected to Charpy impact test to obtain absorbed energy (vE- 40 ). vE -40 ≧ 47J was accepted.
[0047]
[Weldability test]
(1) HAZ toughness: Welding is performed at a heat input of 100 or 120 kJ / mm (electroslag welding method), and a JIS No. 4 specimen is taken from the site shown in FIG. vE- 20 ) was determined. vE -20 ≧ 100 J was accepted.
(2) Weld crack resistance: Based on the y-type weld crack test method described in JIS Z 3158, covered arc welding was performed at a heat input of 1.7 kJ / mm, and the root crack prevention preheating temperature was measured. In this invention, 25 degrees C or less was set as the pass.
[0048]
These results are also shown in Tables 3 and 4.
[0049]
[Table 1]
Figure 0003739997
[0050]
[Table 2]
Figure 0003739997
[0051]
[Table 3]
Figure 0003739997
[0052]
[Table 4]
Figure 0003739997
[0053]
From Tables 3 and 4, it can be considered as follows.
[0054]
First, the steel plates in Table 1 are examples that satisfy the requirements of the present invention. As shown in Table 3, all the steel plates were excellent in base material characteristics and weldability.
[0055]
On the other hand, although the steel plate of Table 2 is a comparative example which does not satisfy the requirements of this invention, these have the faults shown in Table 4.
[0056]
First, no. No. 23 is an example in which the amount of C is lower than the lower limit of the present invention, and a desired base material strength was not obtained. No. No. 24 is an example in which the amount of C exceeds the upper limit of the present invention, and the weld crack resistance was lowered.
[0057]
No. 25 and No. No. 26 is an example in which the KP value is lower than the lower limit of the present invention, and a desired base material strength was not obtained.
[0058]
No. No. 27 is an example in which the amount of Mn falls below the lower limit of the present invention, and a desired base material strength was not obtained. No. No. 28 is an example in which the amount of Mn exceeds the upper limit of the present invention, and the desired base material toughness was not obtained.
[0059]
No. No. 29 is an example in which the Cr amount is lower than the lower limit of the present invention, and a desired base material strength was not obtained. No. No. 30 is an example in which the Cr amount exceeds the upper limit of the present invention, and the desired base material toughness was not obtained.
[0060]
No. No. 31 is an example in which the Mo amount exceeds the upper limit of the present invention, and the desired base material toughness was not obtained.
[0061]
No. No. 32 is an example in which the V amount exceeds the upper limit of the present invention, and the high heat input HAZ toughness was lowered.
[0062]
No. No. 33 is an example in which the amount of Nb exceeds the upper limit of the present invention, and the high heat input HAZ toughness was lowered.
[0063]
No. No. 34 is an example in which the Cu value exceeds the upper limit of the present invention, and the high heat input HAZ toughness was lowered.
[0064]
No. No. 35 is an example in which the B value is lower than the lower limit of the present invention, and a desired base material strength was not obtained. No. 36 is an example in which the B value exceeds the upper limit of the present invention, and the desired base material strength was not obtained.
[0065]
No. No. 37 is an example in which the Ti amount is lower than the lower limit of the present invention, and the high heat input HAZ toughness was lowered. No. No. 38 is an example in which the Ti amount exceeds the upper limit of the present invention, and the high heat input HAZ toughness was lowered.
[0066]
No. No. 39 is an example in which the Ca amount exceeds the upper limit of the present invention, and the desired base material toughness was not obtained.
[0067]
No. No. 40 is an example in which the amount of O falls below the lower limit of the present invention, and the high heat input HAZ toughness was lowered. No. No. 41 is an example in which the amount of O exceeds the upper limit of the present invention, and the high heat input HAZ toughness was lowered.
[0068]
No. No. 42 is an example in which the N amount is lower than the lower limit of the present invention, and the high heat input HAZ toughness was lowered. No. No. 43 is an example in which the N amount exceeds the upper limit of the present invention, and the high heat input HAZ toughness was lowered.
[0069]
FIG. 1 is a graph showing the relationship between the base material strength (tensile strength) and the KP value based on the above results. By controlling the KP value to be larger than 2.4, the tensile strength of 590 MPa or more is shown. It can be seen that is obtained.
[0070]
【The invention's effect】
The present invention is configured as described above, and was able to provide a steel plate of 590 MPa class or higher that has excellent weldability (weld crack resistance and high heat input HAZ toughness). According to the present invention, a high-tensile steel plate having the above characteristics can be provided even if the plate thickness is 80 mm or more.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between base material strength and KP value.
FIG. 2 is a schematic explanatory view showing a test piece collection position of bond toughness during electroslag welding.
FIG. 3 is a schematic CCT diagram for explaining the concept of component design of the present invention.

Claims (7)

C:0.010〜0.06%(質量%の意味、以下同じ),
Mn:1.25〜2.5%,
Cr:0.1〜2.0%,
Mo:1.5%以下(0%を含む),
Ti:0.005〜0.03%,
B :0.0006〜0.005%,
O:0.0025〜0.015%,
Si:1%以下(0%を含まない)を満たし、
残部Feおよび不可避的不純物からなる鋼よりなり、
KP≧2.4
であることを特徴とする溶接性に優れた高張力鋼板。
但し、KP=[Mn]+1.5×[Cr]+2×[Mo]
《式中、[ ]は各元素の含有量(質量%)を意味する。》
C: 0.010 to 0.06% (meaning mass%, the same shall apply hereinafter),
Mn: 1.25 to 2.5%,
Cr: 0.1 to 2.0%,
Mo: 1.5% or less (including 0%),
Ti: 0.005 to 0.03%,
B: 0.0006 to 0.005%,
O: 0.0025 to 0.015%,
Si: 1% or less (excluding 0%) is satisfied,
Made of steel consisting of the balance Fe and inevitable impurities,
KP ≧ 2.4
A high-tensile steel sheet with excellent weldability, characterized by
However, KP = [Mn] + 1.5 × [Cr] + 2 × [Mo]
<< In formula, [] means content (mass%) of each element. >>
Ni:5%以下および/またはCu:1.2%以下を含有するものである請求項1に記載の高張力鋼板。  The high-tensile steel sheet according to claim 1, which contains Ni: 5% or less and / or Cu: 1.2% or less. V:0.1%以下および/またはNb:0.1%以下を含有するものである請求項1または2に記載の高張力鋼板。  The high-tensile steel sheet according to claim 1 or 2, which contains V: 0.1% or less and / or Nb: 0.1% or less. Ca:0.0005〜0.005%を含有するものである請求項1〜3のいずれかに記載の高張力鋼板。  The high-tensile steel plate according to any one of claims 1 to 3, which contains Ca: 0.0005 to 0.005%. N:0.0020〜0.010%を含有するものである請求項1〜4のいずれかに記載の高張力鋼板。  N: 0.0020-0.010% is contained, The high-tensile steel plate in any one of Claims 1-4. P:0.020%以下,S:0.010%以下,Al:0.2%以下に夫々抑えられている請求項1〜5のいずれかに記載の高張力鋼板。The high-tensile steel sheet according to any one of claims 1 to 5, which is suppressed to P: 0.020% or less, S: 0.010% or less , and Al: 0.2% or less. 肉厚が80mm以上である請求項1〜6のいずれかに記載の高張力鋼板。  The high-tensile steel sheet according to any one of claims 1 to 6, wherein the thickness is 80 mm or more.
JP2000153714A 2000-05-24 2000-05-24 High-tensile steel plate with excellent weldability Expired - Lifetime JP3739997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153714A JP3739997B2 (en) 2000-05-24 2000-05-24 High-tensile steel plate with excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153714A JP3739997B2 (en) 2000-05-24 2000-05-24 High-tensile steel plate with excellent weldability

Publications (2)

Publication Number Publication Date
JP2001335883A JP2001335883A (en) 2001-12-04
JP3739997B2 true JP3739997B2 (en) 2006-01-25

Family

ID=18658920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153714A Expired - Lifetime JP3739997B2 (en) 2000-05-24 2000-05-24 High-tensile steel plate with excellent weldability

Country Status (1)

Country Link
JP (1) JP3739997B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656416B2 (en) * 2006-01-18 2011-03-23 株式会社神戸製鋼所 Refractory steel with excellent weldability
KR100957940B1 (en) * 2007-12-13 2010-05-13 주식회사 포스코 High strength Steel Plate for High Heat Input Welding having Welded Joint with Superior Impact Toughness in Weld Heat Affected Zone
JP5699798B2 (en) * 2011-05-18 2015-04-15 Jfeスチール株式会社 Low yield ratio high strength steel with excellent toughness of heat affected zone of high heat input welding and its manufacturing method

Also Published As

Publication number Publication date
JP2001335883A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP7471417B2 (en) High-hardness wear-resistant steel with excellent low-temperature impact toughness and manufacturing method thereof
JP4464909B2 (en) High yield strength high tensile strength steel plate with excellent toughness of weld heat affected zone
JP3854807B2 (en) High tensile steel plate with excellent weldability and uniform elongation
JP2007177327A (en) Thick steel plate having excellent toughness and reduced softening in weld heat-affected zone
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP3668713B2 (en) High tensile steel plate with excellent weldability and uniform elongation
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP4652952B2 (en) High-tensile steel plate with excellent toughness of heat affected zone
JP5130472B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP3739997B2 (en) High-tensile steel plate with excellent weldability
JP5170212B2 (en) Method for producing high-tensile steel with high yield point
JP3863413B2 (en) High toughness high tension non-tempered thick steel plate and manufacturing method thereof
JP2002161330A (en) Wear resistant steel
JP4276341B2 (en) Thick steel plate having a tensile strength of 570 to 720 N / mm2 and a small hardness difference between the weld heat-affected zone and the base material, and a method for producing the same
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JP3602396B2 (en) Low yield ratio high strength steel sheet with excellent weldability
JPH059570A (en) Production of high weldability and high strength steel
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JP3746707B2 (en) High-tensile steel plate with excellent weldability
JP3920523B2 (en) High-tensile steel plate with excellent weldability and base metal toughness
JP3620573B2 (en) High strength steel plate with excellent weldability
JPH0579728B2 (en)
JP3618270B2 (en) High-tensile steel plate with excellent weldability and base metal toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051104

R150 Certificate of patent or registration of utility model

Ref document number: 3739997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

EXPY Cancellation because of completion of term